
Matching techniques for mathematical symbol recognition

Scott MacLean

University of Waterloo

28 April, 2007

1

Contents

1 Introduction 4

2 Mathematical symbol recognition 4

3 Elastic matching 5

3.1 Overview . 5

3.2 Algorithm . 6

3.3 Complexity . 8

4 Deformable template matching 8

4.1 Overview . 8

4.2 Algorithm . 9

4.3 Complexity . 11

5 Structural chain-code matching 11

5.1 Overview . 11

5.2 Algorithm . 12

5.3 Complexity . 14

6 Stroke feature matching 14

6.1 Overview . 14

6.2 Complexity . 14

7 Direction element method 15

7.1 Overview . 15

7.2 Algorithm . 15

2

7.3 Complexity . 17

8 Experimental results 17

9 Conclusions 18

A Results without pruning 20

B Results with pruning 21

3

1 Introduction

Any application needing to interpret input captured via a pen-based interface must have a
mechanism for determining what the user has written or drawn. In particular, the Math-
Brush project is an investigation into issues arising during the construction of pen-based
interfaces for computer algebra systems and, as such, it requires a method for recognizing
hand-drawn mathematics. The conversion of pen-based input into an internal representa-
tion of mathematical symbols is an important aspect of this recognition method.

Symbol recognition is a well-explored �eld and extensive literature exists [6]. We imple-
mented �ve distinct recognition algorithms and performed experiments to determine which
algorithms were best suited for recognition in the context of mathematical expressions.
This report explains the requirements of mathematical symbol recognition, describes each
algorithm and its implementation in terms of mechanism and complexity, and presents the
results of our experiments along with analysis.

2 Mathematical symbol recognition

Symbol recognition in a mathematical context has some special requirements which do not
apply to recognition of English text. Our particular requirements are as follows:

1. Since there is no �nite set of valid mathematical expressions, our recognizer may not
be dictionary-based.

2. Mathematics has a complex two-dimensional structure, including superscripts, sub-
scripts, and symbols contained within bounding boxes of other symbols (eg. roots).
Our recognizer must handle all permutations of this structure.

3. Such structure leads to wide variation in symbol sizes. For example, symbols in
subscripts are generally smaller than symbols standing alone. Our recognizer must be
insensitive to large variations in scale within a single expression.

4. We wish to allow users of MathBrush to include new symbols and add variations of
existing symbols. Our recognizer must therefore be easily and quickly extendible.

To satisfy requirements (1) and (2), we apply isolated recognition techniques. That is,
our recognition algorithms do not consider the context of the symbol being matched. The
context is considered during the stroke grouping process described in [?]; however, this
process is outside the scope of the present report.

To satisfy requirement (3), we normalize all model symbols and input, preserving the aspect
ratio. In this way, symbols of varying size may be accurate matched with �xed-size models.

To satisfy requirement (4), we limit our attention to deterministic recognition techniques.
Probabilistic techniques often require retraining after adding a new symbol.

4

3 Elastic matching

3.1 Overview

Elastic matching is a variant of \dynamic time warping", a technique used for matching in
the signal processing �eld. Applied to pen input, this technique treats the sequence of x-
and y-coordinates as two sampled signals and uses a distance metric to combine them. Our
implementation follows [5].

Let the input stroke be the sequence of points ((x1; y1; �1); (x2; y2; �2); : : : ; (xn; yn; �n)) and
the model stroke be the sequence ((u1; v1; �1); (u2; v2; �2); : : : ; (um; vm; �m)), where �i is the
angle of the vector tangent to the input stroke at (xi; yi), and �i is similarly de�ned for the
model stroke.

We use the pointwise distance function

d(i; j) =
360

N
jyi � vj j+min(j�i � �j j; 360� j�i � �j j);

where N is the height of the input measured in stroke coordinates.

The algorithm �nds a function M from input points to model points such that

nX
i=1

d(i;M(i))

is minimal over all M satisfying the following constraints:

1. M(1) = 1. (First point is matched to �rst point.)

2. M(n) = m. (Last point is matched to last point.)

3. If M(i) = j, then M(i + 1) = j or M(i + 1) = j + 1 or M(i + 1) = j + 2. (No two
consecutive model points may be skipped.)

