Journal of Computational and Applied Mathematics 39 (1992) 295-3i3 298
North-Holland

On the theory and computation of nonperfect
Padé-Hermite approximants

Stan Cabay *
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2H]1

George Labahn **

Department of Computing Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl

Bernhard Beckermann
Institut fi‘r Angewandte Mathematik, Universitidt Hannover, Welfengarten 1, W-3000 Hannover, Germany

Received 24 August 1990
Revised 8 December 1990

Abstract

Cabay, S., G. Labahn and B. Beckermann, On the theory and computation of nonperfect Padé—Hermite
approximants, Journal of Computational and Applied Mathematics 39 (1992) 295-313.

For a vector of k+1 power series we introduce two new types of rational approximations, the weak
Padé-Hermite form and the weak Padé-Hermite fraction. A recurrence relation is then presented which
computes Padé—Hermite forms along with their weak counterparts along a sequence of perfect points in the
Padé-Hermite table. The recurrence relation results in a fast algorithm for calculating a Padé-Hermite
approximant of any given type. When the vector of power series is perfect, the algorithm is shown to calculate
a Padé-Hermite form of type (ny,..., n;) in O(kN)? operations, where N = ng+ - -+ + n,. This complexity is
the same as that of other fast algorithms. The new algorithm also succeeds in the nonperfect case, usually with
only a moderate increase in cost.

Keywords: Vector of power series, Padé~Hermite fraction, Padé—~Hermite approximation, rational approxima-
tion, Sylvester matrix.
1. Introduction
Given a vector of k + 1 power series

«©
Afz)= Z ai,jzj9
=0

—
—
ey

S~

* Supported in part bv NSERC grant No. A8035.
** Supported in part by NSERC grant No. FS1525C.

0377-0427 /92 /$05.00 © 1992 — Elsevier Science Publishers B.V. All rights reserved



296 S. Cabay et al. / Computation of Padé~Hermite approximants

with coefficients from a field, a Padé-Hermite approximant of type (n,,..., n;) is a set of
k + 1 poiynomials P,(z) having degrees bounded by the n; and satisfying

Ay(2)Py(2) + - +A(2)P(2) = Ozt " Ttk (1.2)
When k=1 and A(z)= —1, this is just the classical notion of a Padé approximation of a

single power series. Other examples of Padé-—Hermite approximation include the quadratic
approximations of [23] and the D-Log approximations of [2]. Additional examples along with
basic properties of Padé—Hermite approximants can be found in [3].

The concept of a Padé-Hermite approximant originated with ideas from the thesis of Padé
[21] and some previous work of Hermite [12,13]. Hermite’s ideas followed from his earlier study
of a similar type of approximant for a vector of power series, the simultaneous Padé
approximant (cf. [14]). This second type of approximant was used extensively by Hermi:z when
he proved the transcedence of the number e. The general definition of both types of
approximants, along with an extensive study of their properties is originally due to [18], with
additional properties presented in [6,14].

A fundamental tool in the study of Padé approximants is the Padé table (cf. [9]). The
Padé-Hermite table is a natural generalization of the Padé table. In [8] a number of
relationships is discovered between neighboring entries in the table resulting in an algorithm to
calculate such approximants. Other relationships in the Padé-~Hermite table, and subsequently
an alternate algorithm to calculate these approximants, were also discovered in [22].

The resulting algorithms, however, cannot be applied to arbitrary power series. The algo-
rithms of {8,22] require that the vector of power series be perfect (cf. [14]). Related to the
concept of a Padé—Hermite approximation is a linear system of equations having a generalized
Sylvester matrix as its coefficients. The condition of being perfect requires that the coefficient
matrix, along with a specific set of submatrices, be nonsingular. This restriction is a strong one.
For example, the constant terms of all the A4,(z)’s need be nonzero for the system to satisfy the
condition of being perfect. There are only a few known examples of perfect systems (cf. [6]).

In this paper, we present an algorithm to calculate a Padé—Hermite approximant of a given
type. This algorithm can be applied to any vector of power series; the requirement of being
perfect is not needed. Rather than using neighboring entries in the Padé—Hermite table, we
introduce and use a new type of rational approximant, the weak Padé—Hermite approximant.
This is a type of multi-dimensional rational approximant that is closely related to a simultane-
ous Padé approximant for the given set of power series (indeed, a weak Padé—Hermite
approximant can easily be transformed into a specific set of simultaneous approximants). That
simultaneous Padé approximants are closely related to Padé—Hermite approximants is well
known; many important properties of their relationship are discussed in [19]. By viewing
Padé-Hermite approximants as matrix polynomial rational approximants to a vector of power
series, we are able to use many of the fundamental ideas of square matrix Padé approximants
found in [16]. Our recurrence relation is a natural extension of the recurrence relation found in
that paper.

