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Abstract We present a new approach for parsing two-
dimensional input using relational grammars and fuzzy sets.
A fast, incremental parsing algorithm is developed, moti-
vated by the two-dimensional structure of written mathemat-
ics. The approach reports all identifiable parses of the input.
The parses are represented as a fuzzy set, in which the mem-
bership grade of a parse measures the similarity between
it and the handwritten input. To identify and report parses
efficiently, we adapt and apply existing techniques such as
rectangular partitions and shared parse forests, and introduce
new ideas such as relational classes and interchangeability.
We also present a correction mechanism that allows users to
navigate parse results and choose the correct interpretation in
case of recognition errors or ambiguity. Such corrections are
incorporated into subsequent incremental recognition results.
Finally, we include two empirical evaluations of our recog-
nizer. One uses a novel user-oriented correction count metric,
while the other replicates the CROHME 2011 math recogni-
tion contest. Both evaluations demonstrate the effectiveness
of our proposed approach.

1 Introduction

It is generally acknowledged that the primary methods by
which people input mathematics on computers (e.g., LATEX,
Maple, Mathematica) are unintuitive and error-prone. A more
natural method, at least on pen-based devices, is to use hand-
written input. However, automatic recognition of handwrit-

S. MacLean (B) · G. Labahn
Cheriton School of Computer Science, University of Waterloo,
200 University Ave. W., Waterloo, ON N2L 3G1, Canada
e-mail: smaclean@cs.uwaterloo.ca

G. Labahn
e-mail: glabahn@cs.uwaterloo.ca

ten mathematical expressions is a hard problem. Indeed, even
after forty years of research, no existing recognition system
is able to accurately recognize a wide range of mathematical
notation [5,9].

There are many similarities between math notation and
other natural languages [6]. In particular, notations are not
formally defined and can be ambiguous. For example, with-
out contextual information, it is impossible to tell whether the
notation u(x+y) denotes a function application or a multipli-
cation operation. Such semantic ambiguities, along with the
syntactic ambiguities generally associated with handwriting
recognition, make math notation a challenging recognition
domain. These difficulties are compounded by the two-
dimensional structures prevalent in handwritten math. Many
well-known approaches for recognition and domain mod-
eling (e.g., Markov models, grammars, dictionary lookup)
cannot be directly applied to the more complicated structures
found in math notation.

The present work describes the math recognition system
used in MathBrush, our pen-based system for interactive
mathematics [17]. Using MathBrush, a user writes mathe-
matical expressions as if they were using pen and paper. After
entry, expressions may be edited and manipulated using com-
puter algebra system (CAS) operations that are invoked by
pen-based interaction. The output of CAS operations may be
captured and further edited with the pen.

MathBrush is designed for real-time interaction, recogniz-
ing and reporting parse results as the user is writing. Its recog-
nizer must therefore be fast enough to update parse results in
real-time and flexible enough to support a mix of typeset and
handwritten input. However, the ambiguity present in hand-
written math makes it all but impossible to develop a recog-
nition system with perfect or even near-perfect accuracy. To
ensure that the system remains usable when recognition is
imperfect, we believe that it is essential to capture multiple
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parses simultaneously, and, by so doing, to allow the user to
choose between alternatives in case of recognition errors. At
the same time, the system must remain highly responsive, so
efficiency is vital.

Motivated by these design considerations, this paper
presents two main contributions in regard to recogniz-
ing handwritten math notation: fuzzy relational context-
free grammars (fuzzy r-CFGs) and relational classes. Fuzzy
r-CFGs specifically address recognition problems in struc-
tured, ambiguous domains. The definition of a fuzzy r-CFG
incorporates not only the structure of the recognition domain,
but also the uncertainty inherent in recognizing that structure.
The grammar, thus, provides a formal model of the recogni-
tion process itself and is presented in detail in Sect. 3.

Relational classes are a generalization and formalization
of the syntactic symbol classes used by other authors. They
represent families of similar-looking mathematical expres-
sions and replace the typical assumption of independence
between parse tree branches. Parses within a relational class
are assumed to be interchangeable within a larger parse with-
out affecting the parse confidence. This interchangeability
reduces the number of expressions that must be considered
when forming parse trees.

Together, these two ideas form the basis for a two-step
parsing process that captures all recognizable parses of
the input, while avoiding the exponential runtime typically
associated with such an approach. In the first step, terminal
symbols and potential subexpression structures are identi-
fied efficiently using a fuzzy r-CFG and associated parsing
algorithms. This step generates a shared parse forest that
simultaneously represents every recognizable parse tree. In
the second step, particular parse trees are extracted from
the shared parse forest in decreasing order of recognition
confidence. Each tree represents the syntactic layout of a
math expression and is rewritten to represent the expres-
sion’s semantics. Trees are generated on demand as they are
requested by the user through the interface of MathBrush. We
use a modest set of relational classes to improve recognition
accuracy while maintaining fast tree extraction. Although
there may be exponentially many trees, extraction of a single
tree remains fast, so that the user experiences no delay.

A secondary contribution of this paper is the correction
count metric for evaluating recognition accuracy (Sect. 6).
The metric provides an implementation-independent way to
compare the effectiveness of recognizers that permit users
to make corrections to their output in case of errors. Unlike
the expression-level correctness rate that typically serves as a
lowest common denominator for recognizer comparison, the
correction count metric measures “how correct” a particular
recognition result is without reference to the implementation
details of any one recognizer.

Grammar-based approaches have been proposed for rec-
ognizing mathematical notation for decades—the next sec-

tion surveys past and current related research. Section 3
presents fuzzy r-CFGs in an abstract setting, while Sect. 4
describes our two-step parsing process in detail. Section 5
provides some details of the symbol and relation classifi-
cation systems used in MathBrush. Section 6 evaluates our
math recognition system empirically on a publicly available
data set. Finally, Sect. 7 offers some concluding remarks and
future research directions.

2 Related work

There are a large number of existing grammar formal-
isms addressing the problem of two-dimensional parsing;
Marriott, Meyer, and Wittenberg [29] provide an extensive
survey. Generally, each formalism strikes a balance between
the severity of the geometric constraints it imposes on a
parser’s input and the amount of time and space required
to parse that input. Some formalisms, like general relational
grammars and graph rewriting grammars, impose so little
constraint that it is intractable to parse the languages they gen-
erate. Our work most closely resembles Tomita’s 2D-CFGs
[36] and the positional grammars developed by Costagliola
and others [11].

Both of these formulations fit input elements into a rect-
angular grid-based structure. In the 2D-CFG case, each grid
cell must be filled by a terminal, and adjacent grid regions
of the same height (width) may be merged into horizontal
(vertical) concatenations by applying grammar productions.
However, this formalism is not rich enough to support math-
ematical notation. For example, consider fitting the symbols
of the expression a

b +1 into a regular grid using one terminal
per cell. The fraction requires three vertically adjacent cells,
each of which has a neighbor to the right. But these three
neighboring cells cannot be filled by the plus sign alone, and
none are allowed to be empty. The expression can therefore
not be represented by a 2D-CFG in a natural way.

The positional grammar formalism allows grid cells to
be empty, avoiding the problem we just saw with 2D-CFGs.
Positional grammar productions take the general form A⇒
A1r1 A2 · · · rk−1 Ak , where the Ai are terminals and/or non-
terminals, and the ri are relations describing spatial config-
urations. Crucially, given a current grid cell in the input and
a grammar relation, the next cell in which parsing contin-
ues must be uniquely determined. Positional grammars, thus,
require distinct language elements to be parsed by distinct
paths through the input. Consider again the example a

b + 1,
which one might naturally parse by following the path a ↓
— ↓ b → + → 1, where the arrows indicate grammar
relations. But then how would one parse a

b+1 ? After parsing
the b, the→ relation can direct the grammar to move hori-
zontally, as required for the second case, or horizontally and
upward, as required for the first case. But it cannot choose
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one or the other depending on the circumstances. Again, the
formalism is too weak for math notation.

Our work adopts aspects of both of these formalisms. We
include multiple geometric relations similarly to positional
grammars, but restrict the form of grammar productions,
so that a single production may only use a single relation.
This restriction facilitates efficient parsing via partitioning
the input into horizontal and vertical concatenations—an
aspect of Tomita’s work that we share (along with Chou,
as discussed below). Unlike 2D-CFGs, we do not require
concatenated regions to have the same size and do not fit ter-
minal symbols into a grid. And we omit the requirement of
positional grammars that each relation direct the parser to a
unique successor position. Instead, we use fuzzy sets to main-
tain multiple successor positions and associated confidence
scores.

For math recognition in particular, grammar models are
occasionally used through rule-based approaches, as in
AlgoSketch [21] and its relatives, which take an approach
similar to those of Zanibbi et al. [41] and Rutherford [33].
In Zanibbi’s DRACULAE system, the input is processed in
three passes based on tree rewriting. The first pass identi-
fies baselines, which it organizes in a tree structure in which
each edge represent geometric relationships. The second pass
rewrites geometric structures as syntactic structures. (E.g., a
horizontal line above one subexpression and below another
would be rewritten as a fraction). The third pass rewrites
syntactic structures as semantic parse trees suitable for com-
putation. (E.g., the fraction would be rewritten as a division
operation.)

Grammars may also be used as a verification step to con-
firm the validity of an expression recognized by some other
means (e.g., [13,37]). Garain and Chaudhuri, for example,
view an expression as a collection of horizontal baselines,
which they call “levels”. Each symbol is placed in a level
as it is drawn. After the entire drawing is complete, it is
segmented into horizontal and vertical “stripes,” which are
merged based on grammar rules and the levels. The result-
ing parse is validated against a grammar that generates TEX
strings. If the parse is not valid, then alternatives are sought
from the symbol recognizer.

Often, grammars are used as a flexible rule set to guide a
recognition process based on traditional parsing techniques.
Such use goes back as far as Anderson’s original graphi-
cal rewriting system [2]. Already many of the features of
modern grammar-based recognition systems are present in
Anderson’s work. In his approach, each grammar produc-
tion is equipped with predicates that determine how a set
of input elements should be partitioned for parsing. The
predicates include rules applying to the minimum, maxi-
mum, and central x- and y-coordinates of expression and
symbol bounding boxes, as well as threshold-based rules
to ensure proper alignment of neighboring subexpressions.

Productions not containing a terminal symbol on the RHS are
restricted to contain only two non-terminals, as in Chomsky
Normal Form. In such cases, Anderson includes a restriction
similar to one later proposed by Liang et al. [22] (which we
will encounter in Sect. 4) that input elements should be par-
titioned by drawing a straight line in the plane that splits the
elements into two subsets and does not intersect any of them.

Another early grammar-based approach was proposed by
Belaid and Haton [4]. In it, a symbol is chosen by the system
as a starting point, and the symbols around it are divided into
“zones” depending on context and grammar productions. The
zones are then processed recursively in a top-down parsing
scheme directed by operator identities. If the union of zones
does not cover the desired subset of the input (i.e., the whole
input for a complete parse), then the grammar is searched
for rules that derive the starting point operator, and parsing
proceeds in a bottom-up fashion.

Our ordering assumption, described in Sect. 4, which
treats grammar productions as either vertical or horizontal
concatenation, was first developed by Chou [10], who used
a stochastic grammar to recognize synthetic binary images
of math expressions. In Chou’s model, each grammar pro-
duction is assumed to be equally likely, terminal symbols are
assigned probabilities based on Hamming distance between
the input image and a template, and geometric relation-
ships between symbols and subexpressions are determined
by fixed, non-probabilistic rules about symbol size and base-
lines. Symbol ambiguity is permitted up to a predetermined
probability threshold, and relation ambiguity is permitted
only in the case of horizontal concatenation where base-
lines differ by one pixel or less. The most likely parse tree is
obtained by a variant of the Cocke-Younger-Kasami (CYK)
CFG parsing algorithm.

Winker et al. [39] later proposed an approach that pro-
vided for some ambiguity in geometric relationships, but not
in terminal symbol identities. In their system, the space sur-
rounding certain mathematical operators (e.g., fraction bar,
summation sign, square root) is divided into a number of
regions. Symbols lying in different regions may lead to dif-
ferent parses, and each of these possible parses is maintained
and reported to the user. However, each time an ambigu-
ity is detected, the parse is duplicated and both possibilities
explored independently. This may lead to an exponential run-
time, as well as an exponential number of parse results.

