
ON THE DESIGN AND PERFORMANCE OF THE MAPLE
SYSTEM*

Bruce W. Char, Gregory J. Fee, Keith O. Geddes,
Gaston H. Gonnet, Michael B. Monagan, Stephen M. Watt

Symbolic Computation Group
Department of Computer Science

University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

ABSTRACT

Maple is a symbolic computation system under development at the Univer-
sity of Waterloo. A primary goal of the system is to be compact without sacrific-
ing the functionality required for serious symbolic computation. The system has
a modular design such that most of the mathematical functions exist as external
library functions to be loaded only when they are invoked. The compiled kernel
of the system is about 100K bytes in size. The library functions are interpreted.
Efficiency is achieved through techniques including the identification of critical
functions that are put into the compiled kernel, extensive use of hashing tech-
niques, and careful design of the mathematical algorithms. Timing comparisons
with other symbolic computation systems show that time efficiency is achieved
as well as space efficiency.

1. Introduction

Maple is a language and system for symbolic mathematical computation which has been
under development at the University of Waterloo since December, 1980. The Maple system can
be used interactively as a mathematical calculator, and computational procedures can be written
using the high-level Maple programming language.

The primary motivation for the design of Maple can be described as user accessibility. This
concept has several aspects. The state of the art in 1980 was such that in order to have access to
a powerful system such as Macsyma it was necessary to have a large, relatively costly mainframe
computer and then to dedicate it to a small number of simultaneous users. In the university

* This work was supported in part by grants from the Natural Sciences and Engineering Research Council of Canada, and by the Aca-
demic Development Fund of the University of Waterloo.

-2-

setting, it was not feasible to offer symbolic computation to large classes for student computing.
In a broader context, a large community of potential users of symbolic mathematical computa-
tion remained non-users. The development of the Mumath[1] and Picomath[2] systems showed
that a significant symbolic computation capability could be provided on low-cost, small-address-
space microcomputers. It seemed clear that it should be possible to design a symbolic system
with a full range of capabilities for symbolic mathematical computation which was neither
restricted by the small address space of the early microcomputers nor ‘‘inaccessible to the
masses’’ because of unreasonable demands on computing resources. In particular, it seemed pos-
sible to design a modular system whose demands on memory would grow gracefully with the
needs of the application program.

Portability was another of our earliest concerns, partly because we found ourselves users of
a computing environment in transition, and partly because it was clear that a wide variety of
computer systems would be coming onto the market in the decade of the 1980’s.

Thus the primary design goals of the Maple system were: compactness, modularity, a pow-
erful set of facilities for symbolic mathematical computation, portability, and a good user inter-
face.

2. Design Philosophy

2.1. Space versus time

One of the fundamental conflicts facing systems designers is the tradeoff between space and
time. In many circumstances, it is possible to improve speed by allowing space consumption to
expand, and conversely it is often possible to conserve space consumption at the expense of
speed. In the case of designing a symbolic computation system, the potential amount of system
code is extremely large because such a system is inherently faced with the task of ‘‘mechanizing
all of mathematics’’. An early design decision for the Maple system was that the system would
have a relatively small kernel (say, on the order of a hundred kilobytes as opposed to a few
megabytes). The vast bulk of system code for the various mathematical operations, such as gcd
computation, factoring, integration, etc., exists as library codes to be loaded if and when they are
needed. Furthermore, given the current state of the art of symbolic computation, we believe it is
very important that the programs for these high-level mathematical operations should be readily
accessible to, and modifiable by, the non-expert users of the system. Therefore, the library pro-
grams for the Maple system are coded in the high-level Maple programming language.

Since another design goal is to be portable across many different operating systems, the
only practical implementation of the above model is that the library programs do not exist as
compiled code but rather they are interpreted at run-time. Thus a fundamental design criterion
for the Maple system is that space is more crucial than time. In order to keep the compiled ker-
nel small, we are willing to sacrifice some speed of execution. This can be viewed as a means to
satisfy one of MacLennan’s[3] design criteria, namely the principle of localized cost: users
should only pay for what they use.

Given this model, there are several methods by which the time cost of the Maple system is
kept to a minimum. One factor is the use of a simple, efficient interpreter. As one indication of
the relative efficiency of Maple’s interpreter, an experiment was performed using the ‘‘tak’’ func-
tion[4] and it showed Maple’s interpreter to be about four times faster than Macsyma’s inter-
preter on that particular benchmark. Consequently, the tradeoff between interpreted library code

-3-

and compiled kernel code is not as great in Maple as in other systems.

Another factor in minimizing time cost is the identification of critical functions which are
placed into the compiled kernel. This has been a dynamic process in the development of the
Maple system. Some of the functions that were once in the external library but which have been
identified to be critical and were moved to the kernel are: indets (to extract the indeterminates
from an expression), seq (to construct a sequence), subsop (to substitute for a particular operand,
or subexpression), max, min, mod, and divide (for polynomial division). On the other hand, some
functions that were once in the kernel have been (or are being) moved to become external library
functions (for example, solve, sum, and int) and for some internal functions an external library
interface was developed to handle some of the higher-level cases (diff, expand, and taylor are
examples of functions that have an external library interface).

Yet another very crucial factor in achieving minimal time cost is the use of efficient algo-
rithms. This is perhaps a ‘‘motherhood’’ issue. However, particularly in symbolic computation,
we have seen that some innocent-looking methods take exponential space and/or time while it is
often possible to find better approaches. It has been our experience that most mathematical func-
tions can be executed in the interpreted user language, instead of being included in the compiled
kernel, without significantly affecting execution speed. Whereas the speed improvement that can
be achieved by placing such a function into the compiled kernel is usually not more than
20-40%, we have in many instances achieved an order of magnitude improvement in speed by
improving the algorithm. We note that the effort required to improve an algorithm once it is
coded in the internal system implementation language is far greater than the effort required to
modify an algorithm coded in the high-level language. Indeed, many of the contributors to the
Maple system have nev er written code in the system implementation language, and would have
been unlikely to make their contributions if coding in the low-level language was necessary. (We
believe that this is a property of all system developments, not a special property of the Maple
system and its particular system implementation language).

