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ABSTRACT
Thanks to the advance in mobile and touch screen devices, handwritten input has gained more popularity among users. When
considering mathematical input, however, handwritten math interfaces have to deal with new problems and issues not found
in natural language. A popular area of interest that deals with math formulae recognition is math information retrieval (MIR).
MIR starts with a user query and produces a set of results or matches for the query. Applying the concept of pattern matching,
we can create math formula query languages, which take advantage of the use of wildcards to allow for more expressiveness
in the creation of queries. For example, the wildcard # (number sign) could represent a matrix. Unfortunately, integration
of formula query languages and pen-based interfaces is limited. Therefore, we propose a novel query language suitable for
pen-based interfaces and implement a proof of concept using MathBrush, an existing pen-based system. We propose multiple
interfaces that make use of the language. Lastly, we present an experimental framework for the interfaces.
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1 INTRODUCTION
Mathematical expressions and formulae are ubiquitous in scientific literature. The use of such expressions is
required to describe problems and theories using a universally accepted formal language. With the ever-growing
availability of mathematical content on the web, the problem of math search increases its importance and difficulty.
Conventional search engines are tailored for natural language textual data, and are unable to properly handle
math search [70]. More specifically, (1) inputting and (2) resolving a math query poses multiple challenges. For the
former part, it becomes a cumbersome problem for the user figuring out how to enter mathematical expressions.
For the latter part, traditional keyword-based query techniques (e.g. exact matching, partial matching) might not
yield satisfactory results.
We can extend the scope for the first problem, and consider the task of inputting mathematical expressions

into technological devices. The two most common methods include typesetting languages, such as LATEX, and GUI
selection menus, such as the one present in the Microsoft Office Suite [29, 30]. However, the former requires the
user to interact with a plethora of codes and synthetic rules, whereas the latter requires the user to interact with
an extensive set of menu options and math symbols, using mouse and keyboard as input devices.

Another option, and also a more natural approach, is the ability to input handwritten mathematical expressions
using pen-based or touch-based devices, mimicking the action of writing them on a piece of paper. This field is
also enhanced by the recent advances in mobile and touch screen devices.
Handwritten math recognition has been proposed for various scenarios:

• Exporting the expression for display or printing. The user may want the LATEX string representation or
simply an image to copy and paste in a word processing application.
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• Evaluating or simplifying the expression. There are many software libraries known as Computer Algebra
Systems (CASs) used for this task. Some examples are Maple and Mathematica.
• Math query. In this case, the recognized expression is used as a query to search for documents with similar
math notation.
• Teaching and tutoring sessions. Some math handwriting systems are used to assist instructors in the
classroom setting, targeting students as their primary users.

Handwritten recognition can be divided into online and offline. In the former case, handwriting is captured as
a series of strokes, trajectories of pen/hand tip movements, entered by the user. The latter group analyses and
classifies digital images into different classes [2, 87]. In this work we focus on online recognition systems, because
they are more suitable to work in conjunction with math retrieval systems, and they also have been widely used
for pen/touch input devices.

Extensive work has been done to tackle the task of handwritten math recognition. However the majority of the
approaches decouple the user interaction and the input interface from the recognition process itself and just solve
the latter. In particular, many neural network based approaches rely on the use of deep learning architectures
(CNNs, DNNs, RNNs, LSTM-RNNs) to achieve a good performance [58]. Such approaches are not concerned with
how the handwritten math expressions are captured. Instead, they use publicly available mathematical symbol
datasets. We classify these approaches as offline recognition, as they basically classify an input dataset of digital
images that correspond to math notations. On the other hand, online mathematical recognition systems are more
scarce, but there are several in the field. Online handwritten math recognition systems are normally developed
to be used in conjunction with pen-based devices and have a visual interface that contains a set of options and
menus that allow the user to interact with the system, for example by adding new mathematical expressions,
editing them, or exporting them for further interaction with other software applications such as CASs.
Besides recognition, math retrieval systems are also concerned with the information retrieval process. Users

start with a particular information need, which is expressed as a query. The system then matches the searchable
documents with the query, in order to produce a set of relevant results. Techniques such as relevance feedback
and relevance ranking can also be used to enhance the effectiveness of the retrieval process [74]. When math
retrieval systems support handwritten math recognition, the recognized expression acts as the query.
In the field of pattern matching the use of wildcards allows users to obtain approximate matches given a

particular query. Wildcards are a common way of describing unknown data. In the context of natural language,
a wildcard can be simply defined as a single character that matches any symbol in the input alphabet [14, 53].
However, this definition can become more complex. With regular expression (regexp) matching users have at
their disposal an extensive set of wildcards that can be combined to create expressive and yet succinct queries.
For example, in Javascript, the regexp [1 − 9] will match any digit from 1 to 9, and the regexp [a − zA − Z] will
match any letter from the English alphabet. As we can observe, in a natural language context, wildcards provide
a lot of expressiveness when formulating queries, and also provide a concise method to capture user’s queries
[49, 65]. Conversely, the majority of math recognition systems are unable to deal with wildcard symbols.

This work is motivated by the lack of expressiveness and flexibility in current pen-based math query interfaces.
Wildcard support in handwritten math query systems is limited. Moreover, the works that propose a math query
language with extensive wildcard support are not really concerned with the user interaction aspect of the system.
For example, some of them contain redundant or ambiguous rules in the language that could affect the input of
math expressions using pen-based/touch-based interfaces. This paper analyses multiple aspects that researchers
should consider when developing pen-based math query interfaces. Moreover, we provide multiple guidelines
that could be helpful when developing such interfaces. At a high-level the aspects we consider can be divided in
these groups:
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• Gesture support and button menus. Many math query interfaces use a set of toolbar menus to display the
available actions [20]. However, traditional toolbar buttons can distract the user from what she is doing.
They also can be perceived as time-consuming as the user has to change her focus between the toolbar and
the editing area. Lastly, they can be difficult to properly tap/toggle with a pen or the hand. We present
existing techniques that rely on the use of gestures and floating button menus to allow fluidity in the
interaction and allow for an easier manipulation of the handwritten math expressions [19, 34, 51, 80]. The
intention with both is to eliminate as much interference as possible, reducing time consumed and user
frustration. For example, a common gesture is the scratch-out gesture, which allows a user to delete or
remove the part that was scratched from the editing area.
• Feedback mechanisms. Query interfaces can make use of feedback mechanisms to communicate a particular
message to the user. This message can be the termination of an operation, the emphasis of particular
sections in the input, the explanation of a menu option, the selection or activation of a particular operation,
and many more. Visual feedback is by far the most common, although in recent years tactile and auditory
feedback have gained popularity. Different types of feedback mechanisms can be used in conjunction, for
example using auditory feedback to complement visual feedback. One of the intentions behind feedback
mechanisms is to make menu selection more efficient and intuitive for the user [61].
• Math formula query language. The concept of wildcard matching has been applied to math search, in
order to create math query languages [3, 26, 31]. Math query languages are inspired by traditional pattern
and regular expression matching. They emulate the use of wildcards to allow for approximate matchings,
increasing the expressiveness and reducing the time it takes to construct particular queries. Approximate
matching allows users to find similar or related expressions. However, depending how the system treats
the relatedness between expressions, for example with a query that is too broad, the result-set could be far
from precise.
• Quality attributes. The previous aspects relate to how the system captures mathematical input and constructs
the query for the information retrieval process. For users to benefit from these features, we need to consider
multiple quality attributes. For example, how do users discover the gestures available? how do users specify
that a particular symbol is a wildcard? can users modify the action associated with gestures? Multiple
experimental studies have analyzed user interaction with pen-based interfaces and provide useful advice
on how to develop such systems [5, 41, 57, 82]. We present the insights from these studies.

The rest of this paper is organized as follows. In Section 2, we present background information, review previous
literature and compare existing handwritten math systems, and formula query languages. In Section 3, we propose
a novel formula query language that draws ideas from existing languages. Then, in Section 4 we explore the
integration of our language with an existing pen-based handwritten math system, tackling some of the barriers
encountered when capturing user input. Section 5 presents an alternative interface that uses UI components to
assist users when entering queries. Next, Section 6 considers exceptional scenarios when processing user input.
We propose an experimental framework in Section 7 and conclude the paper in Section 8.

2 RELATED WORK

2.1 Handwritten Mathematical Recognition
Handwritten mathematical recognition can be roughly decoupled into four tasks [74]:
• Symbol segmentation. Strokes are grouped based on the symbol they represent. A major consideration in
this task is that symbols may be composed of non-consecutive strokes (according to the input order).
• Symbol recognition. Each symbol is assigned a class or label. This is also a demanding task because of two
problems (1) extensive number of classes and (2) similarity between classes, which causes ambiguity and
might yield a wrong result. The latter problem becomes worse if we consider that some mathematical
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symbols have more than one written representation. Moreover handwritten math can have significant
differences based on the person who wrote it.
• Structural analysis. This phase takes care of identifying spatial relations between symbols and producing a
mathematical interpretation. Unlike written English, which typically has a horizontal relation (i.e. read
from left to right), mathematical expressions have a more diverse set of relations such as vertical and
oblique relations such as subscript, superscript, above, below, and containment relationships [74].
• Mathematical content interpretation. This phase uses the symbols and their layout to derive a particular con-
figuration of mathematical syntax and semantics. Normally, a syntax tree is generated for the handwritten
input. The tree can be used to evaluate the expression or to export it to other applications.