Figure 1 illustrates such a matching.

In general, some points in a symbol convey more information about what the symbol repre-
sents than others. For example, the letters U and V have a similar shape but are distinguish-
able by the characteristic curve or point at the bottom. We extend the above matching
process to include weights at each point and assign low weight to such disambiguating
points. Our implementation of weighted matching is based on [4].

Weights are applied after the optimal match is determined; otherwise model points with low
weights are matched with disproportionately many input points resulting in an inaccurate
matching. Letting !i be the weight of model point i, the �nal match distance is

nX
i=1

!M(i)d(i;M(i)):

5

Figure 1: Elastic matching

Weights are determined using training data to measure the importance of each point in
each database symbol. Each symbol is compared by unweighted elastic matching to every
symbol in the training data. For any given symbol, two values are maintained for each
point i: Si is the average match distance observed at i when matching against symbols of
the same class, and Di is the average match distance observed at i when matching against
symbols of a di�erent class. After all data has been matched, point i is assigned weight Di

Si
.

Thus the farther a model point is from ambiguous points and the nearer it is to distinctive
points, the higher the weight assigned to the point.

In our implementation, each model's weights are normalized to sum to 1. Without this
step, symbols with many low weights are assigned arti�cially low match distances.

3.2 Algorithm

We apply a strokewise dynamic programming algorithm. Let D[i; j] represent the minimal
cumulative distance for matching points 1 through i of the input stroke to points 1 through
j of the model. We de�ne D by

D[1; 1] = d(1; 1)

D[1; j] = 1 if j > 1

D[i; 1] = d(i; 1) +D[i� 1; 1] if i > 1

D[2; j] = d(2; j) + min
�
D[1; j]; D[1; j � 1]

	
if j > 1

D[2; 2] = d(2; 2) +D[1; 1]

D[2; 3] = d(2; 3) +D[1; 1]

D[2; j] = 1 if j > 3

D[i; j] = d(i; j) + min
�
D[i� 1; j]; D[i� 1; j � 1]; D[i� 1:j � 2]

	
if i > 1; j > 2

Here, the �rst two equations enforce constraint (1) above; the remainder enforce constraint

6

(3); constraint (2) is enforced by taking D[n;m] to be the �nal match distance, where n
and m are the number of points in the input and model strokes, respectively.

Let n(s) be a function giving the number of points in stroke s. The following pseudocode
describes an idealized version of algorithm for matching stroke groups, including weighting.

function ElasticMatchStroke (s;m; ?weights)
// s is the input stroke; m is the model stroke; weights is an optional parameter
// D is cumulative distance described above;
// track[i; j] records the model point matched with input point i� 1 prior to matching model point j
// M is the matching found

D[1; 1] = d(1; 1)
track[1; 1] = 0
for j = 2 to n(m)

D[1; j] =1
track[1; j] = 0

end for

for i = 2 to n(s)
D[i; 1] = d(i; 1) +D[i� 1; 1]
track[i; 1] = 1

end for

D[2; 2] = d(2; 2) +D[1; 1]
track[2; 2] = 1
D[3; 2] = d(3; 2) +D[1; 1]
track[3; 2] = 1
for j = 3 to n(m)

D[2; j] =1
track[2; j] = 0

end for

for i = 3 to n(s)
D[i; 2] = d(i; 2) + minj=1;2

�
D[i� 1; j]

	
track[i; 2] = argminj=1;2

�
D[i� 1; j]

	
end for

for i = 3 to n(s)
for j = 3 to n(m)

