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ABSTRACT
Matrix polynomials appear in many areas of computational alge-

bra, control systems theory, di�erential equations, and mechanics,

typically with real or complex coe�cients. Because of numerical

error and instability, a matrix polynomial may appear of consid-

erably higher rank (generically full rank), while being very close

to a rank-de�cient matrix. “Close” is de�ned naturally under the

Frobenius norm on the underlying coe�cient matrices of the ma-

trix polynomial. In this paper we consider the problem of �nding

the nearest rank-de�cient matrix polynomial to an input matrix

polynomial, that is, the nearest square matrix polynomial which

is algebraically singular. We prove that such singular matrices at

minimal distance always exist (and we are never in the awkward

situation having an in�mum but no actual matrix polynomial at

minimal distance). We also show that singular matrices at minimal

distance are all isolated, and are surrounded by a basin of a�raction

of non-minimal solutions. Finally, we present an iterative algorithm

which, on given input su�ciently close to a rank-de�cient matrix,

produces that matrix. �e algorithm is e�cient and is proven to

converge quadratically given a su�ciently good starting point. An

implementation demonstrates the e�ectiveness and numerical ro-

bustness in practice.
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1 INTRODUCTION
We consider the problem of computing the nearest rank-de�cient

matrix polynomial to an input matrix polynomial in R[t]n×n , i.e.,

�nding the nearest matrix polynomial which is singular, with a

determinant that is identically zero. In an exact se�ing, determining

the rank or determinant of a matrix polynomial is more straightfor-

ward, and very e�cient procedures are available [35]. However, in

many applications, including control systems engineering, a trans-

fer function is speci�ed by a matrix polynomial with �oating point

coe�cients. Due to input error and imprecise representations, most

such matrix polynomials will be generically of full rank despite
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possibly being (numerically) very close to a singular one. Instead

of computing the rank of the given matrix polynomial exactly, a

more natural �rst question is to ask how far away it is from one

that is rank-de�cient, and then to �nd one at that distance. In the

case of unstructured matrices with constant entries this problem

is solved via the Singular Value Decomposition (SVD). However,

in the case of matrix polynomials no equivalent rank revealing

factorization has thus far been available. As a �rst step we consider

the problem of �nding a nearby singular matrix polynomial, which

in many instances is expected to be a more appropriate object for

algorithmic consideration.

To proceed, we need to de�ne a reasonable metric on the space

of matrix polynomials, for which we use the common Frobenius

norm. For A ∈ R[t]n×n , with (i, j ) entry Ai j ∈ R[t], we de�ne the

Frobenius norm

‖A‖2 = ‖A‖2F =
∑

1≤i,j≤n
‖Ai j ‖

2, (1.1)

where, for a ∈ R[t], the coe�cient 2-norm is de�ned by

a =
∑

0≤i≤dega

ai t
i , ‖a‖2 = ‖a‖2

2
=

∑
0≤i≤dega

a2

i . (1.2)

In this paper we address the following question:

Main Problem: Nearest singular matrix polynomial. Given
A ∈ R[t]n×n of full rank (non-zero determinant), compute ∆A ∈

R[t]n×n with deg(∆Ai j ) ≤ degAi j (or similar degree constraints to
be speci�ed later), such thatA+∆A is singular (i.e., det(A+∆A) ≡
0) with ‖∆A‖ minimized.

Note that the above statement is still somewhat ill-posed, and

we re�ne the statement below.

�e main results in this paper are:

1. We characterize the geometry of minimal solutions:

(a) We show that minimal solutions exist. �at is, there

exists a ∆A ∈ R[t]n×n of minimal norm such that

det(A + ∆A) ≡ 0 and meeting the required degree

constraints on perturbed coe�cients.

(b) We show that minimal solutions are isolated and are

surrounded by a non-trivial open neighborhood of

non-minimal solutions.

2. We provide e�cient algorithms as follows:

(a) On input A ∈ R[t]n×n su�ciently close to a singu-

lar matrix polynomial, we give an iterative scheme

which converges to a rank-de�cient matrix polyno-

mial at minimal distance, at a provably quadratic rate

of convergence.

(b) We provide a Maple implementation which demon-

strates the convergence and numerical robustness of

our iterative scheme.
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1.1 Previous research
Much of the work in this area has o�en been done under the

moniker of matrix pencils, which generally means matrix polynomi-

als but restricted to the linear case. �at is, matrix polynomials of

the form A = A0+A1t forA0,A1 ∈ R
n×n

. See [19] for an excellent

overview. Non-singular/full rank square matrix polynomials are

sometimes referred to as regular matrix pencils.
�e problem of nearest rank-de�cient or singular matrix pencil

was posed for linear matrix pencils in [10] and followed up in [9].

�e nearest singular matrix polynomial relates to the stability of

linear time invariant systems and di�erential-algebraic equations

studied subsequently in [23, 27]. For non-linear matrix polynomi-

als/pencils, previous works rely on embedding a non-linear (degree

greater than 1) matrix polynomial into a linear matrix polynomial

of much higher order. �eorem 1.1 and Section 7.2 of [19] shows

that any regular A ∈ R[t]n×n of degree d , is equivalent to a linear

matrix polynomial B = B0 + tB1, for B0,B1 ∈ R
nd×nd

. However,

this equivalence is (obviously) not an isomorphism, nor is it dis-

tance preserving. Hence a nearby singular matrix polynomial to

B ∈ R[t]nd×nd (even when constrained to a degree one pertur-

bation) almost certainly does not correspond to a nearby singular

matrix polynomial to A ∈ R[t]n×n . Moreover, even if one was

to perturb to a rank-reduced matrix within the image of the lin-

earization, the inverse image would not necessarily have reduced

rank. In [28] a more sophisticated linearization with an eye towards

ameliorating this is explored.