The conflict between space and time is, of course, not only a matter relating to the size of
the compiled kernel. The run-time consumption of data space and processor time is of equal
importance. When an algorithm is being designed for a particular function, there are usually
variations of the algorithm which trade off space consumption versus time consumption. We find
it useful to consider a measure,

cost = (space)2 (time),

that arose originally in theoretical studies of time-space trade-offs in sorting [5]. It corresponds
with our belief (which has also been expressed by others, such as Hearn [6]) that space is
‘‘scarcer’’ than time in typical algebraic manipulation.

2.2. Compact size as a design goal

The kernel of the Maple system (i.e., the only part of Maple that is written in the system
implementation language and compiled) occupies a little more than 100K bytes on a VAX com-
puter. The kernel system includes only the most basic facilities: the Maple programming lan-
guage interpreter, numerical, polynomial, and series arithmetic, basic simplification, facilities for
handling tables and arrays, print routines, and some fundamental functions such as coeff, degree,
subs (substitute), map, igcd (integer gcd computation), lcoeff (leading coefficient of an expres-
sion), op (to extract operands from an expression), divide, mod, and a few others. Some of the
fundamental functions have a small core coded in the kernel and an interface to the Maple library

-4-

for extensions. The interface is general enough so that additional power, such as the ability to
deal with new mathematical functions of interest to a particular user, can be obtained by user-
defined Maple code. Some examples of functions which have such an internal core and an exter-
nal user interface are diff, expand, taylor, type, and evalf (for evaluation to a floating-point num-
ber). Other functions supplied with the system are coded entirely in the user-level Maple pro-
gramming language and exist in the Maple library, including gcd, factor, normal (for normaliza-
tion of rational expressions), limit, int, resultant, det, and solve.

The compactness of a system is affected by many different design decisions. The following
points outline some of the design decisions which have contributed to the compactness of the
Maple system.

1. The use of appropriate data structures. We hav e designed into Maple a set of data struc-
tures appropriate to the mathematical objects being manipulated, with a direct mapping
between these abstract structures and the machine-level ‘‘dynamic vectors’’.

2. The use of a viable file system. By having an efficient interpreter and by placing much of
the code for system functions into the user-level library, Maple has the property that ‘‘you
only pay for what you use’’. Writing functions in the user-level Maple language has the
additional advantages of readability, maintainability, and portability.

3. Avoiding a large run-time support system. We view Maple as just one of many software
tools that a user may employ to solve problems, regardless of which system it may be used
on. We see no need to provide all of these tools within Maple itself, not only because they
consume space and greatly increase the problems of porting without providing any greater
algebraic computation power, but also because many computing environments will allow
their native software tools to be easily connected to Maple (say, as communicating pro-
cesses).

4. A policy of treating main memory as a scarce resource. We believe that this point of view is
important if we are to achieve the goal of providing a symbolic computation system to ‘‘the
masses’’. Because we have adopted such a point of view, we are constantly concerned
about which functions belong in the Maple kernel and which functions can be supplied as
user-level code in the Maple library.

5. The choice of the BCPL family of system implementation languages. Implementing Maple
in system implementation languages from the BCPL family has helped us to achieve the
compactness goals outlined in the above points. The support of ‘‘dynamic vectors’’ in the
implementation language allows the creation of compact data structures for the higher-level
objects. Furthermore, an implementation language in the BCPL family typically has a run-
time library that is small, selectively included, and yet provides the desired functionality.

2.3. Data structures

Maple has about 40 different internal data structures designed into it. Approximately one-
quarter of these data structures correspond to programming language statements: assignment, if,
for, read, etc. The remaining data structures correspond to the types of expressions including
those formed using standard arithmetic and logical operators, numbers (integer, rational, and
floating-point), lists, sets, tables, (unevaluated) functions, procedure definitions, equations,
ranges, and series. All of these structures are represented internally as dynamic vectors.

This approach using dynamic vectors at the machine level and a rich set of data structures at
the abstract level has significant advantages in improved compactness and efficiency of the

-5-

resulting system code. First, in Maple there is only one level of abstraction above the system-
level objects. We believe that the direct mapping between the abstract objects and the system-
level objects simplifies our code and makes it more efficient than a scheme involving a less direct
mapping. Secondly, we believe that the design of data structures should be related, if possible, to
the language that describes the data objects. In our case we have a simple context-free language,
and it is natural to relate the data structures to the productions in the grammar. This immediately
suggests the need for many data structures since there are many productions in the language.
Thirdly, dynamic vectors allow us, in many cases, to have direct access to each of the compo-
nents of the structure at about the same cost. This is more desirable than the sequential access
required when all objects are represented as lists. Fourthly, dynamic vectors are more compact
than structures linked by pointers. In summary, an important part of the compactness and effi-
ciency of Maple is due to the use of appropriate data structures.

2.4. Computational power through libraries of functions

Another goal of the Maple system is to provide a powerful set of facilities for symbolic
mathematical computation. In other words, we are not willing to achieve compactness by sacri-
ficing the functionality of the system. Thus while the number of functions provided in the kernel
system is kept to a minimum, many more functions for symbolic mathematics are provided in the
system library, to be loaded as required. The functions in the system library are written in the
high-level Maple programming language and are therefore readily accessible to all users of the
Maple system. A load module for each library procedure is stored in ‘‘Maple internal format’’
which is a quick-loading expression-tree representation of the procedure definition. When a
library function is invoked, its load module is read into the Maple environment (if not already
loaded) and the expression tree is interpreted by the Maple interpreter.