Miller and Viola [30], expanding on earlier work of Hull
[16], proposed an approach in which a graph is dynamically
created, the edges of which represent the application of gram-
mar rules. They weight the graph edges by probability esti-
mates of the parse results and use A∗ to navigate to the most
likely parse. The probability of a parse tree is the product of
terminal symbol recognition probabilities and probabilities
derived from geometric rules. Each production is assumed to
be equally likely. Miller and Viola also introduced a convex
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hull constraint. Instead of parsing all 2n subsets of the input,
this constraint restricts the parser to only those subsets that
are geometrically convex, leading to a significant speedup.

To allow for ambiguous parse results, Miller and Viola
divided the set of terminal symbols into four syntactic clas-
ses and allowed the parser to choose the class that best fits into
the expression’s geometry. This does permit some ambiguity
between symbols, but if the top-ranked candidate within a
class is incorrect, or if the syntactic class eventually settled
upon by the parser is incorrect, there is no way to choose an
alternative. The geometric rules used in the approach are not
described, making it difficult to assess how much ambiguity
in an expression’s geometry they permit.

A CYK-based approach was developed by Álvaro et al. [1]
for parsing typeset mathematics using 2-D stochastic CFGs.
In their approach, the grammar is written in Chomsky nor-
mal form, and each production is associated with a geomet-
ric relation. Probability distributions over the relations were
defined manually, and distributions over terminal symbols
were derived from neural network outputs. These values are
incorporated into a CYK parsing algorithm that outputs the
most likely overall parse.

The four approaches just cited use probabilistic grammars
to recognize math expressions. The main characteristic of
probabilistic grammars is that one can assign probabilities
to individual productions, and hence to derivation sequences
and language elements. Each of the approaches applies a uni-
form distribution to grammar productions and treats terminal
symbols and/or geometric relationships as probabilistic. In
this context, the use of a uniform distribution over produc-
tions can be interpreted as making no assumptions about the
composition of mathematical expressions aside from their
formal properties, which are encoded in the grammar rules
themselves. This lack of assumptions means that, at any given
parsing step, the parser is not influenced by the production
distribution and considers all its options to be equally likely.
It also provides a neutral starting point from which train-
ing algorithms may learn more specific production probabil-
ities. But even the uniform distribution cannot completely
avoid bias during parsing, as stochastic CFGs are inherently
biased toward parse trees of small height. Each derivation
step reduces the probability of a parse, so, all else being
equal, a more deeply nested tree will be considered to be less
probable than a shallow tree. Approaches using stochastic
grammars with uniform distributions and no training inherit
this downside without benefiting from the ability to use a
realistic distribution over productions.

The multiplicative model used by these approaches
assumes independence of individual symbols and subexpres-
sions. This assumption is invalid (though understandable for
the sake of runtime efficiency) in many domains, includ-
ing math recognition. Consider, for example, the expression
ax3 + bx2 + c? + d, and suppose the system is trying to

determine the identity of the letter indicated by a question
mark. Assuming independence, it may be more likely that the
missing letter is classified as X or λ than the x that a human
reader would expect. Miller and Viola [30] also point out the
necessity of incorporating contextual information. Indeed,
they give a convincing quantitative argument as motivation
for their division of terminal symbols into syntactic classes
which we discussed earlier. But it is unclear how these classes
are incorporated into their geometry rules and how they fit
into their probabilistic model, which assumes independence
of all terminals.

As alluded to above, independence assumptions are
known to degrade parser performance in natural language
applications. A common technique used to improve perfor-
mance is to use the geometric mean of probabilities rather
than their product [28, §12.1]. This leads to the same type
of scoring function we propose in the next section for use
with fuzzy r-CFGs. Our approach is inspired by probabilistic
parsing techniques, but is not, strictly speaking, a valid prob-
abilistic method. While some approaches exist for relaxing
the independence assumption in natural language processing
(e.g., that of Caraballo and Charniak [7]), they use n-gram
models, which may only be applied to mathematics when
large corpora of realistic expressions are available.

One such corpus, owned by Microsoft, has been used by
Shi, Li, and Soong [35] to develop a math recognizer based on
hidden Markov models. In their method, an observed stroke
sequence is used to compute likelihoods of stroke bound-
aries, symbol identities, and relations between symbols. In
contrast to the work cited earlier, probability distributions
for symbol and relation bigrams are determined empirically
from the corpus data. A symbol graph representing alterna-
tive sequences of symbol identity assignment is created, and
the optimal sequence is extracted and passed to a separate
math structure analysis system. The approach of Shi et al.
is sensitive to writing order—symbols must be written with
consecutive strokes, and symbols adjacent in time must also
be adjacent (in some model-specific sense) in the expression
being written. These temporal restrictions are insufficient for
our purposes. For example, a user may draw two parentheses
separated by empty space and then fill in the space with a frac-
tion. We wish to recognize such inputs, in which consecutive
strokes are not directly connected by geometric relationships.

Even so, such probabilistic models are promising and
should be extended and generalized once large realistic, cor-
pora of handwritten math expressions are generally available.
In the meantime, it is reasonable to model the ambiguity
in math recognition using fuzzy sets rather than probabil-
ity distributions. Recent work by Zhang et al. [42] added
support for fuzzy geometric relations to FFES, a math rec-
ognition system using Zanibbi’s DRACULAE recognizer,
so that it could report multiple interpretations of the user’s
input. However, the number of interpretations can only be
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controlled by adjusting thresholds. The ambiguous interpre-
tations are pursued independently and reported to the user
simultaneously, so recognition time is proportional to the
amount of ambiguity in the drawing.

Fitzgerald et al. [12] proposed an approach to math recog-
nition which models geometric relations as fuzzy constraints
on the productions of an attribute grammar. In case of strong
ambiguity in the identity of a symbol or geometric relation,
the input is parsed repeatedly, choosing different identities
each time in a best-first exploration of alternatives. Two-sided
sigmoid functions of geometric features are used to represent
the membership grades in fuzzy geometric relation. It is not
clear if these membership grades combine into grades for
entire parse trees, or if parses are simply reported as they
arise from the best-first parsing process. On one hand, the
system is efficient in the sense that only strong ambiguities
cause it to investigate alternative parses, but on the other,
such alternatives must be parsed independently and serially,
reducing efficiency. What constitutes a strong ambiguity is
hard-coded, so the correct parse may fail to be reported if
the membership grade of a particular geometric relation falls
below a threshold. Like the work of Fitzgerald et al, our
method of tree extraction—presented in Sect. 4.3—employs
a best-first search strategy. But, it can report as many trees
as the user requests, making available all parse trees with
non-zero recognition confidence.

Our work avoids many of the difficulties identified in
this section. It permits ambiguity of terminal symbols as
well as geometric relations. It does not limit the number
of alternative parses and allows users to select between
them, but it does not construct all of the (potentially
exponentially many) interpretations of the user’s writing
before producing output. By using fuzzy sets, we need not
be constrained by probabilistic independence and can use
context-sensitive scoring functions when combining subex-
pressions into larger expressions. By generating interpreta-
tions on demand as the user requests them, only as much
work is done as is necessary to produce the correct interpre-
tation.

3 Fuzzy relational context-free grammars

Recognition may generally be seen as a process by which
an observed, ambiguous, input is interpreted as a certain,
structured expression. Fuzzy r-CFGs explicitly model this
interpretation process as a fuzzy relation between concrete
inputs and abstract expressions. The formalism, therefore,
captures not only the idealized, abstract syntax of domain
objects (as with a typical context-free grammar), but also the
ambiguity inherent in the recognition process itself. In this
section, we define fuzzy r-CFGs, give examples of their use,
and describe fuzzy parsing in an abstract setting.

Fig. 1 Ambiguous
mathematical expressions

3.1 Review of fuzzy sets

Recall that a fuzzy set X̃ is a pair (X, μ), where X is some
underlying set and μ : X → [0, 1] is a function giving the
membership grade in X̃ of each element x ∈ X . A fuzzy
relation on X is a fuzzy set (X × X, μ). The notions of set
union, intersection, Cartesian product, etc. can be similarly
extended to fuzzy sets. For details, refer to Zadeh [40]. To
denote the grade of membership of a in a fuzzy set X̃ , we will
write X̃(a) rather than referring explicitly to the name of the
membership function, which is typically left unspecified. By
x ∈ X̃ = (X, μ), we mean μ(x) > 0, and by |X̃ | we mean
the number of elements having non-zero membership grade,
rather than the sum of membership grades over x ∈ X .

3.2 Fuzzy r-CFG intuition

Before defining fuzzy r-CFGs formally, we motivate the def-
inition through an example. Consider the top expression in
Fig. 1: reasonable interpretations include Ax + b, Ax + 6,
Ax + b, Ax tb, etc. There are three important points to note.
The identity of each terminal symbol is ambiguous. (Gen-
erally, even which strokes ought to be combined to form a
distinct symbol may be ambiguous, as in the bottom pair of
expressions in the figure. Does the first contain a binomial
term or a fraction? Is the second km or lcm?) The geomet-
ric relationships between symbols and subexpressions deter-
mine the mathematical semantics with which those symbols
should be interpreted (e.g., Ax vs. Ax ). And, given a partic-
ular choice of symbol identities and spatial relationships, all
remaining ambiguity is semantic. In cases of semantic ambi-
guity (i.e., the same notation representing multiple distinct
expressions, as in u(x + y)), it is not possible for a syntactic
parser to reliably obtain the correct parse.

The rules governing the assembly of mathematical expres-
sions from their component parts are known with certainty.
Uncertainty only arises because the identities of and rela-
tionships between handwritten symbols are ambiguous. This
ambiguity is a property of each particular drawing, not of the
formal structure of math expressions. As such, it is not nec-
essary to assign probabilities or fuzzy membership grades to
each production in our grammar, though such an extension
could certainly be made to incorporate prior domain knowl-
edge. Instead, we model formally only the ambiguity arising
from symbol and geometric relation classification processes.
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This represents a significant difference between our model
and traditional fuzzy grammars. Typically, fuzzy grammars
are a straightforward modification of probabilistic grammars
in which each non-terminal is considered to be a fuzzy set,
and its productions are each assigned a membership grade
[20]. Such grammars generate languages in which each string
has a particular grade of membership, just as each string in a
stochastic language is derived with a particular probability.

In our approach, the language itself is not fuzzy. It consists
of exactly those math expressions derivable from the gram-
mar’s start symbol. Fuzziness represents the degree to which
a particular drawing is compatible with a particular math
expression in the grammar’s language. It is therefore not a
property of an expression, but of the input, and it provides a
way to measure the similarity between a handwritten input
and one of its potential interpretations as a math expression.

3.3 Fuzzy r-CFG definition

Fuzzy relational context-free grammars are formally defined
as follows:

Definition 1 A fuzzy relational context-free grammar G is a
tuple (�, N , S, T, R, r�, P), where:

– � is a set of terminal symbols;
– N is a set of non-terminal symbols;
– S ∈ N is the start symbol;
– T is a set of observables;
– R is a set of fuzzy relations on I , where I is the set of

interpretations, defined below;
– r� is a fuzzy relation on (T, �); and
– P is a set of productions, each of the form A0

r⇒
A1 A2 · · · Ak , where A0 ∈ N , r ∈ R, and A1, . . . , Ak ∈
N ∪�.

The form of a fuzzy r-CFG is generally similar to that of
a traditional context-free grammar. We point out the differ-
ences below.

3.3.1 Observables

The set T of observables represents the set of all possible
concrete inputs. Formally, T must be closed under union and
intersection. In practice, for online recognition problems, an
observable t ∈ T is a set of ink strokes, each tracing out a
particular curve in the (x, y) plane.

3.3.2 Set of interpretations

While typical context-free grammars deal with strings, we
call the objects derivable from fuzzy r-CFGs expressions.
Any terminal symbol α ∈ � is an expression. An expression

e may also be formed by concatenating a number of expres-
sions e1, . . . , ek by a relation r ∈ R. Such an r-concatena-
tion is written (e1re2r · · · rek). The size |e| of an expression
counts the number of terminal symbols that appear in it. For
example, the size of Ax is |A ↗ x | = 2 and the size of
Ax + b is |(A ↗ x)→ +→ b| = 4. In these expressions,
the parentheses indicate subexpression grouping, not termi-
nal symbols. The arrows indicate spatial relationships corre-
sponding to general writing direction; they are described in
detail below.

The representable set of G is the set E of all expressions
derivable from the non-terminals in N using productions in
P . It may be constructed inductively as follows:

For each terminal α ∈ �, Eα = {α}.
For each production p of the form A0

r⇒ A1 · · · Ak ,

E p =
{
(e1r · · · rek) : ei ∈ E Ai

}
.

