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Abstract

We present a Las Vegas probabalistic algorithm for reduc-
ing the computation of Hermite normal forms of rectangular
polynomial matrices. In particular, the problem of comput-
ing the Hermite normal form of a rectangular m x n matrix
(with m > n) reduces to that of computing the Hermite
normal form of a matrix of size (n + 1) x n having entries
of similar coefficient size and degree. The main cost of the
reduction is the same as the cost of fraction-free Gaussian
elimination of an m X n polynomial matrix. As an appli-
cation, the reduction allows for the efficient computation of
one-sided GCD’s of two matrix polynomials along with the
solution of the matrix diophantine equation associated to

such a GCD.

1 Introduction

Let A be a matrix in F[z]™*™, F a field, with full column
rank. The Hermite normal form of A is a matrix H in
F[z]™*™ obtainable from A by unimodular row transfor-
mations such that H is upper triangular with all diagonal
entries monic and such that in each column off-diagonal en-
tries have degree less than the diagonal entry. A unimodu-
lar (invertible over F[z]) matrix U € F[z]™*™ that satisfies
UA = H is called a pre-multiplier for the Hermite normal
form. In general, the Hermite normal form can be defined
for matrices over any principal ideal domain (cf. Newman
[15]) and was initially introduced in 1851 by Hermite [8] for
the case of square integer matrices. The Hermite normal
form always exists and is unique.

In this paper we consider the problem of computing the
Hermite normal form of a rectangular input matrix F[z]™*"
where m > n + 1. Our motivation for studying this prob-
lem comes from two areas: symbolic integration and linear
systems theory. In the first area, Trager’s algorithm for the
algebraic case of Risch’s decision procedure for determining
closed form solutions of integrals with algebraic integrands
makes heavy use of the Round Two algorithm for the com-
putation of integral bases for algebraic extension fields (cf.
Ford [4], Trager [18]). This algorithm requires many Her-
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mite form reductions of rectangular polynomial matrices,
in particular, of polynomial matrices where m = 2n and
m = n?. In the second area, a central operation in linear
systems theory (cf. Kailath [10]) involves computing mini-
mal representations for linear systems. In the case where
the linear system is based on matrix fraction forms, such
minimal representations require computing (and removing)
one-sided greatest common divisors of matrix polynomials.
This can be accomplished by computing the Hermite normal
form of a rectangular matrix (cf. Section 2).

The classical method for computing the Hermite normal
form H is to directly reduce the m x n input matrix A by
applying a sequence of unimodular row operations (essen-
tially Gaussian elimination over the domain of entries). A
unimodular pre-multiplier matrix U that satisfies UA = H
can be obtained by recording row operations in a compan-
ion matrix (initially the m x m identity matrix). Comput-
ing Hermite normal forms over F[z] when F is a field of
characteristic zero (e.g. F = Q, the rational numbers) is
known to be especially difficult because of the potential for
excessive growth in the intermediate expressions; a direct
application of the classical method is hopeless in this case.
Aside from the problem of intermediate expression swell,
we remark that the coeflicients of polynomials appearing in
the Hermite normal form can typically be much larger than
those in the input matrix. For example, consider the case
F = Q. Let A be an m x n full column rank input matrix
over Q[z]. Assume, without loss of generality, that A has
been preconditioned to have all coefficients be integer (i.e.
A is over Z[z]) and denote by || 4|| the largest magnitude in-
teger coefficient appearing in A. Such an integer has length
O(log || A]|) bits (the number of bits required to represent the
integer in binary). The best known bound on the lengths of
individual numerators and denominators of rational number
coeflicients appearing in the Hermite normal form H of 4
is O~ (n®dlog||A]|) (cf. Storjohann [17, Theorem 4.6]). This
is a factor of O™ (n®d) times as large (number of bits) as
the lengths of integers appearing in A. This bound applies
also to the lengths of numerators and denominators of ra-
tional number coefficients appearing in a candidate for U, a
unimodular pre-multipler for the Hermite normal form.