Regarding math retrieval systems, Zanibbi and Blostein [74] state that there are four main challenges :
• Query formulation. Systems need to provide effective user interfaces for query formulation. This also
requires establishing which types of queries are useful and feasible.
• Normalization. Similar to text-based retrieval, math expressions need to be reduced to canonical forms.
This prevents mismatches between equivalent expressions with different representations.
• Indexing and matching. Document representation and the similarity measures used to calculate matches
against the math query can have an enormous impact in the retrieval performance.
• Relevance feedback. Users can provide such feedback when examining the retrieval results, allowing the
system to refine the query.

Existing recognition approaches can be classified into two categories: sequential and integrated [30, 85].
The former treat the aforementioned tasks in a sequential manner. The main drawback is that this technique
propagates each error across the tasks, ending with the accumulated errors in the content interpretation phase.
The latter group takes into account the natural relationship between the tasks. Additionally, integrated approaches
take advantage of contextual information to prevent the generation of invalid expressions. Existing techniques
make use of grammar parsing techniques to capture the contextual information. The caveat of this group is that
it can be time consuming to manually generate the grammar and computationally expensive to perform the
parsing process.

Most of the early-stage works belong to the sequential group [48, 72, 76, 84]. In the second group we can find
more recent approaches [4, 7, 12, 29, 46].
For instance, Hu and Zannibbi [27] propose a parsing technique based on visual features. The authors argue

that mathematical expression recognition can be posed as searching for a Symbol Layout Tree (SLT) representing
symbols and their associated spatial relationships in a graph of handwritten strokes. Based on this idea, the authors
propose a Maximum Spanning Tree (MST) parser that performs a two-stage process: (1) symbol segmentation,
and (2) labeling of spatial relationship between symbols.

Besides the above groups, a third category emerged in recent years. Today, many math recognition techniques
rely on the use of neural network architectures [17, 58, 63, 83, 86]. NN-based approaches also consider the
relationship between the tasks in order to decrease the number of recognition errors. However, some of these
approaches do not require the use of grammars, reducing the computational cost. For example, Zhang proposes the
use of a Bidirectional Long Short-term Memory (BLSTM) network, commonly used in text and speech recognition
tasks, to capture the contextual information [85]. Most studies in the last category are concerned with the math
recognition step but do not consider the user interaction or how the mathematical expressions are captured;
instead they rely on available handwritten mathematical datasets.

2.2 CROHME Competition
Started in 2011, CROHME is one of the most well-regarded competitions on Handwritten Mathematical Recogni-
tion. CROHME has helped to develop the field of handwritten math recognition providing contributions such as
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multiple datasets, competition tasks, evaluation metrics, and participating systems. One of the insights proposed
by Mouchère et al [55], derived from analyzing the results of past CROHME competitions, is that handwritten
math recognition system could be enhanced by using a statistical language model, such as n-gram or skip-gram.
These models have been successfully implemented to improve natural language recognition.

2.3 Math Retrieval Systems
The Tangent math search engine was originally published by Stalnaker [15]. Tangent allows the indexing
and retrieval of math expressions using the concept of inverted index on symbol pairs from layout trees. The
authors initially conducted two experimental studies of Tangent: a usability study where participants scored
the retrieval results and a performance analysis [69]. The authors used two datasets in the experiments: Math
Retrieval Collection (MREC), a collection of 300.000+ academic publications; and the Wikipedia corpus. The
authors compared Tangent against Apache Lucene [36] in the experiments, and found that Tangent was able to
achieve similar metrics (even surpassing it in some cases) to Lucene, a much mature project. More recent works
have carried out additional experiments with Tangent [62, 79], and explored the use of new similarity metrics to
generate the result ranking [77, 78].
The NIST DLMF (Digital Library of Mathematical Functions) project was started in 1996 by the National

Institute of Standards and Technology (NIST) [44, 52] 1. The project can be considered as a digital version of
the Handbook of mathematical functions: with formulas, graphs, and mathematical tables [1]. DLMF provides
extensive search capabilities. To support mathematical search, DLMF extends conventional text-based search by
introducing additional elements in the engine: preprocessing of math expressions into textual form, definition
of a math query language to express formula queries, and transformation of search queries into special forms.
DLMF supports two wildcards, $, which stands for zero or more alphanumeric characters, and ?, which stands for
zero or one alphanumeric character.
MathWebSearch is a search engine that uses a semantic approach to address math queries, finding formulae

by their structure instead of their presentation [33]. MathWebSearch provides template palettes for standard
mathematical structures such as fractions and integrals. By simply clicking on any template a textual representa-
tion is added in the query. Users can also type the mathematical input (they need to be familiar with the textual
representation).
MIaS (Math Indexer and Searcher) is a math-aware full-text based search engine [68]. MIaS web interface is

calledWebMIaS [43], and accepts math queries in TeX or MathML notation combined with text queries. TeX
queries are converted on-the-fly into MathML tree representation.
EgoMath2 is another full text search engine based on Egothor 2 [54]. The authors assessed EgoMath2’s

retrieval performance with data from Wikipedia (dump of English articles from January 2011).WikiMirs is a
system proposed to facilitate mathematical formula retrieval in Wikipedia [28]. WikiMirs proposes a presentation
tree parser to parse formula structures from a layout presentation markup. Additionaly, WikiMirs uses a hierarchical
generalization technique to generate fine-grained sub-trees, which represent index terms.
Approach0 is a search engine aimed to provide better search experience for mathematical QA websites [88].

Currently, Approach0 can crawl information from Math StackExchange (QA website) 3. Approach0 supports the
wildcard ?, which represents any math expression except a single symbol.

1https://dlmf.nist.gov/
2http://www.egothor.org
3https://math.stackexchange.com/
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Othermath search engines have been proposed from academic research labs and open source projects [42, 56, 59],
commercial solutions [71], publicly available websites (Springer LaTeXSearch 4,Wolfram|Alpha 5), and government
initiatives [6]. Most of these works correspond to text based search engines.

2.4 Online Handwritten Mathematical Recognition Systems
MoboMath is a handwriting recognition solution developed by Enventra (currently discontinued) [19].MoboMath
allows users to export the recognized output to other documents and applications, using standard formats such
as MathML, LATEX, or JPEG image format. MoboMath support four basic commands (Enter, Undo, Redo, Clear)
and four types of mathematical operations based on gestures: Text selection (tapping and circle gesture), Deletion
(x-out gesture, and scratch out gesture), Character/Symbol alternation (i.e. we can tap the incorrect character
repeatedly to replace it with alternate recognition results), Addition of ink (space gesture to add extra blank
space), Moving and copying (drag-and-drop and use of short up/down strokes to move subexpressions between
subscript, factor, and exponent).
MathBrush is a pen-based mathematical system designed for tablets PCs and iOS devices [34, 35] (a prototype

web version is also available upon request from the authors [21]). MathBrush combines handwritten math
recognition and integration with multiple CASs (e.g. Mathematica, Maple, and Sage). MathBrush is able to
recognize an extensive set of expressions such as integrals, matrices, and polynomials. MathBrush offers nine
basic context menus present in the application toolbar: Math operations menu, Sharing menu, Export menu,
Help menu, Settings menu, Account Menu, Save, Delete/Clear, and Undo. MathBrush has limited support for
gestures, including the scratch out gesture (which deletes input characters) and tap/select gesture (which can
move expressions or display context menus).
MathPad2 is a pen-based tablet PC application designed to create dynamic illustrations used for exploring

mathematics and physics concepts [37, 38]. MathPad2 uses a modeless gestural interface, with the idea that
gestures should not interfere with the entry of drawings but still be natural enough to feel fluid. Three key
features of MathPad2 are (1) context sensitivity to determine what operations to perform with a single gesture,
(2) notion of punctuated gestures, compound gestures with one or more strokes and terminal punctuation, that
help to distinguish gestures from mathematics and drawings, and (3) one-to-many pairing between gestures and
operations.
MathSpad Tablet (MST) is a structure editor that aims to facilitate the presentation and manipulation

of handwritten mathematical expressions [50, 51]. MST provides an extensive set of gestures through the
ApplicationGestures library made available through the Tablet PC API. Examples of gestures include the circle
gesture (used to select the content inside the circle), right-down and right-up gestures (used to add and remove
vertical space), and check gesture ✓ (used to trigger the copy action). Gestures are also used to apply mathematical
rules (e.g. distributivity, symmetry). The MST library allows the association between gestures and actions. The
library allows users to edit and adapt the gestures according to their needs.
Freehand Formula Entry System (FFES) is a pen-based equation editor. FFES allows the freehand entry and

editing of formulae using pen and tablet [67]. FFES has four main modules: a (1) symbol recognizer, which (for
each stroke) returns a list of potential characters that the stroke may represent, each option has associated a
confidence level; a (2) stroke grouper that segments the input strokes into individual characters; a (3) formula
processor that generates the math expression for a set of symbols; and a (4) user interface that allows for easy
entry, manipulation and correction of formulae. Upon recognition of the mathematical input, FFES annotates
the symbols (using small typeface labels) and offers gesture-based correction of some recognition errors. FFES’s