In those cases where the coefficient matrix to the linear system is nonsingular, a particular
Padé-Hermite approximant and weak Padé~Hermite approximant can be combined to make a
Padé-Hermite system. Our recurrence relation results in an algorithm that calculates a desired
approximant by computing these Padé—Hermite systems from one nonsingular point to the next
along a piecewise linear path in the Padé—Hermite table. When k = 1, Padé~Hermite approxi-



S. Cabay et al. / Computation of Padé-Hermite approximants 297

mants reduce to Padé approximants, and the algorithm becomes that of [5] and the scalar
algorithm of [16]. When k=1, and the input power series are polynomials, our iteration
scheme has close ties with the Extended Euclidean Algorithm. Indeed, by reversing the order
of the coefficients of the input polynomials and traveling along a specific path, our algorithm
reduces to the EEA for these polynomials.

A cost analysis is also provided, showing that the algorithm generally reduces the cost by one
order of magnitude to other methods that succeed in the nonperfect case. In the perfect case,
the algorithm is of the same complexity as the algorithms of [8,22].

2. Basic definitions

Let n =(n,,..., n,) be a vector of integers with n; > —1 for all j. Following [22] we will
denote

lnll=(ng+1)+ -+ +(n+Dng+ -+ +n, +k +1, (2.1)
e=(1,...,1) and e,=(1,0,..., 0). (2.2)
For a given integer k > 0, let
A(z)= Y a;,;z), i=0,..., k, (2.3)
i=0

be a set of k + 1 formal power series with coefficients a; ; coming from a field F.

Definition 2.1. A (k+ 1) X1 vector of polynomials P=(P,,..., P,)T is defined to be a
Padé—Hermite form (PHFo) of type n (with at least one n; > 0) for the vector of power series
A=(Ay,..., A if
(I) P is nontrivial,
(I) «(P) <n;, fori=0,..., k,
() A(z)P(z) =(Ag(2)s..., A(2))(Po(2)s..., Pi(2)) =2'"I-1R(z2), (2.4)
where R is a power series (called the residual of type n).

For any positive integer A let

a9, 0 ... 0 o 0 . 0
0
T,\= Qo0 0
ax o
Apa-1 " Ao,a—ny—1 L A r—n,—1 ]
(2.5)

denote a generalized Sylvester matrix, and set
d,=det(T, ,.,)- (2.6)
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Theorem 2.2. For any A and n (with at least one n; > 0) there exists a PHFo of type n. If d,, + 0,
then the corresponding PHFos are unique up to multiplication by a nonzero element of the field F.
In addition, in this case the first term, R(0), of the residual is nonzero.

Proof. The problem of computing a PHFo of type n is equivalent to finding the solution X of
the homogeneous system
T ym-1X=0 (2.7)

of ||nll—1 linear equations and || 7|l unknowns, which always has a nontrivial solution.
Equivalently, we can solve the system
T,y X=10,..., 0, 1", (2.8)

i ¥

with arbitrary ry= R(0). When d, = det(T,, ,,) # 0, a solution of (2.8) is uniquely defined (up
to multiplication by an element of F). In addition, X is nontrivial if and only if r,#0. O

Definition 2.3. A PHFo of type n with R(0) =1 is called a normed PHFo.

Example 2.4. Let

z2 z¢  z® A z'
4 _ I + _ + e
o(2) = cos(2) 2 T 247 720 T 40320 ~ 3628800
3,8 ;7 29 L1
4 o i _ + _ 4 e
(2)=sin(z) =2 ="+ 355~ 5040 * 362880 ~ 39916800 T
Z4 Z6 28 ZlO
A(z)=In(1+2z¥)+2z¥=22—-—+ ———+ —+ - -.

2 3 4 5
The 9 % 9 matrix T45_,,o has nonzero determinant. Solving (2.8) with ry =1 gives a normed
PHFo of type (4,3, —1) by
Py(z) = —1575z2 +105z*,  P,(z)=1575z-630z3, P,(z)=0.

Using (2.4) we obtain the first few terms of the residual as
2 4 6

V4 V4
R(z)=1- — +—— _
(2) 18 ¥ 792 61776

+.-.

3. Weak Padé-Hermite forms and fractions

For the remainder of this paper we will assume that a;, # 0 for at least one i (this must be
true, for example, if ever d, # 0). For clarity of presentation and without loss of generality, we
assume this is true for i =0, i.e., ay, # 0. The fact that a,,# 0 has some implications, which
will prove useful later. Note that, if n,= —1, for i=1,..., k, then n,> 0 and the PHFo is
given trivially by

(Po(2)s-.., P(2))=(2™,0,..., 0). (3.1)
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As ncted in Section 2, PHFos are equivalent to solutions of the linear system of equations
(2.7) having T, -, as a coefficient matrix. Consider now the linear system that results from
the deletion of the last k —1 rows of T, iny-1» that is, T, ... _,. The system (2.7) now is
guaranteed to have, not one, but at least k linearly mdependent solutions. Each solution still
satisfies (2.4) but only with a relaxed order condition. Thus, it is only a kind of PHFo, defined
in this weakened sense. Such solutions are introduced in this paper primarily to facilitate the
development in Section 5 of an algorithm for computing the genuine PHFos satisfying
Definition 2.1.