D[i; j] = d(i; j) + mink=0;1;2

�
D[i� 1; j � k]

	
track[i; j] = argmink=0;1;2

�
D[i� 1; j � k]

	
end for

end for

M [n(s)] = n(m)
for i = n(s) to 2 by � 1

7

M [i� 1] = track[i;M [i]]
end for

cost := 0
if (weights) then

for i = 1 to n(s)
cost = cost + weights[i]� d(i;M [i])

end for

else

cost = D[n(s);n(m)]
n(s)

end if

end function

function ElasticMatch (s1; : : : sN ;m1; : : :mN)
// si are input strokes; mi are model strokes
cost := 0
for i = 1 to N

cost = cost +ElasticMatchStroke (si;mi)
end for

cost = cost
N

return cost
end function

3.3 Complexity

ElasticMatchStroke �lls in two tables of size n(s)�n(m) for each pair of corresponding
strokes s and m. Each table element takes O(1) time to compute. It is clear that �lling
these tables dominates the cost of the algorithm since both �lling M and the possible
weighted summation of the match cost require time linear in n(s). ElasticMatch calls
ElasticMatchStroke for N pairs of strokes, so the total runtime is O(NSM), where
S = maxi=1;:::;Nfn(si)g and M = maxi=1;:::;Nfn(mi)g.

The algorithm also requires roughly O(SM) space.

4 Deformable template matching

4.1 Overview

Deformable template matching is a variation of the well-known Expectation Maximization
algorithm adapted for symbol recognition. It applies deformations to model symbols so that
they more closely resemble input symbols. Costs are associated with these deformations

8

as well as with other operations, yielding a total match cost between the model and input
symbols.

Our implementation of this method is based on [3]. Each model point is initially assigned
a circular normal distribution with uniform variance �. Matching proceeds iteratively from
i = 0 as follows either until convergence or some predetermined maximum number of
iterations.

Let S = ((x1; y1); : : : ; (xn; yn)) be the input stroke and M0 = ((u1; v1); : : : ; (um; vm) be the
model stroke.

1. Compute the probability P(SjMi) that the input symbol symbol is generated by the
model. The �t cost is the negative log of this probability.

2. Determine the contribution

ci;j =
N((xi; yi); (uj ; vj); �))Pm
k=1N((xi; yi); (uk; vk); �))

of each model point j to each input point i's probability of being generated.

3. Generate the next iteration's model Mi+1 by moving each model point j to

nX
i=1

ci;j(xi; yi);

that is, the sum of all input points, weighted by the model point's contribution to gen-
erating them. This process draws each model point closer to input points it has high
likelihood of generating. The deformation cost is the negative log of the probability
P(Mi+1jMi) that Mi generates the new model.

4. Find model points having no signi�cant contribution to any input points. Assign a
whitespace cost to these points.

5. Subdivide the model Mi+1 and reduce �. Repeat from (1).

Figure 2 illustrates this deformation process.

4.2 Algorithm

As with elastic matching, we break the symbol matching process into a number of stroke
matches, tallying the total match cost. Let n(s) be a function giving the number of points in
stroke s. The pseudocode below describes our implementation. Note that this description
assumes that n(s) = n(m) initially; in practice we ensure this is the case by resampling the
input so that it has the same number of points as the model.

9

Figure 2: Deformable template matching

function DeformationMatchStroke (s;m)
// s = ((x1; y1); : : : ; (xn; yn)) is the input stroke
// m = ((u1; v1); : : : ; (um; vm)) is the model stroke
// � is the initial variance; " is the convergence threshold
// T is the maximum allowed iterations
// c[i; j] is the contribution of model point j for generating input point i
cost := 0
prevCost := 0
for k = 1 to T

�tCost := � 1
n(s)

Pn(s)
i=1

1
n(m)

Pn(m)
j=1 log N ((xi; yi); (uj ; vj);�)

for i = 1 to n(s)
for j = 1 to n(m)

c[i; j] =
N((xi;yi);(uj ;vj);�))Pm
k=1 N((xi;yi);(uk;vk);�))

end for

end for

for j = 1 to n(m)

(u0j ; v
0
j) =

Pn(s)
i=1 c[i; j]� (xi; yi)

end for

deformationCost := � 1
n(m)

Pn(m)
i=1

1
n(m)

Pn(m)
j=1 log N ((u0i; v

0
i); (uj ; vj);�)

for j = 1 to n(m)
(uj ; vj) = (u0j ; v

0
j)

end for

whitespaceCost := � 1
n(m)

Pn(m)
j=1

1
n(s)