4https://link.springer.com/
5https://www.wolframalpha.com/
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character recognizer and expression partitioner are based on the Caltech Interface Tools (CIT) library [66], while
the parser is a command line tool called DRACULAE [75, 76].
MathPaper is a system for fluid pen-based entry and editing of mathematics with support for interactive

computation [80]. MathPaper supports extended notations for algorithm sketching through AlgoSketch [40].
MathPaper supports multiple types of gestures: computation gestures ( −→,=⇒), used to evaluate expressions;
graphing gestures ( ←−,−→,↑,↓,↗,↘,↙,↖), used to graph expressions; space management gestures (|,¬,
—), used to add horizontal or vertical spaces in matrices; and other gestures such as circle gesture (to select
subexpressions), and drag-out and scratch-out gestures (to delete subexpressions). Additionally, MathPaper uses
a technique inspired by Shadow Buttons and Hover Widgets [25, 47] in order to associate more commands to menu
buttons. MathPaper draws a green square under the ink on the display. This square is hidden during normal pen
use, but hovering it causes a cluster of buttons to appear. If the pen moves towards the buttons, these can be
interacted with as usual, otherwise the buttons simply disappear. To help users discover the available gestures
and features, MathPaper displays a preview animation to the user which shows the corresponding command
when the user performs an action using a command. For instance, if the user selects Delete from the menu, the
system draws a scribble as an animation over the ink before deletion.

2.5 Gesture Support and Button Menus
Traditionally, user interfaces present available actions to the user using toolbars and static menus. Moreover,
software applications such as the Microsoft Office Suite provide additional functionality with each new version.
The main caveat is that such interfaces end up cluttered with a myriad of options and menus, from which users
only interact with a small fraction [20]. Fortunately, in comparison with highly configurable applications, such
as word processors or spreadsheets, the majority of pen-based math query interfaces have a narrower set of
actions and core features. Previously, we presented some online handwritten math recognition systems. The
main approaches used to display the actions in the interfaces are static command menus, gestural menus, and
hidden menus. For static command menus, MoboMath and MathBrush can serve as examples. For gestural menus,
MathPaper and MST support the most extensive set of gestures. For hidden menus, the best example is MathPaper,
where a hidden menu is placed outside of the drawing area, but the user can interact with the menu by simply
hovering over it.
Interestingly, most of the systems opt to support only a few actions, whether it is in the form of commands,

gestures or extra button menus. Some systems offer an extensive number of gestures and allow users to personalize
them (associate particular action with the available gestures). This is likely due to the fact that gestures normally
do not occupy visual space in the interface. The caveat of increasing the number of available gestures is that
users need to learn how to use them (we address this in a later section). Moreover, MathPaper combines the use
of gestures and hidden menus in order to maintain a reduced set of gestures, facilitating the user interaction.
A common challenge for user interfaces is teaching users which features are available and how they can

interact with them. During the interaction users engage in a learning process that allows them to discover the
most useful features (for them), depending on the tasks they want to perform. Some researchers refer to this
process as learnability. They have analyzed how learnability varies based on multiple factors.
Anderson and Bischof [5] experimented with multiple gesture menus and concluded that there is an inverse

relationship between ease of use and learning (retention and transfer). In other words, when the interfaces are too
simple and easy to use, users do not take care to learn how the system works, as they can figure it out every time
they interact with the system. Negulescu and Ruiz [57] found that creating an explicit mode for non-command
interaction was a preferred alternative by users to communicate the features and gestures available in the system.
Bragdon et al. [10] proposed a gesture learning systems called GestureBar. GestureBar uses a simple toolbar

that acts as a sandbox environment to explore the effect of gestures. Another system called OctoPocus, proposed
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by Bau and Mackay [8], presents a learning interface for single-stroke gestures. When users initiate a gesture,
OctoPocus displays an animation preview of all the potential gestures that can be performed.
Another attribute of interest when considering gesture menus is customization. We can observe that many

existing pen-based math interfaces allow users to personalize the actions associated with gestures, sometimes
they even allow modifying the gesture itself or to introduce new gestures [41]. However, it is important to make
sure that gestures still conserve some basic guidelines; such as being simple, distinct and self-revealing (intuitive
or guessable) [82]. Systems with support for gestures should strive to reach a balance between these two aspects.

2.6 Feedback Mechanisms
User interfaces can rely on different types of feedback to communicate particular messages to the user. For
instance, MathPaper makes use of animations to explain how gestures works. Visual feedback often is used in
user interfaces, and can be integrated in a myriad of forms such as static documentation and help menus, tooltips,
animations to explain new features (commonly used on games), and action previews [16].
Ciampa [13] examined multiple types of online password feedback mechanisms (displayed when users are

setting up a new password). The experimental study indicated that in all cases the feedbackmechanisms significantly
influenced users with lower password ratings to choose a more secure password. In other words, users were receptive
to the feedback mechanisms and updated their input accordingly.
LaViola et al. [39] explored multiple techniques for visualizing the machine interpretation of handwritten

mathematics such as replacing user handwritten math with typeset math (replacing user’s ink with a predefined
font), coloring, and changing the size (with 2 variants: small and large size) of the handwritten ink. The authors
found that people tend to prefer the coloring and small font size techniques.
Tactile and auditory feedback can be used to complement visual feedback. For example, systems can provide

simple auditory feedback during the transition between menu items, or more complex continuous feedback at
specific moments during the interaction [61].
Regarding the use of feedback mechanisms on pen-based math systems, customization becomes an attribute

of interest. As with gesture menus, the system could allow users to personalize the feedback mechanisms, to
choose the ones they prefer, or even to disable them because they are considered intrusive. However, we need
to be careful not to affect the usability of the system, (e.g. some feedback mechanisms can be crucial to offer a
smooth interaction).

2.7 Math FormulaQuery Languages
Most pen-based interfaces provide either no support or only a limited support for wildcards. Some of the systems
mentioned in previous sections provide support for a few wildcards: ? and ∗. The former represents exactly
one arbitrary character in the math expression. The latter stands for zero or more arbitrary characters in the
expression. On the other hand, some researchers have proposed math formula query languages that exploit the
use of wildcards to allow powerful and expressive queries. Below we present these works and highlight their
advantages and drawbacks.

2.7.1 Altamimi and Youssef
Altamimi and Youssef [3] present five sets of symbols that capture user needs in the area of math search: (1)
separator symbols, (2) character-level wildcards (within a term), (3) component-level wild-cards (within a list), (4)
term-level wildcards (within an expression), and (5) bounded wildcards.
The separator symbols are @ (at sign), ; (semicolon), and , (comma). @ indicates a function, ; separates the

rows in a matrix, and , separates entries in a sequence of elements (e.g. arguments in a function, columns in a
matrix).
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Character-level wildcards correspond to ? and $. ? stands for a single character, whereas $ stands for multiple
characters.

Component-level wildcards represent a sequence of components within a list/sequence. The wildcards are − −
(two dashes) and ... (three dots). − − stands for a single component, whereas ... stands for multiple components.

Term-level wildcards represent a sequence of terms within an expression. The wildcards are $ and ... (three
dots). $ stands for a single term, whereas ... stands for multiple terms.

Bounded wildcards have multiple levels of abstraction.
• First level. The $ symbol used alone represents any arbitrary term. For example, the query $2 + $2 = 20
matches both x2 + y2 = 20 and 22 + 42 = 20.
• Second level. When the $ symbol is followed by a number, the number designates an identifier. For example
cos2$1 + sin2$2 matches cos2x + sin2y.
• Third level. The query can specify whether the term is a variable $v or a number $n. For example, the query
$n is matched by 2 but is not matched by x.
• Data types. Users can specify the data type of the term. The options are: real $R, integer $Z, rational $Q,
complex $C, polar $P, and function $F.

The wildcard sets are limited and redundant. Except for the bounded wildcards, the use of wildcards is context-
dependant: $ can represent multiple characters if treated as a character-level wildcard; but it can also represent a
single term, if treated as a component-level wildcard. Similarly ... can represent multiple components within a
list, or multiple terms within a expression. This problem can lead to ambiguity. On one hand, the system would
have to consider the context in which a wildcard is used when interpreting its meaning. On the other hand, if
users have to limit themselves to a particular level when constructing queries (character, component, or term),
this limitation would be seen as a barrier and represent additional effort from the users (e.g. more time spent
constructing the queries). As for the bounded wildcards, they seem to allow the interaction between different
levels of abstraction, but still limited, especially considering that the language does not allow sub-query matching.

2.7.2 Kamali and Tompa
Kamali and Tompa [31] propose a query language that allows approximate matching of math expressions. The
authors define four wildcards: [Ni] which matches any number, [Vi] which matches any variable, [Oi] which
matches any operator, [Ei] which matches any expression. i is an optional value, and corresponds to a natural
number that designates the index (identifier) of a wildcard (i.e. same identifier means same expression on the
query). Wildcards can impose constraints by using the where clause:
• Number wildcards. Users can constrain the range, domain or data type (e.g. natural, real). For example the
query x[N1] where 1 ≤ N1 ≤ 5 matches x2 but not x−1.
• Operator and variable wildcards. Users can constrain the set of possibilities. For variables, it corresponds to
the set of possible names, e.g. [V] where V ∈ x, y, z. For operators, it corresponds to the actual operators,
e.g. [O] where O ∈ ±,×.
• Expression wildcards. Users can define that the expression must contain particular subexpressions, e.g. [E]
where E contains Q′, Q′ can be any query, even one with wildcards and constraints. For example, the query
[E1] + 1 where E1 contains x2 matches x2 + 1 and

√
x2 + y + 1 but not x + 1.