In the context of computer algebra the notion of symbolic-numeric

algorithms for polynomials has been an active area of research for

a number of years, and the general framework of �nding nearby

instances with a desired algebraic property is being thoroughly

explored. Closest to our work here is work on approximate GCD

[4, 5, 12], and especially optimization-based approaches employing

the Structured Total Least Norm algorithm [25, 26, 29, 36] and Rie-

mannian SVD [8]. More recently, we have explored computing the

approximate GCRD of (non-commutative) di�erential polynomials

[17, 18] and resolve similar issues.

�e computer algebra community has made impressive progress

on fast, exact algorithms for matrix polynomials, including nearly

optimal algorithms for computing ranks, factorizations and var-

ious normal forms; see [24] and references therein for a recent

overview. Part of our goal in this current paper is establish a basis

for extending the reach of these symbolic techniques to matrices of

polynomials with �oating point coe�cients.

In a more general se�ing our problem can be formulated as a

Structured Low Rank Approximation (SLRA) problem. A popular

method to solve SLRA problems is the Structured Total Least Norm

(STLN) approach [32, 33]. �ese are iterative methods and in gen-

eral their convergence to stationary points is linear (�rst order),

rather than quadratic, unless additional assumptions are made. In

the event STLN converges to a solution, there may be other solu-

tions arbitrarily nearby unless the Hessian is de�nite. �e SLRA

problem is a non-linear least squares problem and accordingly other

techniques such as the Restricted and Riemannian SVD [13–15]

provide general tools for solving such problems. Other heuristic

tools applicable to our problem include variable projection [20, 21]

and Newton’s method [1]. We would expect these to perform very

poorly in our case, as one can expect problems with large residuals

to perform poorly and the rational function arising from variable

projection can be too costly to deal with for modestly sized prob-

lems. �e problem may also be considered as optimization on a

manifold [2], however we do not explicitly consider this approach.

For a detailed survey of linear structured low-rank approximation,

see [30, 31].

Other methods for structured low-rank approximation involve

the family of li� and project algorithms, with the best known being

Cadzow’s algorithm [11]. More recently [34] gives a sequence of

alternating projections that provably converge quadratically to a

�xed point. However, li� and project algorithms do not generally

satisfy necessary �rst order optimality conditions, and while they

may converge (quickly) to a �xed point, there is no guarantee that

the �xed point is an optimal solution, though it is usually quite good.

In any case, for speci�c problems such as ours, understanding the

geometry of the minimal solutions (and hence the well-posedness

of the problem) is key to e�ective algorithms for their computation.

A related but di�erent problem is Wilkinson’s problem. Given

a linear matrix pencil A0 + tA1, it seeks the nearest matrix pencil

which is defective, or such that it does not have complete basis of

(generalized) eigenvectors. More generally, for a matrix polynomial

A ∈ R[t]n×n a defective matrix pencil is one whose Smith form is

non-trivial, that is, does not equal diag(1, . . . ,1,det(A)). A number

of techniques have been developed to �nd the nearest defective

linear matrix pencil, see [3] for recent results and a survey. While

this problem has a related (and somewhat more di�cult) geometry,

we hope that our techniques can be extended to this problem for

non-linear matrix polynomials.

1.2 Outline
In Sections 2 and 3 we describe tools needed for our constructions

and then explore the geometry of our problem. We show that

the problem is locally well-posed. One cannot expect the nearest

singular matrix polynomial to be unique. However under weak nor-

malization assumptions, we show that solutions are locally unique

in a closed-ball around them. To complement the separation of

solutions, we also show that solutions corresponding to a di�erent

closed ball are separated by at least a constant amount independent

of the dimension of the space.

In Section 4 we give an equality constrained variant of New-

tons’ method for computing via post-re�nement the nearest rank-

de�cient matrix polynomial. �e main idea is to compute an initial

guess with a suitable �rst order or li�-and project method. We are

able to prove that, with a suitable initial guess and regularity as-

sumptions, our algorithm generally has local quadratic convergence

except for degenerate cases. �is is done by deriving closed-form

expressions for the Jacobian of the constraints and the Hessian of

the Lagrangian. We make explicit use of these closed-forms and

prove that they have full rank in non-trivial open neighborhoods

around solutions.

In Section 5 we describe our prototype implementation, including

heuristics for starting points and other improvements. We discuss

the numerical performance of the algorithm and give examples

demonstrating convergence. �e paper ends with a conclusion and

topics for future research.
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2 PRELIMINARIES AND GEOMETRY
In this section we will introduce some basic de�nitions and explore

the numerical geometry of our problem. Canonically we will let

A =

d∑
j=0

Aj t
j ∈ R[t]n×n

be a matrix polynomial, with coe�cientsA0, . . . ,Ad ∈ R
n×n

. �rough-

out this paper we will present our results for square matrix polyno-

mials, though much of the theory can be generalized in a straight-

forward manner for non-square matrix polynomials and complex

valued ones. �e degree degA of A is de�ned as d , assuming that

Ad . 0.