3. The Use of Hashing in Maple

Maple’s overall performance is in part achieved by the use of table based algorithms for
critical functions. Tables are used within the Maple kernel in both evaluation and simplification,
as well as less crucial functions. For simplification, Maple keeps a single copy of each expres-
sion or subexpression within an entire session. This is achieved by keeping all objects in a table.
In user-level procedures, the remember option provides a hint to the interpreter that the values
returned are likely to be needed again. These values are maintained in a table until a garbage
collection is performed. Finally, tables are available at the user level as one of Maple’s data
types.

All of the table searching is done by hashing. The algorithm is an implementation of direct
chaining in which the hash chains are dynamic vectors instead of linked lists. Each table element
is stored as a pair of consecutive entries in the hash chain vector. The first entry of this pair is the
hash key and the second is a pointer to the stored value. For efficiency, the hash chain vectors
are grown a number of entries at a time and consequently some of the entries may not be filled.

3.1. Internal Use of Hash Tables

A computer algebra system spends most of its time evaluating and simplifying expressions.
The Maple kernel manages two tables, the partial computation table and the simplification table,
in an effort to make evaluation and simplification efficient. Other uses of hash tables in the ker-
nel are the global symbol table and temporary tables used in performing input/output.

-6-

3.1.1. The Simplification Table

By far, the most important table maintained by the Maple kernel is the simplification table.
All simplified expressions and subexpressions are stored in the simplification table. The main
purpose of this table is to ensure that simplified expressions have a unique instance in memory.
Every expression which is entered into maple or generated internally is checked against the sim-
plification table, and if found, the new expression is discarded and the old one is used. This task
is done by the simplifier which recursively simplifies (applies all the basic simplification rules)
and checks against the table. Garbage collection deletes the entries in the simplification table
which cannot be reached from a global name.

The task of checking for equivalent expressions within thousands of subexpressions would
not be feasible if it was not done with the aid of hashing. Every expression is entered in the sim-
plification table using its signature as a key. The signature of an expression is a hashing function
itself, with one very important attribute: signatures of trivially equivalent expressions are equal
[7]. For example, the signatures of the expressions a+b+c and c+a+b are identical; the signatures
of a*b and b*a are also identical. If two expressions’ signatures disagree then the expressions
cannot be equal at the basic level of simplification.

Searching for an expression in the simplification table is done by:

— simplifying recursively all of its components;

— applying the basic simplification rules;

— computing its signature and searching for this signature in the table.

If the signature is found then we perform a full comparison (taking into account that additions
and multiplications are commutative, etc.) to verify that it is the same expression. If the expres-
sion is found, the one in the table is used and the searched one is discarded. We hav e to do a full
comparison of expressions only when we have a ‘‘collision’’ of signatures. How often this
occurs is machine dependent. On a VAX, which has a 32-bit word, the signatures have 22 to 24
useful bits. An experiment we conducted measuring the collision rate during ‘‘typical’’ Maple
computation indicated that signatures of inequivalent expressions coincide about once every
1500 comparisons for signatures of this size. Thus, the time spent searching the simplification
table is typically negligible.

Since simplified expressions are guaranteed to have a unique occurrence, it is possible to
test for equality of simplified expressions using a single pointer comparison.

3.1.2. The Partial Computation Table

Some functions tend to be called many times with the same arguments. Maple takes advan-
tage of this fact by maintaining a table of function results for these functions. This is called the
partial computation table. In it, function calls are used as the keys and their results as the values.
Searching the hash table is extremely efficient so even for simple functions it is orders of magni-
tude faster than the actual evaluation of the function. Since both the function call and function
result are already existing as simplified data structures, the only storage consumed by an entry in
the partial computation table is a pair of pointers. The partial computation table is cleared by
garbage collection.

The original motivation for the partial computation table (which is still valid) was the obser-
vation that certain operations reproduce subexpressions multiple times in their results. As an
example of this, consider the operation

-7-

taylor(exp(y/(1−x) + a), x=0)

where every term in the result contains the expression exp(y+a). Any further operation on this
result (such as simplification, differentiation, etc.) will have to deal with this argument repeat-
edly.

There are four kernel functions that use the partial computation table: diff, taylor, expand,
and evalf. (The evalf function is used for floating-point evaluation). External library functions
and user-defined functions take advantage of the partial computation table by specifying the
remember option in the procedure body. This is further discussed in a later section.

3.1.3. The Name Table

The simplest use of hashing in the Maple kernel is the name table. This is a symbol table
for all global names. Each key is computed from the name’s character string and the entry is a
pointer to the data structure for the name. The name table is used to locate global names formed
by the lexical scanner or by name concatenation. It is also used by functions that perform opera-
tions on all global names. These operations include: (i) marking for garbage collection, (ii) the
saving of a Maple session environment in a file, and (iii) the Maple functions anames and
unames which return all assigned global names and all unassigned global names, respectively.

3.1.4. Put Tables

It is possible to store Maple objects in a sequential file using a fast-loading internal format.
The pointers in a collection of Maple objects form a general directed graph. The process of sav-
ing values in a file and later reading the values in from the file (usually in a different session)
must preserve this graph, and in particular preserve shared subexpressions. A hash table is tem-
porarily created for each save or read statement that uses internal format. These tables are
known in Maple as put tables. The put tables are used to keep track of which subexpressions
have already been output to (or input from) the file, and, in general, to perform the mapping from
a directed graph into a linear (labelled) structure.

