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Given an input matrix polynomial whose coefficients are floating 
point numbers, we consider the problem of finding the nearest 
matrix polynomial which has rank at most a specified value. This 
generalizes the problem of finding a nearest matrix polynomial 
that is algebraically singular with a prescribed lower bound on the 
dimension given in a previous paper by the authors. In this pa-
per we prove that such lower rank matrices at minimal distance 
always exist, satisfy regularity conditions, and are all isolated and 
surrounded by a basin of attraction of non-minimal solutions. In 
addition, we present an iterative algorithm which, on given input 
sufficiently close to a rank-at-most matrix, produces that matrix. 
The algorithm is efficient and is proven to converge quadratically 
given a sufficiently good starting point. An implementation demon-
strates the effectiveness and numerical robustness of our algorithm 
in practice.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Matrix polynomials appear in many areas of computational algebra, control systems theory, differ-
ential equations, and mechanics. The algebra of matrix polynomials is typically described assuming 
that the individual polynomial coefficients come from an exact arithmetic domain. However, in the 
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case of applications these coefficients typically have numeric coefficients, usually real or complex 
numbers. As such, arithmetic can have numerical errors and algorithms are prone to numerical insta-
bility.

Numerical errors have an impact, for example, in determining the rank of a matrix polynomial 
with floating point coefficients. In an exact setting determining the rank or determinant of a matrix 
polynomial is straightforward, and efficient procedures are available, for example from Storjohann 
and Villard (2005). However, in a numeric environment, a matrix polynomial may appear to have full 
or high rank while at the same time being close to one having lower rank. Here “close” is defined 
naturally under the Frobenius norm on the underlying coefficient matrices of the matrix polynomial. 
Rather than computing the rank of the given matrix polynomial exactly, one can ask how far away it 
is from one that is rank-deficient, and then to find one at that distance. In the case of matrices with 
constant entries this is a problem solved via the Singular Value Decomposition (SVD). However, in the 
case of matrix polynomials no equivalent rank revealing factorization has thus far been available.

In this paper we consider the problem of computing the nearest matrix polynomial to an input 
matrix polynomial in R[t]m×n having a kernel of rank at most a specified value r. More precisely, 
given an integer r and an A ∈ R[t]m×n of full rank, we want to compute �A ∈ R[t]m×n with 
deg �Ai j ≤ deg Ai j (or similar degree constraints to be specified later), such that A + �A has rank 
at most n − r and where ‖�A‖ is minimized. In the case where n − r is one less than the row or 
column size then this is the problem of finding the nearest matrix polynomial which is singular.

A reasonable metric for measuring closeness on the space of matrix polynomials over the reals is 
the Frobenius norm. For a matrix polynomial A ∈R[t]m×n , with (i, j) entry Aij ∈R[t], the Frobenius
norm is given by

‖A‖2 = ‖A‖2
F =

∑
1≤i≤m,1≤ j≤n

‖Aij‖2, (1.1)

where, for a polynomial a ∈R[t], the coefficient 2-norm is defined by

a =
∑

0≤i≤deg a

ait
i, ‖a‖2 = ‖a‖2

2 =
∑

0≤i≤deg a

a2
i . (1.2)

The main results in this paper center on the characterization of the geometry of minimal solutions. 
We show that minimal solutions exist, that is, for a given r there exists a �A ∈R[t]m×n of minimal 
norm such that A + �A has rank at most n − r and meets the required degree constraints on per-
turbed coefficients. In addition, we show that minimal solutions are isolated and are surrounded by a 
non-trivial open neighborhood of non-minimal solutions. Also regularity and second-order sufficiency 
conditions are generically satisfied and a restricted version of the problem always satisfies these con-
ditions. Finally we show that we can also generalize our results to the lower rank approximation 
instance of matrix polynomials generated by an affine structure,1 and so generalize to low-rank ap-
proximations of structured matrices by taking the degree to be zero.

We demonstrate efficient algorithms for computing our minimal lower rank approximants. That is, 
for an input matrix polynomial A ∈ R[t]m×n (with prescribed affine structure) sufficiently close to a 
singular matrix polynomial, we give an iterative scheme which converges to a rank at most matrix 
polynomial at minimal distance, at a provably quadratic rate of convergence. We further generalize 
the iterative scheme so that it converges to a matrix polynomial with a kernel of dimension at least 
r, at a minimal distance and a provable quadratic rate of convergence. Finally, we also discuss a 
Maple implementation which demonstrates the convergence and numerical robustness of our iterative 
scheme.

1 A matrix A ∈ Fm×n , over a ring F , has an affine structure with respect to a defined set of constant matrices 
{B0, B1, . . . , B L} ⊆ Fm×n if it can be written as A = B0 + ∑L

i=1 ci Bi for some c1, . . . , cL ∈ F . If B0 is the zero matrix, then 
the structure is said to be linear. Examples of linear structures include symmetric and hermitian matrices while matrices with 
an affine structure include those with entries with fixed non-zero coefficients, such as monic matrix polynomials.
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1.1. Previous research

Much of the work in this area has often been done under the heading of matrix pencils. See Go-
hberg et al. (2009) for an excellent overview. Non-singular (full rank) square matrix polynomials are 
sometimes referred to as regular matrix polynomials.

In the case of finding the nearest singular matrix pencil this problem was solved by the present 
authors in Giesbrecht et al. (2017). Previously, this problem was posed for linear matrix pencils in 
Byers and Nichols (1993) and followed up in Byers et al. (1998). The nearest singular matrix poly-
nomial relates to the stability of polynomial eigenvalue problems, linear time invariant systems and 
differential-algebraic equations studied subsequently in (Kressner and Voigt, 2015; Guglielmi et al., 
2017). For non-linear matrix polynomials/pencils, previous works rely on embedding a non-linear 
(degree greater than 1) matrix polynomial into a linear matrix polynomial of much higher order. The-
orem 1.1 and Section 7.2 of Gohberg et al. (2009) shows that any regular A ∈R[t]n×n of degree d can 
be transformed to a linear matrix polynomial B = B0 + t B1, for B0, B1 ∈Rnd×nd , which has the same 
non-trivial (i.e., non-one) invariant factors, and ones for the remaining invariant factor. However, this 
transformation is not an isomorphism (there are degree one matrix polynomials in R[t]nd×nd which 
are not the image of some degree d matrix polynomial in R[t]n×n), nor is it distance preserving un-
der the Frobenius norm. Hence a nearby singular matrix polynomial to B ∈ R[t]nd×nd (even when 
constrained to a degree one perturbation) almost certainly does not correspond to a nearby singular 
matrix polynomial to A ∈R[t]n×n . In Lawrence and Corless (2015) a more sophisticated linearization 
with an eye towards ameliorating this is explored.

In the context of computer algebra the notion of symbolic-numeric algorithms for polynomials 
has been an active area of research for a number of years, and the general framework of finding 
nearby instances with a desired algebraic property is being thoroughly explored. Closest to our work 
here is work on approximate Greatest Common Divisors (GCD) Corless et al. (1995); Beckermann 
and Labahn (1998b,a), multivariate polynomial factorizations Kaltofen et al. (2008), and especially the 
optimization-based approaches employing the Structured Total Least Norm algorithm Li et al. (2005); 
Kaltofen et al. (2005, 2006); Zhi (2007) and Riemannian SVD Botting et al. (2005). More recently, 
we have explored computing the approximate GCRD of (non-commutative) differential polynomials 
(Giesbrecht and Haraldson, 2014; Giesbrecht et al., 2016) and resolve similar issues.