The first to show that computing Hermite normal forms
over Q[z] is in P (the class of polynomial time algorithms)
was Kannan in [13]. A fast parallel algorithm for computing
the Hermite normal form and pre-multiplier matrix for a
square nonsingular polynomial matrix is given by Kaltofen,
Krishnamoorthy and Saunders in [11] and a generalization
that works for rectangular input matrices in [12]. We remark
that the modulo arithmetic algorithms for matrices over the



integers presented in [3, 7, 9] can be modified to work for
input matrices over F[z] but suffer from excessive coefficient
growth when F = Q. A recent method for computing the
Hermite normal form of a polynomial matrix is given by
Labhalla, Lombardi and Marlin in [14]. Their approach is to
convert the problem to one of triangularizing a large matrix
over the coefficient field.

It is important to note that the Hermite normal form
algorithms in [3, 9, 11, 13] are initially presented for the
special case of square nonsingular input matrices. Hafner
and McCurley present in [7] a generalization of the modulo
arithmetic approach that works for rectangular matrices but
they are not able to directly compute a candidate for a pre-
multiplier matrix. To handle the case of rectangular input
matrices or the case where a candidate for a unimodular pre-
multiplier matrix is desired, the authors of [7, 12, 13] reduce
to the square nonsingular case. This can be accomplished
as follows. Let U, be an m x m unimodular matrix such
that U, A consists of a permutation of the rows of A with
the first n rows of Up A linearly independent. Let A; be the
n X n matrix consisting of the first n rows of U, A and let
A consist of the last (m —n) rows. Then the m x m matrix

Asz[j; 0 ] Q)

Im—n

obtained by permuting the rows of A and augmenting with
I,,_n is non-singular. Now find an m X m unimodular matrix
U such that UA, = H, is the Hermite normal form of A,.
(Note that since A, and H, are nonsingular, U is unique and
can be computed to be U « H,A;'.) Let (UU,)A = H.
Then H consists of the first n columns of H,. Take H to
be the Hermite normal form of A. Uniqueness of H, implies
uniqueness of H. This method of embedding the rectangular
input matrix into a larger square nonsingular matrix can be
quite wasteful, particularly in case where the input matrix
has dimensions such as n? x n.

In section 4 we present our algorithm for simplifying the
computation of Hermite normal forms of rectangular matri-
ces of polynomials. In particular, for an m X n polynomial
matrix A we produce a new preconditioned polynomial ma-
trix A* having the same Hermite normal form as that of A.
The matrix A* has entries approximately the same size as
those in A but has the added property that only the first
n + 1 rows contain non-zero entries. For example, for an
input matrix 4 € Z[z]™*™ with degrees of entries bounded
by d, the matrix A* produced will have entries polynomials
bounded in degree by d with coefficients integers bounded
in length by O(log ||4|| + log m + log d) bits. The problem
of computing the Hermite normal form of A is thus reduced
to the same problem for the first n + 1 rows of A*. The
latter problem can then be computed using any of the Her-
mite normal form algorithms in [12, 13, 14]. In all cases the
subsequent Hermite normal form computation is done for a
significantly smaller problem.

The preconditioning is Las Vegas probabilistic in the
sense that it will not produce an incorrect reduction but
may fail with arbitrarily small probability. The main cost of
the preconditioning is the same as the cost of matrix triangu-
larization via fraction-free Gaussian elimination along with
approximately 2mn polynomial trial divisions. Fraction-
free Gaussian elimination over Q[z] admits good bounds on
the size of intermediate expressions. For an input matrix
A €Z[z]™*™ with degrees of entries bounded by d, interme-
diate polynomials occurring during the algorithm will have
degrees bounded by nd and coeflicients integers bounded

in length O(n(log||A|| 4+ log m + logd)) bits. In section 6
we give a detailed cost analysis and show how to employ
a homomorphic imaging scheme to achieve a fast, practical
implementation.

This paper is organized as follows. Section 2 gives a
brief description of how to compute a one-sided greatest
common divisors of two matrix polynomials by reducing a
rectangular matrix of polynomials to Hermite normal form.
This section also describes the linear diophantine equation
associated to the gcd and its relation to the pre-multiplier
matrix for the normal form computation. Section 3 gives the
new preconditioning algorithm with section 4 providing an
example of the reduction. The proof of correctness follows
in section 5 and a cost analysis in section 6.