For each non-terminal A,

E A =
⋃

p∈P having LHS A

E p;

and finally,

E =
⋃

A∈N

E A.

The set of interpretations is I = T × E . A pair in I corre-
sponds to the interpretation, through recognition, of a partic-
ular observable as a particular expression. We make I fuzzy
by assigning membership grades to each interpretation. As
described in the motivation section, the membership grade
I ((t, e)) measures the degree to which the observable t is
compatible with the expression e, as measured by the fuzzy
relations in the grammar. Note that the (crisp) language gen-
erated by G is ES , where S is the start symbol.

The language structure generated by a fuzzy r-CFG is sim-
ilar to one we used in previous work on sketch corpus creation
[24]. In that formulation, a grammar was used as a generative
language model for producing random mathematical expres-
sions. Context-sensitive probabilities were assigned to pro-
duction rules, similarly to stochastic CFG applications. More
importantly, recognition processes were not involved, so the
relations acted only on expressions, not on interpretations.
This distinction reflects the grammar’s purpose in each case:
as a language model for the generation application and as a
model of sketch interpretation for the recognition application
that we address in this paper.

3.3.3 Relations

The set R contains fuzzy relations that give structure to
expressions by modeling the relationships between subex-
pressions. These relations act on interpretations, allowing
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Fig. 2 An expression in which
the optimal relation depends on
symbol identity

context-sensitive statements to be made about recognition in
an otherwise context-free setting.

The necessity of context-sensitive evaluation was men-
tioned in Sect. 2 and is further illustrated by Fig. 2. The
expression shown in the figure may be best interpreted as Ap

or AP depending upon the case of the P symbol. Denote the
A symbol by t1 and the P symbol by t2. Let↗∈ R be a fuzzy
relation for diagonal spatial relationships and→ be similar
for horizontal adjacency relationships. Then we expect that

↗ ((t1, A), (t2, p)) >↗ ((t1, A), (t2, P))

and

→ ((t1, A), (t2, P)) >↗ ((t1, A), (t2, P)).

That is, the membership grade of a pair of interpretations
in a spatial relation should vary, depending on the expressions
(i.e., the context) involved. Given explicit membership func-
tions, we could evaluate whether or not these expectations
are met.

3.3.4 Terminal relation

The relation r� models the relationship between observables
and terminal symbols. In practice, it may be derived from the
output of a symbol recognizer. For example, if a subset t ′ of
the input observable was recognized as the letter b with, say,
60 % confidence, then one could take r�((t ′, b)) = 0.6.

3.3.5 Productions

The productions in P are similar to context-free gram-
mar productions in that the left-hand element derives the
sequence of right-hand elements. The fuzzy relation r appear-
ing above the⇒ production symbol indicates a requirement
that the relation r is satisfied by adjacent elements of the
RHS. Formally, given a production A0

r⇒ A1 A2 · · · Ak ,
if ti denotes an observable interpretable as an expression
ei derivable from Ai (i.e., ei ∈ E Ai and (ti , ei ) ∈ I ),
then for

⋃k
i=1 ti to be interpretable as (e1 r · · · r ek) requires

((ti , ei ) , (ti+1, ei+1)) ∈ r for i = 1, . . . , k − 1.

3.4 Examples

The following examples demonstrate how fuzzy r-CFG pro-
ductions may be used to model the structure of mathematical
writing. We use five binary spatial relations: ↗,→, ↘, ↓,
�. The arrows indicate a general writing direction, while �
denotes containment (as in notations like

√
x , for instance).

1. Suppose that [ADD] and [EXPR] are non-terminals
and + is a terminal. Then the production [ADD]

→⇒
[EXPR]+[EXPR]models the syntax for infix addition:
two expressions joined by the addition symbol, written
from left to right.

2. The production [SUP]
↗⇒ [EXPR][EXPR] models

superscript syntax. Interpreted as exponentiation, the first
RHS token represents the base of the exponentiation, and
the second represents the exponent. The tokens are con-
nected by the↗ relation, reflecting the expected spatial
relationship between subexpressions.

3. The following pair of productions models the syntax of
definite integration:

[ILIMITS]
↓⇒ [EXPR]

∫
[EXPR]

[INTEGRAL]
→⇒ [ILIMITS][EXPR]d[VAR]

Definite integrals are drawn using two writing directions.
The limits of integration and integration sign itself are
written in a vertical stack, while the integration sign, inte-
grand, and variable of integration are written from left to
right.

3.5 Semantic expression trees and textual output

Fuzzy r-CFG productions model the two-dimensional syn-
tax of mathematical expressions. To represent mathemati-
cal semantics, each production is also associated with rules
for generating textual output and math expression trees with
semantic information. For example, consider again the pro-
duction [ADD]

→⇒ [EXPR]+ [EXPR]. A rule to generate
a MathML string would be written in our grammar format as
<mrow>%1<mo>+</mo>%3</mrow>, where the “%n”
notation indicates that the string representation of the nth
RHS element should be inserted at that point. A rule to
generate a semantic expression tree would be written ADD
(%1,%3). This rule would generate a tree with the root
node labeled with addition semantics (“ADD”) and two sub-
trees. Similarly to the string case, the %n notation indi-
cates that the tree representation of the nth RHS element
should be used as a subtree. Hence, the first child tree cor-
responds to the left-hand operand of the addition expres-
sion, and the second child tree corresponds to the right-hand
operand.

3.6 The fuzzy set of interpretations

Because of ambiguity, there are usually several expres-
sions that are reasonable interpretations of a particular
input observable t ∈ T (e.g., Ap and AP are both rea-
sonable interpretations of Fig. 2). We represent all of the
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interpretations of t as a fuzzy set It of expressions. The
membership function of It gives the extent to which the
structure of an expression matches the structure of t , as
measured by r� and the other grammar relations. This set
can be thought of as a “slice” of the fuzzy set I of inter-
pretations mentioned above; i.e., It = {e : (t, e) ∈ I }. It
remains to specify the membership function It (e) = I (t, e)
concretely.

For cleaner notation, assume that the grammar produc-
tions are in a normal form such that each production is either
of the form A0 ⇒ α, where α ∈ � is a terminal symbol, or
of the form A0

r⇒ A1 · · · Ak , where all of the Ai are non-
terminals. This normal form is easily realized by, for each
α ∈ �, introducing a new non-terminal Xα , replacing all
instances of α in existing productions by Xα , and adding the
production Xα ⇒ α.

The set It of interpretations of t is then constructed as fol-
lows. For every terminal production p of the form A0 ⇒ α,
define a fuzzy set I p

t = {α}, where I p
t (α) = r� ((t, α)) and

I p
t (β) = 0 for β = α.

For every production p of the form A0
r⇒ A1 · · · Ak ,

define a fuzzy set (taking the union over all partitions
of t)

I p
t =

⋃

t1∪···∪tk=t

I p
t1,...,tk , (1)

where

I p
t1,...,tk =

{
(e1r · · · rek) : ei ∈ I Ai

ti , ((ti , ei ),

(ti+1, ei+1)) ∈ r, i = 1, . . . , k − 1
}
. (2)

There is room for experimentation when choosing the
membership function of I p

t1,...,tk . The typical combination
rule in fuzzy systems is to take the minimum of all rele-
vant membership grades. In the present context, this rule has
the disadvantage that all parses sharing a low-scoring sym-
bol or relation are assigned the same score. Zhang et al. [42]
found that using multiplication when combining member-
ship grades helped to prevent ties. We, therefore, compute
the membership grade of an r -concatenation e = e1r · · · rek

in I p
t1,...,tk as

I p
t1,...,tk (e) =

(
k∏

i=1

I Ai
ti (ei )

2|ei |−1
k−1∏

i=1

r ((ti , ei ),

(ti+1, ei+1))

)1/(2|e|−1)

(3)

As an expression always contains exactly one more ter-
minal than relation, this function assigns as an expression’s
membership grade the geometric mean of the grades of all
of its components. Geometric averaging preserves the tie-

breaking properties of multiplication while normalizing for
expression size.

Given all of the I p
t , the fuzzy set of interpretations for a

particular non-terminal A ∈ N is

I A
t =

⋃

p having LHS A

I p
t ,

and the fuzzy set of interpretations of an observable t is It =
I S
t , where S is the start symbol.

An expression e is in It if t is interpretable as e and e
is derivable from the start symbol S. The recognition prob-
lem is therefore equivalent to the extraction of elements of It

(t being the user’s input) in decreasing order of membership
grade.

4 Parsing fuzzy r-CFGs

There are two particular properties of fuzzy r-CFGs that
make parsing difficult. Like other relational grammars, the
languages they generate are multi-dimensional. This pre-
vents the straightforward application of common parsing
techniques like Earley’s algorithm, which assume a simply
ordered sequence of input tokens. Multi-dimensionality also
complicates the task of deciding which subsets of the input
may contain a valid parse. Furthermore, because our input
is ambiguous, we require a parser to report all recognizable
parse trees. Since there may be exponentially many trees,
some effort is required to ensure a reasonable running time.
This section presents two formal assumptions on the struc-
ture of the relations of fuzzy r-CFGs and describes how to
construct an efficient fuzzy r-CFG parser using those assump-
tions. Detailed algorithms are omitted but may be found in a
technical report [27].

4.1 Representing It as a shared parse forest

In Eq. 2, each set I p
t1,...,tk contains up to

∏
i

∣
∣
∣I Ai

ti

∣
∣
∣ expres-

sions. It is therefore infeasible to identify or construct each
expression individually before reporting parse results to the
user. This problem is similar to that of parsing ambiguous
languages, in which the same input may be represented by
many parse trees. Indeed, the language of math expressions is
ambiguous even in the absence of syntactic fuzziness due to
the semantic ambiguities identified earlier. Parsing ambigu-
ous languages is a well-studied problem; we adopt the shared
parse forest approach of Lang [18], in which all recognizable
parses are simultaneously represented by an AND-OR tree.
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Fig. 3 Shared parse forest for figure

For example, consider again the expression shown in
Fig. 1, along with the following toy grammar:

[ST]⇒ [ADD] | [TRM]
[ADD]

→⇒ [TRM]+ [ST]
[TRM]⇒ [MUL] | [SUP] | [CHR]
[MUL]

→⇒ [SUP][TRM] | [CHR][TRM]
[SUP]

↗⇒ [CHR][ST]

[CHR]⇒ [VAR] | [NUM]
[VAR]⇒ a | b | · · · | z
[NUM]⇒ 0 | 1 | · · · | 9

Figure 3 depicts a shared parse forest representing some
possible interpretations of Fig. 1. In the figure, the boxed
arrows are AND nodes. Those arrows indicate the relation
that links derived subexpressions. The ovals are OR nodes
representing derivations of non-terminals on particular sub-
sets of the input. The circles relate subsets of the input with
terminal symbols from the grammar. Simple productions of
the form [CHR] ⇒ [VAR], for example, have been omit-
ted for clarity. Any tree rooted at the [ST] node that has
exactly one path to each input element is a valid parse tree.
This shared parse forest captures, for example, the expres-
sions Ax + b, AX + 6, Ax + 6, AX tb, etc. If an expression
is incomplete (e.g., (x + y without the closing parenthesis),
then no parse will exist for the correct interpretation. How-
ever, other parses using different interpretations of the input
may exist (e.g., lx + y or Cx ty).

Parsing a fuzzy r-CFG may be divided into two steps:
forest construction, in which a shared parse forest is cre-
ated that represents all recognizable parses of the input, and
tree extraction, in which individual parse trees are extracted
from the forest in decreasing order of membership grade. We
describe each of these steps in turn.

4.2 Shared parse forest construction

Because the symbols appearing in a two-dimensional math
expression cannot be simply ordered, one would naively have
to parse every subset of the input in order to obtain all possi-
ble parses. Similarly, recall from Eq. 2 that I p

t is constructed
from a union taken over all partitions of t . It is intractable to
take this union literally. To develop a practical parsing algo-
rithm, we introduce constraints on partitions so as to limit
how many must be considered. The constraints are based on
the two-dimensional structure of mathematical notation.

4.2.1 The ordering assumption and rectangular sets

Define two total orders on observables: <x orders observ-
ables by minimum x-coordinate from left to right and <y

orders observables by minimum y-coordinate from top to
bottom. We take the y axis to be oriented downward. Asso-
ciate each relation r ∈ R with one of these orders, denoted
ord r. ord r is the dominant writing direction used for a par-
ticular relation. For math recognition, we use ord→ =
ord↗ = ord↘ = ord� =<x , and ord ↓ =<y .