We say that A is singular if det(A) ≡ 0 as a polynomial in R[t],
or equivalently, that there is a non-trivial vector b ∈ R[t]n×1

such

that Ab ≡ 0. �e kernel of A is kerA = {b ∈ R[t]n×1
: Ab ≡ 0}

and the rank of A is n − dim kerA (as a vector space over R(t )).
For a ∈ R[t], de�ne

ϕ (a) = ϕ (n,d ) (a) =

*..............
,

a0

a1 a0

...
. . .

ad a0

ad a1

. . .
...

ad

+//////////////
-

∈ R(µ+d )×µ , (2.1)

where µ = nd + 1. ϕ (a) is a Toeplitz matrix corresponding to

polynomial multiplication of a ·b where a has degree d and b ∈ R[t]
has degree at most µ − 1.

De�nition 2.1. �e R-embedding of A ∈ R[t]n×n is

Â =
*...
,

ϕ (A1,1) · · · ϕ (A1,n )
...

...

ϕ (An,1) · · · ϕ (An,n )

+///
-

∈ Rn (µ+d )×nµ .

For b ∈ R[t]n×1
of degree µ − 1 the R-embedding of b is

b̂ = (b1,0,b1,1, . . . ,b1,µ−1, . . . ,bn,0, . . . ,bn,µ−1)
T ∈ Rnµ×1.

Note that Ab = 0, for b ∈ R[t] of degree at most µ − 1 if and only

if Âb̂ = 0 ∈ Rnµ×1
.

For ease of notation we will take N = n(µ + d ), M = nµ and

R ≥ 1 when dealing with R-embeddings in subsequent sections.

We note that Â is a block-Toeplitz matrix, and as such one method

of understanding the problem is to �nd the nearest structured

rank de�cient block-Toeplitz matrix, a typical structured low rank

approximation problem.

Unlike the standard linearizations in [19] (Section 7.2) used to

turn arbitrary degree matrix pencils into linear pencils, this R-

embedding is rank preserving for matrix polynomials of arbitrary

degree. In particular, b ∈ kerA with deg b ≤ µ implies b̂ ∈ ker Â.

�e R-embedding is also quasi-distance preserving, since ‖A‖2F =

‖Â ‖
2

F
µ .

Problem 2.2. Re�ned Main Problem:
Given A ∈ R[t]n×n non-singular of degree d as above, determine
∆A ∈ R[t]n×n , with deg(∆A)i j ≤ degAi j for all 1 ≤ i, j ≤ n, and
b ∈ R[t]n×1, such that ‖∆A‖ is (locally) minimized, subject to the
constraints that (A + ∆A)b = 0 and ‖b‖ = 1.

Note that this is minimizing a convex objective function subject

to non-convex constraints. However, the equality constraints are

linear in each argument. It is still not clear that Problem 2.2 is

well-posed in the current form. We will prove that solutions exist,

that is, there is an a�ainable global minimum value and not an

in�mum.

Lemma 2.3. A ∈ R[t]n×n is singular if and only if there exists a
b ∈ R[t]n×1 with deg b ≤ nd = µ − 1 such thatAb = 0.

Proof. Suppose that A has rank r < n. By permuting rows

and columns we may assume without loss of generality that the

leading r × r submatrix of A is non-singular. �ere is a unique

vector of the form c = (b1/γ , . . . ,br /γ ,−1,0, . . . ,0) from Cramer’s

rule such that Ac = 0, where γ ∈ R[t] is the determinant of the

leading r × r minor of A, and all of b1, . . . ,br ,γ ∈ R[t] have degree

at most rd ≤ nd . Multiplying through by γ , we �nd that b = γ c
satis�es the requirements of the lemma. �

See [6, Corollary 5.5] for an alternative proof.

Lemma 2.4. A is singular if and only if Â does not have full
column rank.

Proof. If A is rank de�cient then there exists b ∈ R[t]n×1
with

deg b ≤ µ − 1 such that Ab = 0. Â has a non-trivial kernel and,

b̂ ∈ ker Â by construction. Conversely, suppose that A has full

rank. �en for all b ∈ R[t]n×1
we have Ab , 0 which implies that

Âb̂ , 0 or ker Â is trivial. �

We recall the Singular Value Decomposition as the primary tool

for �nding the distance to the nearest unstructured rank de�cient

matrix over R or C.

De�nition 2.5. A Singular Value Decomposition (SVD) of C ∈
RN×M is given by C = Q · Σ · PT , where Q ∈ RM×M ,PT ∈ RN×N

are orthogonal matrices and Σ = diag(σ1, . . . ,σM ) ∈ RM×N is a

diagonal matrix consisting of the singular values ofC in descending

order of magnitude. See [22].

�e following fact is a standard motivation for the SVD.

Fact 2.6 (Eckart and Young 16). SupposeC = QΣPT ∈ RN×M

as above has full column rank, with N ≥ M . �en the matrix ∆C =
Q diag(0, . . . ,0,−σM )PT is such that C + ∆C has column rank at
most M − 1, ‖∆C‖F = σM , and ∆C is a perturbation of minimal
Frobenius norm which reduces the column rank of C .

Lemma 2.7. Given a non-singular A ∈ R[t]n×n , and ∆A ∈

R[t]n×n such that B = A + ∆A is singular, it is the case that
‖∆̂A‖ ≥ σnµ (Â).

