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Abstract5

A theoretical analysis tool, iterated optimal stopping, has been used as the basis of a numerical6

algorithm for American options under regime switching [25]. Similar methods have also been proposed7

for American options under jump diffusion [4] and Asian options under jump diffusion [5]. An alternative8

method, local policy iteration, has been suggested in [27, 19]. Worst case upper bounds on the convergence9

rates of these two methods suggest that local policy iteration should be preferred over iterated optimal10

stopping [19]. In this article, numerical tests are presented which indicate that the observed performance11

of these two methods is consistent with the worst case upper bounds. In addition, while these two12

methods seem quite different, we show that either one can be converted into the other by a simple13

rearrangement of two loops.14
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1 Introduction18

In this work, our focus is on comparing iterative methods for solving discretized Hamilton Jacobi Bellman19

equations. As an example, we consider the case of an American option, assuming that the underlying asset20

follows a regime switching model. This gives rise to a coupled system of variational inequalities. After21

discretizing these equations, using a fully implicit or Crank-Nicolson finite difference scheme, the main22

challenge is efficiently solving the resulting nonlinear algebraic equations.23

We center our comparison on two methods, iterated optimal stopping and local policy iteration. Iterated24

optimal stopping was developed in a recent article [25], where the authors analyse the properties of the25

solution of a finite time optimal stopping (American) option pricing problem under regime switching. That26

particular work is based on similar analysis carried out in [4] for American options under jump diffusion,27

and in [5] for Asian options under jump diffusion. The method of analysis in [25] constructs a sequence of28

functions which converge monotonically to the exact solution of the optimal stopping problem. In [25], a29

numerical method is developed based in this concept. The iterated optimal stopping technique was also used30

to develop numerical algorithms for American and Asian options under jump diffusion [4, 5].31

In [27], a local policy iteration method was developed for solving the discretized variational inequality32

for pricing American options under a jump diffusion process. This method was generalized for the case of33

American options under regime switching in [19]. In addition, a form of local policy iteration was suggested34

in [30], however no analysis of the convergence of this iteration was given.35
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Superficially, iterated optimal stopping and local policy iteration appear to be very different algorithms.36

However, when viewed in more general terms, these two techniques are simply different iterative methods37

for solving the same set of discretized nonlinear algebraic equations. In [19], worst case upper bounds on38

the convergence rate for both methods were developed. The bound for local policy iteration is favorable39

compared to the bound for iterated optimal stopping. However, it is not clear that the upper bounds in [19]40

are tight. In addition, no numerical tests using iterated optimal stopping are given in [19].41

In this paper we provide an extensive set of numerical tests to study the performance of iterated optimal42

stopping and local policy iteration. Our tests show that the performance of both algorithms is consistent43

in practice with the worst case upper bounds. However it is also the case that these methods appear to44

approach their worst case bounds only for long term contracts. We also observe that implementation is not45

an issue. Indeed, we show that an existing implementation of iterated optimal stopping can be converted46

to local policy iteration by effectively interchanging two loops. Finally, iterated optimal stopping requires47

significantly more storage than local policy iteration. As a result we recommend the use of local policy48

iteration.49

The remainder of the paper proceeds as follows. Section 2 gives the basics of the regime switching model,50

including the nonlinear partial differential equation for pricing American options. The continuous version51

of the iterated optimal stopping method is presented in Section 3 while the discretization of the continuous52

American option problem is presented in Section 4. Section 5 provides the matrix representation of the53

nonlinear discrete equations with iterative methods for solving these equations given in the following section,54

including algorithm formulations of local policy iteration and iterated optimal stopping. Numerical tests55

appear in Section 7 followed by a concluding section.56

2 Regime Switching Model57

Financial practitioners are intimately aware of the shortcomings of the now ubiquitous Black-Scholes frame-58

work. Asset prices driven by a geometric Brownian motion process with constant volatility and drift cannot59

replicate the distribution of returns seen in historical stock prices [28]. A regime switching process is a60

computationally parsimonious technique for introducing stochastic volatility into the underlying stochas-61

tic model. Regime switching processes have been applied to problems in electricity markets [6], long term62

insurance guarantees [18], forestry valuation [12], and gas storage [13].63

Define a finite set of K regimes and a volatility σj and drift rate µP
j associated with each state j = 1 . . .K.64