• Optional patterns are supported using braces {}. For example, x2{+[N]} matches both x2 + 1 and x2.
In comparison with the previous work, this query language allows for more powerful and expressive math

queries. The possibility for users to add constraints to the wildcards is intuitive and simple to grasp, and resembles
advanced search menus of conventional search engines where users can add new constraints or choose between a
set of predefined constraints. Moreover, the wildcard set is fairly simple and easy to understand. Sub-expression
matching is one of the main contributions of this language, the possibility to add nested constraints when using
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the expression wildcard combines the benefits of approximate matching and constraint-based search, increasing
the number of results but still precise enough to discard unrelated entries based on the user needs.

2.7.3 Guo et al.
MathSearch is a formula-based information retrieval system developed and maintained by Lanzhou University.
One of the components of MathSearch is the query module designed to capture and process user queries. For this
task, Guo et al. [26] propose MQL, a mathematical formula query language. MQL contains two forms: MQLS
and MQLX. MQLS is a character-string form and the human readable version of MQL. MQLS is intended to help
users input the math expression or query they want to search. MQLX is the machine-oriented version of MQL.
MQLX relies on MathML and XML elements to describe the retrieval content. In this paper, we focus on MQLS,
as we are mostly concerned with how users construct queries.
MQL supports six wildcard levels. For each wildcard, MQL defines a set of constraint attributes that can be

used to further reduce the search result.
• Operand level. The symbol ? stands for an arbitrary single operand. MQL recognizes four types of operands:
number, symbols, constants, and variables. The class attribute is a natural number that denotes the
identifier of the wildcard (i.e. same-type wildcards with the same id must correspond to the same expression
in the result entries). The kind attribute denotes whether the operand is n (number) , v (variable), or c
(constant). The type attribute denotes the data type and it can be assigned one of these values: R (real) , Z
(integer), Q (rational), C (complex). The value attribute restricts the set of possible values for the operand
(it corresponds to a list of comma separated values). Users can also restrict the operand to a value range
using the min and max attributes. For instance, ?[value = 3, 0.01, x] + y matches 3 + y, x + y and 0.01 + y;
while ?[min = 10 max = 100] + x2 matches 22.2 + x2, and 98.4 + x2.
• Expression level. The symbol $ stands for an arbitrary single sub-expression. This wildcard has the attributes
class, value, min and max. It introduces two new attributes: num and pattern, which denotes a formula
pattern. num, min and max restrict the number of operands in the expression. Both the value and pattern
attributes can contain nested wildcard queries (similar to the expression wildcard in the previous work).
For example, $[value = $/$] matches x/y and (a + 2)/b; while $[pattern = $/$] matches x + (a + 2)/b,
x/y and (a + 2)/b.
• Sequence level. The symbol − stands for an arbitrary single sequence (list of comma-separated values).
This wildcard has the attributes num, min (which denotes the minimum number of items in the sequence)
and max (which denotes the maximum number of items in the sequence).
• Operator level. The symbol ∼ stands for an arbitrary single mathematical operator. The only attribute
for this wildcard is priority, which restricts the operator to a particular priority. There are four priority
values: 1, which represents >, <, and = (greater than, less than, and equal to); 2, which represents +, and
− (addition, and subtraction); 3, which represents /, ∗, and % (division, multiplication, and modulo); and 4,
which represents ∧ (powers). Users can choose among multiple operations when restricting the priority:
> (greater than), < (less than), = (equal to), ! = (different from), ≥ (greater or equal than), and ≤ (less or
equal than). For instance, x ∼ [priority ≥ 2] z matches x + z, x ∗ z and x ∧ z but it does not match x = z
or x ≥ z
• Function level. The symbol @ stands for an arbitrary single function. The attributes num, min and max
restrict the number of operands in the expression. The wildcard also supports the attributes value, pvalue,
pattern, and type. value and pattern restrict the value of the function, whereas pvalue restricts the
parameters of the function. For example, @[pvalue = (x, y)] matches f(x, y) and h(x, y); @[value = x+ y]
matches f(x, y) = x + y and g(x, y) = x + y; and @[pattern = x + y] matches f(x, y) = x + y and
f(x, y) = x + y + 2. For type, MQL supports a comprehensive set of functions such as mean, sin, and cos.
Users can also search for piece-wise functions by inputting a list of semicolon-separated segment-condition
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pairs (where ; separates the sub-functions). For instance, @[x − 1, x > 1; 2x, x = 1; x + 1, x < 1] matches

f(x) =


x − 1 x > 1
2x x = 1
x + 1 x < 1

• Matrix level. The symbol # stands for an arbitrary single matrix. This wildcard also has the class attribute.
The kind attribute can take one of these values: v (the matrix is composed of variables), n (the matrix is
composed of numbers), or m (the matrix is composed of a mixture of variables and numbers). The type
attribute can take one of these values: I (identity matrix), Z (zero matrix), or D (diagonal matrix). nrow
and ncolumn restrict the number of rows and columns respectively. For example, #[nrow = 3 ncolumn =
3 type = D] matches both matrices, while #[nrow = 3 ncolumn = 3 type = I] matches the first matrix but
not the second one (any identity matrix is also a diagonal matrix).

x2 0 0
0 45 0
0 0 π + 2µ


1 0 0
0 1 0
0 0 1


MQL also supports combination queries (multiple formula queries combined) but in a limited fashion, the language
relies on commonly-used Boolean operators && (AND)- | | (OR), and ! (NOT), to treat combination queries as
Boolean expressions.
Compared with the previous papers, MQL provides a more formal definition of the query formula language,

However the language is not designed for pen-based interfaces, as the authors assume that users have access to a
keyboard as input device. In a pen-based interface, the excessive amount of wildcard parameters (or attributes)
reduces the simplicity and ease of use of the language. Many of the wildcard attributes are redundant or lack
clarity. As we saw with some of the examples, different wildcard attributes can be used to represent the same
constraint. Additionally, the authors do not provide enough detail on how multiple wildcard attributes can be
used at once. For example, for the function wildcard, is it required for all the variables in the value of the function
to appear in the parameters list?; or for the operand wildcard, should the type attribute be disabled when the user
sets the attribute kind to v?. Another shortcoming is the lack of explanation and examples for nesting wildcards
and queries when using the attributes value and pattern.

2.7.4 Quality Attributes
The query languages above disregard how the user interaction would work, especially if we want to use a
pen-based input device. Concerns such as how the users indicate the wildcards in the math expressions? Do the
users need to write all the wildcard parameters beforehand or they can edit them afterwards? Should the system
present wildcard symbols differently from other handwritten symbols? and if so, how?. We can identify multiple
quality attributes of interest:
• Discoverability and Learnability. How can users discover the wildcards and learn how they can be used. In
the aforementioned query languages each wildcard corresponds to a particular symbol, so a simple idea
would be to always recognize such a symbol as a wildcard. However, the limitation of this approach is
that users would not be able to use these symbols when inputting mathematical expressions. Moreover,
if the recognizer does not identify the wildcard symbols then they would be treated as normal symbols.
Another approach would be to indicate which symbols are the wildcards using gestures (e.g. circling,
underlining). Again, the limitation here relates to the precision of the recognizer, which could miss some of

11



the gestures or could misplace the actual wildcard symbols. Lastly, instead of gestures the system could
use extra menus (e.g. hidden menus, buttons, commands) for the wildcards, which could reduce potential
recognition mistakes.
• Constraint definition. Users can define multiple wildcard constraints which can help to remove irrelevant
entries from the result-set. This is a key component that enhances the expressiveness of the wildcards.
Therefore, it becomes crucial to properly capture these constraints. A simple idea would be to require users
to write all the parameters beforehand (as is proposed then in MQL). However if we consider that the
precision of the recognition might not yield the desired input, this approach becomes less viable. Another
idea is to allow the addition of the constraints after the user has written the expression. This could be
optional, since the user might not want to add constraints at all for some wildcards. The expression wildcard
is a special case. As we saw in two of the query languages [26, 31] users can define embedded wildcard
queries as constraints for this wildcard. In such cases, the system needs to capture extra handwritten input.
This definition of embedded queries can be seen as a wildcard tree, where the wildcard of original query
are in the root and (only) the expression wildcards can have descendants. This particular case with the
expression wildcard reinforces the idea that an approach where users can add or edit wildcard constraints
for the query after inputting it is better suited for pen-math handwritten interfaces.
• Wildcard display. Based on the insights from previous sections we recommend the use of visual feedback
to differentiate the wildcard symbols in the mathematical expressions. Previous experimental studies found
that coloring and typefacing are two common visual feedback techniques preferred by users.