Proof. By Lemma 2.4 above, B̂ is not of full column rank. �us,

by Fact 2.6 ‖∆̂A‖F ≥ σnµ (A). �
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Corollary 2.8. �e set of non-singular matrices over R[t]n×n of
degree at most d is open, or equivalently, the set of all rank de�cient
matrices over R[t]n×n of degree at most d is closed.

Theorem 2.9 (Existence of Solutions). �eminimization posed
in Problem 2.2 has an a�ainable global minimum if deg∆Ai,j ≤

degAi,j for all 1 ≤ i, j ≤ n.

Proof. Let

S =
{
B ∈ R[t]n×n | rankB ≤ n − 1 ∧ degB ≤ d

}

∩
{
B ∈ R[t]n×n |‖B‖2F ≤ ‖A‖

2

F

}
.

S is the intersection of a closed and bounded set and a closed set,

hence S is closed and bounded. S is isomorphic to some closed

and bounded subset of Euclidean space, hence by the Heine-Borel

theorem, S is compact. To show the set is non-empty, we note that,

by the degree assumption on ∆A, ∆A = −A is a feasible point

independent of rank.

Let B ∈ S then ‖A − B‖2F = ‖∆A‖
2

F is a continuous function

over a compact set. By Weierstrass’ theorem it has an a�ainable

global minimum. �

It is important not to over-constrain the problem with a choice

of ∆A, since otherwise the feasible set might be empty. Another

reasonable choice of ∆A which we can handle, is that the perturba-

tion has the same coe�cient structure/support as A, that is, zero

terms in polynomial entries are preserved.

We note that this result says nothing about uniqueness or sepa-

ration of solutions or any local properties. All that has been shown

is that if the perturbations are in the same space as the input, and

one seeks a rank at-most approximation, then there is an a�ainable

global minimum value, i.e. not an in�mum. If one wants a minimal

solution with the rank being exactly r , then there is no guarantee

that there is an a�ainable global minimum to Problem 2.2.

3 RANK FACTORIZATION
A natural formulation of the problem that encompasses the rank im-

plicitly is to perform a rank factorization and write A +∆A = UV

for U ∈ R[t]n×r and V ∈ R[t]r×m . Here UV is subject to some

constraints that preserve the structure of ∆A (i.e., that we do

not perturb any coe�cients we are not allowed to, typically that

deg∆Ai j ≤ degAi j , but possibly also preserving the zero coe�-

cients and not introducing a larger support). �is is a non-linear

least squares problem. However solutions are not unique. Indeed,

if Z ∈ R[t]r×r is unimodular (i.e., det(Z) ∈ R∗), then UZ, Z−1V

is another rank r factorization, and we obtain an in�nite family.

While normalizing over matrix polynomial rank-factorizations is

di�cult, it is much easier to exploit the quasi-distance preserving

property of ‖ · ‖F and look at rank-factorizations of Â, that do not

necessarily correspond to U and V.

3.1 Embedded Rank Factorization
De�nition 3.1. Let N = (µ + d )n, M = nµ and R > 0. A rank

factorization of Â + ∆̂A is given by writing Â + ∆̂A = UV where

U ∈ RN×R and V ∈ RR×M are arbitrary (unstructured) matrices

over R.

Our goal is to �nd U ,V with shape as above which minimize

‖∆Â‖ = ‖Â −UV ‖

and such that ∆Â has the correct Toeplitz-block structure (i.e., it

is an R-embedding of a matrix polynomial). �is is a problem with

a non-convex objective function (that is convex in each argument)

and non-convex constraints. We note that U , V have no direct

connection with U,V ∈ R[t]n×n .

One may always write Â + ∆̂A this way via the SVD for �xed

Â and ∆̂A, so in particular the optimal solution can be wri�en as

a rank factorization. �e problem min ‖Â −UV ‖
2

such that UV

has the same structure as ∆̂A is generally ill-posed and needs to be

constrained to do any meaningful analysis, as there are numerous

degrees of freedom. At �rst glance, optimizing over rank factoriza-

tions appears to be a harder problem than the original. However it

is helpful to perform analysis on this formulation. In particular, we

are able to prove that optimal values of ∆̂A that satisfy �rst order

conditions (which we will show contains all useful perturbations)

are separated by a constant amount, and that equivalence classes

of solutions are isolated.

We next need to demonstrate that the condition that the matrix

∆Â = Â − UV is the R-embedding of some matrix polynomial

∆A ∈ R[t]n×n can be phrased as a single polynomial being zero.

Clearly each entry in ∆Â is a bilinear function of the Ui j and

Vi j . Also, each entry ∆Ai j in ∆A is mapped to a Toeplitz block

ϕ (∆Âi j ) in ∆Â; see (2.1).

• Let T1 be the sum of the squares of all the entries required

to be zero in ∆Â −UV .

• LetT2 be the sum the squares of the di�erences of all pairs

of entries required to be equal in ∆Â −UV .

We then de�ne the structural enforcement function

Γ : RN×R × RR×M → R as Γ(∆Â) = T1 + T2. It is easily ob-

served that Γ is a polynomial of degree 4 in the Ui j and Vi j , that it

is always non-negative, and that Γ(∆Â) = 0 if an only if ∆Â is the

R-embedding of a matrix polynomial.