3.2. Option Remember

Functions written in the user-level Maple programming language, including the system-sup-
plied external library functions, may use the partial computation table by specifying option
remember in the options list of the procedure body. This is best viewed as a hint to the inter-
preter that the results of this function are likely to be used again. It may also be advantageous to
use option remember in a function that is extremely expensive to compute, even if the result does
not have a large probability of being re-used. It is important to note that remembered values dis-
appear on garbage collection. For functions without side effects, this causes no problem because
the act of remembering is an optimization; semantically it makes no difference whether the result
is remembered or recomputed. For functions with side effects, this may cause erratic behaviour.

For many problems, remembering past results reduces the running time dramatically. For
example, the Fibonacci numbers computed with

fib := proc(n)
if n < 2 then n else fib(n−1) + fib(n−2) fi

end;

take exponential time to compute, while

-8-

fib := proc(n) option remember;
if n < 2 then n else fib(n−1) + fib(n−2) fi

end;

takes only linear time. Although the effect is not as spectacular for most functions, it is not
unusual for typical programs to be made roughly 30% faster by the judicious use of option
remember. Of course this same factor could be obtained by recoding the crucial functions to use
tables explicitly. The main advantage of option remember is that it achieves this performance
factor without altering the function’s code. The resulting code is very easy to read since the
algorithmic intent is not obscured by code for saving intermediate results.

Sometimes the value of a function for some argument is known without actually computing
it explicitly. An example would be an idempotent function such as sqrfree, which produces a
square-free factorization of a polynomial. If the function uses option remember then this addi-
tional information may be entered in the partial computation table directly, using the remember
function. An example would be:

p := sqrfree(q, x);
remember(sqrfree(p,x) = p);

Here the result of sqrfree is remembered for both p and q. The remember function evaluates its
argument specially so that the function call is not executed.

Many library functions that use option remember have a front end that substitutes the inde-
terminates of the arguments for generic names. This is an attempt to remember a general result.
This is done by the integrator, for example. All integrations are done with respect to the special
variable name @X. Once int(xˆ20*exp(x),x) has been computed, then the integral
int(yˆ20*exp(y),y) is obtained from the partial computation table.

3.3. Arrays and Tables in the Maple Language

Arrays and tables are provided as data types in the Maple language. An array is a table for
which the component indices must be integers lying within specified bounds. Arrays and tables
are implemented using Maple’s internal hash tables. Because of this, sparse arrays are equally as
efficient as dense arrays. Contrary to the belief that arrays can be accessed quickly only by com-
puting an element’s address as an offset using the indices, our experience has shown that, in the
Maple context, handling arrays as tables is at least as efficient while being more general.

A table object consists of (i) index bounds (for arrays only), (ii) a hash table of components,
and (iii) an indexing function. The components of a table T are accessed using a subscript syn-
tax, e.g., T[a,b*cos(x)]. Since a simplified expression is guaranteed to have a unique instance in
memory, we use the address of the simplified index as the hash key for a component. If no com-
ponent exists for a given index, then the indexed expression is returned.

The semantics of indexing into a table are described by its indexing function. Using an
indexing function, it is possible to do such things as efficiently store a symmetric matrix or count
how often each element of a table is referenced. Because each table defines its own indexing
method, generic programs can be written that do not need to know about special data representa-
tions. Aside from the default, general indexing, some indexing functions are provided by the
Maple kernel. Other indexing functions are loaded from the library or are supplied by the user.

Tw o typical system-supplied indexing functions are symmetric and sparse. The indexing
function symmetric is used for tables in which the value of a component is independent of the

-9-

order of the expressions in the index. This indexing function works by reordering the index
expression sequence to produce a unique table reference. Thus, if the table T uses symmetric, the
expression T[i,j] − T[j,i] evaluates to zero regardless of whether or not i, j or T[i,j] are assigned
values. The indexing function sparse is used with tables for which a component is assumed to
have the value 0 if it has not been assigned.

4. Hybrid Algorithms

It is well understood that many problems in algebraic computation do not have a single
‘‘best’’ algorithm. In fact, for some problems there may be many algorithms to choose from.
Computing polynomial greatest common divisors is one such example. At least four major
classes of gcd methods are in use in algebraic systems today. These are polynomial remainder
sequence based algorithms[8,9], Hensel based algorithms[10,11], the sparse modular algo-
rithm[12], and an integer-gcd based heuristic[13]. Comparison of their performance indicates
that no one algorithm works best all the time. Some ‘‘win’’ on sparser problems, others on dense
problems. Some work well on small problems and do poorly on problems of higher degree or
numbers of variables. Others have such overhead that they should only be used on large prob-
lems where their asymptotic complexity begins to assert itself.

How then does a general purpose system organize the code to solve a problem where sev-
eral algorithms should be considered? Consider applying a predetermined, fixed algorithm to all
problems. Such a single algorithm must be robust. This rules out the application of algorithms
that will succeed, or succeed quickly, only on certain classes of problems. The alternative to
using a single algorithm is to automatically select from several: a ‘‘hybrid’’, or polyalgorithm. A
polyalgorithm could also possibly use one method to partially solve the problem (for example,
eliminating some of the unknowns from a system of equations), and then switch over to another
more general and expensive algorithm when appropriate. This is not always possible but when it
is, it often makes a substantial overall improvement in efficiency.

Thus, a hybrid procedure can be viewed as automating not only the algebraic computation,
but also automating the expertise in selecting and combining algorithms for a particular problem.
If this is done well, it can relieve the user from the unwanted burden of learning details of algo-
rithms in areas that are not of direct interest to him or her. In order to justify a hybrid approach
in contrast with using a single algorithm, it must be shown that the decisions about which algo-
rithm to use, and when to start using it, can be automated without introducing undue overhead. It
must also be shown that the hybrid algorithm often performs much better than any single algo-
rithm, and rarely performs much worse.