Informally, we assume that each geometric relation r ∈ R
is embedded in either <x or <y . Thus, we may treat any
grammar production as generating either horizontal or verti-
cal concatenations of subexpressions, making the partition-
selection problem much simpler.

More formally, denote by mind t the element a ∈ t such
that a <d b for all b ∈ t aside from a and define maxd t
similarly.

Assumption 1 (Ordering) Let t1, t2 be observables, and
let e1, e2 be representable expressions. We assume that
r ((t1, e1), (t2, e2)) = 0 whenever maxord r t1 ≥ ord r

minord r t2.

The ordering assumption says that, for a parse to exist on
t1∪t2, the last symbol of t1 must begin before the first symbol
of t2 along the dominant writing direction of the expression
being parsed. For example, in Fig. 1, to parse Ax + b in the
obvious way requires that the A begins before the x , and the
+ begins after the x but before the b, when the symbols are
considered from left to right (i.e., ordered by <x ).

Similarly, we could formulate a production for fractions

as[FRAC]
↓⇒ [EXPR]—[EXPR]. Then to parse a fraction

would require that the bottom symbol of the numerator began
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before the fraction bar, and the fraction bar began before the
top symbol of the denominator, when considered from top to
bottom (i.e., ordered by <y).

Liang et al. [22] proposed rectangular hulls as a subset-
selection constraint for two-dimensional parsing. A very sim-
ilar constraint that we call rectangular sets is implied by the
ordering assumption.

Definition 2 (Rectangular set/partition) Call a subset t ′ of t
rectangular in t if it satisfies

t ′ =
{

a ∈ t : min
x

t ′ ≤ a ≤ max
x

t ′
}

∩
{

a ∈ t : min
y

t ′ ≤ a ≤ max
y

t ′
}
.

Call a partition t1 ∪ · · · ∪ tk of a rectangular set t rectangular
if every ti is rectangular in t .

From the definition of<x and<y , a set t ′ that is rectangu-
lar in t must include all input elements in t whose left edge
lies between the left-most left edge of an element in t ′ and
the right-most left edge and whose top edge lies between the
top- and bottom-most top edges of elements of t ′.

Proposition 1 Let t ∈ T be an observable, and let p be a
production of the form A0

r⇒ A1 · · · Ak. Under the order-
ing assumption, if (e1r · · · rek) ∈ I p

t1,...,tk , then the partition
t1 ∪ · · · ∪ tk of t is rectangular.

Proof Let d = ord r , and choose any ti . We must show that

ti =
{

a ∈ t : min
x

ti ≤x a ≤x max
x

ti
}

∩
{

a ∈ t : min
y

ti ≤y a ≤y max
y

ti

}
.

It is clear that ti is a subset of the RHS, so suppose that
there is some a′ ∈ t in the RHS put into t j = ti by the
partition of t . If j < i , then
(
(t j , e j ), (t j+1, e j+1)

)
, . . . , ((ti−1, ei−1), (ti , ei )) ∈ r.

By the assumption,

max
d

t j <d min
d

t j+1 ≤ max
d

t j+1 <d · · · <d min
d

ti .

But mind t j ≤d a′ ≤d maxd t j since a′ ∈ t j , and
mind ti ≤d a′ ≤d maxd ti since a′ is in the RHS, so
mind ti ≤d a′ ≤d maxd t j , a contradiction. A similar con-
tradiction can be obtained in the case where j > i . ��

Rectangular sets are the natural two-dimensional general-
ization of contiguous substrings in one-dimensional string
parsing. This definition could be generalized to arbitrary
dimension, giving “hypercube sets” of input elements.

Fig. 4 Expressions with
overlapping symbol bounding
boxes

Following Liang et al, notice that any rectangular set u ⊆ t
can be constructed by choosing any four input elements in t
and taking them to be represent the left, right, top, and bottom
boundaries of the set. There are therefore O (|t |4) rectangular
subsets of t . If we instead naively parsed every subset of the
input, there would of course be 2|t | subsets to process. The
ordering assumption, thus, yields a substantial reduction in
the number of subsets that must be considered for parsing.

Liang et al. define a rectangular hull of a set of input ele-
ments to be their geometric bounding box, and they parse
only those sets whose rectangular hulls have a null intersec-
tion. I.e., no bounding box of a subset selected for parsing can
intersect that of any other parsed set. This formulation causes
problems for containment notations like square roots, as well
as for somewhat crowded or messy handwriting styles, which
our rectangular set formulation avoids. For example, consider
the square root expression on the left of Fig. 4. The rectan-
gular hulls of the root symbol and its argument are shown as
solid boxes and are the (union of) geometric bounding boxes
of the symbols. Note that the rectangular hull of the square
root symbol intersects (in fact contains) that of its contents.
The argument cannot be separated from the operator into
non-intersecting hulls.

When considering input subsets as rectangular sets, we do
not use the natural geometric bounding box of the strokes,
as Liang et al. do. Instead, we take only the minimal x- and
y-coordinates of each stroke and consider the bounding box
(or rectangular hull) of those points. The “boundary” of the
root symbol in Fig. 4 is thus the single point at the top-left
of its bounding box, and the boundary of the rectangular
set representing the argument 2π is shown as a dotted box.
By using minimal coordinates instead of complete bounding
boxes, the rectangular set boundaries do not intersect.

Similarly, in the expression on the right of Fig. 4, the rect-
angular hull of opening parenthesis intersects the hull of the a
symbol and that of the closing parenthesis intersects the hulls
of both the 3 and the exponent 2. As before, the expression
cannot be partitioned such that the required subsets’ hulls are
non-intersecting. But the boundary of the rectangular set rep-
resenting a−3 (indicated by a dotted box) extends only to the
left edge of the 3 symbol. The boundaries of the parentheses
and the exponent are, as for the root sign, single points at the
top-left corner of their bounding boxes. This small change—
taking the left- and top-most coordinates of strokes as their
representative points, “spaces out” overlapping writing and
facilitates non-intersecting partitions.

Figure 5 illustrates schematically the recursive rectangular
partitioning of an expression, following the expected parse
of

∑n−1
i=1

i2

n−i . The whole expression is a rectangular set. The
central dotted vertical line indicates a rectangular partition
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Fig. 5 Recursive rectangular
partitions in an expression

into the sum symbol (with limits) and the summand. In the
summand, for example, the two horizontal dashed lines indi-
cate a rectangular partition into the numerator, fraction bar,
and denominator, and the numerator and denominator are fur-
ther partitioned into rectangular sets, each containing a single
symbol. Note that resulting boxes in the figure are meant to
emphasize the hierarchical structure of the partition. They do
not indicate the geometric bounding boxes of the rectangular
sets.

4.2.2 Parsing algorithm

Using the restriction to rectangular partitions derived above,
it is straightforward to adapt the CYK bottom-up parsing
algorithm so that is generates shared parse forests for fuzzy
r-CFGs. Detailed algorithms are given in a technical report
[27]. Experiments with the CYK approach showed that, while
all rectangular sets must be enumerated and parsed, relatively
few actually contribute to valid parse trees. A similar obser-
vation was made by Grune and Jacobs [15] in the case of
ambiguous languages. The algorithm’s runtime, while pre-
dictable, is always the worst-case time.

Instead of CYK, we, therefore, adapted to fuzzy r-CFGs,
a tabular variant of Unger’s method for CFG parsing [38]. In
this approach, we assume that the grammar is in the normal
form described in Sect. 3.6. At a high level, the algorithm
parses a production p on an input subset t as follows:

1. If p is a terminal production, A0 ⇒ α, then check if
(t, α) ∈ r� . If so, add the parse to table entry (t, α);
otherwise parsing fails.

2. Otherwise, p is of the form A0
r⇒ A1 · · · Ak . For every

rectangular partition t1 ∪ · · · ∪ tk of t , parse each non-
terminal Ai on ti . If any of the subparses fail, then fail
on the current partition. Otherwise, add the partition to
table entry (t, A0). If parsing fails on every partition,
then parsing fails on t .

One drawback of this algorithm is that its runtime is expo-
nential in the size of the RHS of a grammar production, since
Case 2 iterates over

( |t |
k−1

)
partitions. This bound is obtained

by sorting the input by<ord r and choosing k− 1 split points
to induce a rectangular partition. In the worst case, then (i.e.,
when parses exist on every partition), our algorithm must
consider every grammar production on every rectangular set,
giving a complexity of O (

n3+k pk
)
, where n is the num-

ber of elements in the input observable, p is the number of

grammar productions, and k is the number of RHS tokens
in the largest production. The extra factor of k arises from
writing up to k partition subsets into a parse table entry in
Case 2. Importantly, k can be controlled by the designer of
a grammar as a tradeoff between RHS size and number of
grammar productions. For example, if the grammar is writ-
ten in Chomsky Normal Form (CNF), then the complexity is
O (

n5 p
)
. Note that the general bound is asymptotically tight

to the worst-case size of the parse forest, since there may
be O (

n4 p
)

table entries (counting each production as a dis-
tinct entry), each of which may link to O (

nk−1k
)

other table
entries.

Instead of writing our grammar in CNF, we allow arbitrary
production lengths and use the following three optimizations
to reduce the number of partitions that must be considered.
The first two are typical when using Unger’s method [15];
the third is specific to fuzzy r-CFG parsing.

1. Terminal symbol milestones. The terminal symbol rela-
tion r� may be used to guide partitioning. Suppose p
is A0

r⇒ A1 · · · Ai−1αAi+1 · · · Ak , where α is a termi-
nal symbol. Then r� must contain (ti , α) for a parse to
exist on a partition t1 ∪ · · · ∪ tk . That is, given a parti-
tion, any subset corresponding to a terminal symbol in
the grammar production must be recognizable as that ter-
minal symbol. We, therefore, “seed” the parse table with
symbol recognition results and limit the enumeration of
rectangular partitions to those for which the appropriate
terminal symbols are already present in the parse table.
Such seeding also facilitates recognition of typeset sym-
bols, which are simply inserted into the parse table with
their known identities prior to invocation of the parsing
algorithm.

2. Minimum non-terminal length. If there are no empty pro-
ductions in the grammar, then each non-terminal must
expand to at least one terminal symbol. Moreover, given a
minimum number of strokes required to recognize a par-
ticular symbol (e.g., at least two strokes may be required
to form an F), one can compute the minimal number of
input elements required to parse any sequence of non-
terminals A1 · · · Ak . These quantities further constrain
which partitions are feasible.
For example, consider the top expression in Fig. 1. Sup-
pose we are parsing the production [ADD]

→⇒ [TRM]+
[ST] and we know that the + symbol must be drawn
with exactly two strokes. Then [ADD] cannot be parsed
on fewer than 4 input strokes, and the input must be parti-
tioned into t1∪t2∪t3 such that |t1| ≥ 1, |t2| = 2, |t3| ≥ 1.
Furthermore, from the previous optimization, t2 must be
chosen so that (t2,+) ∈ r� . In this particular case, only
one partition is feasible.

3. Spatial relation test. Just because an input subset can
be partitioned into rectangular sets does not mean that
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those sets satisfy the geometric relations specified by a
grammar production. Unfortunately, the grammar rela-
tions act on expressions as well as observables, so they
cannot be tested during parsing because expressions are
not explicitly constructed. As there may be exponen-
tially many expressions, they cannot be constructed, and
therefore, we cannot evaluate the grammar’s spatial rela-
tions, which vary with expression identity. Still, we can
speed up parsing by testing whether relations are satis-
fied, which approximate the grammar relations.
Namely, for each relation r ∈ R, we test the relation

r̂(t1, t2) =
{

1 if ∃e1, e2 s.t. ((t1, e1), (t2, e2)) ∈ r

0 otherwise
.

These relations will be specified more concretely in
Sect. 4.3.2 below. If r̂(ti , ti+1) = 0 for any pair of adja-
cent sets in a rectangular partition, the partition need not
be parsed.

4.2.3 Incremental parsing

The parsing algorithm above may be used incrementally
without any significant changes. Suppose that parsing is com-
plete for some observable t = {a1, . . . , an}. We must handle
two cases: the addition of a new observable an+1 to t if the
user draws a new stroke and the removal of an observable ai

from t if the user erases a stroke.
In the case where a new observable an+1 is added, every

existing entry of the parse table remains valid. We may sim-
ply invoke the parser on the new input {a1, . . . , an+1}, and all
existing parse results will be reused. Note that, although exist-
ing parses remain valid, they will not necessarily be reused.
For example, suppose the expression a3 + b is changed to
a3+2b by the insertion of a new stroke representing the num-
ber 2. Then the parse of a3+b on the original three strokes is
still a valid interpretation of those strokes. But those strokes
no longer form a rectangular set with respect to the new set
of input strokes, so they will not be considered as a group
when the new input is parsed. However, the existing parses
of a3 and + remain individually valid, and they need only
be combined with the new parse of 2b to form the entire
expression.