2  One-sided GCD’s of Matrix Polynomials

Let A = [ pT QT ]T have full column rank n where P
and @ are matrix polynomials of sizes m; X n and m2 X n,
respectively. Let H = [ GT o ]T be the (unique) Hermite
normal form of A with G a matrix polynomial of size n x n
and with U a unimodular pre-multiplier matrix with inverse

V such that

UA=H withVU=TITand UV =1. (2)
We can partition U and V into blocks

_ U11 U12 _ ‘/11 ‘712
U_[U21 Uzz]’V—[Vm sz] )

where U1 and Uiz are of size n X m1 and n X m2, respectively,
and Vi; and V2; are of size m1 X n and ma2 X n, respectively.
The partitioning in (3) together with equation (2) gives

UnP+U12Q=G (4)
with

P=Vi1G, Q=VauG, and U1Vi1 +U2Vo1 =1.
From the above equations it is easy to see that G divides
both P and @ and that there are no additional non-trivial
(i-e. non-unimodular) right divisors of both PG™" and QG ™.
Thus, G is a greatest common right divisor of P and Q.
Greatest common left divisors can be obtained in a similar
fashion using matrix transposes. We refer to equation (4) as
the associated diophantine equation for the matrix gcd com-
putation. Note that the solution to (4) is obtained entirely
from the first n rows of the pre-multiplier matrix U.

3 The Rectangular HNF Preconditioner

Let A be an m X n rank n input matrix over F[z] having
m > n+ 1. An invariant of the lattice £(A) (the set of
all linear combinations over F[z] of the rows of A) is the
quantity h*(A,n), defined to be the gcd of the determinants
of all n X n minors of A. Algorithm REDUCE that follows
works by preconditioning the input matrix A with a cer-
tain random unimodular matrix Ugr. With high probability,
the gcd of the determinants of the two n X n minors of Ur 4
comprised of rows [1,2,...,n] and rows [1,2,...,n—1,n+1]
will be equal to 2*(A4,n). This is sufficient to guarantee that
Hermite(A) = Hermite(A") where A" has first n + 1 rows
those of Ur A and all other rows zero. We say the precondi-
tioning is correct in this case. (The idea of preconditioning



an input matrix using random unimodular matrices was first
used by Kaltofen, Krishnamoorthy and Saunders [11] in the
context of Smith normal form computation to reduce the
computation of the gcd of the determinants of many mi-
nors to the same computation but for only two randomized
minors.)

The remainder of the algorithm attempts to find a con-
struction for a unimodular matrix U* € F[z]™*™ that sat-
isfies U*A = A*. Such a matrix U" exists if and only if
the random unimodular pre-multiplier matrix Ur gives a
correct preconditioning. If the preconditioning is bad, this
is detected and the algorithm returns FAIL. To bound the
probability of failure by a constant e, where 0 < € < 1, we
require that #F > 2[n?d/e]. Note that this condition on
the cardinality of F is always met for the important case
when F has characteristic zero. In any case, if #F is too
small, we can compute over an algebraic extension K of F
having the required number of elements. In this case, the al-
gorithm will produce a matrix A* € K [z]**™. The Hermite
normal form is an entirely rational form so the Hermite nor-
mal form of A (over F[z]) can be found by computing, over
K [z], the Hermite normal form of A*. The only drawback
to computing over an extension field K is that the option-
ally returned unimodular matrix U* may not be over F[z]
and that field operations will be slightly more expensive.

Algorithm: REDUCE

Input: A matrix A € F[z]™*™ with full column rank and
m>n+1.

Constant: An upper bound 0 < € < 1 on the probability
of failing.

Note: We assume that #F > 2[n?d/¢] where d bounds the
degrees of entries in A.