We describe the Maple implementation of hybrid algorithms for several different problem
areas. These include the determinant code, the gcd code, and the solve code (for solving systems
of equations). All of the codes for these problems are implemented in the user-level Maple lan-
guage and therefore they are interpreted rather than compiled. Timing comparisons are presented
to show the relative performance of Maple, Macsyma, and Reduce on some sample problems.
All timings (in seconds) were obtained on a Vax 11/780 running Berkeley Unix 4.2, by calling
the user-level routine for solving the given problem.

4.1. Determinants

The two methods used are fraction-free Gaussian elimination and minor expansion. Com-
parisons of these two methods are given by Gentleman and Johnson, and Horowitz and Sahni

-10-

[14,15]. Those authors’ comments, their timing results, and our own experience, suggest the fol-
lowing general guideline for choosing between Gaussian elimination and minor expansion:

(1) for matrices with many numerical entries and/or larger dense matrices in only a few vari-
ables, use gaussian elimination;

(2) for small matrices (of dimension ≤ 5), sparse matrices, and matrices with many variables,
use minor expansion.

We are also experimenting with the idea of running fraction-free elimination steps until a small
pivot is no longer available, then switching to minor expansion. We note that the strengths and
weaknesses of a particular computer algebra system must also be taken into consideration in
algorithm selection. For example, Maple is particularly well suited to using minor expansion
because of the facility provided by the partial computation table as described previously. By
using option remember, we can implement the standard recursive definition of a determinant in
terms of its minors (see Figure 1). Without the help of option remember (or some similar facil-
ity), this algorithm would be extremely inefficient, as minors would be recomputed an exponen-
tial number of times. In using option remember, the system avoids recomputation by automati-
cally keeping track of the minors’ determinants as it computes them. Gentleman and Johnson
avoid recomputation by computing the determinants of the minors ‘‘bottom up’’. We believe that
the use of option remember in Maple leads to a more natural and simpler coding, and further-
more avoids an exponential amount of work for the sparse cases.

The above discussion of determinant code organization is equally applicable to the problem
of computing matrix inverses. For this problem, there is a choice between fraction-free Gaussian
elimination and computing the inverse via the adjoint of the matrix.

The timing results in Table 1 show that Maple’s determinant code performs quite well over
a variety of different problems. For these (and subsequent) timing comparisons, note that
Maple’s code is executed by an interpreter while the Macsyma and Reduce codes have been
compiled. For a detailed listing of the test problems used in Table 1, see appendix 1. We find
that the overhead of algorithm selection is not unreasonable compared to the cost of computing
the determinant.

-11-

minor := proc (A,r,c,n) local i, s, t; option remember;
Compute the determinant of the n by n minor of the matrix A, whose row
and column indices are given in the lists r and c, using minor expansion.

if n = 1 then A[r[1],c[1]]
elif n = 2 then A[r[1],c[1]]*A[r[2],c[2]] − A[r[1],c[2]]*A[r[2],c[1]]
elif n = 3 then

A[r[1],c[1]] * (A[r[2],c[2]]*A[r[3],c[3]] − A[r[2],c[3]]*A[r[3],c[2]]) −
A[r[2],c[1]] * (A[r[1],c[2]]*A[r[3],c[3]] − A[r[1],c[3]]*A[r[3],c[2]]) +
A[r[3],c[1]] * (A[r[1],c[2]]*A[r[2],c[3]] − A[r[1],c[3]]*A[r[2],c[2]])

else
t := subsop(1=NULL,c);
s := 0;
for i to n do if A[r[i],c[1]] <> 0 then

s := s + A[r[i],c[1]] * (−1)ˆ(i+1) * minor(A,subsop(i=NULL,r),t,n−1)
fi od

fi;
if type(", `+`) then expand(") else " fi

end

Figure 1: Maple library code for computation of a minor’s determinant.

Matrix description Maple Macsyma (1) Reduce (1)

5 by 5 Vandermonde 6.5 10.5 0.8
5 by 5 Dense univariate Bezout 19.9 19.8 17.5
6 by 6 Bezout (from Sigsam #7) 133.6 271.6 132.9
12 by 12 Eigenvalue problem (band matrix) 42.5 719.5 10.8
10 by 10 Hilbert 13.5 236.0 300.7
10 by 10 Univariate Sylvester 40.2 1414.0 264.9
11 by 11 Tridiagonal (univariate) 4.8 95.1 0.9
14 by 14 Eigenvalue problem (bivariate) 279.7 >1500 >1500

Table 1: Timings for determinant problems.

Notes: (1) The default algorithm for both Macsyma and Reduce on our system is minor expan-
sion. Also, in collecting the Macsyma times, ratexpand was applied to the result from determi-
nant where necessary.

4.2. Greatest Common Divisors of Polynomials

Maple’s gcd code makes use of two algorithms. Initially, a heuristic, gcdheu,[13] is tried.
Gcdheu computes polynomial gcds via polynomial evaluation, an integer gcd computation, and
single-point polynomial interpolation. This method was motivated by the fact that the hardware
provides support for integer arithmetic, and consequently even multiple-precision integer arith-
metic is fast, whereas there is no hardware support for polynomial arithmetic. Therefore

-12-

although the complexity of an integer gcd based computation is exponential in the number of
variables, such a method performs very well on a significant class of practical problems.
Roughly speaking, for most problems in three or fewer variables we find that gcdheu is the algo-
rithm of choice. On the other hand, there are many problems that gcdheu would be extremely
slow to solve. Fortunately, it is easy for gcdheu to detect its bad cases by estimating the size of
the integer gcd problem before generating it. When the integer gcd problem about to be gener-
ated would be larger than a pre-specified size (currently set at 3000 digits), gcdheu gives up.
Control is passed back to the main code, which then sets up the problem for the second algo-
rithm. The second algorithm is a Hensel-based gcd algorithm (EEZGCD).*

Another important feature of gcdheu is that its code size is tiny, relative to Hensel-based
codes or the sparse modular code. For most sessions we expect that the gcdheu algorithm will be
sufficient and consequently the larger codes will not be loaded. This organization helps to main-
tain Maple’s goal of compactness.