Definition 3.1. The matrix (Py,..., P,) consisting of (k+1)X1 vector polynomials P,=
(Pyjse-es Py ,)T is called a Weak Pade—Hermzte Form (WPHFo) for A of type n, where n; > 0
for 0 <i < k, if

() the columns of the k Xk matrix V=(P )" & are linearly independent (with
respect to coefficients from the field F),

(D &P, ;) <n, for i <j<k,0<I<k,

(II1)  A(P,,..., P)=z""I"K(R,,..., R}), (3.2)
with the R, a power series for all i.

The matrix polynomials U = (Py,,..., Py,), V and W=(R,,..., R,) will be called the weak
Padé-Hermite numerator, denominator and residual (all of type n), respectively. When &k =1,
Definition 3.1 is the scalar definition of a Padé form (cf. [9]).

We may replace condition (I) of Definition 3.1 by the slightly weakcr ccndition:

(I') the columns of the (k + 1) X k matrix (Py,..., P,)=(P;)iZ3 ¢ are linearly indepen-
dent.

To see that this is the case, suppose condition (I') holds and let a = (a,,..., a,)7, a; €F, be
such that

a,P,+ - +oy P =0, forl=1,..., k. (3.3)
Then (3.3) and condition (II) of Definition 3.1 give

A(P,,..., P)a=z""1"%R" = 4, P", (3.4)
with R’ a power series and P'=a Py, + -+ +a,P,,. Multiplying both sides with the
reciprocal power series of A, (using the fact that A0) =ayq # 0) gives

P’ =zInI-kR, (3.5)

with R a power series. By condition (II), 8(P’) <n, which in (3.5) is less than the order
condition ||n||—k=ny+ --- +n, + 1. Hence

Pl=q Py + - +a, Py, =0, (3:6)
also holds and condition (I’) then implies that ;= -+ =a, =0.

As a consequence of the above observation, computing a WPHFo of type n is equivalent to
finding k linearly independent solutions Y of the homogeneous linear system

T, Y =0 (3.7)
of ||n||— k linear equations and || n || unknowns. This yields the following theorem.

Theorem 3.2 (Existence of WPHFos). For any A and n with A(0) # 0 and n; > 0 for all i, there
exists a WPHFo of type n.
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Definition 3.3. A WPHFo of type n with a nonsingular matrix V(0) = (P, (0))/Z"::f is called a

Weak Padé—~Hermite Fraction (WPHFr). If V(0) equals the k X k identity matrix, then we call it
a normed WPHFr.

Note that any WPHFr (P,,..., P,) can be made into a normed WPHFr by multiplication on
the right by V(0)~'. Also note that, when k& = 1, a WPHFr is the same as a scalar Padé fraction
(cf. [9D.

A WPHFT can be interpreted as providing a set of simultaneous Padé approximants for the
quotient power series A,(z)/A4(z) (cf. [7]). We may write (3.2) as

A(2)U(2) + (A2),... ADWV(2)=2"H(Ry(2),..., Ri(2)), (38)
that is, .

Ag(2)U(2) + (A(2)5-.., A (2))V(2)=0. (3.9)
Since V(0) is nonsingular, the inverse of the k X k matrix polynomial V(z) can be determined
as a matrix power series. Thus, we obiain

A(2) A(z)

A Aga) = -U(z)V(z)"" (3.10)
Since
di(V
U(zW(z)"' = U(z)%,%, (3.11)

(3.10) and (3.11) give a simultaneous rational approximation for each power series
A(z) N(z)
= , i=1,..., k. 3.12
A(5) " D(2) G12)

It is not difficult to see that N(z) has at most degree N — n; and that D)(z) has at most degree
N —ny, where N=n,+ --- +n,. Hence, the polynomials (D(z), N(z),..., N,(z)) form a set
of simultaneous Padé approximants to the power series 4,(z)/A4(2),..., A,(z)/A(z) of type
n. This is also called the German polynomial approximation problem of type n for the power
series Ay(z),..., A,(z) or as directed vector Padé approximants for the vector of power series
(A(2),..., A(2)) in the unit coordinate directions (cf. [10]). In [4] also definitions are given
of matrix Padé approximants similar to WPHFos and WPHFrs for use in computing minimal
partial realizations.

By deleting the first column of the /th block of T, -k for I=1,..., k, we obtain the
square matrix ’

ago 0 ees 0 0 . 0 0 . 0
g0 - 4o - Ak
0 0
* = . e -
L= 0 a9 : aro |
9,0
_aO.n Ap5-1 An-ny H1n-1 Qm-n, " Bpp- Akm—n,

(3.13)
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with

det(T,*) =ago det(T,_, jn—cy) = G008 (n—cys (3.14)
where e is given by (2.2) and n =||nl|-k — 1.

Theorem 3.4. Ifd,,_,, # 0, then every WPHFo of type n is a WPHFr. In addition, any WPHFr of
type n is unique up to multiplication on the right by a nonsingular k X k matrix with coefficients
from the field F. In particular, there exists one and only one normed WPHFr of type n.

Proof. By assumption we know that the (||nl|—k) X (llnll—k) square submatrix T,* of
T, yny—-« has full rank, ie., rank(7,, | ,,_) =l nll— k. Therefore the system of equations (3.7)
has exactly k linearly independent solutions and a WPHFo is unique up to a multiplication on
the right by a nonsingular k X k matrix.