The computer algebra community has made impressive progress on fast, exact algorithms for ma-
trix polynomials, including nearly optimal algorithms for computing ranks, factorizations and various 
normal forms; see Kaltofen and Storjohann (2015) and references therein for a recent overview. Part 
of our goal in this current paper is establish a basis for extending the reach of these symbolic tech-
niques to matrices of polynomials with floating point coefficients.

In a more general setting our problem can be formulated as a Structured Low Rank Approximation 
(SLRA) problem. A popular method to solve SLRA problems is the Structured Total Least Norm (STLN) 
approach (Rosen et al., 1996, 1998). These are iterative methods and in general their convergence 
to stationary points is linear (first order), rather than quadratic, unless additional assumptions are 
made. In the event STLN converges to a stationary point, there may be other stationary points arbi-
trarily nearby, as second order sufficient conditions may not hold. The SLRA problem is a non-linear 
least squares problem and accordingly other techniques such as the Restricted and Riemannian SVD 
(De Moor, 1993, 1994, 1995) provide general tools for solving such problems. Other heuristic tools 
applicable to our problem include variable projection (Golub and Pereyra, 1973, 2003) and Newton’s 
method (Abatzoglou et al., 1991). We would expect these methods to perform very poorly in our case, 
as one can expect problems with large residuals to perform poorly and the rational function arising 
from variable projection can be too costly to deal with for modestly sized problems. The problem 
may also be considered as optimization on a manifold (Absil et al., 2009), however we do not explic-
itly consider this approach. For a detailed survey of affinely structured low-rank approximation, see 
(Markovsky, 2008, 2011).

Other methods for structured low-rank approximation involve the family of lift and project algo-
rithms, with the best known being Cadzow’s algorithm (Cadzow, 1988). More recently Schost and 
Spaenlehauer (2016) gives a sequence of alternating projections that provably converge quadratically 
to a fixed point. However, lift and project algorithms do not generally satisfy necessary first order 



228 M. Giesbrecht et al. / Journal of Symbolic Computation 98 (2020) 225–245
(see (Bertsekas, 1999)) optimality conditions, and while they may converge (quickly) to a fixed point, 
there is no guarantee that the fixed point is an optimal solution, though it is usually quite good. In 
any case, for specific problems such as ours, understanding the geometry of the minimal solutions 
(and hence the well-posedness of the problem) is key to effective algorithms for their computation.

SLRA problems are in general NP-hard to solve, see for example (Poljak and Rohn, 1993; Braatz et 
al., 1994). They are also hard to approximate under affinely structured matrices over Q. In general the 
hardness stems from determining if a bilinear system of equations admits a non-trivial solution. In the 
instance of classical matrix polynomials it is trivial to construct feasible points since the underlying 
scalar matrix problem is linearly structured.

Almost all of our contributions apply to matrix polynomials with an affine structure provided that 
feasible points exist, that is, singular matrix polynomials with a prescribed structure exist, which is 
NP-hard in general. In particular, in the degree zero case our algorithms and techniques apply to affine 
SLRA problems. Thus, computing the nearest (affinely structured) matrix polynomial is equivalent to 
SLRA problems with an affine structure.

While the contributions in this paper focus on local properties of SLRA, the local properties also 
imply global results. The Sum of Squares (SOS) hierarchy is a global framework for studying polyno-
mial optimization problems subject to polynomial constraints Lasserre (2001). The SOS optimization 
tools have found experimental success in computing structured distances to singularity and extracting 
minimizers when the solutions are locally unique, see for example Henrion and Lasserre (2006). In 
general the SOS hierarchy converges for an infinite order of relaxations, but for several problems the 
relaxations converge after a finite order. The finite convergence is in polynomial time with respect 
to the input and the number of relaxations. In particular, this finite convergence was observed for 
affine SLRA problems in Henrion and Lasserre (2006) but little theory was provided to indicate the 
reason why. The later work of Nie (2014) shows that, under regularity and second-order sufficiency 
conditions, finite convergence always occurs and that it is possible to extract a minimal solution. In 
our contributions we prove that second-order sufficiency and regularity conditions hold generically 
(and if they do not, then they will hold on a restricted subset of the problem). The corollary to this 
is that the SOS hierarchy will have finite convergence for computing the distance of the nearest rank-
deficient matrix polynomial, and if the embedding is minimal then a minimizer may be extracted as 
well. Another useful feature of the SOS hierarchy is even if convergence cannot be certified, a struc-
tured lower-bound is obtained.

1.2. Outline

In Sections 2 and 3 we describe tools needed for our constructions and then explore the geometry 
of our problem. We show that the problem is locally well-posed. One cannot expect the nearest 
rank at most matrix polynomial to be unique. However under weak normalization assumptions, we 
show that solutions are locally unique in a closed-ball around them. To complement the separation of 
solutions, we also show that for an equivalent problem, solutions corresponding to a different closed 
ball are separated by at least a constant amount independent of the dimension of the space.

In Section 4 we give an equality constrained variant of Newtons’ method for computing via post-
refinement the nearest rank at most matrix polynomial. The main idea is to compute an initial guess 
with a suitable first order or lift-and project method. We are able to prove that, with a suitable initial 
guess and regularity assumptions, our algorithm generally has local quadratic convergence except for 
degenerate cases. This is done by deriving closed-form expressions for the Jacobian of the constraints 
and the Hessian of the Lagrangian. When we refer to the speed of convergence, we refer to quotient 
rates as is typical in the nomenclature.

In Section 5 we describe our prototype implementation, including heuristics for starting points 
and other improvements. We discuss the numerical performance of the algorithm and give examples 
demonstrating convergence results for a low-rank approximation of matrix polynomials. The paper 
ends with a conclusion and topics for future research.
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2. Preliminaries and geometry

In this section we will introduce some basic definitions and explore the numerical geometry of 
our lower rank problem. Canonically we will let

A =
d∑

j=0

A jt
j ∈R[t]n×n

be a matrix polynomial, with coefficients A0, . . . , Ad ∈ Rn×n . In the case of rectangular matrix poly-
nomials we can pad the matrix with zeros, thus embedding the problem into one with square matrix 
polynomials. Since we are finding matrices of a prescribed reduced rank (which is presumably less 
than the row and column order), this does not affect the low rank approximation (in particular, there 
is negative benefit to introducing non-zeros into the newly introduced zero rows or columns). The 
degree deg A of A is defined as d, assuming that Ad �= 0.

We say that A is singular if det(A) is the zero polynomial in R[t], or equivalently, that there is a 
b ∈R[t]n×1 such that Ab ≡ 0. The kernel of A is ker A = {b ∈R[t]n×1 : Ab = 0} and the rank of A
is n − dim ker A (as a vector space over R(t)). Then A has rank at most n − r if there exists at least 
r linear independent vectors {bi}i=1,...,r satisfying Abi = 0.

For a ∈R[t], define

φ(a) = φ(n,d)(a) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1 a0
...

. . .

ad a0
ad a1

. . .
...

ad

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R(μ+d)×μ, (2.1)

where μ = nd + 1. φ(a) is a Toeplitz matrix. Such matrices are conveniently used to describe poly-
nomial multiplication in the sense that if c = a · b with a of degree d and c ∈R[t] of degree at most 
μ − 1, then vec(c) = φ(a) · vec(b) where vec(p) is the vector of coefficients of a polynomial.

Definition 2.1. The R-embedding of A ∈R[t]n×n is

Â =
⎛⎜⎝φ(A1,1) · · · φ(A1,n)

...
...