Output: A matrix A* € F[z]™*™ with all zero entries
in the last m — n — 1 rows and such that Hermite(A4") =
Hermite(A). Optionally, a unimodular transformation ma-

trix U* € F[z]™*™ such that U*A = A™.
(1) [Randomize:]

C « a subset of F with ¢ = [2n?d/¢] elements, no two
of which are multiplicative inverses of each other;
Note: If F has characteristic zero, we may choose
C = {0,2,...,c}. Otherwise, choose ¢ — 1 distinct
pairs of nonzero elements {(ai,ai_l)}lgigc—l from F
and set C = {0,a1,a2,...,ac-1}.

U; « a unit upper triangular matrix in F(r—1)x(n—1)
with entries chosen at random from Cj

U, «— a matrix in F(r—Dx(m=n+1) it entries chosen
at random from C;

& — a row vector in F1X(™~"+1) with entries chosen
at random from C except for &; = 1;

5 «— a row vector in FY*(™~"+1) with entries chosen
at random from C except for 72 = 1;

U, U,

Ugr « 8 3 +[O Im_n_l],anmxmma-
O O

trix over F;

Note: Ugr is unimodular since det(Ur) = 1 — a2m

which by our choice of C is a nonzero element of F.
B « UgrA, a matrix in F[z]™*™ with the same Her-
mite normal form as A4;

5 5
where b, and b,41 are row

Note: B = o

vectors and B; and B, are of size (n — 1) x n and
(m —n — 1) X n respectively.

(2) [Find Annihilators:]
B

Adi — [ bi ;

dy — det(My);

V' — —B; M P, where P, = [

Vel lV dilnna |5
[
bn+1

dz — det(Mz);
w' Ba MU P, where P, = | "7 © ;

— — D> 2 2 where 2 = O [ 0 1 ] 5
We [ W dolnna |;
Note: V and W are left annihilators of B (i.e. VB and

W B are the zero matrix).

(3) [Find probable value for A*(A4,n):]
If both d; and d; are zero then return FAIL;
gn — ged(dy, dz);

(4) [Check that the preconditioning is correct:]
If g2 does not divide all entries of V' and W' then
return FAIL;

(5) [Construct A*:]
B,

A* — bff

bn+1

o,

mite normal form as A4;
If U* is not required then output A* and terminate,
otherwise continue.

, a matrix in F[z]™*™ with same Her-

(6) [Solve extended Euclidean problem:]
(a,b) <« a solution to: ady + bdz = gn;

(7) [Construct unimodular multiplier:]
" In+1 0
U* «— gL*VI + gL*WI Im—n—l UR;

(8) [Output:] U* and A*.

Note that the matrices V and W constructed in step (2)
are indeed left annihilators of matrix B of step (1). For
example, we have

B,
VB = | -BoM}Pi dilm—n1 | b
bn+1
B,
B,
= —Blea'djpl bn +d1B2
bn+1
= —B,M! M, +dB;
= —Bydi +d1B;
o)

the (n — m — 1) X m zero matrix. A similar decomposition

holds for W.



For clarity, and to simplify the complexity analysis in
section 6, we have shown how the construction of annihila-
tors V and W reduces to computing adjoints, determinants
and matrix multiplication. In practice, we compute suitable
annihilators by triangularizing a single m x (n 4 1) matrix
using fraction-free Gaussian elimination (cf. Geddes, Cza-
por and Labahn [5] or the original articles by Bareiss [1, 2]).
First, let B’ be the matrix [B|&] € F™*("*1) where B is as
computed in step (1) and € is an m X 1 column vector with
all entries 0 except for the n-th entry, which is 1. Next, per-
form fraction-free Gaussian elimination on B’, up to column
n, and with row pivoting limited to the first n» rows. Record
row operations in a companion matrix (initially the m x m
identity) to obtain the pre-multiplier

R (0]
V= [ Vs dilmonos ]
Then, VB' has entries below the diagonal in the first n
columns zero whence the matrix V = [ Vo dilm—_n_1 ]

is a left annihilator of B. Continue fraction-free Gaussian
elimination for one more column, with row pivoting limited
to the first n + 1 rows, and keep recording row operations
in the companion matrix. The last m — n — 1 rows of the
companion matrix are now W = [ Wa dolmna ], the
second annihilator of B. This procedure may break down if
the principle n x n minor of B is singular (i.e. d; = 0) in
which case a zero pivot will be encountered during fraction-
free Gaussian elimination. If this is the case, then we set V'
to be the (m —n — 1) X m zero matrix. Similarly, if d> = 0,
then we set W to be the (m — n — 1) x m zero matrix.