The first column of the jth block of T,,,”,,“_ w for j=1,..., k, corresponds to the unknowns
P, 0), for [=1,..., k. Hence in order to obtain k linearly independent solutions of (3.7), we

first have to choose k linearly independent parameter vectors (P, (0));,_, , and then
compute the matrix Y of the other unknowns by
Ao 77 Gy
T}Y=—[ : - | V(0). (3.15)
a,, " G,

Thus each WPHFo is a WPHFr. O

Example 3.5. Let A,(z), A(z), A)(z) be as in Example 2.4. We will verify Theorem 3.4 in the
case n=(4,3, —1). The normed PHFo of type n is given by Example 2.4. After some
computations we obtain for the normed WHPFr of type (5, 4, 0):
U PR 2773 2, 287 ,
=|—-z4+ — — — N
()=|=2* 5 95> "5 Z T 127

; 4 . z* 2765 1113 3
V(Z)= - 92 +a S 4 3 z ,
| 0 1

with the residual

z z3 13553 2213653 - ]
9823275 _ 255405150 ©’ 72576 _ 13305600

W(z)=

If desired, the matrix polynomials U(z) and V(z) can be transformed via (3.10) and (3.11) into
simultaneous Padé approximants of type (5, 4, 0) for A,(z)/A,(z) and A,z)/A(z) given by

945z — 10523 + 2° 756022 — 3360z* + 232526 — 175728

935 —a0.2+ 15.¢ 7560 — 336022 + 1202° ’
respectively.
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Central to our results is the fact that Theorems 2.2 and 3.4 actually classify when the

determinant of the generalized Sylvester matrix is nonzero. The following definition is helpful
in arriving at these results.

Definition 3.6. Let P=(P,y,..., P,) be a (k+1)X(k+1) matrix of polynomials, n=
{ng,..., n;) a vector of integers with n;> —1 for at least one i. Then P is called a

Padé-Hc::iie System (PHS) of type n, if
() P, is a normed PHFo of type n,

(ID (P,,..., P,) is a normed WPHFr of type n +e.
Theorem 3.7 There exists a PHS of type n if and only if d,, # 0.

Proof. Theorems 2.2 and 3.4 show that d,, # 0 is sufficient for the existence of a PHS of type n.
Suppose that there is a PHS (P,,..., P,) of type n. Set A =||n|l. Then equations (2.8) and
(3.15) imply the existence of a A X 1 solution vector X of

T v_ In n 1T
I,,X=10,..., 0,1},

and a (A + 1) X k solution matrix Y of

—~~
(3]
s
(=5

~~

Ao " Giy
* — . -
LRY=—| : e (3.17)
L P )

If we assume that d, =0, then T, , is singular. Thus there exists a nontrivial solution to the
homogeneous system of equations

(515-+e5» )T, 2=0. (3.18)
Equation (3.16) together with (3.18) then yield
Sa=(8y,.., )T, ,X=0. (3.19)
Given that a,, # 0, let us determine 7 such that
(75 Spsenns 52)(@o0s---»> Aga) =0. (3.20)
Then,
(75 Sppeees SOTX,=0. (3.21)
Equations (3.17) and (3.21) yield
Ao "0 Ao
(75 851525 53| . |=0. (3.22)
aa v G,
Therefore, from (3.18), (3.20) and (3.22) we get
(75 5152205 $)T, 441 =0. (3.23)

Equation (3.23) coupled with s, = 0 implies that
(7, 815005 $,_)T,,=0. (324)



S. Cabay et al. / Computation of Padé—Hermite approximants 303

An induction argument can then be used to show that

5\=85_,=""=5=0, (3.25)

which contradicts the assumption that there is a nontrivial solution to (3.18). Hence, T, , is
nonsingular and d, #0. O

Remark 3.8. When k =1, Theorem 3.7 was proved in [17]. Note that, as a consequence of
Theorem 3.7, there exists at most one PHS of type n.

Remark 3.9. A vector of power series A is said to be perfect if d, # 0 for all integer vectors n
(cf. [14]. Theorem 3.7 implies that perfect vectors of power series are precisely those having a
PHS of type n for all integer vectors n.

Remark 3.10. Notice that the proof of Theorem 3.7 gives necessary and sufficient conditions
for the nonsingularity of a generalized Sylvester matrix. Indeed, if

So0 7 S0,m, Tt Sk T Sk.m,
S=| : : : : , (3.26)
Son 7" SoN+my, 7T SkN T SkN+m,

with N=m,+ --- +m, +k, then, using arguments similar to those used in the proof of
Theorem 3.7, it can be seen that S is nonsingular if and only if there exist solutions to the
equations

. T .
S(x5es xR) = =(Sims15--+> s,-,N+mi+,)T, forieo,..., k, (3.27)

S(¥gr--+» ¥y) =(0,..., 0, 1. (3.28)
Similar results can be found in [11].