φ(An,1) · · · φ(An,n)

⎞⎟⎠ ∈Rn(μ+d)×nμ.

For b ∈R[t]n×1 of degree μ − 1 the R-embedding of b is

b̂ = (b1,0,b1,1, . . . ,b1,μ−1, . . . ,bn,0, . . . ,bn,μ−1)
T ∈Rnμ×1.

Note that A · b = 0, for b ∈ R[t] of degree at most μ − 1 if and only if Â · b̂ = 0 ∈ Rnμ×1. This 
property is central to our work in the coming sections.

For ease of notation we will take

N = n(μ + d) = n2d + n(d + 1), M = nμ = n2d + n and R ≥ 1

when dealing with R-embeddings in subsequent sections. We note that Â is a block-Toeplitz matrix, 
and as such one method of understanding the lower rank problem is to find close by structured 
rank deficient block-Toeplitz matrices, a typical structured low rank approximation problem. Some 
authors refer to such embeddings as a (permuted) Sylvester matrix associated with A . We avoid this 
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terminology as it is ambiguous when considering Sylvester matrices occurring in (approximate) GCD 
computations.

Unlike the standard linearizations in (Gohberg et al., 2009, Section 7.2) used to turn arbitrary de-
gree matrix pencils into linear pencils, this R-embedding is kernel preserving for matrix polynomials 
of arbitrary degree. In particular, b ∈ ker A with deg b ≤ μ implies b̂ ∈ ker Â . The R-embedding is 

also quasi-distance preserving, since ‖A‖2
F = ‖Â‖2

F
μ .

Problem 2.2. Main Problem: Given A ∈ R[t]n×n non-singular of degree d and an integer r ≤ n − 1, 
determine �A ∈ R[t]n×n , with deg �Ai j ≤ deg Ai j for all 1 ≤ i, j ≤ n, and r linearly independent 
vectors bk ∈ R[t]n×1, such that ‖�A‖ is (locally) minimized, subject to the constraint that (A +
�A)bk = 0 and ‖bk‖ = 1.

Note that this is minimizing a convex objective function subject to non-convex constraints. How-
ever, the equality constraints are linear in each argument. It is still not clear that Problem 2.2 is 
well-posed in the current form. We will prove that solutions exist, that is, there is an attainable 
global minimum value and not an infimum.

Lemma 2.3. A ∈ R[t]n×n is singular if and only if there exists a b ∈ R[t]n×1 with deg b ≤ nd = μ − 1 such 
that Ab = 0.

Proof. Suppose that A has rank s < n. By permuting rows and columns we may assume without loss 
of generality that the leading s × s submatrix of A is non-singular. There is a unique vector of the 
form

c = (b1/γ , . . . ,bs/γ ,−1,0, . . . ,0)

from Cramer’s rule such that Ac = 0, where γ ∈ R[t] is the determinant of the leading s × s minor 
of A , and all of b1, . . . , bs, γ ∈R[t] have degree at most sd ≤ nd. Multiplying through by γ , we find 
that b = γ c satisfies the requirements of the lemma. �

See (Beckermann et al., 2006, Corollary 5.5) for an alternative proof.

Lemma 2.4. A is singular if and only if Â does not have full column rank.

Proof. If A is rank deficient then there exists b ∈ R[t]n×1 with deg b ≤ μ − 1 such that Ab = 0. Â
has a non-trivial kernel and, b̂ ∈ ker Â by construction. Conversely, suppose that A has full rank. 
Then for all b ∈R[t]n×1 we have Ab �= 0 which implies that Âb̂ �= 0 or ker Â is trivial. �

We recall the Singular Value Decomposition as the primary tool for finding the distance to the 
nearest unstructured rank deficient matrix over R or C.

Definition 2.5. A Singular Value Decomposition (SVD) of C ∈RN×M is given by C = Q · � · P T , where 
Q ∈ RM×M , P T ∈ RN×N are orthogonal matrices and � = diag(σ1, . . . , σM) ∈ RM×N is a diagonal 
matrix consisting of the singular values of C in descending order of magnitude. See (Golub and Van 
Loan, 2012).

The following fact is a standard motivation for the SVD.

Fact 2.6 (Eckart and Young (1936)). Suppose C = Q �P T ∈ RN×M as above has full column rank, with 
N ≥ M . Then �C = Q diag(0, . . . , 0, −σM)P T is such that C + �C has column rank at most M − 1, 
‖�C‖F = σM , and �C is a perturbation of minimal Frobenius norm which reduces the column rank 
of C .
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Lemma 2.7. Given a non-singular A ∈R[t]n×n, and �A ∈R[t]n×n such that B = A + �A is singular, it is 
the case that ‖�̂A‖ ≥ σnμ(Â).

Proof. By Lemma 2.4 above, B̂ is not of full column rank. Thus, by Fact 2.6 ‖�̂A‖F ≥ σnμ(A). �
It follows immediately that the set of all matrices of rank at-most n − r over R[t]n×n of degree at 

most d is closed.

Theorem 2.8 (Existence of Solutions). The minimization posed in Problem 2.2 has an attainable global mini-
mum if deg�Ai, j ≤ deg Ai, j for all 1 ≤ i, j ≤ n.

Proof. Let

S ={
C ∈R[t]n×n | rank C ≤ n − r ∧ deg C ≤ d

}
∩

{
C ∈ R[t]n×n|‖C‖2

F ≤ ‖A‖2
F

}
.

S is the intersection of a closed and bounded set and a closed set, hence S is closed and bounded. 
S is isomorphic to some closed and bounded subset of Euclidean space, hence by the Heine-Borel 
theorem, S is compact. To show the set is non-empty, we note that, by the degree assumption on 
�A , �A = −A is a feasible point independent of rank.

Let C ∈ S then ‖A − C‖2
F = ‖�A‖2

F is a continuous function over a compact set. By Weierstrass’ 
theorem it has an attainable global minimum. �

It is important not to over-constrain the problem with a choice of �A , since otherwise the feasible 
set might be empty. Another reasonable choice of �A which we can handle, is that the perturba-
tion has the same coefficient structure/support as A , that is, zero terms in polynomial entries are 
preserved.

We note that this result says nothing about uniqueness or separation of solutions or any local 
properties. All that has been shown is that if the perturbations are in the same space as the input, 
and one seeks a rank at-most approximation, then there is an attainable global minimum value, i.e. 
not an infimum. If one wants a minimal solution with the rank being exactly n − r, then there is no 
guarantee that there is an attainable global minimum to Problem 2.2.

3. Rank factorization

A natural formulation of the problem that encompasses the rank implicitly is to perform a rank 
factorization and write A +�A = UV for U ∈R[t]n×(n−r) and V ∈R(t)(n−r)×n . Here UV is subject to 
some constraints that preserve the structure of �A (i.e., that we do not perturb any coefficients we 
are not allowed to, typically that deg �Ai j ≤ deg Ai j , but possibly also preserving the zero coefficients 
and not introducing a larger support). This is a non-linear least squares problem. However solutions 
are not unique. Indeed, if Z ∈ R[t](n−r)×(n−r) is unimodular (i.e., det(Z) ∈ R∗), then UZ , Z−1V is 
another rank n − r factorization, and we obtain an infinite family. While normalizing over matrix 
polynomial rank-factorizations is difficult, it is much easier to exploit the quasi-distance preserving 
property of ‖ · ‖F and look at rank-factorizations of Â , that do not necessarily correspond to U and V.