The P denotes that drift rates are observed in the real-world measure. A continuous Markov chain process is65

used to transition between any two states. The system of stochastic equations governing the regime switching66

process is67

dS = µP
j S dt+ σj S dZ +

K∑
k=1

(ξjk − 1) S dXjk ; j = 1, . . . ,K , (2.1)

where S is the asset price, dZ is the increment of a Wiener process and ξjk is the jump amplitude when a68

transition from state j → k occurs. The Poisson process dXjk is defined by69

dXjk =

{
1 with probability λPjk dt+ δjk
0 with probability 1− λPjk dt− δjk

λPjk ≥ 0 ; j 6= k

λPjj = −
K∑
k=1
k 6=j

λPjk . (2.2)

where λjk is the probability of transitioning from regime j → k. Observe that the asset price jumps from70

S → ξjkS when such a transition occurs. To prevent a jump in the absence of a regime switch, set ξjj = 1.71
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To determine the fair-value of an option under regime switching, the hedging portfolio in regime j, Pj is72

constructed73

Pj = −Vj + e S +

K−1∑
k=1

wkFk (2.3)

where Vj is the no-arbitrage value of the option in regime j, e is the amount held of the underlying asset with74

price S, and wk is the amount held of the additional hedging instruments with price Fk. Provided that the75

underlying asset and the additional hedging instruments form a non-redundant set, all risk can be eliminated76

through a dynamic hedging strategy [24]. This permits the use of a no-arbitrage argument leading to the77

American option pricing equations78

min

[
∂Vj
∂τ
− LjVj − λjJjV, Vj − V∗

]
= 0 ; j = 1, . . . ,K , (2.4)

where τ = T − t represents time running backwards from expiry T , and V∗(S) = V(S, τ = 0) is the payoff79

condition. The differential operators Lj and Jj are defined as80

LjVj =

(
σ2
jS

2

2

)
∂2Vj
∂S2

+ (r − ρj)S
∂Vj
∂S
− (r + λj)Vj (2.5a)

JjV =

K∑
k=1
k 6=j

λjk
λj
Vk(ξjkS, τ) , (2.5b)

where r > 0 is the risk-free rate (i.e. the rate of return of a security which has no possibility of default) and81

ρj =

K∑
k=1
k 6=j

λjk(ξjk − 1) ; λj =

K∑
k=1
k 6=j

λjk . (2.6)

It is assumed that ξjk are deterministic functions of S and t. The risk neutral transition densities λjk82

are not unique. In practice, we calibrate the parameters in equation (2.5) to market data, consistent with83

the market’s pricing measure. Note that equation (2.5a) is independent of µP
j , due to the usual hedging84

arguments [24].85

For computational purposes, equation (2.4) will be posed on the localized domain86

(S, τ) ∈ [0, Smax]× [0, T ] . (2.7)

No boundary condition is required at S = 0 while at S = Smax, a Dirichlet condition is imposed (in this87

paper we use the payoff)88

V(Smax, τ) = V∗(Smax) ,∀τ , (2.8)

We truncate any jumps which would require data outside the computational domain. The error in this89

approximation is small in regions of interest if Smax is sufficiently large [24]. More precisely, the term90

Vk(ξjkS, τ) in equation (2.5b) is replaced by Vk(min(Smax, ξjkS), τ).91

Remark 2.1 (Viscosity Solution) Equation (2.4) is a special case of the more general systems of Varia-92

tional Inequalities (VIs) considered in [15], where it is shown that VIs such as (2.4) have unique, continuous,93

locally bounded viscosity solutions in the interior of the solution domain. The definition of a viscosity solution94

must be generalized for systems of PDEs [9, 15, 21, 22]. One of the advantages of the viscosity solution ap-95

proach is that boundary and initial conditions can be interpreted in the relaxed viscosity sense, which means96