In the case where an existing observable ai is removed, the
situation is slightly more complicated. Any parse table entry
for an input subset t that includes ai becomes invalid and must
be removed from the table. When the parser is invoked on
the revised input set {a1, . . . , ai−1, ai+1, . . . , an}, any exist-
ing parse results that do not include the stroke ai will be
reused.

This approach to incremental parsing works particularly
well when subsets of the input are represented by bit vectors.

Each input element is represented by a bit, where the first
stroke drawn corresponds to the lowest-order bit and the most
recent stroke to the highest-order bit. If a bit is set, then
the corresponding input element is included in the subset,
otherwise it is not.

Using this representation, when the first stroke is drawn,
the parser might create an entry (1, A) in the parse table.
After a second stroke is drawn, the bit vectors representing
subsets will contain two bits. But since the low-order bit cor-
responds to the first stroke, accessing (01, A) is the same as
accessing the entry (1, A) that was created when the input
was just one stroke.

Incremental parsing is useful for two main reasons. It per-
mits a parser to process in the background as the user is
writing, helping to avoid long delays after the user has fin-
ished writing the expression. It also allows for reporting of
intermediate parse results so that the user can tell whether the
parser is going off-track and make any necessary corrections
to the output. The tree extraction technique described in the
next subsection extracts only complete parse trees (and thus
cannot report partial results, like a+?, in which the right-hand
operand has not yet been written). However, it is straightfor-
ward to adapt a grammar so as to support partial expressions:
one simply creates new non-terminals that derive prefixes or
suffixes of complete expressions.

4.3 Parse tree extraction

The links between entries in the parse table implicitly spec-
ify a shared parse forest. It remains to extract individual
parse trees from this forest in decreasing order of member-
ship grade in the fuzzy set It of interpretations of the user’s
input t . To do so, we must explicitly evaluate the membership
grades of particular parse trees and compare them to deter-
mine which is highest, second highest, and so on. Given the
lack of constraint on the grammar relations and the large
number of parse trees in the forest, this may naively be a
very time-consuming task.

Consider, for example, the problem of determining the
highest-ranked parse tree in the forest shown in Fig. 3. Call
the input subsets t1, t2, t3, t4 from left to right. We need to
check whether → ((t1, A), (t2, x)) >↗ ((t1, A), (t2, x))
to decide whether the first two symbols form a multiplica-
tion or exponentiation. But those geometric relations may
give different results for different expression choices, so
we also need to check whether → ((t1, A), (t2, X)) >↗
((t1, A), (t2, X)). It could be the case that one relationship
has a higher grade when t2 is interpreted as x , and the other
is higher when it is interpreted as X . Indeed, such behav-
ior is desirable to ensure correct recognition of ambiguous
cases as illustrated in Fig. 2. We further need to combine
those geometric relation grades with the relevant terminal
relation grades, r�((t1, A)), r�((t2, x)), r�((t2, X)), to find
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membership grades in It1∪t2 , and thereby determine the best-
first ordering of subexpressions.

Because we have specified no constraints on the gram-
mar relations, it is possible for two expressions e1, e2 to have
very low membership grades in It1 and It2 , but for the pair
of interpretations (t1, e1), (t2, e2) to have sufficiently high
membership in a relation r that e1re2 is the highest-graded
interpretation in It1∪t2 . To determine the highest-graded parse
tree overall, one must examine every single parse tree rep-
resented in the forest. In particular, at the parse forest node
representing the set I p

t1,...,tk of parses for production p =
A0

r⇒ A1 · · · Ak on the partition t1 ∪ · · · ∪ tk of t , a total of
∏k

i=1

∣
∣
∣I Ai

ti

∣
∣
∣ trees would need to be constructed and graded.

This quantity is exactly
∣
∣I p

t1,...,tk

∣
∣, which is still less than the

total number
∣
∣
∣I A0

t

∣
∣
∣ of parses of A0 on t . At a node higher up

the parse forest referencing parses of A0 on t , every tree in
I A0
t would need to be extracted and combined with sibling

trees. The number of trees that must be examined by this
naive approach thus increases combinatorially as parse tree
depth increases. Such an approach is obviously not feasible
if we wish to report parses to the user in real-time as (s)he
writes.

4.3.1 Relational classes

Recall from Sect. 3 that E is the set of all expressions
generated by the productions of a given fuzzy r-CFG. We
define several relational classes c1, . . . , cm , and assign every
expression in E to at least one class. Thus, E = c1∪· · ·∪cm ,
but the ci need not form a partition of E .

These classes play a role in our system similar to that
of syntactic or symbol classes in the approaches of Miller
and Viola [30], Zanibbi et al. [41], and Rutherford [33]. We
include five relational classes for archetypal symbol shapes,
which we extend by a special class, box, which represents all
multi-symbol expressions. Details are provided in the next
section.

To facilitate efficient tree extraction, we assume that the
grammar relations depend only on expressions’ relational
classes, not on their precise structures. In the example above,
one might expect that

→ ((t1, A), (t2, x)) =→ ((t1, A), (t2, X)),

as x is a centered symbol and X is an ascender. One might
also expect that

→ ((t1 ∪ t2), Ax ), (t3,+)) =→ ((t1 ∪ t2, Ax), (t3,+)).
That is, the extent to which the first two symbols are judged

to be horizontally adjacent with the plus sign does not depend
on whether one interprets them as a multiplication or an expo-
nentiation.

Our selection of relational classes captures the intuition
that symbol identities have a greater effect on subexpres-
sion layout than subexpression identities have on the layout
of larger expressions. If such an intuition seems unreason-
able, one is free to introduce relational classes corresponding
to subexpression structures, so that, for example,→ ((t1 ∪
t2, e), (t3,+))would vary depending on whether e was Ax or
Ax . One is not restricted, as in existing approaches, to syntac-
tic classes that represent collections of individual symbols.
The relational class approach, thus, provides control over the
tradeoff between context sensitivity in grammar relations and
execution time.

Formally, denote by C the set of relational classes and by
cl(e) the set of classes to which an expression e belongs. Each
grammar relation may be viewed as a union of class-specific
relations:

r =
⋃

c1,c2∈C

rc1,c2 ,

where rc1,c2 ((t1, e1), (t2, e2)) = 0 if c1 ∈ cl(e1) or c2 ∈
cl(e2). Then, by the usual rules of fuzzy sets,

r ((t1, e1), (t2, e2)) = max
c1∈cl(e1)
c2∈cl(e2)

rc1,c2 ((t1, e1), (t2, e2)). (4)

Using the formulation above, we constrain the grammar
relations by the following assumption:

Assumption 2 (Interchangeability) Let t1, t2 be observ-
ables, let e1, e2, ê1, ê2 be representable expressions, and let
r ∈ R be a relation. We assume for relational classes c1, c2

that

rc1,c2 ((t1, e1), (t2, e2)) = rc1,c2

(
(t1, ê1), (t2, ê2)

)

whenever c1 ∈ cl(e1), cl(ê1) and c2 ∈ cl(e2), cl(ê2).

Each production p, and hence each non-terminal symbol
A, may be associated with sets cl(p), cl(A) of relational clas-
ses in the natural way, so that, if A can derive an expression
e via production p, then cl(e) ⊆ cl(p) ⊆ cl(A).

When constructing the parse table, each time a potential
parse of some production p is identified on an input subset
t , the relational classes associated with p are noted in the
parse table. Thus, when extracting trees, the potential classes
of expressions that might be obtained from any node of the
shared parse forest are known.

This formulation is similar in some ways to the scoring
rules developed by Rhee and Kim [32] to represent all parse
trees with identical structure, but differing symbol identities
by a single tree with indeterminate terminal symbols. Work-
ing in a cost-minimization framework, they defined the cost
of a spatial relationship between two indeterminate symbols
as the minimum relationship cost between determinate sym-
bols, taken over all recognized possibilities for the indeter-
minate symbols’ identities. This definition is similar in form
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to our calculation of a relation membership grade as the max-
imum class-specific membership grade, taken over relational
classes. In our language, Rhee and Kim assign each terminal
symbol to its own relational class.

4.3.2 Spatial relation test in parse forest construction

Recall from Sect. 4.2.2 that, during parse forest construction,
we test whether a partition of the input is feasible for pars-
ing by evaluating spatial relations that approximate the fuzzy
grammar relations. Now we may define these approximate
relations more specifically, using relational classes.

A pair of observables (t1, t2) should have membership
grade 1 in an approximate relation r̂ if there exist expressions
e1, e2 such that the pair of interpretations ((t1, e1), (t2, e2))

has non-zero membership in the corresponding grammar
relation r . Using relational classes, this is the same as asking
whether

max
c1,c2∈C

rc1,c2 ((t1, e1), (t2, e2)) > 0.

That is, do relational classes exist such that the interpre-
tations will have non-zero membership in the grammar rela-
tion, regardless of what the expressions are (since they are
assumed to be interchangeable)? If so, we take r̂(t1, t2) = 1;
if not, r̂(t1, t2) = 0.

Note that these r̂ relations are used only in the forest con-
struction stage. In the tree extraction algorithm given in the
next section, explicit expressions are constructed, so the true
grammar relations are used based on each particular expres-
sion’s relational classes.

4.3.3 Efficient tree extraction using relational classes

Consider again the problem of determining the most highly-
graded parse of an input t . The most highly-graded parse of
a non-terminal A on t is just the most highly-graded parse,
taken over all productions with LHS A. Similarly, the most
highly-graded parse of a production p on t is the most highly-
graded parse, taken over all partitions of t on which potential
parses of p were found. These partitions are noted in the
parse forest by our variant of Unger’s method.

To find the most highly-graded parse of p on a particular
partition t1∪· · ·∪ tk of t , suppose that p is of the form A0

r⇒
A1 · · · Ak . (If p is of the form A0 ⇒ α for a terminal α ∈ �,
then the problem is trivial.) If any table entry (ti , Ai ) contains
only one relational class, then the most highly-graded parse
must include the most highly-graded interpretation in I Ai

ti ,
because under the interchangeability assumption, choosing
a lower-graded interpretation cannot increase the grade of
membership in r , hence it must decrease the overall mem-
bership grade in I p

t . In such a case, we can simply recursively

extract the most highly-graded parse of Ai on ti and paste it
into a parse tree.

More generally, if a table entry (ti , Ai ) contains several
classes, then the most highly-ranked interpretation of each
class must be considered. Thus, the membership grade in It

must be evaluated for at most
∏

i |Ci | interpretations, where
Ci is the set of relational classes that were noted at table entry
(ti , Ai ) during parsing. Thus, when interpretations within
a given table entry share relational classes (as they usually
will for a reasonable selection of classes), significantly fewer
interpretations need to be extracted and graded than in the
naive approach to tree extraction discussed at the outset of
this subsection.

Note that, because grammar relations are binary, two table
entries (ti , Ai ) and (t j , A j ) become independent if there is
some � between i and j such that table entry (t�, A�) contains
only one relational class. In such cases, the relational classes
at cells (ti , Ai ) and (t j , A j ) need not be varied with respect
to each other, reducing the number of evaluations needed.

To find the most highly-graded parse of Ai on ti that has
relational class c, one need to only know which produc-
tions of Ai generate expressions of that class and recursively
find the most highly-graded parse among those productions.
Notice that |ti | < |t |, so no infinite recursion is possible.

To extract the top-ranked parse of the entire input, there-
fore, one visits every parse table cell in bottom-up order,
determining the highest-ranked local parse at each one. Con-
sidering different productions with the same LHS as different
parse table cells, there are at most n4 p cells, where n is the
number of input elements and p is the number of grammar
productions. The forest construction algorithm identifies at
most

( n
k−1

)
distinct rectangular partitions on which to parse

p, where k is the number of right-hand tokens in the largest
production. Using relational classes,

∏
i |Ci | interpretations

must be considered per partition, as described above. This is
bounded naively by ck , where c = |C | is the total number
of classes. Note that, since the approach proceeds bottom-
up, the top-ranked interpretations from partition subsets are
available in constant time, as they have already been com-
puted and stored. Still, it takes time O (k) to extract them,
combine them into a larger interpretation and compute its
membership grade. Thus, obtaining the top-ranked parse tree
takes worst-case time O (

n3+k pckk
)
. This is the same com-

plexity as the forest construction algorithm with an additional
factor of ck arising from the relational classes. Importantly,
both c and k are determined by the grammar designer, allow-
ing a tradeoff between flexibility and speed. If all expressions
are considered to be in the same relational class (i.e., if rela-
tional membership functions are context-insensitive), then
c = 1, and this extra factor disappears.