3.1. Embedded rank factorization

Definition 3.1 (Rank Factorization ). Let N = (μ + d)n, M = nμ and R > 0. A rank factorization of Â +
�̂A is given by writing Â + �̂A = U V where U ∈RN×R and V ∈RR×M are arbitrary (unstructured) 
matrices over R.
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Our goal is to find U , V with appropriate dimensions which minimize

‖�Â‖ = ‖Â − U V ‖
and such that �Â has the correct Toeplitz-block structure (i.e., it is an R-embedding of a matrix 
polynomial). This is a problem with a non-convex objective function (that is convex in each argument) 
and non-convex constraints. We note that U , V have no direct connection with U and V discussed 
earlier.

One may always write Â + �̂A this way via the SVD for fixed Â and �̂A , so in particular the 
optimal solution can be written as a rank factorization. The problem min ‖Â − U V ‖2

such that U V
has the same structure as �̂A is generally ill-posed and needs to be constrained to do any meaningful 
analysis, as there are numerous degrees of freedom. At first glance, optimizing over rank factorizations 
appears to be a harder problem than the original. However it is helpful to perform analysis on this 
formulation. In particular, we are able to prove that optimal values of �̂A that satisfy first order 
conditions (which contains all useful perturbations) are separated by a constant amount, and that 
equivalence classes of solutions are isolated. Additionally, this formulation of the problem is convex 
in each argument (but not jointly convex) and is amenable to block coordinate descent methods.

We next need to demonstrate that the condition that the matrix �Â = Â − U V is the 
R-embedding of some matrix polynomial �A ∈R[t]n×n can be phrased as a single polynomial being 
zero. Â is generated by a linear structure 

∑L
i=1 ciÂ

(i) where ci ∈ R and {Â(1), . . . , Â(L)} ⊆ RN×M . 
Define the structural enforcement function

� : RN×R ×RR×M →R as �(U , V ) =
∥∥∥∥∥

L∑
i=1

ciÂ
(i) − �Â

∥∥∥∥∥
2

F

.

We note that there exist ci such that �(�Â) = 0 if and only if �Â is an R-embedding of a matrix 
polynomial.

Problem 3.2. With Â, U , V as above, the constrained R-embedded rank factorization problem con-

sists of computing min ‖Â − U V ‖2
F subject to the constraints that U T U − I = 0 and �(U , V ) = 0. If 

R = M − 1, then this encodes all rank deficient matrix polynomials.

It is still not clear that Problem 3.2 is well-posed, as there are many degrees of freedom in V , and 
this matrix can have arbitrary rank. The enforcement of U as an orthogonal matrix (U T U − I = 0) is 
allowed for without loss of generality. Informally then we are looking at all rank factorizations where 
U is orthogonal and �(U , V ) = 0, that is, the product satisfies the block-Toeplitz structure on �̂A .

We employ the machinery of non-linear optimization to describe the geometry of the minimal 
solutions, and hence the nearest appropriately structured matrices. See (Bertsekas, 1999) for an ex-
cellent overview.

Fact 3.3 (Bertsekas (1999, Section 3.1.1)). For a sufficiently large ρ > 0, one has that2 Problem 3.2 is 
equivalent to computing a solution to the unconstrained optimization problem

	(U , V ) = min
U ,V

‖Â − U V ‖2
F + ρ‖�(U , V )‖2

F + ρ‖U T U − I‖2
F .

All the interesting solutions to the minimization of 	(U , V ) occur at stationary points. The first-
order necessary condition (on V ) of gradients vanishing gives us (slightly abusing notation)

2 ρ is sometimes known as a penalty term.
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∇V

(
‖Â − U V ‖2

F + ρ‖�(U , V )‖2
F + ρ‖U T U − I‖2

F

)
= 0

⇐⇒ U T (Â − U V ) +
(

∂

∂V
�(U , V )T

)
ρ�(U , V ) = 0.

If we assume that the constraints are active, that is U is orthogonal and that �(U , V ) = 0, then 
we have U T Â − V = 0. Of course, there is the other first order necessary condition requiring that

∇U

(
‖Â − U V ‖2 + ρ‖�(U , V )‖2 + ρ‖U T U − I‖2

)
= 0.

However, we do not need to employ this explicitly in the following.

Theorem 3.4 (Strong Separation of Objective). Suppose �̂A and �̂A
�

are distinct (local) optimal solutions 
to Problem 3.2 that satisfy first order necessary conditions. Then ‖�̂A − �̂A

�‖2 ≥ σmin(Â), where σmin(·)
is the smallest non-trivial singular value.

Proof. From the previously discussed necessary first order condition we have that there exists U ∈
RN×R , V ∈RR×M and U � ∈RN×R�

and V � ∈RR�×M such that

‖�̂A − �̂A
�‖2 = ‖U V − U �V �‖2 = ‖U U T Â − U �U �T Â‖2.

Note that R and R� need not be the same. From this we obtain the sequence of lower bounds

‖U U T Â − U �U �T Â‖2 ≥ ‖U U T − U �U �T ‖2σmin(Â)

= ‖I − U T U �U �T U‖2σmin(Â)

≥ σmin(Â).

The symmetric matrix W = U T U �U �T U is a product of matrices whose non-zero eigenvalues have 
magnitude 1. Symmetric matrices have real eigenvalues, and the non-zero eigenvalues of W will be 
±1, since U and U � are orthogonal. Thus ‖W ‖2 = 1.

W must have at least one negative eigenvalue or zero eigenvalue by the orthogonality assumption, 
since W �= I . Since W is symmetric, we can diagonalize W as a matrix with ±1 and 0 entries on the 
diagonal. It follows that ‖I − W ‖2 ≥ 1 and the theorem follows. �

While the separation bound exploited properties of the rank factorization, these bounds hold for 
all formulations of the problem.

Corollary 3.5. All locally optimal solutions satisfying first order necessary conditions are isolated modulo 
equivalence classes.

Proof. Suppose the contrary, that is that (U , V ) is a solution corresponding to �̂A and (U �, V �) is a 
solution corresponding to �̂A

�
. The objective function and constraints are locally Lipschitz continu-

ous, so let s > 0 be a Lipschitz constant with respect to ‖ · ‖F in some open neighborhood.

If we take 0 < ε <
σmin(Â)

s
such that 

∥∥∥∥(
U
V

)
−

(
U �

V �

)∥∥∥∥
F

< ε then we have that

σmin(Â) ≤ ‖�Â − �Â�‖2

≤ s

∥∥∥∥(
U
V

)
−

(
U �

V �

)∥∥∥∥
F

≤ sε

< σmin(Â),

which is a contradiction to Theorem 3.4. �
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Implicitly the matrix V parametrizes the kernel of Â . If we normalize the kernel of Â to contain 
R-embeddings of primitive kernel vectors then the matrix V can be made locally unique, although 
we do not employ this in the rank-factorization formulation directly.

Corollary 3.6. Under a suitable choice of ‖ · ‖ we have that minimal solutions are separated. In particular, 
separation holds for ‖ · ‖1 .

The proof follows immediately from equivalence of matrix norms, as norms are equivalent in a 
finite dimensional space.

While there are too many degrees of freedom to easily obtain a (locally) quadratically convergent 
minimization over the rank factorization, the rank factorization does yield non-trivial insights into the 
geometry of the solution space. In particular, the isolation of solutions indicates first order (gradient) 
methods will perform well on the problem. In the next section we will introduce a locally quadrati-
cally convergent algorithm for an equivalent form of Problem 2.2 that reduces each equivalence class 
of solutions to a single solution.