that the solution may not converge to the initial condition in the usual sense [23, 2]. For example, [14]97

discusses the case of discontinuous initial conditions which are common in financial applications (i.e. digital98

options).99
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Remark 2.2 (Localized Boundary Conditions) The effect of the localized boundary condition (2.8) can100

be made arbitrarily small by selecting Smax sufficiently large [3].101

3 Iterated Optimal Stopping: Continuous Case102

The basic idea of iterated optimal stopping [4, 25, 5] is to consider a sequence of functions (Vj)m, such that103

min

[
∂(Vj)m+1

∂τ
− Lj(Vj)m+1 − λjJj(V)m, (Vj)m+1 − V∗

]
= 0 ; j = 1, . . . ,K .

(3.1)

Under suitable assumptions, it can be shown that the sequence (Vj)m converges monotonically to the solution104

of equation (2.4) [25].105

Note that at each iterationm in equation (3.1), the problem reduces to solving a set of decoupled American106

type problems, one for each regime. This allows the authors in [25] to deduce properties of the solution Vj .107

The operator Jj is replaced by an integral operator in [4, 5] and similar arguments are constructed for jump108

diffusions.109

Remark 3.1 (Interpretation of equation (3.1)) Problem (3.1) effectively reduces problem (2.4) to a110

sequence of simpler problems. Each of these simpler problems has known properties. This makes formulation111

(3.1) attractive from a mathematical point of view. However, we will see that formulation (3.1) is not112

well-suited to numerical computation.113

4 Discretization114

Numerically solving the American option pricing equations in (2.4) is achieved through a finite-difference115

discretization. A price grid is constructed consisting of a set of imax nodes116

{S1, S2, . . . , Simax
} (4.1)

following a sequence of L timesteps of size ∆τ117

{τ0, τ1, . . . , τL} (4.2)

where τn = n∆τ .118

Denote the numerical solution at (Si, τ
n) in regime j by V ni,j . A vector of solution values is constructed119

as follows120

V n = [V n1,1, ..., V
n
imax,1, . . . , V

n
1,K , ..., V

n
imax,K ]′. (4.3)

The solution vector has length N = K · imax. For succinctness, a single row index is often used to refer to121

entries of V n as follows122

V n` = V ni,j ; ` = (j − 1)imax + i . (4.4)

4.1 L Operator Discretization123

Let Lhj denote the discrete form of Lj in (2.5a). We use a combination of central, forward and backward124

differencing to generate a discretization of the form125

(Lhj V n)ij = αi,jV
n
i−1,j + βi,jV

n
i+1,j − (αi,j + βi,j + r + λj)V

n
i,j (4.5)

Central differencing is used as much as possible with forward backward differencing used only as required to126

ensure that the positive coefficient condition127

αi,j ≥ 0 ; βi,j ≥ 0 ;∀i, j , (4.6)

is enforced. We refer the reader to [17] for details.128
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4.2 J Operator Discretization129

Let J hj denote the discrete form of Jj in (2.5b). This operator is discretized through a linear interpolation130

approximation as follows131

[J hj V n]i,j =

K∑
k=1
k 6=j

λjk
λj
Ihi,j,kV n , (4.7)

where132

Ihi,j,kV n = wV nm,k + (1− w)V nm+1,k

' Vk(min(Simax , ξjkSi), τ
n) , (4.8)

with w ∈ [0, 1] such that133

min(Simax
, ξjkSi) = wSm + (1− w)Sm+1 . (4.9)

Note that jumps which extend outside the price grid are approximated by the value at the largest node Simax
.134

4.3 Imposing the American Constraint135

The American constraint is handled implicitly by rewriting (2.4) in direct control form as136

max
ϕ∈{0,1}

[
Ω ϕ(V∗ − Vj)− (1− ϕ)

(
∂Vj
∂τ
− LjVj − λjJjV

)]
= 0 , (4.10)

where we have introduced a scaling parameter Ω > 0. In exact arithmetic, the introduction of the scaling137

factor Ω in equation (4.10) has no effect. However, any iterative algorithm used to solve equation (4.10)138

requires comparison to two terms which have different units. In order to remedy this situation, we use the139

scaling suggested in [19]140

Ω =
C

∆τ
, (4.11)

where C > 0 is a dimensionless constant.141

Equation (4.10) is discretized using fully-implicit (θ = 1) or Crank-Nicolson (θ = 0.5) timestepping142