4 Example of HNF Preconditioning

Let P be the matrix

—4¢*4+2z—4 142> —16z—-16 —3z>—5z+2
82> +4z+6 —3z2°4+60z+23 1Tz +7
—22% 42 4z% 48 9243

—22? 62> —2z—-2 22> -6z —2

and @ be the matrix

—6z% +4 1422 — 22414 —22% —24z+4 ]
—62> -4z -2 —2®—422-1 222 —17¢ — 3
—82> —4z-8 22— 1T70z—29 —14z—8
8z +4z+10 3224722439 —oi4+11c4+7

227 42 —22>4+16z+6 2z>+3z+3

Using the method of section 2 together with algorithim REDUCE
we will find a greatest common right divisor G of P and Q
as well as a solution (U11 , Ulz) to the associated diophantine
equation Uy1 P 4+ U12Q = G which we may write as

[ U Ulz][P]zc;. (5)

First we apply algorithm REDUCE to the 9x 3 rectangular ma-
trix polynomial A = [ pT QT ]T. In step (1) of REDUCE

we choose

1 3
0[]
0 1
0 3 02 0 2 O
o - | ]
2 0 3 0 2 2 3
& = [1030020],
7 =[2120030],
leading to the randomizing matrix
[1 3 0 3 0 2 0 2 07
012 03 02 2 3
0 01 03 0O0 2 O
0 021 2 00 3 O
Ur=10 00 01 0 0 0 O
0 00 00 10 0O
0 00 00 O1O0TO0
0 00 00 OO 1O
[0 0000000 1]

Let B be the 9 x 3 matrix consisting of the matrix product
UrA. In step (2) we obtain

V=[V' dl | and W= W' &l |

where di = —3524z° — 14102 2® — 17462 z* — 20810 z® —
20998 z* + 14788 z — 340 and d» = —16236 z° — 24174 z* —
2664 2 — 20952 3 — 37998 2 4 23040 ¢ — 612. The greatest
common divisor is given by g = gecd(di,d2) = zt 4+ 223 4+
z? + 4z — 2 and this divides every entry of both V' and
W' which proves that the preconditioning is correct. As a
result, the Hermite normal form of A4 is the same as that of

A = [ (A#)T (0} ]T where A# is the matrix
1822 + 142 +30 1522 +2182 +111 —72%2 + 162+ 25
822 +42+32 3722 +1062+ 119 —T70z + 32 — 222

—42% 434482 4022 +128+4 1382 —59z + 29 — 822

6z2 +42+ 122 3322 41594 2102 —39z + 33 — 922

comprised of the first four rows of B. We compute the Her-
mite normal form of A# to be

1 3z+4  -3/2z+1/2
H#—[G]— 0 z+2z—1 0
Lo o 0 2? +2
0 0 0

hence the matrix greatest common right divisor of P and Q
is G.

To solve the associated diophantine equation (5) we also
require finding a 4 x 4 unimodular pre-multiplier matrix U#
along with H# that satisfies U#¥ A* = H#. The desired
solution [ Uin Ui ] can then be taken as the first 3 rows
of the matrix product

U U,
Uv¥| o &
o 7



Note that [ Uirn Us2 ] is completely determined here from

Ugr and U#, the result of the smaller Hermite normal form
computation, and that the computation of the 9 x 9 matrix
U™ in steps (6) and (7) was not required.

5 Algorithm Correctness

We first show that algorithm REDUCE never returns an in-
correct result. First note that by construction in step (5)
the matrix A* has the first n + 1 rows those of B = UrA
and remaining m — n — 1 rows zero. To prove that 4 and
A" have the same Hermite normal form it is sufficient to
show that A* is obtainable from A via premultiplication by
a unimodular matrix. This is accomplished by the following
lemma.

Lemma 1 If algorithm REDUCE does not return FAIL, then
the matriz U* produced in step (7) is unimodular and satis-

flesUA=A".