Pn(s)
i=1 log c[i; j]

iterationCost := �tCost + deformationCost + whitespaceCost
cost = cost + iterationCost

10

if (jiterationCost� prevCostj < ") then
break

end if

prevCost = iterationCost
� = �

2
s = Subdivide (s)
m = Subdivide (m)

end for

cost = cost
k

return cost
end function

function DeformationMatch (s1; : : : sN ;m1; : : :mN)
// si are input strokes; mi are model strokes
cost := 0
for i = 1 to N

cost = cost +DeformationMatchStroke (�; si;mi)
end for

cost = cost
N

return cost
end function

4.3 Complexity

The time taken by DeformationMatchStroke is dominated by the loops and sum-
mations over all input and model points. The body of each of these loops executes in
O(1) time, so DeformationMatchStroke runs in time O(Mn(s)n(m)). Deforma-

tionMatch therefore runs in time O(NTSM), where S = maxi=1;:::;Nfn(si)g and M =
maxi=1;:::;Nfn(mi)g.

The algorithm also requires roughly O(SM) space.

5 Structural chain-code matching

5.1 Overview

Structural matching treats the recognition problem as a string matching problem. Our
implementation is based on [1], although we use only the directional codes and deformation

11

ideas presented there and not the syntactic stroke grammar they introduce, as they found
it led to ambiguity during matching.

In structural matching, each stroke is converted to a chain code by assigning each pair of
consecutive points a direction code representing the stroke's direction between the points;
the chain code is the ordered sequence of these values. We used eight direction codes. Figure
3 illustrates this conversion process.

Figure 3: Chain coding process

We assume for simplicity that the input and model strokes have the same number of points;
in practice, as with deformable template matching, input strokes are resampled prior to
matching. During matching, we allow for slight rotation of symbols as well as extra or
missing data at the ends of strokes by adjusting the chain codes. Letting R be the maximum
allowable rotation measured in direction codes and S the maximum allowable number of
extra or missing points, the following formula gives the match score for two chain codes
a1a2 : : : ak and b1b2 : : : bk:

min
s2f�S;�S+1;:::;Sg

8<
: min

p2f�P;�P+1;:::;Pg

k�jsjX
i=1

min
�
jai+s + p� bij; 8� jai+s + p� bij

�
9=
;

In our implementation, P and S are both 1.

Unlike other algorithms, chain code matching does not match only a single stroke at a time.
Since only intra-stroke directions are measured, we insert invisible strokes into the input to
capture the direction traveled in between pen-up and pen-down. The distance traveled is
not captured, however; this is a limitation of the chain coding approach.

5.2 Algorithm

Let n(s) be a function giving the number of points in stroke s. Let x(s; i), y(s; i) be functions
giving the x- and y-coordinate of point i in stroke s, and let �(s; i) be a function giving the
angle of the line segment between points i and i + 1 of stroke s. The pseudocode below
describes our implementation:

12

function ExtractChainCode (s1; : : : sN)
// si are strokes
// D is the number of direction codes
chainCode := ()
for i = 1 to N

for j = 1 to n(si)� 1

direction =
� �(si;j)

D

�
if (direction < 0) then

direction = direction +D

end if

chainCode = (chainCode; direction)
end for

if (i < N) then
�x = x(si+1; 1))� x(si; n(si))
�y = y(si+1; 1))� y(si; n(si))

direction =

�
arctan �y

�x
2�
D

�

if (direction < 0) then
direction = direction +D

end if

chainCode = (chainCode; direction)
end if

end for

return chainCode
end function

function ChainCodeMatch (s1; : : : sN ;m1; : : :mN)
// si are input strokes; mi are model strokes
// R is the maximum allowable rotation
// S is the maximum number of extra or missing points
input := ExtractChainCode (s1; : : : ; sN)
model := ExtractChainCode (m1; : : : ;mN)
k := Length (input)
cost :=1
for s = �S to S

shiftedCost :=1
for r = �R to R

rotatedCost :=
Pk�jsj

i=1 min

���model[i+ s] + p� input[i]
��; 8� ��model[i+ s] + p� input[i]

�� �

shiftedCost = min (shiftedCost; rotatedCost)
end for

cost = min (cost; shiftedCost)
end for

return cost
end function

13

5.3 Complexity

Let P =
PN

i=1 n(si) be the total number of points in the input (and model, due to resam-
pling). Chain code extraction requires O(1) operations per point, totaling O(P). Matching
chain codes takes O(SRP) time; this step clearly dominates the cost. Note that in practice
S and R are �xed to 1, so this runtime is essentially linear in the number of input points.