3 A FORMULA QUERY LANGUAGE
The query languages aforementioned present an interesting trade-off. Kamali and Tompa offer a more compact
and simple language with the caveat that the definition of wildcard constraints lacks formality as is explained
mostly through examples. Also, compared to MQL, it does not provide wildcards for sequences, functions,
and matrices. Guo et al. propose a more formal definition for the wildcard constraints, introducing the idea
of wildcards attributes. The extensive number of available attributes might seem helpful, but on a pen-based
interface, it complicates the task of inputting formula queries. Moreover, a more extensive wildcard language can
have an unfavorable effect on the recognition accuracy. To account for these shortcomings, we propose a novel
formula query language based on MQLS (the character-string form of MQL). Table 1 presents the definition of
the wildcards for the language.

• N matches any number such as 5, − 0.25, and 6.23. The user can constrain the number to a particular
range using the min_val (minimum value) and max_val (maximum value) constraints. If the user wants to
match particular values she can use the exp_vals (explicit values) constraint, which corresponds to a list
of numbers. The set of potential values that the wildcard can match corresponds to the union between the
constrained range (determined by min_val and max_val) and the set of explicit values.
• V matches any variable such as x, A, and α . The user can constrain the variable name to a custom set of
values using the exp_vals constraint, which corresponds to a list of variable names.
• O matches any operator such as ×, ÷, and +. The user can constrain the operator to a custom set of values
using the exp_vals constraint, which corresponds to a list of operation identifiers. The identifiers are
strings that represent mathematical operations.
• S matches a sequence of elements (defined as a comma-separated list of elements). The user can constrain
the number of items in the sequence to a particular range using the min_items (minimum number of items)
and max_items (maximum number of items) constraints. The constraint pos_pat (positional pattern) allows
to specify a pattern (nested formula query) for at least one of the items in the function. pos_pat requires a
tuple of the form < item_index, expression > where item_index corresponds to the 1-indexed position

12



of the item, and expression corresponds to the nested query. item_index has some special values: (1) all
(i.e. the pattern applies to all the items in the sequence); (2) at least one (i.e. the pattern applies to at least
one of the items in the sequence); (3) negative indexing (i.e. starting from the last element of the sequence),
such that for a sequence with n elements, index − i corresponds to the position n − i + 1. In other words
− 1 would correspond to the last element in the sequence.

• F matches a function such as f(x), g(x + y, 2), and P(1, 2). The user can specify that the function name
belongs to a custom set of values using the exp_vals constraint, which corresponds to a list of function
names, such as alphabetic letters or well-known functions (e.g. sin, cos, mod). For the function parameter
we decided to reuse the other wildcards, and thus, the param (function parameter) simply requires a
wildcard definition. For example, if we want a function with multiple items we simply need to set the param
constraint to the S wildcard.
• M matches a matrix. The user can specify the dimensions of the matrix using the num_cols (number of
columns) and num_rows (number of rows). For commonly-used types of matrices the user can specify the
type constraint, using multiple options: diagonal, square, upper triangular, and lower triangular. Similarly
to the sequence wildcard, the user can specify a positional pattern (nested formula query) for at least one
of the cells in the matrix using pos_pat. pos_pat requires a tuple of the form
<row_index, col_index, expression> where row_index and col_index correspond to the 1-indexed
coordinates of the cell we want to apply the pattern, and expression corresponds to the nested query.
row_index and col_index have some special cases: (1) all (i.e. the pattern applies to all the rows for
row_index, and all the columns for col_index); (2) at least one (i.e. the pattern applies to at least one of the
rows for row_index, and at least one of the columns for col_index); (3) negative indexing (i.e. starting from
the last element of the sequence).
• E matches a mathematical expression. The user can use the pattern constraint to specify a nested query.
By default, the expression wildcard performs an exact match, but the user can change the behavior to
perform partial matching instead.

For any of the wildcards, any constraint is optional. Moreover, the wildcards themselves can also be optional.
When the user designates a wildcard as optional, the empty argument becomes a valid match for the wildcard.
We did not include the definition of identifiers [26, 31] as constraints, but the language could be easily extended
to include such feature.

4 LANGUAGE ADAPTATION WITH MATHBRUSH
Besides the definition of a wildcard language this work also aims to explore how we can integrate the language
with existing handwritten mathematical recognition systems. For this, we have selected MathBrush. Flood
[21] implemented a web version of MathBrush in order to extend its accessibility. We contacted the Symbolic
Computation Group (SCG) at the University of Waterloo 6, which currently maintains MathBrush, to obtain the
source code of the web version.
MathBrush is an ongoing project constantly updated and improved. On the other hand, the web version is a

prototype version that has not undergone improvements since it was implemented by Flood. As such, the web
version has some limitations, the more relevant ones to this paper are
• Integrationwith Computer Algebra Systems (CASs) is disabled. Mobile versions ofMathBrush integrate with
multiple CASs (Maple, Sage, and Wolfram|Alpha), which allow users to interact with multiple operations
after the application has recognized a valid mathematical expression (e.g evaluate, factor, simplify). The
web version has a button that pops up a new tab in the Wolfram|Alpha website, and sends the recognized
expression in LATEX format.

6https://www.scg.uwaterloo.ca/mathbrush/people/
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Table 1. Wildcard Language Definition

Wildcard Description Constraints

N Number
min_val
max_val

exp_vals: [n1, n2, . . . , nn]
V Variable exp_vals: [v1, v2, . . . , vn]
O Operator exp_vals: [o1, o2, . . . , on]

S Sequence
min_items
max_items

pos_pat: (index, expression)

F Function exp_names: [f1, f2, . . . , fn]
param

M Matrix

num_cols
num_rows

type: diagonal, square, upper triangular, or lower triangular
pos_pat: (row_index, col_index, expression)

E Expression pattern: nested query
matching_type

• Gesture support is almost non-existent. The only gesture supported by the web version is the scratch-
out gesture. The addition of new gestures is rather involved as it requires manually implementing the
recognition of the gesture and then the implementation of the desired action or effect for the gesture.
• Recognition accuracy has lots of room for improvement. On the mobile versions users can train the
recognizer by adding or editing handwritten samples for each symbol (e.g numbers, Greek letters, operators,
etc.). However, the web version does not possess this feature, and relies on a base set of symbol samples.
Moreover, the recognizer tries to make sense of the mathematical input, meaning that it verifies the syntactic
correctness of the input and transforms it accordingly. To illustrate let us consider the query −

2

+2
. Here, we

can observe a fraction where the numerator is a minus sign superscript 2, and the denominator is a plus
sign superscript 2. This does not make sense as a mathematical expression. Therefore, MathBrush will
instead recognize an expression like −2

t2
, where the numerator no longer has a superscript and the plus

sign in the denominator is transformed to a t. This is by far the major limitation of the web version, as it
constrains the types of language we can define for users to enter their queries.

4.1 MathBrush Layout Adaptation
Figure 1 shows the visual interface of MathBrush. We relocated the recognition panel atop the window, thereby
increasing the canvas area where the user draws mathematical expressions. Due to the limitations of the web
version, the use of an extended set of symbols (similar to MQL) to input the queries is discouraged. Moreover,
the use of gestures to define or constrain wildcards is also not viable. To tackle this we propose a simple idea to
input the queries. The first line of the handwritten input corresponds to themain expression. Any line after
the first line, corresponds to wildcard definition, or wildcard constraint. A wildcard definition designates a
variable from the main expression as a wildcard and requires the user to specify the type of wildcard. A wildcard
constraint assigns a constraint to a previously defined wildcard.
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Fig. 1. Interface of MathBrush Web Version

4.2 Wildcard Definition
A wildcard definition corresponds to a string of the form < Tv > where T corresponds to the wildcard type, and
v corresponds to the character from the main expression that is being designated as a wildcard. The wildcard
type must correspond to one of the wildcard types previously explained: N, V, O, S, F, M, or E. For example, below
we can observe two wildcard definitions, x is designated as a numeric wildcard, while y is a variable wildcard.

x + y = 2

Nx

Vy
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The query matches the expressions 10 + x = 2, 4 + z = 2, and − 0.29 + y = 2
To specify that a particular wildcard is optional, users have to add the placeholder symbol X next to the wildcard

symbol. For example, This query defines two optional wildcards

abc = 100

ObX

NaX

This query will match 3 + c = 100, 10c = 100, and − c = 100

4.3 Wildcard Constraints
For any wildcard constraint, users need to specify which wildcard they are constraining. To represent the wildcard
a user just needs to use the character symbol that was previously defined as a wildcard. In other words, users
first define the wildcard and then they can use the wildcard variable (which acts as an identifier in the query) to
constrain it.

4.3.1 N - Numeric Wildcard
The numeric wildcard can have three types of constraints: min_val, max_val, and exp_vals.

min_val and max_val are specified as a superscript of the wildcard variable. To distinguish between the
two, the user needs to use the minus sign symbol − to separate the two parameters (min_val comes first). The
constraints are specified in this fashion Nx10−100, which constrains the range of the variable between 10 and 100.
The user can omit max_val if she desires, but she must draw a symbol for the min_val. To circumvent a case
where the user wants to specify a value for max_val but not for min_val, she must use the placeholder symbol α
(lowercase alpha).