Proof: By construction, the matrices V and W found in step
(2) are (m — n — 1) x m left annihilators of B = UrA4. It
follows that the matrix
N = S[V &I+ 2w &I
9n gn

= [ 2y + o5 W’ I ]
is also a left annihilator of B where (a,b) is a solution to
ady + bds = g, as found in step (6). Furthermore, since
step (4) did not return FAIL, we must have g, a divisor of
all entries in V' and W' hence N contains only polynomial
entries. By construction in step (1), det(Ur) is a nonzero
constant polynomial in F[z] hence Ur is unimodular. This
shows that U”* as constructed in step (7) is is the product
of two unimodular matrices so U"* is unimodular. Finally,
note that

UA = Inia © UrA
- gL*V’ + gL*WI Im—n—l R

= A*
|

The challenge lies in proving that algorithm REDUCE is
a correct Las Vegas algorithm. Note that by construction,
entries of V' and W' are associates of determinants of n x n
minors of B so that step (4) will not return FAIL if g; =
h*(B,n). Thus, we desire that in step (3) the identity g, =
h*(B,n) holds with high probability so that repetition of
the algorithm will almost never be necessary. (Recall that
h*(B,n) is the ged of the determinants of all n X n minors
of B.)

The following lemma assures us that g, will be correct
provided that the entries in Ur do not form a root of a
certain polynomial bounded in degree by 2n%d. By a result
of Schwartz [16], the probability of this happening is less
than 2n%d/#C (i.e. less than €). This approach was inspired
by two articles of Kaltofen, Krishnamoorthy and Saunders
[11, 12]. In particular, the proof of the following lemma
hinges on a key result presented in [12].

Lemma 2 Let A be a matriz in F[z]™*™, m > n + 1, of
rank n and with the degrees of entries bounded by d. Then
there is a polynomial © in (2m(n+1)—n(n+3))/2 variables
such that if

(1) Ur in F(rt)xm pogs the form

U, | Uz

5
Il

o
Qu

0|7

where Uy € F(»~Ux(m=nt1) 17 is unit upper trian-
gular in FO~UX(=1) " 0nd & and 5 are row vectors
in FYXm=ntl) yiih & = [1,02,a3,..
’v = ['Yla 17 RATREN a'Ym—‘n.+1]f

<yOm—nt1] and

(2) di1 ts the determinant of the principal n-th minor of
UrA;

(3) d2 ts the determinant of the n X n minor formed by
rows [1,2,...,n— 1,7 + 1] of UrA,

then gcd(dl,dz) =h* (A n), unless the (2m(n + 1) —n(n+
3))/2 entries in Uz, &, ¥ and above the diagonal in Uy form
a root of w. The degree of T is no more than 2n’d.

Proof: First consider the case when Ugr contains indetermi-
nate entries. In particular, let the entry in the i-th row k-th
column of [U;|Usz] be p;,r where g = (pik)1<i<n—1,ick<m 18
a vector of indeterminates and let & = (o2, @2, ..., ¥m—ny1)
and ¥ = (71,73, .-y ¥Ym—n+1). By a result of Kaltofen, Kr-
1shnamoorthy and Saunders [12, Lemma 3.6] we must have
di = h*(A,n)p1, where p; € F[ z,p,a] either is an irre-
ducible polynomlal in F[p,&,z]\ F[z] or is 1. Similarly, we
must have d; = A*(A4, n)pz, where p; € F[z,5,7 %] either is
an irreducible polynomial in F[p, ¥,z]\ F[ or is 1. Hence,
we must have ged(d1,d2) = h*(A4, n) if p1 is not an associate
of p2. To show this, it will be sufficient to demonstrate that
either p; depends on & or p2 depends on 7. Let A, be the
submatrix comprised of the last m — n 4+ 1 rows of A and
let C;; denote the cofactor of the entry in the i-th row j-
th column of the principal n-th minor of UrA. Then, we
can express di; and d» according to their n-th row cofactor
expansion

Cn,l 7
Cn
[dl] [ 1 az az -+ Am—nt1 ] A ’ (6)
8 .
d> 1 1 v - Ym—nit1 :
Cn,n-
a ]
q2
— 1 az a3 © Om—n+l q3 (7)
1 1 93 © Ym—n+t1 .
9m—n+1 |