The algorithm also requires O(P) space.

6 Stroke feature matching

6.1 Overview

Feature-based matching is a general matching approach. It extracts salient features from
its input to create feature vectors which can be compared by a vector norm. Our imple-
mentation extracts the following features for each stroke:

� topmost coordinate,

� leftmost coordinate,

� stroke width and height,

� �rst and last points, and

� total arclength.

Other features we have experimented with include displacement between �rst and last
points, width-to-height ratio of bounding box, and estimated pen acceleration integrated
along the stroke.

To match symbols, the algorithm extracts feature vectors from each pair of corresponding
input and model strokes, then takes the 1-norm of their di�erence. The average of these
norms over all pairs of strokes is returned as the match score. The algorithm is very simple,
so pseudocode is omitted.

6.2 Complexity

Each of the extracted features can be computed in constant time with the exception of
arclength, which requires O(n(s)) time, where s is a stroke and n(s) is a function giving the

14

number of points in s. Taking a vector norm is a constant-time operation since the size of
feature vectors is �xed. The algorithm's runtime is hence O(NS), where N is the number of
strokes in the input and S is the maximum number of points in any input or model stroke.
The algorithm requires only O(1) space.

7 Direction element method

7.1 Overview

The direction element method is a feature-based approach that focuses on stroke direction
information. To extract the feature vector from a symbol, the symbol's bounding box is
subdivided into an n�m grid of cells; each cell is associated with a d-element feature vector
representing d directions �1; : : : ; �d. For each pair of consecutive points in the symbol, the
angle � of the line segment connecting the points lies between �i and �i+1 for some i. Let
�i = ���i and �i+1 = �i+1� �. The contributions of that line segment to the directions �i
and �i+1, respectively, are

L�i+1
�i+�i+1

and L�i
�i+�i+1

, where L is the length of the line segment.

This scheme gives larger weight to long line segments and accurately discretizes the input's
angular components by applying the contribution weights. By summing all contributions
over all pairs of consecutive points in the input, the algorithm computes a nmd-element
feature vector. The vectors of input and model symbols are compared with a norm to
obtain a match score. Our implementation follows the approach of [2] but adapts the grid
size and number of directions based on the shape of the input symbols. We use a default
of 10 directions.

7.2 Algorithm

Let n(s) be a function giving the number of points in stroke s. Let x(s; i), y(s; i) be functions
giving the x- and y-coordinate of point i in stroke s, and let �(s; i) be a function giving the
angle of the line segment between points i and i + 1 of stroke s. The pseudocode below
describes our implementation. We assume here for simplicity that stroke coordinates are
normalized to the range [0; 1].

function DirectionElementFeatures (xcells; ycells; directions; s1; : : : ; sN)
// F [i; j; k] is the feature vector entry for grid cell (i; j), direction index k
dSpan := 2�

directions
for i = 1 to N

for j = 1 to n(si)� 1
cellX :=

�
x(si; j)� xcells

�
cellY :=

�
y(si; j)� ycells

�
cellD :=

� �(si;j)

dSpan

�

15

L :=
q

 �x(si; j); y(si; j) �� �

x(si; j + 1); y(si; j + 1)
�

��1 := �(si; j)� dSpan� cellD
��2 := dSpace�

�
cellD + 1

�
� �(si; j)