For instance, Nxα−100 uses the placeholder to avoid defining a value for min_val.
exp_vals requires a list of elements. The user needs to define a list of values separated by the minus sign

symbol − enclosed in () (parentheses). Another example:

a2 + b2 = c

Nc1−100

Based on the Pythagorean theorem, this query matches would match a2 + b2 = 100, and a2 + b2 = 25

4.3.2 V - Variable Wildcard
The variable wildcard has one type of constraint: exp_vals.

As before, exp_vals requires a list of elements. The user needs to define a list of values separated by the
minus sign symbol − enclosed in () (parentheses). The difference with the numeric wildcard is that the values
corresponds to variable names instead of numbers. For example:

a!
b!(a − b)!

Va

Vb (k − b − r)

This query will match multiple forms of the binomial coefficient formula, such as n!
k!(n−k)! and

p!
r!(p−r)! , used

to compute the number of combinations when repetition is not allowed.
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4.3.3 O - Operator Wildcard
The operator wildcard has one type of constraint: exp_vals.

As before, exp_vals requires a list of elements. A peculiarity of this wildcard is that the list of potential values
could be treated as finite, as the list of basic math operators is rather small. As we mentioned before, MathBrush
tries to make sense of the mathematical correctness of the input, and trying to draw a list of operands (enclosed
with parentheses) is a case where the recognizer will transform the input to a mathematically correct one. Lastly,
multiple operators can represent the same operation, such as /, ÷ (division); or ∗, x, • (multiplication).

We decided to limit the set of operators that users can input, by assigning alphabetic identifiers to them. Table
2 presents the operators together with their character ID. There are 12 operations, each one with a different ID. In
the case of Ge and Le, we use a subscript e. To separate the symbols the users needs to use the separator symbol
−. An example:

abc

Ob (G − Ge − M − A)

This query will match a > b, a ≥ b, a × b, and a + b

Table 2. Operator Wildcard. Set of valid operators

Operator Description Character ID
> greater than G
< less than L
= equals E

!=, , not equal (different) N
≥ greater than or equal to Ge

≤ less than or equal to Le
+ addition A
- subtraction S
± plus-minus sign PM
/, ÷ division D
*, x, • multiplication M
% remainder R

4.3.4 S - Sequence Wildcard
The sequence wildcard can have three types of constraints: min_items, max_items, and pos_pat. It is important
to note that min_items and max_items correspond to integers.

Analogous to the numeric wildcard, min_items and max_items are specified as a superscript of the wildcard
variable. To distinguish between the two the user needs to use the minus sign symbol − to separate the two
parameters (min_items comes first). The constraints are specified in this fashion Sx1−10, which constrains the
number of items between 1 and 10. The user can omit either max_items or min_items.

pos_pat requires two elements: an item_index and the expression to match. To indicate a pos_pat constraint,
the user must use a placeholder P symbol. item_index can be a positive integer (normal indexing), negative
integer (negative indexing), 0 (at least one item), or α (all the items). item_index is specified as a superscript of
the placeholder symbol. Then, the user specifies the expression enclosed in () (parentheses).
For example, Sx−10 xP−1 (a + b) represents a sequence with at most 10 elements where the last element

corresponds to a + b. Another example:
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x

Sx1−10 xP−1 (abc)

Na1−10

Ob (Ge − A − D)

Vc

This query will match [1, 2, 3, 1 + x], [10 ÷ z], and [1, 2, 3, 4, 5, 6, 7, 8, 9, 2.22 ≥ p]

4.3.5 F - Function Wildcard
The function wildcard can have two types of constraints: exp_names and param. exp_names is analogous to
exp_vals as it requires a list of elements. The user needs to define a list of function names separated by the
minus sign symbol −. param corresponds to the function parameter and can be associated with other wildcards.
To specify param the user must add the placeholder symbol P and then the nested definition enclosed in ()
(parentheses). It is important to note that when param corresponds to a sequence wildcard, during the retrieval
phase the query would remove the enclosing symbols from the sequence, since the function wildcard already
implies enclosing symbols. Some examples:

x = 0

Fx (f − g − h)

xP (a)

Sa1−5 aP1 (b)

Nb

The function wildcard matches functions where the function name is either f, g or h. The function must have
at least one parameter and at most five parameters, and the first parameter must be a number. This query will
match f(0.25, x, p), g(10), and h(−100,α , 2, x + y + z)

a = b

Fa (tan − csc)

Fb (cot − sec)

This query will match two of the trigonometric identities tan( π2 − θ ) = cotθ and csc( π2 − θ ) = secθ

4.3.6 M - Matrix Wildcard
The matrix wildcard can have four types of constraints: num_cols, num_rows, type, and pos_pat.
num_cols and num_rows correspond to positive intergers.
Analogous to the sequence wildcard, num_cols and num_rows are specified as a superscript of the wildcard

variable. To distinguish between the two the user needs to use the minus sign symbol − to separate the two
parameters (num_rows comes first). For instance, Mx4−8 represents a matrix with 4 rows and 8 columns. The user
can omit either num_cols or num_rows.
type allows these options: diagonal matrix, square matrix, upper triangular matrix, and lower triangular matrix.

Two types at the same time are allowed as long as they are valid: a square diagonal matrix is valid, whereas
an upper triangular and lower triangular matrix does not make sense. To specify type the user must use the
placeholder symbol T superscript the character IDs of the type. The character IDs correspond to the uppercase
first character of the type names: D, S, U, and L. For instance, MxTSD represents a square diagonal matrix.
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pos_pat requires three elements: row_index, col_index and the expression to match. To indicate a pos_pat
constraint, the user must use a placeholder P symbol. row_index and col_index can be positive integers (normal
indexing), negative integers (negative indexing), 0 (at least one row/column), or α (all the rows/columns).
row_index and col_index are specified as a superscript of the placeholder symbol. To separate the two indexes,
the user must use the minus sign symbol −. Then, the user specifies the expression enclosed in () (parentheses).

For example, Mx4−4 xP−1−0 (a+b) represents a square matrix with 16 cells, where at least one of the columns
in the last row contains a cell with the value a + b. Additional examples:

a + b

Ma4 aTDS aP−1−−1 (µ + 2ϵ)

Mb bTU

This query will match 
x2 0 0 0
0 0.25 0 0
0 0 20 0
0 0 0 µ + 2ϵ

 +

33 π 44 55
0 10 4 5
0 0 22 6
0 0 0 11


a = bc

Ma3−1

Mc3−1

Mb3 bTS

This query matches the Cabibbo–Kobayashi–Maskawa (CKM) matrix (also known as quark mixing matrix)
d′

s′

b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



d
s
b


4.3.7 E - Expression Wildcard
The expression wildcard has two types of constraints: pattern and matching_type.
pattern represents a nested query and can be associated with other wildcards. To specify pattern the user must
add the nested definition next to the wildcard enclosed in () (parentheses). By default, this wildcard performs
exact matching but the user can switch to partial matching by using the placeholder symbol P. For example,
ExP (a + b) will match any expression that includes a + b. Additional examples:

an = b

EbP (n − m)

This query matches the general formula to compute the nth term of an arithmetic progression an = a1 + (n − m)d

a + 1 = 0

EaP (π )

This query matches Euler’s identity eiπ + 1 = 0, often regarded as an example of mathematical beauty.
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4.4 Visual Feedback
Herein, we will refer to our first language as explicit language and to the second language as input language. The
input language helps users to input queries on the canvas, given MathBrush limitations; whereas the explicit
language facilitates users interpreting the wildcard formula queries they are constructing. We propose integrating
both languages in the following way: The input language is used to capture user queries, and the explicit language
is used to provide visual feedback of the query.

Let us go back to Figure 1. In MathBrush, the interaction normally starts when the user writes a mathematical
expression in the canvas, and then the recognition panel displays the expression. We want to adapt the visual
feedback displayed in the recognition panel, using the explicit language.
The explicit language highlights wildcards and their constraints (if any). We use a different color font to

represent the wildcard type and also list for each wildcard the corresponding constraints (enclosed in brackets).
For eachwildcard in the query the explicit languagewill display an expressionwith the form < Tv > [c1, c2, ..., cn]
which joins the wildcard definition with the wildcard constraints. We also include the main expression on the
feedback, coloring the characters that represent wildcards.
To illustrate this, let us show an example with a query and the resulting feedback.

x = 0

Fx (f − g − h)

xP (a)

Sa1−5 aP1 (b)

Nb

For this query, the recognition panel would show the following

x = 0

x [function, exp_names = [f, g, h], param = [a]]
a [sequence, min_items = 1, max_items = 5, param = [b]]

b [numeric]

5 AN ALTERNATIVE INTERFACE
The previous section explained how the system uses the existing MathBrush interface (web version) to capture
queries. Herein, we refer to this method as the base interface. With this strategy, query entering depends on the
recognizer output to construct the queries. Thus, we propose a derived panel-assisted interface which captures
user wildcard queries using touch-activated (or tap-activated) interface components (buttons, drop-downs,
external keypads). We believe that this interface can reduce input mistakes significantly specially recognition
mistakes. In this section we describe the main aspects of the panel-assisted interface, and show screen captures
to support the explanation.