Now, the Cy, « in (6) will be independent of (&, ¥) since they
are associates of determinant of minors of the first n — 1
rows of UrA. In particular, the polynomials g, in (7) will
depend only on (5, z) and not on (&, ¥). Since d; and d are
nonzero (A has rank n), there must exist a smallest integer 1,
1 <1 < m—n+1 such that ¢; is nonzero. If 1 = 1, then d> de-
pends on v1;if 1 = 2, then d; depends on a2;if3 <1 < m—n
then d; depends on «; and d2 depends on %;. This shows
that ged(di,d2) = h*(A,n) as required. An application of
Lemma 3.5 in [11] yields the existence of a 2nd x 2nd de-
terminant A, whose entries are coeflicients of z of d; and
d2, such that for any evaluation (p,&,5) — (p,&,%) where
(p, 6, 9) is a corresponding list of field elements that are not
aroot of A, ged(dy,d2) = h*(A,1). It remains to establish a
degree bound for A. Coeflicients of z of Ur A are of degree 1
whence coefficients of z of d; and d» will have total degrees
bounded by n. This leads to a bound on the total degree of
A of 2n%d. Finally, set 7 = A to complete the proof. |



Theorem 1 Algorithm REDUCE is correct and requires rep-
etition with probability less than €. |

6 Algorithm Complexity

Let P(d) be the number of field operations required to mul-
tiply two degree d polynomials over F[z] and let M(t) be
the number of bit operations required to multiply two ¢ bit
integers. In this paper we assume standard polynomial and
integer arithmetic: P(d) = d° and M(t) = t*. We also as-
sume standard matrix multiplication: two n X n matrices
over a ring R. can be multiplied in O(n*) ring operations.
We first derive a complexity in terms of field opera-
tions over F. The computation of matrix B in step (1)
is especially simple since Ur contains only constant poly-
nomials. Matrix B is found in O(mn?® - d) field operations
and will have entries bounded in degree by d. The main
cost of the algorithm will be computing the annihilators
V=]V dlhmi]andW =W dlom|in
step (2). Entries of V' and W' are determinants of n x n
minors of B. These have degrees bounded by nd. Since
we assume that #F > 2[2n2d/€] > nd we can use an eval-
uation/interpolation scheme to compute V and W as fol-
lows. Let B|z=z; denote the matrix obtained from B by
evaluating each polynomial entry at z = z;. Choose a list
(zi)i=0..na of distinct evaluation points in F and perform
the following steps: (1) find the images (B|z=x; Jo<i<na at a
cost of O(mn -nP(d)logd) field operations; (2) find di|e==;
and M;%Y|,_,, for i = 0,...,nd at a cost of O(nd - n®)
field operations; (3) find V'|o=e; = —Bz|m=miMfdJ|m=miP1
for i = 0,...,nd at a cost of O(nd - mn?) field operations;
(4) use Chinese remaindering to reconstruct d; and the at
most (m — n — 1)n nonzero degree nd polynomial entries in
V' from their images at a cost of O(nm - P(nd)log nd) field
operations. The determinant ds and matrix W' are found
similarly. Assuming standard polynomial arithmetic, this
leads to a cost of ON(nadzm) field operations for comput-
ing the annihilators V' and W in step (2). This bounds the
cost of the gcd computation in step (6) and the O(mn) trial
divisions in step (4). The construction of U* in step (7) can
be accomplished in O(n2 mzd) field operations by using the
obvious block decomposition for the matrix multiplication.