4. An iterative algorithm for lower rank approximation

In this section we propose an iterative algorithm to solve Problem 2.2 based on Newton’s method 
for constrained optimization. Sufficient conditions for quadratic convergence are that the second-order 
sufficiency holds (Wright, 2005) and local Lipschitz continuity of the objective and constraints. We en-
sure these conditions hold for non-degenerate problems by working on a restricted space of minimal 
R-embeddings that remove degrees of freedom.

4.1. Minimal system of equations

In order to compute a nearby rank n − r approximation, we want to solve the non-convex opti-
mization problem

min‖�A‖2
F subject to

{
(A + �A)B = 0,

rank(B) = r.
(4.1)

In the instance of (structured) scalar matrices the rank constraint can be enforced by ensuring 
that B has orthogonal columns3 or is in a column reduced echelon form. In the instance of matrix 
polynomials this is not sufficient, since polynomial multiples of the same vector will have linearly 
independent combined coefficient vectors. In order to apply these normalizations on the coefficient 
vectors of B we require that the columns be represented with a minimal number of equations with 
respect to B.

Definition 4.1 (Minimal R-Embedding). Suppose A ∈ R[t]n×n with R-embedding Â . The vector b ∈
R[t]n×1, with R-embedding b̂, is said to be minimally R-embedded in Â if ker Â = 〈̂b〉 (i.e., a di-
mension 1 subspace). We say that b̂ is minimally degree R-embedded in Â if (1) b̂ is minimally 
R-embedded in Â and (2) b̂ corresponds to a primitive kernel vector b, that is gcd(b1, . . . , bn) = 1.

We note that this definition ensures minimally R-embedded vectors are unique (up to scaling a 
factor), or that (Â j + �̂A j)B̂[∗, j] = 0 has a (locally) unique solution for fixed �̂A (where B̂[∗, j]
is the jth column of B̂). In the minimal embedding, we will assume, without loss of generality, 
that redundant or equations known in advance, such as 0 = 0, �Âi j = 0 or B̂i j = 0 corresponding to 
known entries are removed for some indices of i and j. If we assume that B is primitive and B̂ is 
in Column Reduced Echelon Form (CREF), then this will satisfy the minimal embedding requirements. 

3 This normalization alone is not sufficient for rapid convergence.
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Some of these trivial equations occur because of the CREF (or other) assumption, while others occur 
from over-estimating degrees of entries.

This allows us to reformulate (A + �A)B = 0 as a (bi-linear) system of equations

{(Â j + �Â j)B̂[∗, j] = 0}r
j=1 (4.2)

where the jth column of B is minimally degree embedded in the system (Â j + �Â j). We also note 
that assuming B is in a column-reduced echelon form essentially requires us to guess the pivots 
in advance of the optimal solution, which is only possible with a good initial guess. The benefit of 
this approach is that if the pivots are not guessed correctly, we are still able to compute a n − r
approximation of A .

In order to exclude trivial solutions, we can assume that the pivot elements of B have a norm 
bounded away from zero. Let N(̂bi) be a normalization vector such that N(̂bi)

T b̂i = 1 which implies 
that the CREF pivots are bounded away from zero. For example, take the pivot to have unit norm. Note 
that other normalization vectors are possible, such as N(̂bi) = b̂i (which corresponds to each column 
having a unit norm) if the initial guess is adequately close, or we could take the pivot element to be 
a monic polynomial. Of course there are several other permissible normalizations.

Define the matrix Âi to have the column b̂i = B̂[1..n, i] minimally degree embedded. We can 
express (4.2) in a vector-matrix form as follows.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Â1 + �̂A1

Â2 + �̂A2
. . .

Âr + �̂Ar

N(̂b1)
T

N(̂b2)
T

. . .

N(̂br)
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
b̂1

b̂2
...

b̂r

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
1
1
...

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.3)

has a (locally) unique solution for fixed �A .

4.2. Lagrange multipliers and optimality conditions

In order to solve (4.1) we will use the method of Lagrange multipliers (Bertsekas, 1999).
Let M(�A, B) be the vector of residuals corresponding to (4.3), then the Lagrangian is defined as

L = ‖�A‖2
F + λT M(�A,B), (4.4)

where λ = (λ1, . . . , λ# residuals)
T is a vector of Lagrange multipliers.

Definition 4.2. The vectorization of A ∈R[t]n×n of degree at most d is defined as

vec(A) = (A1,1,0, . . . ,A1,1,d,A2,1,0, . . . ,A2,1,d, . . . ,An,n,0, . . .An,n,d)
T ,

that is vec(A)) stacks the entry-wise coefficient vectors of each column on top of each other.

We will find it convenient to define x = x(�A, B) to be the combined vector of unknowns cor-
responding to �A and B. Let ∇2

xx L denote the Hessian matrix of L with respect to x and J be the 
Jacobian of the residuals of the constraints, i.e. J = ∇x M(�A, B). Necessary optimality conditions at 
a point (x∗, λ∗) (Bertsekas, 1999) are that

∇L = 0 and ker( J )T ∇2
xxL ker( J ) � 0. (4.5)

Sufficient conditions for optimality at the same point are that
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∇L = 0 and ker( J )T ∇2
xxL ker( J ) � 0. (4.6)

These conditions are known as the second-order sufficiency conditions Bertsekas (1999). We note that 
(4.6) implies that minimal solutions are locally unique, and will fail to hold if minimal solutions are 
not locally unique. The idea is to show that (4.6) holds in the minimal embedding, which allows us 
to construct an algorithm with rapid local convergence.

4.3. The Jacobian

Definition 4.3. The matrix ψ(̂b) is an alternative form of (Â + �̂A )̂b = 0 that satisfies ψ(̂b) vec(A +
�A) = 0. That is, ψ(̂b) satisfies

ψ(̂b) · vec(A + �A) = 0 ⇐⇒ (Â + �̂A )̂b = 0.

We will adopt that notation that ψ(̂bi) corresponds to ψ(̂bi) vec(Âi + �Âi) = 0. Here we use 
the bi-linearity of (4.3) to write the same system using a matrix with entries from B̂ instead of 
vec(A + �A).

The closed-form expression for the Jacobian of the residuals (up to permutation) in (4.3) is given 
by (assuming N(̂b j )̂b j is a quadratic function of b̂ j )

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ(̂b1) Â1 + �̂A1

ψ(̂b2) Â2 + �̂A2
...

. . .

ψ(̂br) Âr + �̂Ar

0 2N(̂b1)
T

0 2N(̂b2)
T

...
. . .

0 2N(̂br)
T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.7)

Unlike the case of a single kernel vector in (Giesbrecht et al., 2017), J may be rank deficient since 
some equations corresponding to low (high) index entries may be redundant at the solution. The 
Lagrange multipliers will not be unique in this particular scenario and the rate of convergence may 
degrade if Newton’s method is used. In the instance of r = 1 then we present the following result 
(Giesbrecht et al., 2017).

Theorem 4.4. Suppose that r = 1 and ̂b1 is minimally degree R-embedded in Â1, then J has full rank when 
(4.5) holds.

Proof. We show that J has full row rank by contradiction. If this matrix was rank deficient, then one 
row is a linear combination of the others. This means that one of the equations in the constraints 
is trivial or the solution is not regular (see (Bertsekas, 1999, Section 3.1)). As we are only concerned 
about regular solutions, this contradicts the minimal R-embedding. �

The corollary to this is that in the minimal embedding regularity conditions hold and it is straight-
forward to obtain rapid local convergence.

4.4. The Hessian

The Hessian matrix, ∇2 L is straightforward to compute as

∇2L =
(∇2

xxL J T

J 0

)
.
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The following theorem shows that second-order sufficiency holds for the instance of r = 1. The case 
of r > 1 follows immediately by induction. This is in contrast to Theorem 4.4, which does not always 
hold for r > 1.