In Table 2 we present timings for some gcd problems. These problems were generated at
random. All problems are non-trivial in either the number of variables, their degrees, the number
of terms, or the size of the coefficients. Seven of the problems are sparse, three are dense; five of
the problems have a non-trivial gcd, and in the other five the gcd is one. For a detailed listing of
the test problems used in Table 2, see appendix 2. The timings illustrate both the power of gcd-
heu as an algorithm in its own right, and the robustness of the overall code organization since the
timings for larger problems are also very reasonable.

Problem Maple Macsyma (1) Reduce (2)

1 2.2 67.8 >1500
2 5.8 42.7 1472
3 6.3 17.5 >1500
4 10.7 31.3 >1500
5 5.1 4.8 >1500
6 29.5 69.4 >1500
7 7.3 2.4 >1500
8 25.7 24.9 11.6
9 92.5 34.8 >1500
10 34.5 24.6 >1500

Table 2: Timings for some gcd problems.

Notes: (1) Using the default Macsyma gcd algorithm, spmod. (2) Using a PRS algorithm
with trial-division[17].

4.3. Solving Systems of Equations

The first method to be tried in solve on a system of equations is gensys. At each step, gen-
sys selects the ‘‘easiest’’ equation to be solved for a particular unknown. That unknown is then
eliminated from the other equations of the system via a substitution. Both under- and over-

* Code for the sparse modular algorithm has been written for Maple[16] but it is not yet determined how this will be incorporated into
the gcd polyalgorithm.

-13-

determined systems of both linear and nonlinear equations can be solved in this way. Gensys
spends a considerable amount of time evaluating the complexities of each equation. Ideally, all
unknowns will be found and eliminated from ‘‘simple’’ equations, preserving sparsity where pos-
sible. What is considered a simple equation in gensys is any equation containing an unknown
that when eliminated, will most likely produce a simpler, smaller system. This elimination pro-
cedure is repeated until either the system has been reduced to a single equation, in which case
back-substitution is employed to obtain the solution, or else further progress is blocked because
proceeding would generate, for example, new quotients of polynomials.

At this point, control is passed to a second method, a modified fraction-free Gaussian elimi-
nation algorithm for solving rectangular linear systems. This algorithm solves the remaining lin-
ear problems for which gensys would be too expensive. If the system is found to be nonlinear
then control is passed back to gensys, which continues the elimination. A resultant based algo-
rithm is called for the general case when gensys cannot proceed.

This organization of the solve code has several advantages. Simple linear and nonlinear
equations are eliminated quickly. Gensys preserves sparsity for as long as is practical. Since
gensys is by nature a sparse algorithm, we are interested in how it performs on dense systems (its
worse case) where much of the time will be spent in looking at the equations. The first problem
in Table 3 shows that the cost of using gensys rather than immediately using Gaussian elimina-
tion is not unreasonable. (Our time for directly applying Gaussian elimination on the first prob-
lem is 23 seconds). For large sparse systems, the hybrid algorithm performs much better than
Macsyma’s default algorithm. The first four times reported in Table 3 are for linear systems and
the last two are for nonlinear systems. For a detailed listing of the test problems used in Table 3,
see appendix 3.

Problem description Maple Macsyma Reduce

10 equations, 10 unknowns
dense with integer coefficients 50.8 22.5 21.5
30 equations, 29 unknowns
integer coefficients 55.6 122.9 (1)
50 equations, 50 unknowns
sparse band system 138.6 1180 1162
147 equations, 49 unknowns
very sparse with trivariate coefficients 96.5 1078.3 (2) (1)
19 equations, 17 unknowns
sparse system with 4 solutions 68.5 >1500 (1)
22 equations, 17 unknowns
sparse system with no solution 17.9 >1500 (1)

Table 3: Timings for solving systems of equations.

Notes: (1) Reduce’s solver was not programmed to solve over-determined systems.
(2) This time reported for Macsyma was obtained by Prof. Stanly Steinberg of the University of
New Mexico, using special purpose code developed for the problem. Macsyma’s default

-14-

algorithm could not solve this problem in under 1500 seconds.

5. Further Comparisons of Space and Time

Table 4 presents some timing comparisons for a variety of symbolic computation problems
which are summarized below. More details about these test problems can be found in appendix
4. All times are in seconds in the form user time + system time obtained from the Unix time
command on a Vax 11/780 running Berkeley Unix version 4.2. The Maple space column indi-
cates the total number of bytes of memory required by Maple (compiled kernel plus data space)
for the problem. Note that automatic garbage collection is not yet operational in Maple and
therefore the space consumption increases monotonically with execution time. Note also that the
initial size of code plus data space for Reduce is over one megabyte and for Macsyma is over
three megabytes, in contrast with Maple’s initial size of 104K bytes.

Problem Maple space Maple time Macsyma time Reduce time

1 139K 10.4 + 0.6 23.3 + 8.4 134.0 + 29.7
2 145K 14.3 + 1.8 40.4 + 13.6 180.0 + 26.6
3 222K 4.8 + 1.0 46.1 + 21.0 43.5 + 10.0
4 777K 18.7 + 2.5 180.8 + 11.2 88.6 + 4.9
5 169K 1.5 + 0.4 26.2 + 9.7 4.7 + 1.4
6 432K 32.6 + 4.0 68.9 + 11.7 37.1 + 7.6
7 251K 23.6 + 2.4 88.5 + 18.3 >1000.0
8 169K 2.0 + 0.4 93.3 + 14.2 Not attempted
9 185K 2.2 + 0.5 183.3 + 22.1 Not attempted

10 603K 27.2 + 2.8 101.2 + 20.4 33.5 + 7.9
11 181K 2.6 + 0.5 3.3 + 5.4 Not attempted
12 247K 5.7 + 1.1 3.0 + 6.0 7.5 + 3.4
13 302K 12.4 + 1.5 36.7 + 14.8 11.5 + 3.0
14 152K 1.2 + 1.2 2.9 + 4.7 1.3 + 1.6
15 414K 16.8 + 2.4 46.9 + 13.5 Not attempted

Table 4: Space and time statistics for a variety of problems.