Problem 3.2. With Â,U ,V as above, the constrainedR-embedded
rank factorization problem consists of computing min ‖Â −UV ‖

2

F
subject to the constraints that UTU − I = 0 and Γ(U ,V ) = 0. If
R = M − 1, then this encodes all rank de�cient matrix polynomials.

It is still not clear that Problem 3.2 is well-posed, as there are

many degrees of freedom in V , and this matrix can have arbitrary

rank. �e enforcement ofU as an orthogonal matrix (UTU − I = 0)

is allowed for without loss of generality. Informally then we are

looking at all rank factorizations where where U is orthogonal

and Γ(U ,V ) = 0, that is, the product satis�es the block-Toeplitz

structure on ∆̂A.

We employ the machinery of non-linear optimization to describe

the geometry of the minimal solutions, and hence the nearest ap-

propriately structured matrices. See [7] for an excellent overview.

Fact 3.3 (Bertsekas 7, Section 3.1.1). For a su�ciently large
penalty term ρ > 0, one has that the unconstrained optimization
problem of computing

Φ(U ,V ) = min

U ,V
‖Â −UV ‖

2

F + ρ‖Γ(U ,V )‖2F + ρ‖U
TU − I ‖

2

F
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is equivalent to Problem 3.2.

All the solutions to the minimization of Φ(U ,V ) occur at station-

ary points. �e �rst-order necessary condition (on V ) of gradients

vanishing gives us

∇V

(
‖Â −UV ‖

2

F + ρ‖Γ(U ,V )‖2F ) + ρ‖U
TU − I ‖

2

F

)
= 0

⇐⇒ UT (Â −UV ) +

(
∂

∂V
Γ(U ,V )T

)
ρΓ(U ,V ) = 0.

If we assume that the constraints are active, that isU is orthogo-

nal and that Γ(U ,V ) = 0, then we have UT Â −V = 0. Of course,

there is the other �rst order necessary condition requiring that

∇U

(
‖Â −UV ‖

2

+ ρ‖Γ(U ,V )‖2 + ρ‖UTU − I ‖
2

)
= 0.

However, we do not need to employ this explicitly in the following.

Theorem 3.4 (Strong Separation of Objective). Suppose ∆̂A
and ∆̂A

?
are distinct (local) optimal solutions to Problem 3.2 that

satisfy �rst order necessary conditions. �en ‖∆̂A − ∆̂A
?
‖

2
≥

σmin (Â).

Proof. From the previously discussed necessary �rst order con-

dition we have that

‖∆̂A − ∆̂A
?
‖

2
= ‖UV −U?V?‖

2
= ‖UUT Â −U?U?T Â‖

2
.

From this we can obtain the sequence of lower bounds

‖UUT Â −U?U?T Â‖
2
≥ ‖UUT −U?U?T ‖

2
σmin (Â)

= ‖I −UTU?U?TU ‖
2
σmin (Â) ≥ σmin (Â).

�e symmetric matrixW = UTU?U?TU is a product of matrices

whose non-zero eigenvalues have magnitude 1. Symmetric matrices

have real eigenvalues, and their non-zero eigenvalues are ±1, since

‖W ‖
2
≥ σmin (U )σmin (U

T )σmin (U
?T )σmin (U

?),

‖W ‖
2
≤ σmax (U )σmax (U

T )σmax (U
?T )σmax (U

?),

which gives us 1 ≤ ‖W ‖
2
≤ 1.

W must have at least one negative eigenvalue or non-trivial 0

eigenvalue by the orthogonality assumption, sinceW , I . It follows

that ‖I −W ‖
2
≥ 1 and the theorem follows. �

We note that when U and U?
have the same dimension, then

rankU = rankU?
and soW has full rank. SinceW has full rank, it

follows that ‖I −W ‖
2
≥ 2 and the lower-bound can be improved.

While the separation bound exploited properties of the rank factor-

ization, these bounds hold for all formulations of the problem.

Corollary 3.5. All locally optimal solutions satisfying �rst order
necessary conditions are isolated modulo equivalence classes.

Proof. Suppose the contrary, that is that (U ,V ) is a solution

corresponding to ∆̂A and (U?,V?) is a solution corresponding to

∆̂A
?

. �e objective function and constraints are locally Lipschitz

continuous, so let s > 0 be a Lipschitz constant with respect to

‖ · ‖F in some open neighborhood.

If we take 0 < ε <
σmin (Â)

s
then we have

σmin (Â) ≤ ‖∆̂A − ∆Â?‖
2

≤ s







(
U
V

)
−

(
U?

V?

)




F
< σmin (Â),

which is a contradiction to �eorem 3.4. �

While there are too many degrees of freedom to easily obtain

a (locally) quadratically convergent minimization over the rank

factorization, the rank factorization does yield non-trivial insights

into the geometry of the solution space. In particular, the isolation

of solutions indicates �rst order (gradient) methods will perform

well on the problem. In the next section we will introduce a locally

quadratically convergent algorithm for an equivalent form of Prob-

lem 2.2 that reduces each equivalence class of solutions to a single

solution.

4 ITERATIVE ALGORITHM
In this section we propose an iterative algorithm to solve Prob-

lem 2.2 based on Newton’s method for constrained optimization.