The above process may be generalized to solve the prob-
lem of finding the mth-most highly-graded parse, given that
all of the m−1 more-highly-graded parses are known. To find
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the mth parse of a non-terminal A, we maintain a priority
queue of known parses. When the (m−1)st parse is extracted,
it was obtained as, say, the j th parse from a particular pro-
duction p. Thus, to find the mth parse, we extract the ( j+1)st
parse from p, add it to the queue, and pop the most highly-
ranked parse out of the queue. A similar process may be used
to extract the mth-most highly-graded parse from a particular
production (selecting over partitions), and from a particular
relational class (selecting over productions).

A slightly more complicated process is required to find
the nth-most highly-graded parse of a production A0

r⇒
A1r · · · r Ak on a particular partition t1 ∪ · · · ∪ tk of t .
Again, we maintain a priority queue of known parses.
During extraction of the most highly-ranked parse, each
interpretation whose membership grade in It was evalu-
ated is added to the queue, and only one—the most highly
ranked—is removed. Inductively, then, the m − 1st parse
was an r -concatenation of the ji th parses of each Ai on
ti of class ci , for i = 1, . . . , k. Denote this parse by
( j1, . . . , jk), where the integer at each position indicates
the ranking of the subexpression at that position in the con-
catenation. By the interchangeability assumption, the next
most highly-ranked parse using the same selection of rela-
tional classes must be one of ( j1 + 1, j2, . . . , jk), ( j1, j2 +
1, j3, . . . , jk), . . . , ( j1, . . . , jk−1, jk + 1). Therefore, the
membership grades of all k of these expressions are eval-
uated, and the expressions are added to the priority queue.
The mth-most highly-ranked parse overall is simply popped
off of the queue and its provenance noted, as in the previous
case.

In this case, tree extraction is much faster than for the
top-ranked tree. That case requires the top-ranked tree to
be determined for each cell in the parse table, whereas,
when finding the mth-most highly-ranked parse, only those
table cells and relational classes explicitly used to form the
(m − 1)st most highly-ranked parse must be considered.
There are O (np) such table cells. (O (n) for the number
of nodes in the parse tree which have more than one child,
and O (p) to account for trivial productions of the form
A ⇒ B.) At the O (n) table cells arising from non-triv-
ial productions, at most k new candidate interpretations are
created and evaluated, each requiring the extraction of only
one subinterpretation. Extraction, thus, has worst-case cost
O˜(np + nk), where the so-called “soft-O” notation O˜(∗)
ignores the logarithmic factors arising from priority queue
operations.

4.4 Handling user corrections

As mentioned in the introduction, we wish to provide to users
a simple correction mechanism so that they may select their
desired interpretation in case of recognition errors or multiple
ambiguous interpretations. Our recognizer facilitates such

Fig. 6 Interface for displaying and selecting alternative interpreta-
tions. Different subexpressions have been selected for alternatives;
clockwise from top-left: the whole expression, the first two symbols,
and the last symbol

corrections by allowing locks to be set on any subset of the
input.

Two types of locks are supported:

1. Expression locks, which fix the interpretation of a par-
ticular subset of the input to be a specified expression,
and

2. Semantic locks, which force interpretations of a partic-
ular subset of the input to be derived from a specified
non-terminal.

Both of these lock types are useful in different circum-
stances. For example, suppose a user draws the top expression
in Fig. 1, meaning the expression AX + b, but the first result
returned by the recognizer is Ax tb. In our system, the user
can correct the result to an addition, Ax + b. This applies a
semantic lock to the entire input, requiring all derived expres-
sions to be additions. The user could then correct the x to X ,
applying an expression lock to the corresponding ink subset.
The graphical interface used in MathBrush for corrections is
shown in Fig. 6.

Consider extracting an expression tree from input t . If t
is locked to an expression e by an expression lock, then we
consider It to contain only one element, e, with membership
grade 1. If t is locked to a non-terminal AL by a semantic lock,
then we take I A′

t to be empty for all non-terminals A′ = AL ,
except those for which a derivation sequence A′ ⇒∗ AL

exists, in which case we take I A′
t = I AL

t .

5 Computing the grammar relations

The fuzzy r-CFG formulation requires the calculation of two
types of fuzzy relations: the terminal symbol relation r� and
the geometric relations in R. This section outlines the symbol
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Fig. 7 Multiple strokes may be
combined into one

and relation classification subsystems from which our math
recognizer obtains membership grades for those relations.

5.1 Terminal symbol relation

The symbol classification subsystem receives strokes as input
one at a time as they are drawn by the user. Strokes may be
merged if they tend in the same direction and their ends are
sufficiently close together. For example, in Fig. 7, the square
root sign and fraction bar are each drawn with two strokes
that would be merged together.

The input strokes are maintained in a list. The first ele-
ment of the list is the first stroke to be received as input. A
stroke’s successor in the list is the stroke that is nearest to
it that has not already appeared in the list. There is no reli-
ance on temporal information, so writing or editing order has
minimal impact on classification results. Special processing
is invoked for strokes that appear to be dots: they are placed
after the stroke with which a combination of horizontal and
vertical distance measurements is minimized.

Next, groups of strokes that may correspond to distinct ter-
minal symbols are identified. Two types of candidate groups
are identified by extracting contiguous sublists from the list
of strokes. First, proximity groups are extracted and scored
based on a combination of stroke proximity and bounding
box alignment. Then stacked groups are constructed by iden-
tifying collections of proximity groups arranged in vertical
stacks; they capture such symbols as ≤,±,≡, etc.

Model-based symbol recognition is performed on each
candidate group in a two-step process. Feature-based match-
ing is used first as a pruning step: features such as first and
last point, width, height, and arc length are extracted from
the candidate group. They are compared with corresponding
features of model symbols, and the numerical differences are
tallied in a weighted sum.

Those models with a sufficiently small feature difference
are then compared with the candidate stroke group using a
fast variant of elastic matching distance [26]. Based on com-
parison of stroke-based features, the input strokes may be
reordered and/or individually reversed so as to obtain the
smallest match distance. The elastic matching distances are
inverted so that small distances correspond to large scores
and then weighted by the appropriate group score (proxim-
ity group score for most symbols, stacked group score for
stack-based symbols, as described above).

Many symbols share similar-looking strokes or subsym-
bols. For example, the symbol E “contains” the symbol F.

Because symbols with more strokes are drawn with more
variability, they typically are scored more poorly by our rec-
ognizer. We, therefore, augment the scores of larger symbols
by a weighted sum of the scores of similar-looking smaller
symbols. The weighting coefficients are automatically deter-
mined ahead of time by measuring symbol-to-symbol sim-
ilarity among the models in the symbol database using the
elastic matching algorithm.

Finally, the augmented scores are normalized so that the
highest-scoring symbol has a score of one. These final scores
give the membership grades for the fuzzy relation r� .

5.2 Geometric relations

The geometric relation membership functions are based on
bounding box geometry. In our discussion in Sect. 4 of rect-
angular sets, we used a definition of bounding boxes based
on the orderings<x and<y . In this section, we are concerned
with actual expression geometry, so we consider the natural
definition of a bounding box. That is, a stroke’s bounding box
is the smallest axis-aligned rectangle that completely covers
the stroke.

The membership function for the containment relation
only considers the amount of overlap between the bound-
ing boxes of t1 and t2. We define the overlap proportion,
ol(t1, t2), as the area of the bounding boxes’ intersection
divided by the area of the smaller box. The membership func-
tion for the containment relation is � ((t1, e1), (t2, e2)) =
ol(t1, t2).

The membership functions for the other geometric rela-
tions incorporate the distance and angle between the bound-
ing boxes of the observables. They are all of the form

r ((t1, e1), (t2, e2))

= θ ((t1, e1), (t2, e2))×d (t1, t2)×
(

1− 1

2
ol (t1, t2)

)
,

where θ is a scoring function based on angle and d is a dis-
tance-based penalty function.

The penalty function d ensures that observables satisfying
the relations are within a reasonable distance of one another.
To compute d, the size of each of t1 and t2 is calculated as the
average of bounding box width and height. Next, a distance
threshold t is obtained as half the average of the two sizes,
clamped to the range [1/6, 1/3] (measured in inches). If the
distance 	 between the bounding boxes is less than t , then
d = 1. Otherwise, d decreases linearly to zero at 	 = 3t .

The points between which the angle is measured to com-
pute θ are selected based on the relation r and the relational
class of the expression e2. The x coordinate is chosen cen-
trally, but the choice of y coordinate varies. For the↓ relation,
it is chosen centrally. Table 1 summarizes how it is chosen
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Table 1 Relational classes and measurement point selection

Rel. class Ex. symbol(s) y coordinate

Box (none) top(t2)+bottom(t2)
2

Default A, +, (,
∫
,
∑
,
√ , —,.

Baseline x,σ top(t2)+ height (t2)/10

Descender q,ρ top(t2)+ height (t2)/20

Half-ascender i,t top(t2)+ height (t2)/3

j j top(t2)+ height (t2)/4

Fig. 8 θ function component of relation membership grade

Table 2 Angle thresholds for geometric relation membership functions

Relation ϕ0 ϕ1 ϕ2

→ −90 0 90

↗ −90 −37.5 0

↘ −20 35 160

↓ 0 90 180

for the other relations (→ ,↗ , and ↘ ), as well as listing
the relational classes used in our system. These choices, as
well as the selection of threshold values below, were made
through experimentation on a small dataset unrelated to those
used in the evaluation section.

Given those measurement points, we measure the angle ϕ
between them relative to the x axis. The angle-based function
θ is triangular with three parameters ϕ0, ϕ1, ϕ2, as follows:

θ(ϕ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if ϕ < ϕ0
ϕ−ϕ0
ϕ1−ϕ0

if ϕ0 ≤ ϕ ≤ ϕ1
ϕ2−ϕ
ϕ2−ϕ1

if ϕ1 ≤ ϕ ≤ ϕ2

0 if ϕ > ϕ2.

Figure 8 indicates the functions’ behavior schematically.
Table 2 lists the thresholds for each relation, in degrees.
As mentioned above, these values were selected based on
manual examination of a small dataset. Note that the y-axis
increases downward.

6 Evaluation

We evaluated the accuracy of our math recognizer exper-
imentally using two publicly available databases of hand-
drawn math expressions. For the first evaluation, we used an
expression corpus developed by our research group at the
University of Waterloo [24,25]. For the second, comparative
evaluation, we obtained the data set and marking scripts used
at the recent CROHME 2011 math recognition competition
[31]. By using the CROHME data, we may compare our sys-
tem against the four recognizers which participated in the
competition, as well as a baseline recognizer developed by
one of the competition organizers.

6.1 Evaluation on the Waterloo corpus

Many of the roughly 4,500 legible expressions in our corpus
include mathematical notations not currently supported by
our parser (e.g., set notation, multi-symbol variable names).
Our test set thus contained 3,672 expressions from 20 writ-
ers, of which 53 expressions were common to all writers,
and the remainder were randomly generated for each writer.
Since this corpus was also intended to provide examples of
individual symbols and the geometric relationships between
symbols, it contains a large number of expressions with only
one or two symbols. We used all of the expressions contain-
ing three or fewer symbols as training data for our symbol
recognizer, as described in the methodology section below.
In all, our grammar contains 49 non-terminals and 104 termi-
nal symbols organized into 176 productions. The grammar
is given in its entirety as Appendix A.

6.1.1 Correction count metric

Devising objective metrics for evaluating the real-world
accuracy of a recognition system is difficult. Several authors
have proposed accuracy metrics (e.g., [8,14,19,33,41])
based on implementation details specific to their particular
recognizers. It is therefore difficult to directly compare their
evaluation results to one another, or to apply their methodol-
ogies to our evaluation.