4. A recurrence relation for Padé-Hermite approximants

Given a vector of power series (2.3) and a vector of integers n, a corresponding PHFo can be
determined by solving (2.7) via a method such as Gaussian elimination. This has the advantage
that there need be no restriction on the input vector of power series. A similar remark may be
made about the calculation of WPHFos via the solution to the system (3.7). However, such
calculations do not take into account the special structure of the coefficient matrices of these
syiems. The goal of this section is to describe a recurrence relation that will lead to an efficient
algorithm for both the determination of a PHFo or a WPHFo of any type. The resulting
algorithm will take advantage of the special structure of the coefficient matrices (2.6) and
(3.11), and at the same time it will not require any restrictions on the input.

Given a vector of power series (2.3), along with a vector n =(n,,..., n,) of nonnegative
integers, we will permute the components so that
Ay(0) %0, nog=max{n;: 4(0)#0} and n,> - >n,. 4.1)

Note, that if 4,(0) =0 for all 0 <i <k, then it is only necessary to remove the largest factor z#
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from all the power series. Any PHFo or WPHFo of type n for (z"’AO(z),..., z7PA,(2)) is
then also a PHFo or WPHFo, respectively, of the same type for (Ay(2),..., A4,(2)).

Set M = max(n, + 1,..., n, + 1), and define integer vectors "’ = (n(" ., i for0<i<M
by

n’=max(—1, n;— M +i), forj=0,..., k. (4.2)

Then the sequence {n‘"};_,, _ lies on a piecewise linear path with n{'* " > n!" for each i, j and

e

n®=(-1,..., =1) and n'*=(n,,..., n;)=n. (4.3)

The sequence {n'"} generates a subsequence {m"} called the sequence of nonsingular points.
This sequence is defined by m'” = n'® where

0 ~0,
0, = {min(0'>o-._l; d o #0), >1 (4.4)
Observe that the ordering (4.1) implies m{’ > 0 for all i > 1; and therefore, for all o> 0;> 0 it

is true that
o—g,=n’—mY. (4.5)
Consequently, there exists 1 <a, <a, < --- such that for all i > 1 we have

A {20, forj=0,..., a;,— 1,
m(l)=

3

>-1, forj=a,..., k. (4.6)

Example 4.1. Let A (z), A(z) and A,(z) be given by Example 2.4 with n =(7, 6, 1). Then
M = 8 and calculating the required determinants gives the first four nonsingular points as

mP=nP=(0, -1, -1), m®P=n9=(2,1, -1),
m®=n®=(4,3, —-1), m® =n®=(7,6, 1).
The quantities a, are then given as a,=1,a,=2,a;=2, a,=3.

For i> 1, let PY=(P,..., P{") be the uniquely defined PHS of type m" (cf. Definition
3.6 and Theorem 3.7), with R® =(R{),..., RY) its residual vector. We will uses the partitions

. Py U® . . .
P® = [Q*}g Vm], RO =[R{|W®], (4.7)
where by definition

(Ag(2),..., A(2))PO(2) =2""I="Y RY(2)|z2WI(z)), (4.8)

and R{X0) =1, V@(0) =1,
The algorithm described in Section 5 for constructing a PHFo of type n for a vector of power
series A involves the computation of all PHFos and WPHFrs up to the point n. Theorem 4.2

gives a relationship of the (i + 1)st terms of the sequences with the ith terms, providing an
effective mechanism for computing the sequences.
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Theorem 4.2. Fori> 1, o>o0, let v=n""— m")\u&_—"‘\ Then n'*) is a norsmgular point for

=(Ay,..., A,) if and only zf v is a nonsingular point o=, R‘ . ( R") » R®). Furthermore,
we have the recurrence relations \"«@« —~
T, .
PO = (22, PO, PO)(Ps,..., P{) and RE&D=RT==._ "  {(a9)

where P’ =(Py,..., P;) is the PHS of type (m‘*1) —m® — e, —e) for the system R%
its residual.

Proof. Let P; and (Py,..., P,) be a PHFo of type » and a WPHFo of type v + e, respectively,
for (RY,... R"’) Let R0 and (R},..., R;) be the corresponding residuals. Further, set

P* = (22P{), PO, .., ,§'>)(P5,..., P}) and R*=(Rj,..., R}). (4.10)
With s =n{? —m{’ > 1, a = a;, we ge:
s—2, forj=0,
v=_(vg,..., 1), with v;= s—1, forlgj<a, (4.11)

n\?, for j<a<k.

Notice that »;<s—1 for all j. For 0<j<k, a<l<k, we obtain 3 P{?) <0 and, because
V(0) is the 1dent1ty,

oPD) < —1+8;,. (4.12)

Hence for the degrees of the entries of the following matrices we get on an element by element
basis

[ mP+2 mP+1 - md+1 ]
(l) 1 +2 m(l)  +1 (!)  +1
2P, PO,..., Py <! _ - - EPRN RS E)
0 1 K 1 1 0 1
-1 :
-1
-1 -1 -1 -1 0

where the last kX —a + 1 columns have the 0 entries. Also,

[s—2 s—-1 -+ s-—1

s—1 s s
o(P;...., P)<|STL s S (4.14)
(Fs <) n” a+1 - AP +1

| n om0+ e om0+ 1
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(where the first a rows have the s terms), so that

 mP+s  mP+s+1 0 0 mP+s+1 ]
m? +s mP +s+1 -+ m +s+1
APH,..., P*)< , ) .
il n@ 41 n?+1
n{" n{ +1 n{ +1
(@ A +1 - AP +1
=] : : : . (4.15)
n? P+1 - mP+1