Su�cient conditions for quadratic convergence are that the Ja-

cobian of the residuals has full rank, the Hessian matrix of the

objective function is positive de�nite in a neighborhood around

a solution [7] and local Lipschitz continuity of the objective and

constraints. We ensure this by augmenting the objective function

without changing the solution and working on a restricted space

of minimal R-embeddings that removes degrees of freedom.

4.1 Augmented System
In order to �nd the nearest rank de�cient matrix, we consider the

modi�ed objective function

Ψ = ‖∆̂A‖
2

F + ‖b̂‖
2

F − 1,

subject to the constraints (Â + ∆̂A)b̂ = 0 and b̂T b̂ − 1 = 0 for

b̂ ∈ R[t]M×1
. One notes that this is essentially a trick, because

we already have the equality condition that ‖b̂‖ = 1. �us the

new formulation is completely equivalent to Problem 2.2 as their

solutions are the same. However, the change to the objective func-

tion ensures that the Hessian matrix of the objective function is

not singular, that is, it is positive de�nite. In this case the Hessian

matrix of Ψ is given by ∇2Ψ = diag(2, . . . ,2).

De�nition 4.1 (Minimal R-Embedding). Suppose

A ∈ R[t]n×n with R-embedding Â. �e vector b ∈ R[t]n×1
,

with R-embedding b̂, is said to be minimally R-embedded in Â if

ker Â = 〈b̂〉 (i.e., a dimension 1 subspace). We say that b̂ is mini-
mally degree R-embedded in Â if (1) b̂ is minimally R-embedded

in Â and (2) b ∈ B for a given column echelon reduced basis

B of kerA, where each column of the basis is primitive, that is,

gcd(B1,j , . . . ,Bn,j ) = 1.

We note that this de�nition ensures minimally R-embedded

vectors are unique, or that (Â + ∆̂A)b̂ = 0 has a (locally) unique

solution for �xed ∆Â. If b̂ is not minimally degree R-embedded in
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Â, then the kernel of Â will typically consist of the desired vector,

cyclic shi�s of this vector and multiples of other vectors.

�ere are two degrees of freedom for elements of the kernel

of A + ∆A. �e �rst is the degree of entries, that is, polynomial

multiples of b are in the kernel of A. �e second degree of freedom

is that a linear combination of elements of the kernel is also con-

tained in the kernel. �e minimal degree R-embedding removes

both degrees of freedoms (a�er normalization). �e column reduced

echelon constraint ensures that the constraint is represented with

the minimum number of equations.

�roughout the rest of this section we will assume that Â and b̂

are minimal degree R-embeddings of A and b. It can be taken with-

out any loss of generality that a minimal degree R-embedding also

removes rows from Â and b̂ that correspond to trivial equations,

i.e. 0 = 0, Ai,j = 0 or b̂i = 0.

4.2 Lagrange Multipliers
De�nition 4.2. �e vectorization of A ∈ R[t]n×n of degree at

most d is de�ned as

vec(A) = (A1,1,0, . . . ,A1,1,d , . . . ,An,n,0, . . .An,n,d )
T .

Let ` = (vec((Â + ∆̂A)b̂), b̂T b̂ − 1)T · λ, where λ = (λ1, . . . ,λν )
with ν the number of non-trivial constraints. �eir Lagrangian is

L = Ψ + `, and the Hessian of the Lagrangian is ∇2L.

4.2.1 The Jacobian.

De�nition 4.3. �e matrix ψ (b̂) is an alternative form of (Â +

∆̂A)b̂ = 0 that satis�es ψ (b̂)vec(A + ∆A) = 0. �at is, ψ (b̂)
satis�es

ψ (b̂) · vec(A + ∆A) = 0 ⇐⇒ (Â + ∆̂A)b̂ = 0.

Here we use the bilinearity of the system (Â + ∆̂A)b̂ = 0 to

write the same system using a matrix with entries from b̂ instead

of vec(A + ∆A).
�e closed-form expression for the Jacobian is given by

J =
*..
,

∇
∆̂A

(
(Â + ∆̂A)b̂

)
∇
b̂

(
(Â + ∆̂A)b̂ + b̂T b̂

)+//
-
=

*..
,

ψ (b̂) Â + ∆̂A

0 2b̂T

+//
-
.

If the Jacobian has full rank at a solution, then it necessarily has

full rank in an open neighborhood around that solution. We will

show that J and ∇2Ψ have full rank so ∇2L has full rank as well.

Theorem 4.4. Suppose b̂ is minimally degree R-embedded in Â,
then J has full (row) rank when ∇L = 0.

Proof. We show that J full row rank by contradiction. If this

matrix was rank de�cient, then one row is a linear combination of

the others. �is means that one of the equations in the constraints

is trivial or the solution is not regular (see [7, Section 3.1]). As we

are only concerned about regular solutions, this contradicts the

minimal degree R-embedding. �

4.3 Iterative Post-Re�nement
Newton’s method for equality constrained minimization problems

can be interpreted as solving the non-linear system of equations

∇L = 0. Let x = (vec(∆A)T , b̂T )T . �en Newton’s method is based

on the iterative update scheme

(
xk+1

λk+1

)
=

(
xk + ∆xk

λk + ∆λk

)
such that ∇2L

(
∆x
∆λ

)
= −∇L. (4.1)

Since ∇2L has full rank, the iteration is well de�ned by matrix

inversion. �is system can be solved in several di�erent ways,

although the most straightforward is matrix inversion. �is method

clearly has quadratic convergence as follows.