Recently, though, some authors have proposed some rec-
ognizer-independent evaluation schemes that rely only on
the output of a recognizer and treat its implementation as a
black box. Awal et al. [3] proposed an approach in which
the accuracy of symbol segmentation, symbol recognition,
relation, and expression recognition are reported separately.
A positive feature of this approach is that it makes clear,
in the case of incorrect expression recognition, which rec-
ognizer subsystem failed, and a version of it was used for
the CROHME competition (no relation accuracy measure-
ments were used). Sain et al. [34], following the intuition of
Garain and Chaudhuri [14] that errors far from the dominant
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baseline are less important than those on or near the main
baseline, proposed a scheme called EMERS. In it, the edit
distance between parse trees representing recognized and
ground-truth expressions measures the accuracy of a recog-
nition result. Edits are weighted so that those more deeply
nested in the parse tree have less cost.

These approaches are both valuable in that they are easily
implemented, permit objective comparisons between recog-
nizers, and provide valuable feedback to recognizer develop-
ers. But they both measure the amount by which a recognized
expression deviates from its ground-truth and do not consider
whether the ground-truth was achievable by the recognizer at
all. If a recognizer consistently fails to recognize a particular
structure or symbol, the deviation from ground-truth may be
small, even though the recognizer is effectively useless for
that recognition task.

Our recognizer was designed for the MathBrush pen-
based mathematics system and is intended for real-time,
interactive use by human writers. As such, we believe that a
user-oriented accuracy model provides the best way to assess
its performance. So as well as asking “Is the recognition cor-
rect?”, we want to ask not “How many symbols were wrong?”
or “How many transformation steps give the correct answer”,
but “Is the desired result attainable?”, and “How much effort
must the user expend to get it?” To a user, it is not necessarily
the case that an error on the main baseline (say, recognizing
a + b as atb) is more incorrect than one on a secondary
baseline (say, recognizing n21−ε

as n2l−ε ).
To answer these questions, we count the number of correc-

tions that a user would need to make to a recognition result
in order to obtain the correct parse. If an input is recognized
correctly, then it requires zero corrections. Similarly, if it is
recognized “almost correctly”, it requires fewer corrections
than if the recognition is quite poor. This metric is gener-
ally applicable to any recognition system, though it clearly is
intended to be used with systems providing some correction
or feedback mechanism. One could similarly navigate the
recognition alternatives provided by Microsoft’s math rec-
ognizer, for instance, count the number of required correc-
tions and obtain comparable measurements. Our evaluation
scheme, thus, provides an abstract way to compare the per-
formance of recognition systems without direct reference to
their implementation details.

Liu et al. [23] also devised a user-based correction cost
model for evaluating a diagram recognition system. They
measured the physical time required to correct the errors in
recognized diagrams. This approach would also be useful for
evaluating our system, but the size of the expression corpus
makes it impractical to manually test and correct the recog-
nition results.

Instead, we have automated the evaluation process. We
developed a testing program that simulates a user interacting

with the recognizer. The program passes ink representing a
math expression to the recognizer. Upon receiving the rec-
ognition results, the program compares them to the ground-
truth associated with the ink. If the highest-ranked result is
not correct, then the testing system makes corrections to
the recognition results, as a user would, to obtain the cor-
rect interpretation. That is, the system browses through lists
of alternative interpretations for subexpressions or symbols,
searching for corrections matching the symbols and struc-
tures in the ground-truth. It returns the number of corrections
required to obtain the correct expression.

Algorithm 1 outlines this process. Our recognizer uses a
“context” to refer to any node in the shared parse forest. So, as
the algorithm descends into an expression tree, it can request
alternatives for any particular subexpression and having any
particular semantics. For example, if an expression intended
to be a + c was instead recognized as a + C , the algorithm
would detect the correct top-level structure and the correct
expression on the left side of the addition sign. On the right
side, it would request alternatives “in context”; that is, using
only the ink related to the c symbol and being feasible for
the right side of an addition expression, as determined by the
grammar.

Algorithm 1 cc(g, e): Count the number of corrections
required to match recognition results to ground-truth.
Require: A recognizer R, a ground-truth expression g, and the first

recognition alternative e from R.
if e = g then

return 0
errorhere← 0 // Indicates whether an error appears in the top level
of the expression tree
while e has different top-level semantics from g or uses a different
partition of the input do

errorhere← 1
e← the next alternative from R in this context
if e is null (R provides no more alternatives) then

return ∞
for each pair of subexpressions ei , gi of e, g do

ni ← recurse on R, gi , ei
if ni = ∞ then

return ∞
return errorhere +∑

ni

The correction count produced by this algorithm is akin
to a tree edit distance, except that it is constrained so that
the edits must be obtainable through the recognizer’s output.
They cannot be arbitrary terminal or subtree substitutions.

6.1.2 Methodology

Although the correction count metric provides accuracy
scores for both correct and incorrect recognition results, there
are some types of recognition errors that it cannot account for.
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For example, if an expression is recognized correctly except
for one symbol, for which the correct alternative is not avail-
able, then the correction count will be ∞, even though the
expression is “nearly correct”.

To reduce the number of these types of results, we tested
the recognizer in two scenarios. In the first, called default, we
divided the 3,672 corpus transcriptions into training and test-
ing sets. The training set contained all 1,536 transcriptions
having fewer than four symbols. The remaining 2,136 tran-
scriptions formed the testing set. These transcriptions con-
tained between four and 23 symbols each, with an average
of seven. All of the symbols were extracted from the training
set and used to augment our pre-existing symbol database.
The pre-existing database contained samples of each symbol
written by one to three writers and is unrelated to the evalu-
ation data set. It was used to ensure baseline coverage over
all symbol types.

The second scenario, called perfect, evaluated the quality
of expression parsing in isolation from symbol recognition.
In it, the same testing set of 2,136 transcriptions was used, but
the terminal symbol relation was evaluated so as to exactly
match ground truth. There were no alternatives for the parser
to choose between, and no ambiguities in stroke grouping.
This scenario, thus, represents a “best possible world” for
the parser and gives an upper bound on its real-world perfor-
mance.

Each transcription used for testing may be placed into one
of the following four categories:

1. Correct: No corrections were required. The top-ranked
interpretation was correct.

2. Attainable: The correct interpretation was obtained from
the recognizer after one or more corrections.

3. Incorrect: The correct interpretation was not obtained
from the recognizer.

4. Infeasible: The symbol recognizer failed to provide the
correct symbol candidates to the parser, preventing cor-
rect recognition.

Note that the “incorrect” and “infeasible” categories both
refer to incorrectly recognized transcriptions. Using two cat-
egories allows us to distinguish between those transcriptions
for which the correct expression structure was not identified
at all (“incorrect”) and those for which the correct structure
may have been identified, but correct recognition was impos-
sible because one or more symbols did not have the correct
candidate available for the parser to choose (“infeasible”).
Our symbol classifier distinguishes between over 100 sym-
bols, but is significantly less accurate than the relation clas-
sifier. As such, it is useful to divide incorrectly recognized
transcriptions into two categories, so as to know which of the
two subsystems caused the failure.

Fig. 9 Categorization of transcriptions during evaluation

Fig. 10 Average correction count during evaluation

6.1.3 Accuracy evaluation

Figure 9 summarizes the categorization of the testing set in
both scenarios. Figure 10 shows the correction count in each
scenario, averaged over correct and attainable transcriptions.
The correction count is divided into terminal corrections (i.e.,
corrections that only change terminal symbol identity) and
structural corrections (i.e., all others).

Overall, about 19 % of the transcriptions were recognized
correctly in the default scenario, compared with about 83 % in
the perfect scenario. 67 % of the transcriptions were attain-
able in the default scenario with about 1.2 corrections on
average, while over 98 % were attainable in the perfect sce-
nario, with about 0.2 corrections on average. If we consider
only feasible transcriptions (those for which the correct sym-
bol identities were detected, but not necessarily top-ranked,
by the symbol classifier), then 27 % of the transcriptions were
recognized correctly, and 98 % were attainable in the default
scenario. (The figures for the perfect scenario are unchanged,
as all transcriptions were feasible in that case.) This attain-
ability rate is very close to the one attained in the perfect
scenario, but the correct rate is still quite low, reflecting the
difficulty of simultaneously resolving all symbol classifica-
tion ambiguity perfectly.

When an expression was attainable, it rarely required more
than a few corrections. The top graph in Fig. 11 shows how
many expressions required various numbers of corrections in
the default scenario. The bottom graph shows the same fre-
quency measurement for the perfect scenario. This indicates
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Fig. 11 Expression frequency for correction counts in the default (top)
and perfect (bottom) scenarios

that it would usually be fairly simple and quick for a user
to manually correct recognition errors and obtain the correct
results.

Aside from symbol classification errors, there were two
main reasons why transcriptions were classified as incorrect.

1. Violation of the ordering assumption. Although the
ordering assumption of Sect. 4 was motivated by the
general block-based structure of math notation, it was
occasionally violated by transcriptions in our corpus.
In the left expression of Fig. 12, the right parenthesis
extends to the left beyond the left edge of the “2” symbol.
When ordered by <x , the parenthesis therefore comes
first. Assuming correct symbol recognition, the parser
therefore sees, from left to right, the subsequence (9.)2,
preventing correct recognition of the parenthesized num-
ber. Violations of the ordering assumptions were also
sometimes caused by more reasonable-looking expres-
sions, as in the right expression of the figure. Here, the
C symbol begins to the right of the y symbol. Again,
this causes the C to be considered by the parser to come
strictly after the y and prevents the lower range of the
summation from being considered during the parser’s
recursive process of input subdivision.

2. Geometric relation failure. When symbol or subexpres-
sion bounding boxes are arranged such that the dis-
tance or angle between them falls outside of the ranges
described in Sect. 5, then the arrangement is assigned a
membership grade of zero. Such arrangements are never

Fig. 12 Expressions violating the ordering assumption

Fig. 13 Expressions for which relation classification failed

attainable, which sometimes caused errors. Again, these
errors were often caused by messy writing and incorrect
transcriptions (e.g., the left expression in Fig. 13 was
intended to contain the subexpressions qY and jX , but the
writing appears to read qy and j x), but were also caused
by reasonable transcriptions (e.g., in the right expression,
the subexpression

∑
� − ∫

Ddy was intended to be a
superscript of b, but was not recognized as such due to
geometric relation failure).

6.1.4 Performance evaluation

The worst-case runtime estimates given in Sect. 4 are quite
pessimistic. In actual use, the time required to parse an input
and report results depends on many factors that are diffi-
cult to quantify generally, including the number of distinct
rectangular subsets of the input, the number of subset pairs
which have non-zero membership grade in relations (and in
how many relations they have such scores), the amount of
ambiguity in the symbols used and in the placement of the
strokes making them up, and so on. It is therefore interesting
to investigate how parse table size varies with input size and
to, thus, obtain empirical estimates of the parser’s behavior
in realistic cases.

We first consider the number of rectangular subsets of the
input actually used by the parser. (Recall that, in the worst
case, there are

(n
4

) = O (
n4

)
distinct rectangular subsets.)

The graphs in Fig. 14 show log–log plots of the number
of subsets considered with respect to the number of strokes
appearing in the input. The default scenario is shown on the
top, and the perfect scenario on the bottom. Based on this
data, the parser explored on the order of n2.9 subsets, on
average, in the default scenario, and n2.2 subsets in the per-
fect scenario. This second figure mirrors findings by Liang
et al. [22] in their work on rectangular hulls.

The number of parse table cells depends primarily on
the grammar (which is fixed throughout this evaluation), the
number of rectangular subsets, and the number of pairs of
subsets that are members of the fuzzy geometric relations.
Figure 15 shows log–log plots of the number of parse table
cells with respect to the number of input strokes. As before,
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Fig. 14 log–log plots of number of rectangular subsets w.r.t. input size

Fig. 15 log–log plots of number of parse table cells w.r.t. input size

the top graph corresponds to the default scenario, while the
bottom graph corresponds to the perfect scenario. In the
default scenario, the parse table contained on the order of
n2.1 cells on average, while it contained n1.7 in the perfect
scenario. It is interesting that the exponents are lower when
counting parse cells than when counting subsets, indicating

Fig. 16 log–log plots of number of parse table links w.r.t. input size

that not all of the rectangular subsets explored are involved
in any parses. This is possible because the forest construction
algorithm from Sect. 4 parses a production A0

r⇒ A1 · · · Ak

on a partition t1 ∪ · · · ∪ tk by first parsing A1 on t1, then A2

on t2, and so on, until it reaches the end of the production, or
a subparse fails. So some of the subsets ti may be explored
without contributing to any useful parse results. It is possible
that a heuristic more sophisticated than the rectangular set
restriction would reduce the amount of such wasted effort.
At the same time, the small size of the parse table relative to
the number of subsets available for parsing shows that our
parser does a good job of ignoring unproductive subsets since
they are identified early in the parsing process.