5.1 Wildcard Definition
With the panel-assisted interface, the user starts by writing the main query on the canvas. Then, the system
extracts all the different alphabetical characters. Any of these characters can become a wildcard. Herein we refer
to these characters as potential wildcards

The user pops up the input panel with a button with the label Panel located at the bottom the left toolbar. The
button appears only when the expression in the canvas has at least one potential wildcard. Whenever the panel
is opened, interaction with the canvas is disabled, but the user can close the panel at any time.
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(a) Drop-down list for potential wildcards (b) Drop-down list for wildcard type

Fig. 2. Panel-assisted interface for input language

Figure 2 depicts how the wildcard panel updates after the user has written the expression xyz on the canvas.
There are two drop-down lists at the top of the panel. One allows the user to switch between the potential
wildcards, and the other lets her select the wildcard type. Initially all the potential wildcards are set to type
None. When the user changes or selects a wildcard type, the panel loads the corresponding attributes that can be
parametrized (i.e. the wildcard constraints).

5.2 Wildcard Constraints
Figure 3 shows how the panel changes based on the wildcard type selected. For each wildcard type, the panel
loads a form with the fields that correspond to the wildcard constraints, which can be added or edited by the user.
For instance, for the numeric wildcard type the user can enter the min_val, max_val, and exp_vals constraints.
The panel also allows specifying when a wildcard is optional through a set of radio buttons (i.e. mutually exclusive
selection).
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(a) Numeric wildcard (b) Sequence wildcard

(c) Variable wildcard (d) Operator wildcard

Fig. 3. Wildcard types and their corresponding input fields
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(e) Function wildcard (f) Expression wildcard

(g) Matrix wildcard

Fig. 3. Wildcard types and their corresponding input fields

The majority of the fields in the panel trigger a keypad window when clicked, which allows the user to specify
the constraint. Similar to the panel window, whenever the keypad window is displayed the user cannot interact
with the rest of the visual interface, although she can close the keypad window at any time.

The keypad window has two parts: (1) an output box that displays the current value, and (2) interactive buttons
that allow the user to construct and edit the value. The panel has multiple types of keypads catered towards
the different values that constraints can take. All but the naming keypad are based on the traditional calculator
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numeric keypad [9, 22, 45]. The naming keypad is based on the QWERTY layout [81]. The keypads also provide
visual feedback [64] in two cases: erroneous values (the window displays a message), and the tapping action (the
key color changes for a few seconds).

5.3 Keypad Types
• Decimal keypad. This keypad allows decimal (positive and negative) values. The constraints that require
this keypad are: min_val and max_val (numeric wildcard).
• Decimal keypad with support for multiple values. As the names indicates it, this keypad is an adaptation of
the decimal keypad that lets the user specify a list/sequence of comma-separated values. The only constraint
that requires this keypad is: exp_vals (numeric wildcard).
• Integer keypad. This keypad allows positive integers only. The constraints that require this keypad are:
min_items and max_items (numeric wildcard); and num_rows and num_cols (matrix wildcard).
• Operator keypad. This keypad was designed for the constraint exp_vals (operator wildcard). In the base
interface, the user has to use character identifiers that represent math operators when specifying this
constraint (e.g. A represents the addition operator). We use this idea when constructing the string output of
this keypad. The options in the keypad correspond to mathematical operators, but the output is constructed
using the character identifiers. This keypad allows the user to enter a list/sequence of comma-separated
values. For example, if the user enters the input +, x,÷ the output corresponds to A, M, D.
• Positional index keypad. This keypad was designed for the constraint pos_pat (sequence and matrix
wildcards). The sequence wildcard requires one index for the constraint, whereas the matrix requires two
indexes (one for the row and one for the column). This keypad resembles the integer keypad, but it has two
additional options to handle the special indexing cases all and one.
• Naming keypad. This keypad was designed for the constraints exp_vals (variable wildcard) and exp_names
(function wildcard). The keypad has the largest set of interactive buttons, composed of numeric digits, the
English alphabet, and the Greek alphabet. Mimicking conventional computer keyboards, this keypad has a
key caps that allows to switch between uppercase and lowercase letters.

The keypads that allow entering multiple values have a key sep that stands for separator and adds a separator
symbol to the output, specifically a comma. All the keypads have the editing keys del, clear, cancel, and done.
del removes the last character in the input. clear removes all the characters from the input (i.e. empty value).
done submits the value. cancel closes the keypad window without submitting the value. When the user hits
done, the system validates if the input is syntactically valid based on the keypad type. If the input is invalid, the
keypad cleans the input and displays an error message in the output box for a few seconds, otherwise the value
is submitted and the keypad window is closed.

The constraint pos_pat (sequence and matrix wildcards) is a peculiar case since a wildcard can have multiple.
In the panel, the list of Positional Patterns starts empty by default, and the user can add a new pattern with the
button Add pattern. Any pattern can be removed with the button Remove located to the left of the pattern. When
adding a new pattern, the system validates if all the previous patterns have been filled, if not it displays a warning
message next to the label Positional Patterns for a few seconds.
There are some constraints that require the user to enter a handwritten query. These constraints are param

(function wildcard), pattern (expression wildcard), pos_pat (sequence and matrix wildcards). For these con-
straints the panel displays input fields that prompt another instance of the MathBrush canvas when tapped.
This second instance has disabled the ability to interact with the wildcard panel. The user needs to write the
nested query in this extra canvas and then close the browser window. When the window of the second instance
is closed an event captures the query on the extra canvas and sends it to the main instance of MathBrush. Then
the wildcard panel displays the nested query in the corresponding input field.
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(a) Decimal keypad (b) Decimal keypad with support for mul-
tiple values

(c) Integer keypad

(d) Operator keypad (e) Positional index keypad (f) Keypad with invalid entry message

Fig. 4. Different types of keypads in panel-assisted interface
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(g) Naming keypad

Fig. 4. Types of keypads in panel-assisted interface

5.4 Wildcard Panel Memory Mechanism
Whenever the user selects a new option in the potential wildcards drop-down changing from current_option
to new_option the flow below is triggered:
• If new_option equals current_option we stop the flow and no configuration is saved or loaded.
• Otherwise, we save the current configuration for current_option. We store the wildcard type, and the
constraints values of the potential wildcard. When the potential wildcard type is None we simply store the
type.
• We load the last stored configuration for new_option, setting the value of the input field constraints.

For the wildcard type drop-down, when the user switches to a different type, the panel loads empty input fields
constraints corresponding to the new type. The system deletes any data stored for the constraints of the previous
type. The system cleans all the data for the wildcard panel whenever the user modifies the query in the canvas.

5.5 Visual Feedback
With the panel-assisted interface, visual feedback still relies on the explicit language to provide user feedback of
the wildcard query. The feedback is shown whenever the user press the button Submit located at the bottom of
the panel.

6 QUERY INPUT MISTAKES
We identified and grouped some of the common mistakes that can arise when using the input language to enter
queries (due to the user handwriting). This is not an exhaustive list.
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6.1 Error Feedback
• Missing wildcard definition (i.e. wildcard type not specified): The feedback would display the message
missing type.
• A character is assigned to multiple wildcard types: The feedback would display the message
multiple types.
• Wildcard constraint with invalid value: The feedback would display the message invalid value for the
constraint.
• For a numeric wildcard, min_val is greater than max_val: The feedback would display the message
invalid bounds for the wildcard.
• For a sequence wildcard, min_items is greater than max_items: Same as above.
• The index for a constraint pos_pat (sequence and expression wildcards) is out of bounds: The feedback
would display the message index out of bounds for the constraint.
• Circular references in nested queries (function, matrix, and sequence wildcards): For example, in a query
where a is an expression that uses b, and b is an expression that uses a

a = 0

Ea (b)

Eb (a)

There is a circular reference between a and b. In this case, the feedback would display the message
circular reference for wildcard b.
• When the system cannot parse a wildcard definition or a wildcard constraint: The feedback would show
the message invalid lines and then the bracket-enclosed list of line numbers (from the input) that could
not be parsed. This case would include mistakes such as wildcard identifier not present in main query, and
invalid wildcard type.

6.2 Case Sensitivity
Many of the constraints in the language require the use of uppercase letters, however the system allows the use
of lowercase letters. This applies to the following constraints: wildcard type, character IDs for the constraint
exp_vals in an operator wildcard, placeholder symbol E (used to specify an optional wildcard), placeholder
symbol P for the constraint pos_pat, placeholder symbol P for the constraint param in a function wildcard, and
placeholder symbol P (used to specify partial matching in a expression wildcard).

6.3 Symbol Similarity
Grissinger [24] posits that some alphanumeric symbols are similar in appearance. Based on commonly confused
alphanumeric symbols we propose a few cases to take into account:

• Wildcard types: 0 and uppercase letter D are treated as O (operator wildcard), 5 and 8 are treated as S
(sequence wildcard).
• Letter transformations: lowercase letter l is treated as 1; lowercase letter z is treated as 2; uppercase letter
Z is treated as 7; uppercase letter B is treated as 8; letters S and s are treated as 5; letters D, o, and O are
treated as 0.
• Number transformations: 1 is treated as lowercase letter l; 2 is treated as lowercase letter z; 7 is treated
as uppercase letter Z; 8 is treated as uppercase letter B; 5 is treated as uppercase letter S; 0 is treated as
uppercase letter O.
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• Replacing infinity symbol ∞ with placeholder symbol α : This only applies for the constraints min_val,
max_val, and pos_pat.
• Replacing square brackets [ ] with parentheses ( ) for constraints that require an enclosed value (or list of
values).
• Lowercase letter g and lowercase letter q: Any instance of q for the constraint exp_vals in an operator
wildcard is treated as g. Similarly, When we have a lowercase letter c, we replace it for a lowercase letter e.
• Uppercase letter T and uppercase letter I: Any instance of I in a matrix wildcard is treated as T (type
constraint).
• For the type constraint in a matrix wildcard, the uppercase letter O is replaced with D (diagonal matrix).