C1 :=
L��2

��1+��2

C2 :=
L��1

��1+��2

F [cellX; cellY; cellD] = F [cellX; cellY; cellD] + C1

if (dCell = directions� 1) then
F [cellX; cellY; 0] = F [cellX; cellY; 0] + C2

else

F [cellX; cellY; cellD + 1] = F [cellX; cellY; cellD + 1] + C1

end if

end for

end for

return F

end function

function DirectionElementMatch (s1; : : : ; sN ;m1; : : : ;mN)
// si are input strokes; mi are model strokes
// Directions is the base number of directions
// MinDirections is the minimum number of directions
// XCells is the base number of cells in the x-direction
// YCells is the base number of cells in the y-direction
// MaxCells is the maximum allowed number of cells in either direction
xcells := XCells
ycells := YCells
directions := Directions
bounds := BoundingBox (s1; : : : ; sN)
width :=Width (bounds)
height := Height (bounds)
if (width > height) then

xcells = min
�
MaxCells;

�
ycells� width

height

��
directions = max

�
MinDirections;

�width
height

�
� 1

�
else

ycells = min
�
MaxCells;

�
xcells�

height
width

��
directions = max

�
MinDirections;

�height
width

�
� 1

�
end if

input := DirectionElementFeatures (xcells; ycells; directions; s1; : : : ; sN)
model := DirectionElementFeatures (xcells; ycells; directions;m1; : : : ;mN)

cost :=

input�model

PN
i=1 n(si)

16

return cost
end function

7.3 Complexity

DirectionElementFeatures applies constant time operations to each pair of consecutive
points in the input and model symbols. Letting P =

PN
i=1 n(si) and Q =

PN
i=1 n(mi), this

requiresO(P+Q) time. Computing the norm of the two feature vectors takesO(MaxCells2�
Directions) time. Determining the adaptive grid sizing takes O(1) time. The total runtime
is thus O(P +Q+MaxCells2 �Directions).

The algorithm also requires O(MaxCells2 �Directions) space to store feature vectors.

8 Experimental results

Matching algorithms were evaluated with two data sets. The �rst set, A, consists of 10
samples of each symbol written in isolation by a single user. This set was split into A1 and
A2 so that one half could be used for training and the other for testing. Accuracy rates on
A indicate the baseline performance of a matcher under near-ideal conditions.

The second set, B, consists of a number of mathematical expressions written by multiple
writers. The training set for these tests is the symbol database used in practice, containing
many symbols from set A as well as other isolated symbols collected from several users.
Accuracy rates on B give a more realistic estimate of performance under real-world condi-
tions.

The tables in Appendix A indicates the accuracy of the various matching techniques. The
time reported is wall-clock time in seconds.

In practice, the set of symbols to match against is pruned to remove unlikely candidates.
This process speeds up recognition dramatically and often improves accuracy as well. The
tables in Appendix B present test results when pruning is enabled.

We can draw some clear conclusions from these results:

1. Pruning is a valuable technique. Not only does it does it make recognition three to
four times faster, but in most cases it also improves accuracy.

2. Elastic matching is the only technique we implemented which comes close to the
accuracy required for real-world use. The \Top 1" accuracy rates of all the other
techniques are very poor and even the \Top 5" accuracy is generally worse than the
\Top 1" rate of elastic matching.

17

3. There is virtually no di�erence in terms of either accuracy or time between weighted
and unweighted elastic matching.

4. When pruning is disabled, the stroke feature matcher ranks second in accuracy and
�rst in execution time.

The only surprising conclusion is (4). That so simple a comparison method would perform
so well was unexpected. Since the stroke feature matcher is so fast, we use it in practice
as our method of pruning the symbol set: any symbols with a su�ciently poor match score
are discarded. (For this reason, the stroke feature matcher's accuracy results are identical
both with and without pruning).

When pruning is enabled, most of the recognizers perform well in the sense of including the
correct candidate in the top �ve, with the notable exception of the deformable template
matcher. This matcher's poor performance is not unexpected, as as in [3] the matcher could
not attain zero errors even on a hand-�ltered database of only two symbols.

Elastic matching clearly outperforms the other matchers in terms of accuracy. In our system,
we use unweighted elastic matching since it has similar accuracy to the weighted variant,
but the weights require retraining when new symbols are added to the database to maintain
their consistency.