Finally, we consider the number of links between cells
in the parse table (represented by sets of arrows emanating
from the AND nodes in Fig. 3). The number of alternative
interpretations the tree extraction algorithm must consider is
directly linked to the number of inter-cell parse table links.
The top graph in Fig. 16 indicates how link count scales with
input size in the default scenario, and the bottom graph shows
the same measurements for the perfect scenario. As before,
we use this data to estimate that, on average, the parse table
contains on the order of n2.4 links in the default scenario
and n1.7 in the perfect scenario. These figures indicate that
the parse graph is typically quite sparsely linked. That is, the
parser identifies only a small number of ways to parse a given
production on a given input subset. Intuitively, this makes
sense: to parse a production like [EXPR] + [EXPR], one
must have a symbol that looks like a plus sign, surrounded
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Table 3 Evaluation on
CROHME 2011 corpus

Recognizer Stroke reco. Symbol seg. Symbol reco. Expression
reco.

Part 1 of corpus

MathBrush 71.73 84.09 85.99 32.04

Rochester Institute of Technology (USA) 55.91 60.01 87.24 7.18

Sabanci University (TR) 20.90 26.66 81.22 1.66

Universitat Politècnica de València (ES) 78.73 88.07 92.22 29.28

Institute for Language and Speech 48.26 67.75 86.30 0.00

Processing (GR)

IRCCyN-IVC (FR) 78.57 87.56 91.67 40.88

Part 2 of corpus

MathBrush 66.82 80.26 86.11 20.11

Rochester Institute of Technology (USA) 51.58 56.50 91.29 2.59

Sabanci University (TR) 19.36 24.42 84.45 1.15

Universitat Politècnica de València (ES) 78.38 87.82 92.56 19.83

Institute for Language and Speech 52.28 78.77 78.67 0.00

Processing (GR)

IRCCyN-IVC (FR) 70.79 84.23 87.16 22.41

by expressions, all plausibly horizontally adjacent. For most
written addition expressions, there will be few reasonable
ways of breaking up the input to satisfy these constraints.
That the parse table links reflect this fact illustrates the effi-
cacy of the terminal symbol milestone and spatial relation
test heuristics built into our parser.

6.2 Evaluation on the CROHME 2011 corpus

A recent math recognition competition compared the accu-
racy of five recognizers on the CROHME 2011 corpus [31].
To compare these five recognizers to our own, we acquired
the corpus data and associated marking scripts and evaluated
the MathBrush recognizer on the competition data.

The data are divided into two parts, each of which includes
training and testing data. The first part includes a rela-
tively small selection of mathematical notation, while the
second includes a larger selection. For details, refer to the
competition paper [31]. According to competition organiz-
ers, the recognizers were typically not trained exclusively on
the training data. We, therefore, trained our symbol recog-
nizer on the same data as in the previous evaluation, aug-
mented by all of the symbols appearing in the appropriate
part of the CROHME training data. For recognition, we used
the grammars provided in the competition documentation by
converting them into the file format recognized by our parser.

The accuracy of our recognizer was measured using a perl
script provided by the competition organizers. In this eval-
uation, only the top-ranked parse was considered. There are
four accuracy measurements. Stroke reco. indicates the per-
centage of input strokes that were correctly recognized and

placed in the parse tree. Symbol seg. indicates the percent-
age of symbols for which the correct strokes were properly
grouped together. Symbol reco. indicates the percentage of
symbol recognized correctly, out of those correctly grouped.
Finally, expression reco. indicates the percentage of expres-
sions for which the top-ranked parse tree was exactly cor-
rect (corresponding to a “correct” result in our classification
scheme for the previous evaluation).

The results are shown in Table 3, which also reproduces for
comparison purposes the updated competition results appear-
ing on the CROHME website.1 Note that the IRCCyN-IVC
recognizer was developed by one of the competition orga-
nizers and did not directly participate in the competition.
Our MathBrush parser obtained higher expression recogni-
tion rates than the competition participants, though they were
still lower than those of the IRCCyN-IVC recognizer. How-
ever, our symbol segmentation and, in particular, symbol rec-
ognition rates were not as high as those of some competition
participants. These lower-level subsystems would therefore
be promising areas on which to focus in future work, so as
to improve our overall recognition rates.

7 Conclusions and future work

We have described a recognition system for handwritten
mathematical notation, which reports all recognizable inter-
pretations of users’ writing and allows users to repair incor-
rect symbols or subexpressions, while maintaining a runtime

1 http://www.isical.ac.in/~crohme2011/result.html.

123

http://www.isical.ac.in/~crohme2011/result.html


A new approach for recognizing handwritten mathematics using relational grammars and fuzzy sets

that is appropriate for real-time use. To build this system, we
introduced a new fuzzy r-CFG formalism designed for pars-
ing ambiguous, non-linear input. This formalism captures
both the structures and the ambiguities inherent in mathemat-
ical writing in particular, and it explicitly models recognition
processes like symbol and relation classification. We believe
that this formalism is applicable to any structured domain
exhibiting the types of syntactic ambiguities found in natural
languages.

To facilitate efficient parsing, we introduced the order-
ing assumption and demonstrated how it leads naturally to
the rectangular hulls proposed by Liang et al. While this
assumption theoretically allows most mathematical nota-
tions to be adequately described, there are practical exam-
ples of mathematical writing which, while easily readable by
humans, cannot be parsed by our current algorithm because
of the ordering assumption. We intend to investigate how this
assumption may be relaxed to more flexibly model expres-
sion geometry while still affording efficient parsing algo-
rithms.

To report parse results in ranked order of confidence, we
extended the idea of syntactic classes to one of relational
classes. We plan to expand our selection of relational classes
from representing symbol shapes to subexpression shapes,
so that our relation membership functions can account for
superscript and subscript geometry, for example, rather than
treating all multi-symbol expressions as equivalent. How-
ever, parse speed decreases significantly when the parser
must choose between many classes. We, therefore, plan to
investigate more targeted assumptions on the behavior of
grammar relations which will allow a greater degree of con-
text sensitivity without a significant performance penalty.
The rule-based approach used in this paper does not scale
well to large sets of relational classes, for which empirical
approaches are better-suited. At present, we lack sufficient
empirical data to condition the class-specific relation mem-
bership functions, but the creation of new handwritten cor-
pora should provide useful training data.

The fuzzy membership grade functions defined in Sect. 3,
while reasonable, cannot naturally account for some types
of information that might be useful during recognition. (For
example, subexpression co-occurence frequencies, the distri-
bution of subexpressions within larger expressions, etc.) We
plan to investigate the application of Bayesian probability
theory and formal statistical methods to the two-dimensional
parsing problem in a way that avoids dependence on writing
order. As well as the examples mentioned above, there are
several existing components of our system, such as the rela-
tion classifier, for which it seems likely that appropriately
conditioned statistical information would be useful. We are
looking into efficient computational methods for combining
variegated information (e.g., probabilistic, possibilistic, rule-
based, etc.) during parsing.

Finally, our algorithms must be made more scalable.
While they do address the complexity issues arising in
our parsing scheme, they take a fairly brute-force approach
within the constraints allowed by the simplifying assump-
tions. As such, there is a considerable decrease in parsing
speed as the input becomes large. We plan to investigate ways
in which per-strokes efficiency can be improved while keep-
ing available all relevant recognition results.

Appendix A: Grammar specification

Below are the productions used in our math recognition gram-
mar. Note that, although matrices are included in the gram-
mar so that they may be part of mathematical expressions,
the [MATRIX-INTERNAL] non-terminal causes the parser
to invoke a specialized matrix recognition engine instead of
parsing the corresponding rectangular set in the usual way.
This special system is necessary to ensure that the matrices
are well-formed, as it is impossible in a context-free language
to specify in a general way that each row contains the same
number of entries. The matrix analysis engine will be the
subject of a future report.

[EXPR]⇒ [REL-EXPR] | [REL-TERM]
[REL-EXPR]

→⇒ [REL-TERM][REL-OP][EXPR]

[REL-OP]⇒ =|=|<|>|≤|≥
[REL-TERM]⇒ [ADD-EXPR] | [ADD-LEAD-TERM]
[ADD-EXPR]

→⇒ [ADD-LEAD-TERM][ADD-OP]

[REL-TERM]

[ADD-OP]⇒ + | − | ±
[ADD-LEAD-TERM]⇒ [ADD-TERM] | [NEG]

[NEG]
→⇒ −[ADD-TERM]

[ADD-TERM]⇒ [MULT] | [NUM] | [MULT-TRAIL]
[MULT]

→⇒ [MULT-LEAD-TERM][MULT-RHS]

[MULT-LEAD-TERM]⇒ [MULT-TERM] | [NUM]
[MULT-RHS]⇒ [MULT-REC] | [MULT-TRAIL]
[MULT-REC]

→⇒ [MULT-TERM][MULT-RHS]

[MULT-TRAIL]⇒ [MULT-TERM] | [INTEGRAL]
| [SUM] | [LIMIT]

[MULT-TERM]⇒ [VAR-EXPR] | [FRAC]
| [SUP] | [ROOT]

[VAR-EXPR]⇒ [VAR-TERM] | [FUNC]
| [FENCED] | [MATRIX]

[VAR-TERM]⇒ [LETTER] | [SUBSCRIPT]
[SUBSCRIPT]

↘⇒ [LETTER][SUB-BASE]

[SUB-BASE]⇒ [NUM] | [VAR-TERM]
[FENCED]⇒ [PARENS] | [BRACKETS] | [BRACES]
[PARENS]

→⇒ ([REL-TERM])

[BRACKETS]
→⇒ [[REL-TERM]]
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[BRACES]
→⇒ {[REL-TERM]}

[MATRIX]
→⇒ [[MATRIX-INTERNAL]]

[FUNC]
→⇒ [FUNC-LHS][PARENS]

| [FUNC-SPECNAME][ADD-TERM]
[FUNC-SPECNAME]

→⇒ sin | cos | tan | exp | log | ln | erf

[FUNC-LHS]⇒ [FUNC-NAME] | [FUNC-SUP]
[FUNC-NAME]⇒ [VAR-TERM] | [FUNC-SPECNAME]
[FUNC-SUP]

↗⇒ [FUNC-NAME][REL-TERM]

[FRAC]
↓⇒ [REL-TERM]—[REL-TERM]

[SUP]
↗⇒ [SUP-BASE][REL-TERM]

[SUP-BASE]⇒ [VAR-EXPR] | [ROOT]
[ROOT]

�⇒ √ [REL-TERM]

[SUM]
→⇒ [SUM-LIMITS][REL-TERM]

[SUM-LIMITS]⇒
∑

[SUM-LIMITS]
↓⇒

∑
[EXPR]

[SUM-LIMITS]
↓⇒

∑
[REL-TERM]

∑
[EXPR]

[INTEGRAL]
→⇒ [INT-LIMITS][REL-TERM]

d[VAR-TERM]

[INT-LIMITS]⇒
∫

[INT-LIMITS]
↓⇒

∫
[REL-TERM]

[INT-LIMITS]
↓⇒ [REL-TERM]

∫

[INT-LIMITS]⇒ [INT-UPRGT-LIMITS]

[INT-UPRGT-LIMITS]
↗⇒

∫
[REL-TERM]

[INT-LIMITS]
↘⇒

∫
[REL-TERM]

[INT-LIMITS]
↓⇒ [REL-TERM]

∫
[REL-TERM]

[INT-LIMITS]
↘⇒ [INT-UPRGT-LIMITS][REL-TERM]

[LIMIT]
→⇒ [LIM-LHS][REL-TERM]

[LIM-LHS]
↓⇒ [LIM-TEXT][LIM-APPROACH]

[LIM-TEXT]
→⇒ lim

[LIM-APPROACH]
→⇒ [VAR-TERM]→ [REL-TERM]

[NUM]⇒ [INT] | [FLOAT] | ∞
[INT]⇒ [DIGIT]

[INT]
→⇒ [DIGIT][INT]

[DIGIT]⇒ 0 | 1 | · · · | 9
[FLOAT]

→⇒ [FLOAT-LEAD][INT]

[FLOAT-LEAD]
↘⇒ [INT]·

[LETTER]⇒ a | b | · · · | z | A | B | · · · | Z

| α | β | γ | δ | ε | π | σ | θ | λ | μ | φ
| ψ | ρ | τ | ξ | ζ | 	 | � | � | � | �
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