Description of Problems in Table 4
1 Compute and print 1000!.
2 Compute a ‘‘big’’ rational number: 13ˆ1000 / 14ˆ960
3 Compute arcsin(.7102633504 6985192786 3258652083 7914203194

9324761436) to 50 digits.
4 Read in a random polynomial but do not print it. It has 396 terms, 5

variables, each of degree 6, and 4-digit coefficients.
5 Do 1000 assignments in a for loop without printing:

for i to 1000 do a := i od.
6 Solve a sparse linear system of equations (20 by 20, 3 terms per equa-

tion, random 4-digit integer coefficients).

-15-

7 Compute and print −diff(u,z) from [18,p. 510]
8 Factor 16254399361 (= 89137 * 182353).
9 Taylor series of sin(xˆ5−3*xˆ8+7*xˆ29+13*xˆ59) up to the term in xˆ64.

10 Compute and print the f and g series to order 16.[19]
11 Compute and print the indefinite summation: sum(iˆ12, i = 0..n−1).

12 Find ∫ x30 ex dx.

13 Expand (a+b+c+d+e+f+g+h)ˆ4 and print it.
14 Recursion test: f := proc(n) if n=0 then 1 else f(n−1) fi end; f(100).
15 SIGSAM Problem #3: Reversion of a double series[20], solved to order

4 by Hall’s 2nd method[21] (includes print time).

6. Future Dev elopment

The Maple project is an ongoing activity of the Symbolic Computation Group at the Univer-
sity of Waterloo. We mention here some of the developments that are anticipated for future ver-
sions.

6.1. Algorithm improvements

Some of the existing mathematical packages are being improved. For example, the gcd
package is largely completed but its multivariate Hensel-based (EEZGCD) algorithm will have
Wang’s coefficient pre-determination added to it for improved performance on sparse problems.
The factor package similarly needs to exploit coefficient pre-determination (this is currently
implemented only for the leading coefficient) in the multivariate Hensel lifting stage. Maple’s
univariate factorizer is a heuristic algorithm based on single-point evaluation and integer factor-
ization [22], which performs well on problems with reasonably small integer coefficients, but we
have yet to complete implementation of the Berlekamp/Hensel algorithm for univariate factoriza-
tion. Another package to be completed is the integration package, which currently includes only
a ‘‘front end’’ of heuristics. Eventually the Risch procedure will be included as part of int (work
is in progress). The method of resultants is being added to the solve package for solving systems
of polynomial equations.

There are numerous mathematical packages yet to be introduced into the Maple library. For
example, a differential equations package and a tensor package have yet to be implemented.

6.2. Language facilities

The following are some of the language facilities awaiting implementation.

(1) Automatic garbage collection (currently the user must issue a gc() function call).

(2) Pattern matching simplification.

(3) User-specified simplification rules.

(4) Operators, including an operator algebra facility.

(5) Foreign function interface (some work has been done on an interface to Fortran and an
interface to Prolog).

(6) Language conversion (some work has been done on converting Maple output to Fortran
syntax).

-16-

6.3. Porting Maple

The Maple system is designed to be portable to various operating systems, usually in the C
language. The main restriction is that the host system must support a large address space (e.g.,
Maple is not designed to work with 16-bit addresses) and must have enough physical memory
(we recommend a minimum of one megabyte) to be capable of handling typical symbolic com-
putations. To date, Maple has been fully ported between C under Berkeley Unix on a VAX 11, B
under GCOS-8 on a Honeywell DPS-8, C under Xenix on a Spectrix S-10 (M68000-based
microcomputer) and C under TOPS-20 on a DEC20. The VAX/Unix and DEC20 versions are
currently in distribution. Work is well underway to port Maple to the IBM VM/CMS operating
system and to the WICAT operating system. Planned for the near future is a version for DEC’s
VAX/VMS operating system (see below).

6.4. Maple in undergraduate teaching

We are particularly excited about the introduction of Maple into the mainstream of the
undergraduate mathematics curriculum. Current plans include experimenting with Maple as a
laboratory tool to be used by first- and second-year calculus and linear algebra students at the
University of Waterloo. A pilot project is scheduled for the term beginning in January 1985,
probably using a VAX 11/785 running VMS, to service approximately 300 students. To increase
the capacity beyond the size of a pilot project, we expect to move to a network of microproces-
sors connected to a file-server VAX, with the bulk of the symbolic computation being done on
the microprocessors.

7. Availability of the Maple System

Maple version 3.2 is currently being distributed for VAX/4.2 BSD Unix, and for DEC20
systems running TOPS-20. During the latter part of 1984 we plan to begin distribution of the
Maple system (version 3.3 and beyond) through the facilities of Watsoft, an institution within the
University of Waterloo which is responsible for the distribution of several other software prod-
ucts (WATFOR, WATFIV, WPascal, etc.). We expect that the Watsoft distribution will initially
include IBM mainframes (VM/CMS), and eventually VAX/VMS and M68000-based systems.