9 Conclusions

We implemented �ve matching techniques for the purpose of mathematical symbol recogni-
tion and performed experiments measuring their accuracy and execution time. Algorithms
implemented include: elastic matching (weighted and unweighted), deformable template
matching, structural chain code matching, stroke feature matching, and the direction ele-
ment method.

Elastic matching was found the be the most accurate technique, while stroke feature match-
ing was the fastest. In our recognition system, we therefore stroke feature matching to prune
the set of symbols to match against and elastic matching to perform actual symbol match-
ing.

18

References

1. K-F. Chan and D-Y Yeung, Recognizing on-line handwritten alphanumeric charac-
ters through
exible structural matching, Pattern Recognition, 32(7), pp. 1099-1114
(1999).

2. T. Kanahori et al. On-Line Recognition of Mathematical Expressions Using Automatic
Rewriting Method. Advances in Multimodal Interfaces - ICMI2000, Lecture Notes in
Computer Science 1948, Springer (2000) 394-401.

3. M. Revow, C. Williams and G. Hinton, Using generative models for handwritten digit
recognition, IEEE Transactions Pattern Analysis and Machine Intelligence 18(6), pp.
592-606 (1996).

4. P. Scattolin, Recognition of Handwritten Numerals Using Elastic Matching. Master's
thesis, Computer Science Department, Concordia University Montreal (1993).

5. C.C. Tappert. Cursive Script Recognition by Elastic Matching, IBM Journal of Re-
search and Development 26(6) pp. 765-771 (1982).

6. C.C. Tappert, C.Y. Suen, and T. Wakahara, The state of the art in on-line handwriting
recognition, IEEE Transactions Pattern Analysis and Machine Intelligence 12(8), pp.
787-808 (1990).

19

A Results without pruning

These tables contain results of testing with database pruning disabled.

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 580 92.8 625 100 113.96
A2 625 576 92.16 624 99.84 95.55
B 724 642 88.67 712 98.34 310.72

Table 1: Elastic matching (unweighted)

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 580 92.8 625 100 113.57
A2 625 576 92.16 624 99.84 103.24
B 724 638 88.67 717 98.34 314.14

Table 2: Elastic matching (weighted)

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 143 22.88 363 58.08 278.99
A2 625 157 25.12 382 61.12 254.13
B 724 129 17.82 396 54.97 701.65

Table 3: Deformable template matching

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 344 55.04 519 83.04 21.61
A2 625 344 55.04 518 82.88 18.25
B 724 383 52.9 645 89.09 91.65

Table 4: Chain code matching

20

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 428 68.48 590 94.4 10.91
A2 625 426 68.16 587 93.92 8.81
B 724 401 55.39 609 84.12 41.30

Table 5: Stroke feature matching

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 335 53.6 543 86.88 16.76
A2 625 309 49.44 540 86.4 14.17
B 724 338 46.69 604 83.43 63.14

Table 6: Direction element method

B Results with pruning

These tables contain results of testing with database pruning enabled.

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 580 92.8 625 100 34.06
A2 625 576 92.16 624 99.84 27.82
B 724 643 88.81 712 98.34 97.4

Table 7: Elastic matching (unweighted)

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 580 92.8 625 100 33.34
A2 625 566 90.56 624 99.84 28.49
B 724 641 88.54 715 98.76 99.18

Table 8: Elastic matching (weighted)

21

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 253 40.48 567 90.72 81.9
A2 625 273 43.68 543 86.88 84.82
B 724 260 35.91 555 76.66 221.72

Table 9: Deformable template matching

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 438 70.08 603 96.48 8.41
A2 625 448 71.68 610 97.6 6.66
B 724 540 74.59 698 96.41 25.54

Table 10: Chain code matching

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 428 68.48 590 94.4 5.58
A2 625 426 68.16 588 93.92 4.11
B 724 401 55.39 608 84.12 16.29

Table 11: Stroke feature matching

Test set Num. symbols Top 1 Top 5 Time

Raw count % Raw count %

A1 625 425 68 607 97.12 7.5
A2 625 427 68.32 602 96.32 5.87
B 724 433 59.81 681 94.32 22.36

Table 12: Direction element method

22