Theorem 4.5 (Second Order Sufficiency Holds). Suppose that Â + �̂A has a minimally degree R-embedded 
kernel vector ̂b, i.e. r = 1 in (4.4), then at a minimal solution, the second order sufficiency condition (4.6) holds 
in the minimal embedding of ̂b.

Proof. If ‖�A‖ = 0 at the local minimizer (x∗, λ∗) then

∇2
xxL(x�, λ�) =

(
2I

0

)
and K = ker∇2

xxL(x�, λ�) = span

(
0

I

)
.

We have that for y ∈ span(K ) such that J y = 0 implies that Â y = 0 and N(̂b)T y = 0. It follows 
that ker Â = span(̂b), thus we have y = b̂ or y = 0 via the minimal R-embedding, thus y = 0 as 
b̂ /∈ span(K ). Hence, second-order sufficiency holds, as ker J ∩ K = 0.

If ‖�A‖ �= 0 then we have that

∇2
xxL(x�, λ�) =

(
2I 0
0 0

)
︸ ︷︷ ︸

H

+
(

0 E T

E 0

)
︸ ︷︷ ︸

E

.

The matrix E is linear in λ, however the precise tensor decomposition is irrelevant to the proof. If E
has full rank, then ∇2

xx L has full rank and we are done, so suppose that E is rank deficient. If E is rank 
deficient, then one can eliminate a row of E and column of E T without affecting H via symmetric 
row and column updates. We observe that ker(H + E) ⊆ ker H and the result follows. �
Corollary 4.6. Suppose that r > 1 in (4.4) and B is minimally degree embedded, then second-order sufficiency 
(4.6) holds.

Proof. The proof is almost the same as Theorem 4.5 and follows by induction on r since each block 
is decoupled. �

We now have all of the ingredients for an iterative method with rapid local convergence.

4.5. Iterative post-refinement

Newton’s method for equality constrained minimization problems can be interpreted as solving 
the non-linear system of equations ∇L = 0. Newton’s method is based on the iterative update scheme(

xk+1

λk+1

)
=

(
xk + �xk

λk + �λk

)
such that ∇2L

(
�x
�λ

)
= −∇L. (4.8)

If r = 1 then ∇2 L has full rank and the iteration is well defined by matrix inversion. If r > 1 then we 
consider the quasi-Newton method defined as(

xk+1

λk+1

)
=

(
xk + �xk

λk + �λk

)
such that

(∇2
xxL J T

J −μk I

)(
�x
�λ

)
= −∇L (4.9)

for a suitably chosen parameter μk . Taking μk = ‖∇L(xk, λk)‖1 one has provably quadratic conver-
gence (Wright, 2005, Theorem 4.2) with xk and λk chosen sufficiently close to the optimal solution.

Theorem 4.7. The iteration (4.9) converges quadratically to (x�, λ�) if (x0, λ0) are chosen sufficiently close to 
(x�, λ�).
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We now have a method to compute a nearby rank deficient matrix polynomial with a rate of 
convergence that is quadratic, provided that the initial values of x are chosen to be sufficiently close 
to the optimal solution.

5. Implementation, description and comparison

In this section we discuss implementation details and demonstrate our implementation for com-
puting the nearest rank deficient matrix polynomial. All algorithms are implemented in Maple 2016. 
All experiments are done using quad precision floating point arithmetic, with about 35 decimal digits 
of accuracy. We compare some degree one examples to the recent results of (Guglielmi et al., 2017).

To compute an approximate kernel vector, first we use the SVD to compute an approximate kernel 
of an R-embedded (nearly) rank deficient matrix polynomial. Next we use structured orthogonal 
elimination R Q (L Q ) decomposition to produce a minimally (degree) R-embedded vector from the 
kernel. In the case of several kernel vectors we use a modified Gaussian elimination on an embedding 
of an approximate kernel obtained by the SVD and approximate GCD to find nearby approximate 
kernel vectors that are primitive.

5.1. Description of algorithm

We now formally describe an algorithm for computing the nearest matrix polynomial of a pre-
scribed rank. The algorithm has no global convergence guarantees, however a globally convergent 
(although not necessarily optimal) algorithm can be developed in a straightforward manner via aug-
menting our second order algorithm with a first order one, and removing content from kernel vectors 
if necessary.

The size of ∇2L is O (r2n4d2) and accordingly each iteration has a cost of O (r6n12d6) flops using 
standard matrix multiplication, where r is the dimension of the kernel.

Algorithm 1 Iterative Kernel Post-Refinement.

Require:
• Full rank matrix polynomial A ∈R[t]n×n

• (Approximately) Rank deficient matrix polynomial C ∈R[t]n]×n

• Approximate kernel vectors c1, . . . , cr ∈R[t]n×1 of the desired degree/displacement structure
• Displacement structure matrix �A to optimize over

Ensure:
• Singular matrix A + �A with B ⊂ ker(A + �A) or an indication of failure.

1: R-Embed A, C, c1, . . . , cr and �A .
2: Compute Lagrangian L from Section 4.2.
3: Initialize λ via linear least squares from ∇L|x = 0.

4: Compute 
(

x + �x
λ + �λ

)
by solving (4.9) until 

∥∥∥∥(
�x
�λ

)∥∥∥∥
2

is sufficiently small or divergence is detected.

5: Return the locally optimal �A and B or an indication of failure.

5.2. Nearest rank deficient linearly and affinely structured matrix

In this section we consider Examples 2.10, 2.11 and 2.12 from Guglielmi et al. (2017), where we 
compare our results to real perturbations. Note that complex perturbations are a straight-forward 
generalization of the theory presented here, and can be re-formulated as a problem over R.

The technique of Guglielmi et al. (2017) poses computing a nearby rank-deficient linear matrix 
pencil by verifying that sufficiently many images of the matrix polynomial are singular, so that 
det(A + �A) ≡ 0. The problem is then posed as a solution to a system of Ordinary Differential 
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Equations (ODE), assuming that certain genericity conditions on the eigenvalues of the solution hold.4

They consider the instances of computing A0 and A1 with a common kernel vector, and the instance 
where A0 and A1 do not have a common kernel. Additionally, perturbations affecting only one of A0
and A1 are considered. We note that the solutions to the ODEs do not necessarily satisfy necessary 
optimality conditions (4.5), and accordingly will generally not be local minimizers.

5.2.1. Nearest affinely structured Examples I
Consider first the matrix polynomial

A =
⎛⎝0 0 0

0 0 1
0 1 0

⎞⎠
︸ ︷︷ ︸

A1

t +
⎛⎝ 0 0.0400 0.8900

0.1500 −0.0200 0
0.9200 0.1100 0.06600

⎞⎠
︸ ︷︷ ︸

A0

coming from Examples 2.10 and 2.12 of Guglielmi et al. (2017)

Example 5.1. If we assume that A1 is constant, then this is finding the (locally) nearest matrix poly-
nomial with an affine structure since A1 has non-zero fixed constants. First let’s assume that zero 
entries are preserved, this is a linear structure on A0.

To compute an initial guess for b we use the SVD on Â and extract a guess from the smallest 
singular vector. This gives us

binit =
⎛⎝−0.41067t3 + 0.50576t2 − 0.26916t − 0.035720

0.38025t2 − 0.51139t + 0.30674
0.027012t2 − 0.028083t + 0.010715

⎞⎠ .

For an initial guess on A we take Ainit = A . Note that we do not need an initial guess that is 
singular, it just needs to be “sufficiently close” to a singular matrix polynomial.