(Ao(2)s---, Ak(z))P*(z)=ant"u—122(Rg),___’ R{)P'(z)
=z ImU=1y WI=Y(Ry(z), z2’R{(2),..., z2°Ri(2))

=z Y(R¥(2), 2°R§(2),..., 2?R{(2)), (4.16)

so the R* are power series with R*=R’.
In addition, partitioning P’ in a similar manner as (4.7), equation (4.10) implies

V*(z)=2z209(z)U'(z) + VO(z)V'(2), (4.17)
)
V*(0) = VO (0)V’(0) = V'(0). (4.18)

Hence Ry(0) =1 if and only if RF(0)=1 and V'(0) =1, if and only if V' *(0) = I,. Therefore,
P’ is a PHS of type v for (R{’,..., RY) if and only if P* is a PHS of type n® for
(Ay,..., A). O

Remark 4.3. Theorem 4.2 reduces the problem of determining a PHS of type n to two
“smaller” problems: determine a PHS of type m'” and then determine a PHS of type
m@*D —m® —e —e,. The overhead cost of each step of this iteration scheme is the cost of
determining the residual power series plus the cost of combining the solutions, i.e., the cost of
the multiplication in (4.9). This overhead cost is generally an order of magnitude less than the
cost of simply solving the linear systems (2.7) or (3.7).

Remark 4.4. Theorem 2.2 implies that PHFos at nonsingular points of the Padé—Hermite table
are unique up to multiplication by a scalar. Thus a normed PHFo represents a type of
canonical form at such points. It is a natural question i ask for canonical forms at singular
points in the Padé-Hermite table. All solutions at a given point could then be expressed in
terms of the canonical one (see [1] or [4] where this is accomplished for matrix Padé
approximants). Theorem 4.2 implies that there is a one-to-one correspondence between PHFos
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(and WPHFos) of A aiong a piecewise linear path from one nonsingular point to the next, and
PHFos (and WPHFos) of a residual along a correspondence piecewise linear path to a first
nonsingular point. Thus we only need to determine the structure of the Padé—Hermite table
(along with any canonical forms) along the first singular path of any vector of power series. This
will then give the structure of the Padé-Hermite table for arbitrary vectors of power series. In
the k=1 case this provides a simple mechanism for exhibiting the block structure of the
clussical Padé table.

“Example 3.5, Let AR 2 Aot f=-5 as-inExample—24- Thea (4,2, -1 e o
nonsingular point. By Theorem 4.2, to determine the next nonsingular point we need only
determine the first nonsingular point for (R§X(z), R{®(z), R{Y(z2)). In this case

v=(n{’-6,n"-4,n)=(c-7,0-6,0-7), for6<o<S8,

and the first nonsingular point occuss when v = {1, 2, 1). If we are only interested in the FHFo
of type (7, 6, 1) for A, then we need only determine the PHFo of type (1, 2, 1) for R®, which in
this case is

1058838979 38320755508035 328312406639

’ = — + ,
2003080 > Fiol2) z

Poo(2) = 1024 512

Pyo(2)=2z.

This represents the first column of the PHS of type (1, 2, 1) for the residual power series. Using
(4.9), the first column of the PHS of type (7, 6, 1) for A4 is
38320755508 035 4914486891337 53682800837

) — — + 5
Pog(2) 1024 z 1024 z 512~

1426272217

5120 2

38320755508035 8844036029829 446977776911
P{3(z) = - + 2% - z*
1.0 1024 512 512
5973822233
T 2

P(2) =z.
This gives the PHFo of type (7, 6, 1) for A. Using (2.4) gives the residual as
49762 803 403 750531581 615899

3

z+ z°+
411 675264 000 6758061 133 824000

RM(z)=1-
Example 4.6. In the special case when k = 1, a WHPFr is the same as a Padé fraction. In this
case (4.8) is given by

Ay(2)UD(2) + A (2)VO(z) =28 +mP 3 0 7), (4.19)
and (UY(z), V¥(z)) is a Padé fraction of type (m{’ + 1, m{? + 1) for (Ay(2), A(2)). If

WO(z)=zMW(z2), (4.20)
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where W(0) = W, # 0, then it is easy to show that

Py (2) =225 U (2),  QUI(2) = 2hibg V(2), (4.21)
with residual
R{*Y(z) = Wy 'WE(z). (4.22)

Traveling from one nonsingular point to the next can then be shown to be the same as power

series divisior: of one residual into the next.

_When k = 1, the Extended Euclidean Algorithm for computing polynomial GCDs is closely.
related to the calculation of Padé’ approximants {(ct. {5,20]). When the input power series A4(z)
and A(z) are polynomials of degree m and n, respectively, then reversing the order of the

coefficients in (4.19) and using (4.21) and (4.22) gives
AF(2)P3$(2) + AT (2)0*(2) = R§(2). (4.23)

Here A¥(z)=z"A4,(z"),..., etc. Equation (4.23) is similar to the type of equation found in
the EEA applied to (AF(z), AF(2)). In fact, when we are calculating the Padé approximant of
type (n, m) for (A(2), A(2)), the reversed residual R¥“(z2) is the ith term of the remainder
sequence calculated in the EEA, while (PF(z), 0*"(2)) is the ith term of the cofactor
sequence calculated in the EEA. In this way our recurrence relation, and the subsequent
algorithm presented in the next section can be viewed as a generalization of Euclidean
algorithm to computing Padé-Hermite approximants for vectors of power series. Other
generalizations of Euclid’s algorithm include that given in [1] (applied to the computation of

minimal partial realizations) and [4] (applied to the problem of computing minimal matrix Padé
approximants).