6.4 Alternatives for Wrong Positioning
• Optional wildcards use the placeholder symbol E as a superscript of the wildcard type. The system treats
subscript and line cases as valid.
• Function wildcards use the line placeholder symbol P for the constraint param. The system treats subscript
and superscript cases as valid.
• Expression wildcards use the line placeholder symbol P to specify partial matching. The system treats
subscript and superscript cases as valid.
• Matrix wildcards use the line placeholder symbol T for the constraint type. The system treats subscript
and superscript cases as valid.

To illustrate how the feedback would behave in the presence of some of the above cases we offer an example.

First let us consider the Fourier Sine and Cosine Series:

f(x) = a0 +
∞∑
n=1

(ancos
nπx

L
+ bnsin

nπx

L
)

Below we have a query that will match this expression but also has some input mistakes

f(x) = a0s
∞∑
n=1

c

0s (A − s − pM − qC)

EcP (anz + bne)

fzP (m)

fep (q)

EmP (nπx)

hTSD

Eq

Mq

Hq (1 − 2)

28



The visual feedback will render the following

f(x) = a0s
∞∑
n=1

c

s [operator, exp_vals = [A, S, PM, Ge]]
c [expression, partial matching, pattern = [anz + bne]]

z [function, param = [m]]

e [function, param = [q]]

m [expression, partial matching, pattern = [nπx]]

q [multiple types]

invalid lines [6, 9]

7 EXPERIMENTAL FRAMEWORK
The input language imposes a particular structure on the user input. We argue that the difference between our
two interfaces is related to the trade-off between query recognition accuracy and ease of input. The base interface
captures the query in a more natural way, needing only user handwriting whereas the panel-assisted interface
can reduce significantly recognition mistakes. Both interfaces still impose some degree of formality when writing
queries, which is tied to the use of the input language. Conducting a usability study is outside of the scope
of this project. However, we present an experimental framework that can be used as a base to carry out such
experiments.

7.1 ResearchQuestions
First, we want to explore users’ perception regarding the formality of the input language. The concept of
structuration theory [23, 32, 60] states that structure enables action by providing a guide, but can also constrain
when the guide overly constricts expressibility. Using this idea, we propose multiple questions.
• How the level of formality in the input language affects the expressibility of the language?
• Do users consider that the input language is formal enough that allows them to construct their desired
wildcard queries?
• Do users consider that the input language overly constricts user expressibility?
• How much effort do users require to learn and use the input language in order to construct wildcard
queries?

Second, we want to explore users perception regarding the usefulness of the explicit language which is used
to provide visual feedback. A consideration here is that the structure of the language itself and its visualiza-
tion/presentation are strongly tied (at least from the user point of view). We propose the following questions:
• Can the users understand the textual information presented in the visual feedback?
• Do users consider the visual feedback helpful?
• Do users understand the meaning behind the different coloring techniques used in the feedback?
• Do users understand how errors and warnings are presented in the feedback?

Lastly, we want to compare the base interface and the panel-assisted interface and whether there is a clear
preference for users. To assess the performance of an experiment we propose to focus on four variables: correctness,
duration (time needed to complete the task), use of help, use of retries. Some of these variables have been used in
other experimental studies [18, 32, 73]. We expect for the panel-assisted interface to achieve better correctness,
to require less use of help, and to require less retries.
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7.2 Experimental Methodology
For the methodology we want to focus on the last route mentioned above, the comparison between the two
interfaces. We propose a within-subject experiment 7 which allows collecting a greater set of data points and
reduces bias and the distortion of results [18, 32, 73].

Based on the procedure presented by Kaufmann and Bernstein [32], we propose the following overview of the
experimental procedure for each participant.

7.3 Experimental Procedure
(1) Read introductory notes of experiment
(2) Read instructions on the input language and the explicit language
(3) See examples of wildcard queries constructed with the panel-assisted interface
(4) Participate in free session to interact with the panel-assisted interface for 5 minutes
(5) Enter each query from the experimental set with the panel-assisted interface. One at the time, cleaning the

canvas after each query
(6) Fill out usability questionnaire for the panel-assisted interface
(7) Proceed by repeating steps (3)-(6) with the base interface
(8) Fill out comparison questionnaire
(9) Fill out demographic questionnaire
Participants use the panel-assisted interface first in order to account for learning bias.
For the usability questionnaire, the study could use the System Usability Scale (SUS) as a base. Proposed by

Brooke [11], SUS is is a standardized usability test that constains 10 questions, where each question uses a Likert
scale to measure a participant’s impression regarding the interface.

For the comparison questionnaire, the goal would be to determine if the participant prefers one interface over
the other and in what degree, is it for all the aspects of the interface?
The experimental set refers to the task set used in the experiment. Each task would correspond to a textual

description, and the goal is to construct a wildcard query that fulfills the description. Below we present multiple
examples of tasks and queries that fulfill the tasks.
• Description: Please write a query to find all the trigonometric functions with just one parameter.
For this task two different valid queries are:

x

Fx (sin − cos − tan − sec − csc − cot)

xP (y)

Ey

x

Fx (sin − cos − tan − sec − csc − cot)

xP (y)

Sy−1

• Description: Please write a query to find sequences with exactly 3 items. One of the items is a number. One of
the items is a variable.

7A within-subject design is a type of experimental design in which all participants are exposed to every treatment or condition.
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For this task two different valid queries are:

x

Sx3−3

xP0 (a)

xP0 (b)

Na Vb

x

Sx3−3

xP1 (a)

xP2 (b)

xP3 (c)

Va Nb Ec

The user does not really need to specify the constraints for the third item in the sequence.

7.4 Evaluation Metrics
To evaluate the experiment and analyze the data collected we propose multiple variables of interest:

• Correctness. Correctness measures the degree of success of the participant when completing the tasks.
After completing each task, a facilitator should assess the correctness and record this value. If treated as a
quantitative metric, it would be possible to compute a cumulative value for each participant (e.g. mean).
• Duration. The duration refers to how much time the participant spent performing the tasks. To assure an
upper limit in terms of study duration, we could establish a time limit for each task, that if reached forces
the participant to advance to the next task. For example, the limit could be 5 minutes.
• Use of help. During the experiment the participant would receive instructions on how the explicit language
and the input language work. These instructions could be in a handout or it could be a browser tab in
the same device used to complete the tasks. We could record metrics such as: number of times using help
information, duration of each time, whether accessing the help information affected participant progress in
the task.
• Use of retries. In MathBrush the user can clean the entire canvas at any time and start from scratch. It
might be interesting to capture how the user behaves with this feature. For example, a higher number
of retries could indicate some frustration from the participant because she does not comprehend how to
construct the queries.
• Usability and Learnability. These two variables would be captured with the post-questionnaires filled
out by the participant after using each interface. We could contrast these responses with the above metrics
to determine if there is some correlation. For example, a participant that obtained better correctness scores,
could be more likely to give more positive scores in the questionnaire. Usability refers to the participant
opinion on how well each interface helped her to complete the tasks, whereas learnability would focus on
the participant’s interaction with the grammar required by the input language.
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8 DISCUSSION
In this paper we explore the use of wildcards for math retrieval in the context of handwritten math and pen-
based interfaces. We found that the majority of existing pen-based handwritten math systems offer limited
support for the use of wildcards when formulating queries. We also examine the concept of math formula query
languages, which take advantage of the use of wildcards to allow for more expressiveness in the creation of
queries. We compare three existing query languages using multiple quality attributes. None of the languages is
completely suitable to integrate with handwritten math interfaces, thus we decided to focus on this problem.
For that, we propose a novel query language aimed to help users construct wildcard queries. As a proof of
concept, we implemented our language on MathBrush, a pen-based mathematical system currently maintained
by the Symbolic Computation Group (SGC) at the University of Waterloo. One of the main challenges that
handwritten math systems face is the proper recognition of user input. To name a few of the causes: different
writing styles, similarity between symbols, touching symbols, messy handwriting, spacing issues. Motivated by
this, we developed two interfaces that explore the trade-off between query accuracy and ease of input. Due to
the scope of this project, we did not run any experimental evaluation. However, we propose an experimental
framework with multiple courses of action that can be used to evaluate the interfaces.

Besides the experimental evaluation, another future direction is to apply the concept of wildcard language to
the information retrieval process. The goal would be to allow matching/similarity relaxation. The user would
input a query and a set of guidelines on how to rank search results, which would be used to enhance the final
ranking. For example, let us say that for each guideline the user assigns a rating between 0 and 10; we have the
query

√
a + b = 10 and the relaxations (1) exact match has a rating of 10 (highest priority), (2) replacing constants

by numeric wildcards has a rating of 8, (3) replacing character symbols by variable wildcards has a rating of 6,
and (4) replacing character symbols by expression wildcards has a rating of 5. The system could create a tree of
potential relaxations, each one associated with a rating, which measures the preference of the relaxation over the
rest.
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