Theorem 2 For some fizede, 0 < € < 1, let F be field that
satisfies #F > 2[2n?d/€]|. There ezists a Las Vegas proba-
balistic algorithm that takes as input a matriz A € F[z]™*"
with full column rank, degrees of entries bounded by d and
with m > n + 1, and returns a matriz A* € F[z]™*™ with
degrees of entries bounded by d, last m — n — 1 rows zero,
and having the same Hermite normal form as A. Option-
ally, the algorithm returns a unimodular U™ € F[z]™*™ with
degrees bounded by 2nd that satisfies U*A = A*. The algo-
rithm requires repetition with probability less than €. Us-
ing standard polynomial and matriz multiplication, the algo-
rithm requires an ezpected number of ON(nadzm) field oper-
ations from F to produce A* alone and an expected number
of O~ (n*dm(nd+m)) field operations from F to produce A*
together with U*. [ |

Now consider the case when F = Q. Without loss of
generality, and as is done in [13], we assume that the input
matrix has been preconditioned to have all integer coeffi-
cients. Although we are implicitly computing over Q[z],
beginning with an input matrix A € Z[z]™*™ allows all
computation in steps (1) through (5) of algorithm REDUCE
to be accomplished over the simpler domain Z[z]. We start

with an input matrix A € Z[z]™*™ having degrees of en-
tries bounded by d — 1. Let ||A|| denote the largest in-
teger coefficient appearing in A. The integer coeflicients
appearing in the randomized matrix B computed in step
(1) will be only slightly larger than those appearing in A.
In particular, we can choose C = {0,2,...,[2r%d/e] — 1}
so that ||B|| = ||[UrA|| < m - [2r?d/€] - ||4]|- In practice,
the dominant cost of the algorithm will almost certainly be
finding the annihilators V and W of B in step (2). En-
tries in V and W are determinants of n X n minors of B.
These determinants will be degree (at most) nd polynomi-
als in Z[z] with integer coefficients bounded in magnitude
by < (ynd||B|)" < (y/mdm[2n2d/e][|Al|)". Asymptoti-
cally we have log 3 = O(nlogmd||A||). For p a prime, let
A, = Amod p be the matrix in Z,[z]"*™ obtained from
A by replacing each integer coefficient with its image mod
p. To compute V and W, we find V,, and W, over Z,[z]
for sufficiently many primes p to allow recovery of the in-
teger coefficient appearing in V and W via the Chinese re-
mainder algorithm. To apply the evaluation/interpolation
scheme for computing V,, and W, developed earlier, we need
to choose primes p larger than nd to ensure enough eval-
uation points in the field Z,. The following lemma from
Giesbrecht shows that we can choose all our primes to be
g = max(6 + loglog 3,1 + log nd) bits in length.

Lemma 3 ([6]) Let = > 3 and l = 6 + loglogz. Then
there ezist at least 2[[log,(22)]/(l — 1)] primes p such that
2 < p< 2t ]

It follows from this lemma that we can choose a list of
s = 2[[(log2B)]/(¢d — 1)] = O((logB)/q) distinct primes
(Pi)1<i<s that are bounded in length by ¢ bits and that sat-
isfy both p; > nd for 1 < i < s and H1<i<s s;i > B. Next,
perform the following steps: (1) find the images (B,,): <i<sj
(2) find V,; and dy, fori = 1,...,s at a cost of O~ (s-n%d*m)
bit operations using the evaluation/interpolation scheme de-
veloped earlier; (3) apply Chinese remaindering to recover
the O(mn®d) integer coefficients appearing in V and d; at
a cost of O(mn?d - M(log B)log s) bit operations. Note that
the complexity of step (1) will be bounded by that of step
(3). Combining these complexity results and assuming stan-
dard polynomial and integer multiplication, P(d) = d* and
M(t) = t*, we obtain the following result.

Theorem 3 Let A € Z[z]™*™ have full column rank with
m >n + 1 and degrees of entries bounded by d. The cost of
one pass of algorithm REDUCE (up to step (5)) with input A
is O~ (n*md(log ||A|| +d)log || 4]|) bit operations using stan-
dard integer, polynomial and matriz arithmetic plus a single
ged computation and no more than O(nm) trial divisions in-
volving polynomials that are factors of entries in the matri-
ces V and W found in step (2). Entries in V and W will be
polynomials with degrees bounded by nd and with integer co-
efficients bounded in length by O(n(log || A|| +1og m +1log d))
bits. If the algorithm does not return FAIL, the matriz
A" returned will have entries polynomials bounded in de-
gree by d and with integer coefficients bounded in length by
O(log ||A|| 4+ log m + log d) bits. ]
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