Fact 4.5 (Bertsekas [7, Prop. 4.4.3]). Let x?

be a strict local minimum where the Jacobian of the constraints has
full rank, with corresponding Lagrange multiplier λ? such that

∇L(x?,λ?) = 0 and yT∇2

xxLy > 0

for y , 0 such that JTy = 0.

�en (x?,λ?) is a point of a�raction to the Newton iteration, and
if (x ,λ) → (x?,λ?) then the convergence rate is quadratic if the
objective and constraints have a locally Lipschitz Hessian around x?.

Since our objective function and constraints are quadratic func-

tions we trivially have the required Lipschitz continuity. It is noted

that one can always make ∇2

xxL positive de�nite by re-scaling the

objective function without changing the optimal values of x .

Theorem 4.6. �e previously described Newton method converges
quadratically with a suitable initial guess.

Corollary 4.7. Solutions to Problem 2.2 are isolated solutions in
the minimal R-embedding. �at is, if x is an optimal solution, then
there is a non-trivial open neighborhood around x where x is the only
(locally) optimal solution.

Although we only optimize over a single vector in the kernel, if

Â + ∆̂A is rank de�cient and our initial guess is su�ciently close

to the optimal solution, then it does not ma�er which element of

the kernel we choose to use in the optimization. Note that this

gives us the nearest rank de�cient matrix, not the nearest matrix of

prescribed rank. Performing an iteration on the basis of the entire

kernel is le� as future work.

4.4 Computing an initial guess
�ere are a variety of interesting �rst-order or other methods that

can be used to obtain an initial guess. �e most intuitive method

to obtain an initial guess is to do a a li� and project using the SVD

[11]. Another approach is to use a �rst-order method such as STLS

or RSVD and then improve upon the answer with post-re�nement

when the convergence becomes too slow. Once a suitable initial

guess is obtained, the next question is how to determine the La-

grange multipliers. Since J has full rank this reduces to solving a

linear system of equations by substituting the initial guess into the

gradient of L and solving for λ. �ere will always be a solution when

�rst order conditions are satis�ed since J has full row rank. Since

initial guesses will generally not satisfy �rst order conditions, one

can solve a linear least squares problem to approximate λ instead.

In general, there is a large selection of di�erent methods available

to compute an initial guess. A single iteration of li� and project

is reasonably fast, and when the minimum residual is su�ciently
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small the iteration will converge to the optimal solution, as the

problem is well-posed. In instances of a large residual any method

can be used and a locally-optimal solution can be computed by

post-re�nement.

5 DESCRIPTION OF IMPLEMENTATION
In this section we discuss implementation details and demonstrate

our implementation for computing the nearest rank de�cient matrix

polynomial. All algorithms are implemented in Maple 2016. Exam-

ples are constructed by taking a singular matrix polynomial, then

perturbing entries by a scaled amount of noise. Noise is constructed

by generating a polynomial of prescribed degree structure with

coe�cients chosen uniformly at random from (0,1), then scaled ap-

propriately. We do not perturb high-order or low-order coe�cients

that are set to zero and restrict ourselves to relatively large amounts

of noise where it generally takes at least three steps to converge.

�e matrix polynomials are generated by rank-factorization with

coe�cients generated by randpoly. �e le� rank factor has coef-

�cients of degree bd/2c and the right rank factor has coe�cients

of degree dd/2e. All experiments are done using quad precision

�oating point arithmetic, with about 35 decimal digits of accuracy.

To compute the approximate kernel vector, �rst we use the SVD

to compute an approximate kernel of an R-embedded rank de�-

cient matrix polynomial. Next we use structured orthogonal elim-

ination RQ (LQ) decomposition to produce a minimally (degree)

R-embedded vector from the kernel.

5.1 Description of Algorithm
Algorithm 1 : Iterative Post-Refinement

Input:
• Full rank matrix polynomial A ∈ R[t]n×n

• Rank de�cient matrix polynomial C ∈ R[t]n]×n

• Approximate kernel vector c ∈ R[t]n×1
of the desired degree

structure

• Structure matrix ∆A to optimize over

Output:
• Singular matrix A + ∆A with b ∈ ker(A + ∆A) or an indica-

tion of failure.

1: R-Embed A,C,c and ∆A.

2: Compute Lagrangian L from Section 4.

3: Initialize λ via linear least squares from ∇L|x = 0.

4: Compute

(
x + ∆x
λ + ∆λ

)
by solving (4.1) until








(
∆x
∆λ

)




2

is su�ciently

small or divergence is detected.

5: Return the locally optimal ∆A and b or an indication of failure.

In our implementation we compute ∆x and ∆λ using an iterative

linear least squares method instead of inverting the Hessian of the

Lagrangian directly. Improvements can be made in the conditioning

of the values of x by exploiting the block structure of the Hessian

since the Jacobian of the constraints can have a large condition

number. �e size of ∇2L is O (n4d2) and accordingly each iteration

has a cost of O (n12d6) �ops using standard matrix multiplication.