5. The algorithm

Given a vector of nonnegative integers n = (n,,..., n,), the algorithm PADE_HERMITE
below makes use of Theorem 4.2 to compute the sequence {P®} of PHS for a given vector of
power series A =(A,,..., A,). Thus, intermediate results available from PADE_HERMITE
include those PHFos for A4 at all nonsingular points m®, i=1, 2,..., [ — 1, smaller than n on
the piecewise linear path defined by the sequence {n”}, together with those WPHFr at the
succeeding points. The output gives results associated with the final point m". If this final
point is a nonsingular point, then the output (P{’,..., F{") is a PHS of type n. If n is a
singular point, then the output is (P{’,..., P{"), where the polyromial vector P{" is a PHFo of
type n, while (P{",..., P{") is a WPHFo at the successor point.

The algorithm is presented in two parts. The first, INITIAL _PH, takes as its input a vector
of power series, A, with A4,(0) # 0 and an integer vector n with n, > --- >n,. The procedure
returns the PHS at the first nonsingular point, if such a point exists. Otherwise a PHFo and a
WPHFo are calculated and returned (note that in this case a number of possibilities may exist
for such a PHFo and WPHFo). The chosen PHFo and WPHFo are arranged into a (k + 1) X (k
+ 1) polynomial matrix with the PHFo the first column and the WPHFo the last k& columns.

The main algorithm PADE _HERMITE calls INITIAL _PH to iteratively construct PHSs for
the residuals R“Xz). The PHSs P for A are computed using the results of Theorem 4.2. Ini
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the case where INITIAL _PH does not return a PHS, then PADE_HERMITE returns a PHFo
and WPHFo of correct type.

INITIAL _PH(A, n)
(I.1) d < 0; M < max(ng, n))+1; 60
(1.2) do while 0 <M and d =0
(13) o«o+1
(L4) n'” < max(—1.n —M+v),j=0,..., k,
“TTU3) compute d « det(T ) ), using Gaussian elimination
end while
(1.6) if d + 0, then solve (3.16) and (3.17) for P, the PHS of type n'”’ for A; else solve the
corresponding homogeneous equations; arrange the solutions into a (k + 1) X (k + 1)
matrix P andset c <M+ 1
(1.7) return (o, P)

The main algorithm PADE_HERMITE takes as its input a vector of power series and a
vector of integers, each having k& + 1 components. The vector of integers must have nonnega-
tive entries (otherwise one calls PADE_HERMITE with a smaller value of k).

PADE _HERMITE(A, n) .

(PH.1) find the largest B such that A(z)=2zPA/z) are still power series; set A(z)=
z7PA(2); reorder the power series according to (4.1)

(PH.2) M < max(ngy, ny) +1

(PH.3) (s, PM) « INITIAL_PH(A, n)

(PH4) o< sy mPemax(—1,n,—M+0),j=0,..., k; i1

(PH.5) while o <M do

(PH.6) determine R using (4.8); v e—n—m) —e —e,

(PH.7)  (s,_,, P") « INITIAL_PH(R®, »)

(PH.8) [P§*D, ..., P« [22P0, PO,..., P{YVIP,..., Pl

(PH.9) oc—o+s;_;mi*Vemax(-1,n—M+0).j=0,..., k;i—i+1
end while

(PH.10) return (o, [P{,..., P{)

Example 5.1. Let A(z), A(z) and A,(z) be as in Example 2.4. Then the first nonsinguiar
poiit is at (0, —1, —1). The values of the PHFo of type (0, —1, —1) and the WPHFr of type
(1, 0, 0) are determined by solving the linear system of equations (3.16) and (3.17) to give the
PHS of type (0, —1, —1) as

1 -z 0
PP=10 1 0}
0 o0 1
The residuals (calculated using (4.8)) are given by
R(1)=[1_.§_22+ e %2_31623_*. e 1_%22_*_ ]

The first nonsingular point for the residuals amongst the sequence (—1,0, —1), (0,1, —1),
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(1,2, —1),... is found at location (0, 1, —1). The corresponding PHS of type (0, 1, —1) is

given by
[ 0 -3z -1
P'=13; 22 0 |

i- 52
0 0 1
Combining these via step (PH.8) gives the PHS of type (2, 1, —1) for A4 as
[ 372 —z+4z2P =22
PP=1 3, 1-%2z2 0 |
0 0 1

along with residuals

RO z? z z3 7179 N
-} = ——-+---,_—__ + e, — =z aaa
10 1575 28350 "2 720"

Continuing with the next step, the first nonsingular point for the residual amongst the sequence
{(—=1,0, —=1),(0, 1, —1), (1, 2, —1),...} occurs at location (0, 1, —1). The corresponding PHS
is given by

z 7 ]
T 1575 0 24

P = 1575, 1 2, 2765 |
Z - 452 8 Z

) 0 1|

Combining these via step (PH.8) and using the partiiion (4.8) gives the PHFo aind WPHFss
previously calculated in Examples 2.4 and 3.5, respectively. The final step (when calculating
only the PHFo of type (7, 6, 1)) has been done previously in Example 4.5.