If we do not allow perturbations to zero-coefficients, that is, A0[1, 1] and A0[2, 3] may not be per-
turbed, then after five iterations of plain Newton’s method (see (Giesbrecht et al., 2017)) we compute

�A0 ≈
⎛⎝ 0.0 −0.094149 −0.0057655

−0.093311 0.026883 0.0
0.0057142 −0.0016462 −0.00010081

⎞⎠
with perturbation ‖�A‖F ≈ 0.135507.

A corresponding (approximate) kernel vector is

b ≈
⎛⎝0.73073t + 0.082126

−0.67644
−0.041424

⎞⎠ .

Example 5.2. If we allow perturbations to zero-coefficients in A0 then after five rounds of plain New-
ton’s method we compute

�A0 ≈
⎛⎝ 0.0 −0.094179 −0.0057705

−0.093280 0.026786 0.0016412
0.0057154 −0.0016412 −0.00010056

⎞⎠
with perturbation ‖�A‖F ≈ 0.135497, which is a marginal improvement over the previous example. 
A corresponding approximate kernel vector is

4 Our algorithm and convergence theory does not explicitly rely on genericity assumptions or other properties of eigenvalues, 
however we do exploit generic properties in formulating initial guesses.
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b ≈
⎛⎝0.73073t + 0.082131

−0.67644
−0.041447

⎞⎠ .

Guglielmi et al. (2017) report an upper-bound on the distance to singularity allowing com-
plex perturbations, that is �A ∈ C[t]n×n of ‖�CA‖F ≈ 0.1357 in Example 2.10. In Example 2.12, 
Guglielmi et al. (2017) report an upper-bound on the distance to singularity allowing real perturba-
tions, ‖�RA‖F ≈ 0.1366. Although we only consider real perturbations, both bounds are improved. 
We conjecture that the complex bound can be improved further.

If we allow perturbations to A0 and A1, then this is some form of finding the nearest rank deficient 
matrix polynomial. The question is whether to allow degree or support preserving perturbations. 
Again, we will use the same initial guesses as the previous example.

Matrix degree preserving perturbations are of the form

�degA =
⎛⎝t A1,1,1 + A1,1,0 t A1,2,1 + A1,2,0 t A1,3,1 + A1,3,0

t A2,1,1 + A2,1,0 t A2,2,1 + A2,2,0 t A2,3,1 + A2,3,0
t A3,1,1 + A3,1,0 t A3,2,1 + A3,2,0 t A3,3,1 + A3,3,0

⎞⎠ ,

where as support preserving perturbations are of the form

�supA =
⎛⎝ 0 A1,2,0 A1,3,0

A2,1,0 A2,2,0 A2,3,1t
A3,1,0 t A3,2,1 + A3,2,0 A3,3,0

⎞⎠ .

Example 5.3. In the instance of degree preserving perturbations we compute after five iterations of 
Newton’s method

�degA ≈
⎛⎝ 0.0036502 0.0039174t − 0.066405 0.00011839t − 0.0020069

−0.066897 0.058993t + 0.029807 0.0017829t + 0.00090082
0.0059893 −0.0053098t − 0.0024133 −0.00016047t − 0.000072934

⎞⎠
with ‖�degA‖ ≈ 0.115585.

A corresponding approximate kernel vector is

b ≈
⎛⎝−0.72941t − 0.080355

0.67903
0.020522

⎞⎠ .

Example 5.4. In the instance of support preserving we compute after five iterations of Newton’s 
method,

�supA ≈
⎛⎝ 0.0 −0.094311 −0.0057928

−0.092552 0.026973 0.0051028t
0.0057434 −0.0051554t − 0.0016739 −0.00010281

⎞⎠
with ‖�supA‖ ≈ 0.135313. A corresponding approximate kernel vector is

b ≈
⎛⎝−0.72895t − 0.082339

0.67832
0.041664

⎞⎠ .

Guglielmi et al. (2017) report an upper-bound on the distance to singularity of ‖�degA‖F ≈ 0.1193
in Example 2.12. This bound is larger than the one computed in Example 5.3.
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5.3. Nearest affinely structured Examples II

Example 5.5. Next we consider the matrix polynomial A in Example 2.11 of (Guglielmi et al., 2017) 
defined as

A =
⎛⎝−1.79 0.10 −0.6

0.84 −0.54 0.49
−0.89 0.3 0.74

⎞⎠
︸ ︷︷ ︸

A0

+
⎛⎝0 0 0

0 0 1
0 1 0

⎞⎠
︸ ︷︷ ︸

A1

t.

To compute an initial guess for we take Ainit = A and take

binit =
⎛⎝−0.16001t3 − 0.10520t2 + 0.15811t + 0.11409

0.14980t3 − 0.51289t2 − 0.18616t + 0.54098
0.20801t3 + 0.26337t2 − 0.44619t − 0.027979

⎞⎠ .

binit is computed from the smallest singular vector of Â .
We note that this initial guess does not attempt to find a nearby singular matrix polynomial for 

the initial guess, all that is needed is ∇L(xinit , λinit) is reasonably small to obtain convergence.
Using a globalized variant of Newton’s method based on Levenberg-Marquardt we compute

�A =
⎛⎝0.047498t + 0.17772 0.44989t + 0.12420 −0.091945t − 0.068210

0.20979t + 0.078872 −0.094205t + 0.41583 −0.037916t − 0.094081
0.082862t − 0.15413 −0.58334t + 0.12940 0.081637t + 0.017208

⎞⎠ ,

with ‖�A‖F ≈ 0.949578. The corresponding approximate kernel vector is

b =
⎛⎝−0.29258t − 0.21491

0.044825t − 0.90281
0.068189t + 0.21562

⎞⎠ .

If we use the result of (Guglielmi et al., 2017) as the initial guess, then we compute

binit =
⎛⎝ 0.16409t2 + 0.25146t + 0.12362

−4.5353 × 10−14t2 + 0.23740t + 0.55516
1.2457 × 10−13t2 − 0.48688t − 0.0060443

⎞⎠ .

We will assume the entries of b are degree at most two.
After five iterations of Newton’s method we obtain

�A =
⎛⎝ 0.17257 0.12237t + 0.25225 −0.46902t + 0.087147

0.21449 0.15210t + 0.31353 −0.58296t + 0.10832
−0.055963 −0.039685t − 0.081803 0.15210t − 0.028261

⎞⎠ ,

with ‖�A‖ ≈ 0.94356416.
The corresponding approximate kernel vector is

b =
⎛⎝0.18971t2 + 0.29750t + 0.14667

0.27896t + 0.66186
−0.58143t − 0.0079694

⎞⎠ .

The previously noted small quadratic terms were at roughly machine precision (the computation is 
done with 35 digits of precision) and truncated.