5.2 Experiments
Small Example. Consider the singular (up to 2 decimal points of

precision) matrix polynomial A:

*.
,

−.038t2 − .21t + .026 .12t2 + .38t + .048 .28t2 − .14t + .11

−.013t2 + .18t − .17 −.15t2 − .16t + .31 −.28t2 + .48t − .19

.051t2 − .11t − .045 .15t2 + .20t + .038 .22t2 − .15t − .090

+/
-
,

and approximate kernel vector b,(
.15t2 − .40t + .77 −.19t2 + .10t + .23 .10t2 + .34t − .28

)T .
Given the matrix polynomial B

*.
,

−.03760t2 − .2122t + .0278 .107t2 + .363t + .0563 .293t2 − .1385t + .1141

.003t2 + .18027t − .1758 −.14914t2 − .1510t + .327 −.2859t2 + .469t − .173

.0577t2 − .1060t − .056 .1455t2 + .212t + .0321 .231t2 − .1514t − .075

+/
-
,

the goal is to �nd a singular matrix polynomial B + ∆B where

‖∆B‖2F is minimized. Using A and b as an initial guess for our

algorithm, the relative (non-squared) error is
‖B−A ‖F
‖B ‖F

≈ .0499. A

table showing the convergence table is given in Figure 1.

Figure 1: Example of Convergence
iteration ‖xi−1 − xi ‖2

1 1.3074e-1

2 2.0941e-2

3 3.8330e-4

4 1.4141e-7

5 2.4169e-14

6 4.7003e-28

7 0

We indeed see that each iteration is converging (quadratically)

and the size of the perturbation that the algorithm converges to is

‖∆B‖F ≈ 0.026604. �e solution is a unique local minimizer.

Performance on Randomly Generated Examples. In the experi-

ments presented in Figure 2 all matrices are n ×n of degree at most

d in all entries. We restrict ourselves to modest values of n and d ,

given the expensive per-iteration cost. �e computed matrices are

rank de�cient by at least 1 in all experiments.

Algorithm 1 typically fails because the initial guess is not su�-

ciently close, that is the input matrix is too far away or the approx-

imate kernel vector produces a large residual. Failures to converge

can also occur due to encountering a singular Jacobian (computed

kernel vector is not minimally R-embedded), as is the case in the ex-

amples with n = 6,d = 6 and n = 9,d = 2 with
‖A−Ainit ‖
‖A‖ ≈ 1e − 2.

Singular Jacobians can be solved in practice by re-initializing the

iteration with a new approximate kernel vector that is minimially

R-embedded. Our approximate kernel code relies on user speci�ed

parameters to determine numerical error terms and to compute the

rank numerically of the R-embedded matrix. If the rank compu-

tation fails then the kernel vector returned may not be minimally

R-embedded or ‖Ainitbinit ‖ may be large.

6 CONCLUSIONS AND FUTUREWORK
We have shown that �nding the nearest singular matrix polynomial

can be set as a numerically well-posed problem, and is amenable to

�rst-order optimization methods. It is demonstrated that minimal

solutions exist and are well separated by non-trivial open neigh-

borhoods. We also provide a theory for a second order method that
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obtains quadratic convergence and discuss corresponding imple-

mentation details.

In the immediate future we will consider �nding more speci�c

rank approximations. While we currently only optimize over a

single kernel vector, we would like to optimize over a basis of

the kernel in order to achieve a “rank at most r” approximation

as opposed to a rank de�cient approximation. Optimizing over

a minimally R-embedded kernel should be a relatively straight

forward generalization of the results presented here.

�ese results can also be generalized to obtain a quadratically

convergent algorithm for a broader class of linearly structured STLS

problems that exploit �rst order necessary conditions and second

order su�cient conditions.

We also regard this current paper as a �rst step towards a for-

mally robust approach to non-linear matrix polynomials, in the

spirit of recent work with symbolic-numeric algorithms for polyno-

mials. Problems such as approximate matrix polynomial division,

GCRD and factorization all have applications which can bene�t

from these modern tools.

Figure 2: Convergence of Random Examples
n d iterations

‖A−Ainit ‖F
‖A‖F

‖∆A‖F
‖A‖F

Status

3 2 4 2.273085e-06 6.448939e-07

3 2 4 1.711447e-04 6.329353e-05

3 2 6 1.536637e-02 4.607345e-03

3 6 4 1.815279e-06 5.667709e-07

3 6 2 1.736938e-04 1.910097e-04 FAIL

3 6 7 1.549175e-02 4.201870e-03

3 10 3 1.805139e-06 5.115107e-07

3 10 4 1.516551e-04 5.043466e-05

3 10 6 1.528087e-02 5.461671e-03

6 2 4 1.795881e-06 3.144274e-07

6 2 5 1.678479e-04 3.179304e-05

6 2 7 1.649747e-02 3.290890e-03

6 6 4 1.627576e-06 4.013569e-07

6 6 6 1.582963e-04 3.401362e-05

6 6 1 1.514245e-02 6.858211e-03 FAIL

6 10 4 1.718920e-06 3.557049e-07

6 10 6 1.851868e-04 4.166933e-05

6 10 2 1.703748e-02 2.988045e-02 FAIL

9 2 4 1.739717e-06 3.594439e-07

9 2 5 1.696604e-04 3.759553e-05

9 2 1 1.668151e-02 6.114100e-03 FAIL

9 4 4 1.727764e-06 4.331134e-07

9 4 6 1.664166e-04 2.987824e-05

9 4 9 1.685704e-02 2.292579e-03

12 2 4 1.748623e-06 3.280337e-07

12 2 5 1.754237e-04 2.210751e-05

12 2 9 1.673896e-02 2.282716e-03
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