6. Complexity of the Padé—Hermite algorithm

In assessing the cost of PADE_HERMITE, we count the number of multiplications required
by most of ihe steps of the algorithm, excluding from consideration the more trivial ones.

Consider first the cost of invoking the initialization algorithm INITIAL _PH. Gaussian
elimination is used in step (I.5) to obtain a triangular factorization of 7, it - Assuming that
the elimination is performed by applying bordering techniques (as o mcreases) step (1.5)
requires approximately (|l7”||)> multiplications in F, where n'® is the integer vector
attained upon exit from the while loop (I.2). In the case where d # 0, the solution of the
equations P resulting in the PHS of type n'“? can then be obtained by forward and backward
substitution requiring approximately (k + 1)(jl n‘°?||)> multiplications in total. Since at the ith
invocation of INITIAL_PH, n”’=v,, where v, = ||m"* V|| - ||m®| - 1, the total cost of this
invocation at the ith iteration of PADE _HERMITE is approximately

37 + v}k +1). (6.1)



S. Cabay et al. / Computation of Padé-Hermite approximants 311

if we set pu,=[lm®], i=0,..., /-1, then it is easy to see that the total cost for the
computation of the PHSs {P®} in step (PH.6) along with the coefficients of the residuals { R¢ %}
required by INITIAL _PH is approximately

2(k+ Dpp,;. (6.2)
Theorem 6.1. The algorithm PADE _HERMITE requires approximately
O((k+1)linl? + (k + 1)*s* [ nll) (6.3)

multiplications in F, where s = max(sy, s,..., 5;_,) and s;=m{*D —m{’ — 1 is the ith stepsize.

Proof. Equations (6.1) and (6.2) imply that the asymptotic cost of PADE_HERMITE is given

by
-1
Y [vP+ (k+ 1)+ v (k+1)], (6.4)
i=0

where v; <s(k+ 1) <s(k + 1), and
-1
Yv<m<linll. (6.5)
i=0

Therefore the cost of the algorithm is bounded approximately by
-1 -1 -1
(k+ 1’2 Y v+ (k+ Dlnll v+ (k+1) Lop,

i=0 i=0 i=0
) -1

<(k+1)°s?lnii+ (k+ DlInl®+ (k+1) X (0 — p)m;
i=0
5 , Nnll

<(k+1) s nll+ (k+D)lnlP+(k+ 1) Y (F+1-j)j

ji=0

<O((k+11’s2linll+ (k+ DInl?). o (6.6)

Note that the second term in the cost complexity expression (6.3) accounts for the costs
arising from all invocations of INITIAL _PH, whereas the first term accounts for all the other
cosis. Generally speaking, if a large step s; is required by PADE_HERMITE, then s is large
and the second term in (6.3) dominates, whereas, if all step sizes s; are small, then the first
term dominates.

Example 6.2. In the perfect case, s; =1 for all i. In this case the second term in (6.3) becomes
O((k + 1?| n|l) and so the complexity of the algorithm becomes O((k + 1)[| n||*). Similarly,
when the vector of power series is near-perfect (cf. [19]), then the s; are bounded by a fixed
constant, so again the second term in (6.3) dominates. At the other extreme, when all points
with the possible exception of the last along the computational path are singular, that is,
s =so=max(n; + 1) and (k + 1)s > || n ||, then the second term in (6.3) becomes O( || n|1*) which
corresponds to the cost of Gaussian elimination of the full generalized Sylvester system (2.7).
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The first term in (6.3) becomes irrelevant here; indeed, the solution returned by the algorithm
is exactly tha: obtained by the first invocation of INITIAL_PH in step (PH.3).

Example 6.3. When k& =1, it can be shown that the matrices appearing in the INITIAL_PH
algorithm are always triangular, hence the cost of steps (PH.3) and (PH.7) are reduced to 2v]
and 2»2, respectively. The corresponding total cost of determining a Padé approximant of type
(m, n) in this case is then bounded by O((m + n)?). This is the case regardless of any
assumptions on the size of the steps from one nonsingular node to the next. Gaussian
elimination would require O((m + n)*) operations in this case.

When ny= --- =n,, Example 6.2 shows that the complexity of PADE_HERMITE when
the vector of power series is perfect is O((k + 1)N?2), where N = (k + 1)(n, + 1) is the size of
the associated Sylvester matrix. This agrees with the results of [15] under the same assumptions.
In the nonperfect case, however, their algorithm breaks down and so a method such as
Gaussian elimination, with a cost of O(N?3) operations, is required. With the use of
PADE _HERMITE, even the existence of only one nonsingular point along the diagonal can
result in significant speedup.
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