Guglielmi et al. (2017) obtain a result on this past example that produces an upper bound on 
the distance to singularity of 0.9438619. Their computation is accurate to seven decimal points, and 
accordingly our post-refinement has an improvement of about 0.000297. This is not surprising, since 
we solve the necessary conditions (4.5) directly with a reasonable initial guess.
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5.4. Lower rank approximation of a 4 × 4 matrix

In this following example we consider computing a lower-rank approximation to a given matrix 
polynomial. Consider the 4 × 4 matrix polynomial A , defined as

A = A0 + A1t + A2t2 + A3t3, where

A0 =

⎛⎜⎜⎝
0.09108776 −0.05442464 0.3645006 0.01821543
−0.1456436 0.03647524 −0.07277662 0.07305016
0.05478714 −0.05444916 0.4373220 0.05478385
−0.1274211 0.09124859 −0.6556615 −0.05446850

⎞⎟⎟⎠ ,

A1 =

⎛⎜⎜⎝
0.09116729 0.00001797690 0.2550857 0.05475106

0.0001156514 0.00001659159 0.09108906 −0.05447104
0.05470823 0.03662426 0.1276959 0.03650378
0.05472202 −0.1091389 0.1458359 −0.09090507

⎞⎟⎟⎠ ,

A2 =

⎛⎜⎜⎝
0.01833149 0.03661770 0.01824331 0.03660918
0.01837542 −0.05442525 0.0 0.01832234
0.01841784 0.00003900436 0.0 0.01836515
0.01840752 0.00001508311 0.01839699 0.03659170

⎞⎟⎟⎠ ,

A3 =

⎛⎜⎜⎝
0.0 0.01837967 0.0 0.0
0.0 0.01843603 0.0 0.0
0.0 0.01829203 0.0 0.0
0.0 0.01842778 0.0 0.0

⎞⎟⎟⎠ .

Example 5.6. We will consider a displacement structure on the kernel as well in this example, where 
higher-order zero terms are not perturbed from the initial guess. For the entries of �A we preserve 
higher-order zero terms, and allow low-order terms to be perturbed. This is a linearly structured 
problem, on both the main variable �A and the auxiliary kernel variable B.

To ensure the rank constraint holds, we will additionally assume that the kernel, B̂ is in a CREF 
(while B is obviously not) and the columns have unit norm. This normalization is (locally) equivalent 
to the ones discussed in Section 4.2. Having B̂ in a CREF ensures that the two kernel vectors are 
locally linearly independent during the iteration. Of course perturbing both pivots to zero is possible 
(although this is sub-optimal). In such a scenario linear independence can no longer be guaranteed, 
and the iteration would need to be re-ininitialized.

For the initial guess we use A init = A and take Binit as⎛⎝ 0.1954059t2 0.0
−0.2526800t−0.7681472 −0.06131396t2−0.1839419t+0.7357675

−0.05727413t2−0.01010720t−0.1280246 −0.06131396t3−0.06131396t+0.1226279
0.05727413t2+0.4683004t+0.2560491 0.06131396t3+0.4905117t2−0.3065698t−0.2452558

⎞⎠ .

Using Algorithm 1 we compute after nine iterations

�A0 =

⎛⎜⎜⎝
0.00003841866 −0.0001970606 −0.00002444167 −0.000003273264
0.00001831140 −0.00009026377 0.00002067189 −0.0001255102
−0.0001265513 −0.0001595407 0.00003425737 −0.00007523197
−0.00007666528 −0.0002773970 0.00004057408 −0.0001720881

⎞⎟⎟⎠ ,

�A1 =

⎛⎜⎜⎝
0.00001508776 0.00003166597 0.00004647888 −0.0001142308

−0.00005872595 −0.00004487730 0.00004547421 −0.0001483973
0.00002056901 −0.0001596527 −0.000006413632 −0.00006541721

−0.00003695701 −0.0001773889 0.00004119722 −0.0002159825

⎞⎟⎟⎠ ,
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�A2 =

⎛⎜⎜⎝
−0.00003352295 −0.0001190577 0.00005687700 −0.0001783770
0.00001768442 −0.0001467423 0.0 −0.00008587235

−0.00006506345 0.00005243135 0.0 −0.0001686619
−0.0001471227 −0.0001295490 −0.00001105246 −0.0001124559

⎞⎟⎟⎠ ,

�A3 =

⎛⎜⎜⎝
0.0 −0.0001025690 0.0 0.0
0.0 −0.0001315095 0.0 0.0
0.0 −0.00002763942 0.0 0.0
0.0 −0.0001877673 0.0 0.0

⎞⎟⎟⎠ ,

with ‖�A‖ ≈ 0.0007844.
An approximate kernel, B is given by⎛⎝ 0.1955493t2+0.0006874986t−0.001013023 0.0

−0.2542383t−0.7686061 −0.06128819t2−0.1818298t+0.7368313
−0.05698735t2−0.01004111t−0.1276311 −0.06125293t3−0.0002486115t2−0.06112324t+0.1226783

0.05795811t2+0.4677475t+0.2541290 0.06151690t3+0.4894569t2−0.3069667t−0.2452396

⎞⎠ .

A natural question is what happens if we change the displacement structure on the kernel? To 
investigate this behavior, we consider an equivalent representation of the previously used kernel, 
except that B is in a CREF directly.

Example 5.7. If we change the kernel Binit to be⎛⎝ 0.1581139t3+0.1581139t−0.3162278 0.03965258t3+0.3172206t2−0.1982629t−0.1586103
−0.1581139t2−0.4743417t−0.6324556 −0.03965258t2−0.4361784t−0.7930516

0.0 0.07930516t−0.07930516
0.3162278t−0.3162278 0.0

⎞⎠ ,

used in the initialization of the previous example, then we compute a perturbation with ‖�A‖ ≈
0.0008408.

In either case, we obtain comparable answers that are a reasonable lower-rank approximation, 
and can likely be improved by relaxing restrictions on the displacement structure on B or B̂. It is 
important to note that relaxing the degree bounds to be (n − r)d in general on all non-zero entries 
(where entries are zero if they are in the same row as a CREF pivot) will likely lead to a better 
approximation, however one may lose quadratic convergence if doing so, since iterates may no longer 
have primitive kernel vectors, and (4.6) will no longer hold. As discussed in Section 4, it is generally 
difficult to determine the CREF pivots of the kernel unless the initial guess is very accurate.

The structure of the kernel is an important consideration when deciding upon an initial guess. It 
is preferable to restrict fewer coefficients, however the iteration requires a better initialization due 
to the increased number of possible descent directions. In such scenarios for maximum flexibility, a 
globalized variant of Newton’s method is required. Like-wise, the structure for �A is also an im-
portant choice. Restricting which terms can be changed has a large influence on the (approximate) 
distance to singularity (of prescribed kernel dimension).

Another way to approach the lower-rank approximation problem is to use alternating projections 
or alternating directions of descent (since the objective is bi-linear with bi-linear constraints, it is con-
vex in each argument) on the rank factorization in Section 3. Since solutions in one coordinate, �A

are isolated, one can expect linear convergence with a reasonable algorithm. The lack-of normaliza-
tion required overcomes the difficulty of choosing a suitable kernel displacement structure, however 
convergence would be linear at best and determining the dimensions of U and V is another prob-
lem to be discussed. It is also worth noting that Algorithm 1 requires more computational resources 
per iteration as r increases, however a rank factorization requires fewer computational resources per 
iteration as r increases.
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6. Conclusions and future work

We have shown that finding lower-rank approximations of matrix polynomials can be established 
as a numerically well-posed problem and is amenable to first and second order optimization meth-
ods. The existence and isolation of solutions is established along with an algorithm exploiting affine 
structures to obtain locally quadratic convergence under mild normalization assumptions.

Along with considering the lower-rank approximation of matrix polynomials, we present a general-
ization of the theory to matrix polynomials with an arbitrary affine structure. We provide examples of 
how the structure of permissible perturbations and prescribed kernel structure impacts the distance 
to solutions.

We also regard this current paper as a first step towards a formally robust approach to non-linear 
matrix polynomials, in the spirit of recent work with symbolic-numeric algorithms for polynomials. 
Problems such as approximate matrix polynomial division, GCRD and factorization all have applica-
tions which can benefit from these modern tools.
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