Licensing and distribution information, and copies of Maple documentation[23,24,25], are
available by writing to:

Maple Lab
Symbolic Computation Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

Acknowledgements

We wish to acknowledge the contributions our Maple co-workers Marta Gonnet and Benton
Leong, and Prof. Stan Devitt of the University of Saskatchewan, have made to the design and
development of Maple. We also wish to thank Prof. Stanly Steinberg of the University of New
Mexico for supplying us with one of the test problems used in this paper, and our fellow

-17-

Macsyma users for helping us with the Macsyma system at various times.

References

1. Art Rich and David Stoutemyer, “Capabilities of the muMATH-79 Computer Algebra Sys-
tem for the INTEL-8080 Microprocessor,” Proceedings of Eurosam ’79, pp. 241-248,
Springer-Verlag (1979).

2. David Stoutemyer, “PICOMATH-80, an Even Smaller Computer Algebra Package,”
SIGSAM Bulletin, 14, 3, pp. 5-7 (1980).

3. Bruce J. MacLennan, Principles of Programming Languages: Design, Evaluation, and
Implementation, Holt, Rinehart, & Winston,, Toronto (1983).

4. Martin Griss, Eric Benson, and Gerald Maguire, Jr, “PSL: A Portable LISP System,” Pro-
ceedings of the 1982 ACM Symposium on Lisp and Functional Programming, pp. 88-97
(1982).

5. Allan Borodin, Michael Fischer, David Kirkpatrick, Nancy Lynch, and Martin Tompa, “A
Time-Space Tradeoff for Sorting on Non-Oblivious Machines,” Proceedings of 20th Annual
Symposium on Foundations of Computer Science, pp. 319-327, IEEE Computer Society
(1979).

6. A.C. Hearn, “Reduce - A Case Study in Algebra System Development,” Computer Algebra,
Proceedings of Eurocam82, Springer-Verlag, Berlin (1982). Lecture notes in Computer Sci-
ence, v. 144.

7. Gaston H. Gonnet, “Determining Equivalence of Expressions in Random Polynomial
Time,” Proceedings of the 16th ACM Symposium on the Theory of Computing, pp. 334-341
(April 1984).

8. G.E. Collins, “Subresultants and Reduced Polynomial Remainder Sequences,” Journal of
the ACM, 14, pp. 128-142 (1967).

9. W.S. Brown, “The Subresultant PRS Algorithm,” ACM Transactions on Mathematical Soft-
ware, 4, 3, pp. 237-249 (1978).

10. Joel Moses and David Y.Y. Yun, “The EZ GCD Algorithm,” Proceedings of the ACM
Annual Conference, 28, pp. 159-166 (August 1973).

11. Paul Wang, “The EEZ-GCD Algorithm,” SIGSAM Bulletin, 14, 2, pp. 50-60 (May 1980).

12. Richard Zippel, “Probabilistic Algorithms for Sparse Polynomials,” Proceedings of
Eurosam 79, pp. 216-226, Springer-Verlag (1979). Springer-Verlag Lecture Notes in Com-
puter Science no. 72.

13. B.W. Char, K.O. Geddes, and G.H. Gonnet, “GCDHEU: Heuristic Polynomial GCD Algo-
rithm Based On Integer GCD Computation (Extended Abstract)” in Proceedings of
Eurosam 84, pp. 285-296, Springer-Verlag (1984). Springer-Verlag Lecture Notes in Com-
puter Science no. 174.

14. W.M. Gentleman and S.C. Johnson, “Analysis of Algorithms, A Case Study: Determinants
of Matrices with Polynomial Entries,” ACM Transactions on Mathematical Software, 2, pp.
232-241 (September 1976).

15. E. Horowitz and S. Sahni, “On Computing the Exact Determinant of Matrices with Polyno-
mial Entires,” Journal of the Association for Computing Machinery, 22, 1, pp. 38-50 (Jan-
uary 1975).

-18-

16. Mark E. Bryant, The Sparse Modular GCD Algorithm in Maple, University of Waterloo,
Dept. of Computer Science (December, 1983). M.Math essay.

17. Anthony Hearn, “Non-modular Computation of Polynomial GCD’s using Trial Division,”
Proceedings of Eurosam 79, pp. 227-239, Springer-Verlag (1979). Springer-Verlag Lecture
Notes in Computer Science no. 72.

18. J.A. Campbell and Simon, “Symbolic Computing with Compression of Data Structures:
General Observations, and a Case Study,” EUROSAM 1979, pp. 503-513, Springer-Verlag
(1979).

19. Richard J. Fateman, “An Open Letter from Fateman to Veltman,” SIGSAM Bulletin, pp.
5-11 (Nov. 1978).

20. John S. Lew, “Problem #3 - Reversion of a Double Series,” SIGSAM Bulletin, 23, pp. 6-7
(July 1972).

21. Andrew D. Hall Jr., “Solving a Problem in Eigenvalue Approximation with a Symbolic
Algebra System,” SIGSAM Bulletin, 26, pp. 15-23 (June 1973).

22. “Irreducibility Testing and Factorization of Polynomials %A Leonard Adleman %A
Andrew Odlyzko,” Mathematics of Computation, 41, 164, pp. 699-709 (October 1983).

23. Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, and Stephen M. Watt, Maple User’s
Manual, 3rd edition (December, 1983). University of Waterloo Computer Science Depart-
ment Research Report CS-83-41.

24. B.W. Char, K.O. Geddes, W.M. Gentleman, and G.H. Gonnet, “The design of Maple: A
compact, portable, and powerful computer algebra system,” Proceedings of Eurocal ’83, pp.
101-115 (April, 1983). Springer-Verlag Lecture Notes in Computer Science no. 162.

25. B.W. Char, K.O. Geddes, and G.H. Gonnet, An Introduction to Maple: Sample Interactive
Session (January 1984). University of Waterloo Computer Science Department Report
CS-84-04.