(1− ϕn+1
i,j )

(
V n+1
i,j

∆τ
− θLhj V n+1

i,j

)
+ Ω ϕn+1

i,j V n+1
i,j

= (1− ϕn+1
i,j )

V ni,j
∆τ

+ Ω ϕn+1
i,j V

∗
i + (1− ϕn+1

i,j )λjθ[J hj V n+1]i,j

+ (1− ϕn+1
i,j )(1− θ)

[
Lhj V ni,j + λj [J hj V n]i,j

]
; i < imax

V n+1
i,j = V∗i ; i = imax , (4.12a)

where143

{ϕn+1
i,j } ∈ arg max

ϕ∈{0,1}

{
Ω ϕ(V∗i − V n+1

i,j )− (1− ϕ)

(
V n+1
i,j − V ni,j

∆τ

− θ
(
Lhj V n+1

i,j + λj [J hj V n+1]i,j
)
− (1− θ)

(
Lhj V ni,j + λj [J hj V n]i,j

))}
,

(4.12b)

and ϕ` = 1 indicates early exercise is optimal at node `, otherwise ϕ` = 0.144

Remark 4.1 (Convergence to the viscosity solution) It is straightforward to show, using the meth-145

ods in [17] that scheme (4.12), is unconditionally l∞ stable (θ = 1), monotone and consistent, and hence146

converges to the viscosity solution of equation (2.4).147

5



5 General Form of Equations148

Let Q be a vector of controls defined by149

Q = [ϕ1,1, ..., ϕimax,1, . . . , ϕ1,K , ..., ϕimax,K ]
′
. (5.1)

The discrete equations (4.12) can then be written as a nonlinear matrix problem150

A∗(Q)U = C(Q,V n)

(5.2)

with Q` = arg max
Qs∈{0,1}

[
−A∗(Q)U + C(Q,V n)

]
`

where U is the desired solution V n+1 at the next time level and A∗ is an N ×N matrix. For computational151

purposes, we split the A∗ matrix as follows152

A∗(Q) = A(Q)− B(Q) (5.3)

with A(Q) containing the coefficients of nodes coupled within the same regime, while B(Q) contains the153

coefficients that couple nodes in different regimes. This splitting will be useful when constructing numerical154

algorithms to solve the nonlinear equations in Section 6.155

The matrix coefficients for nodes i < imax can be deduced from equations (4.12) as shown below156

[A(Q)U ]` = [AU ]` = (1− ϕ`)
(
U`
∆τ
− θLhjU`

)
+ ϕ`Ω U`

[B(Q)U ]` = [BU ]` = (1− ϕ`)λjθ[J hj U ]`

[C(Q,V n)]` = C` = (1− ϕ`)
V n`
∆τ

+ ϕ`Ω V∗i

+(1− ϕ`)(1− θ)
[
Lhj V n` + λj [J hj V n]`

]
. (5.4)

The boundary condition at node i = imax requires that157

[AU ]` = Uimax,j ; [BU ]` = 0 ; C` = V∗imax
; ` = (j − 1)imax + imax. (5.5)

6 Iterative Methods158

Two numerical methods are presented to solve the nonlinear matrix problem in (5.2). A local policy iteration159

is compared to an iterated optimal stopping iteration proposed by [4]. It will be useful to note the following160

result.161

Lemma 6.1 (Uniqueness of Solution of (5.2)) There exists a unique solution to equation (5.2).162

Proof . Note that the positive coefficient condition (4.6) guarantees that A∗(Q) is an M-matrix. In163

addition, the construction of C(Q,V n) in equation (5.4) ensures that C(Q,V n) is bounded for any finite164

mesh. Existence and uniqueness follow from the results in [7, 20]. �165

6.1 Local Policy Iteration166

In this approach, we directly discretize equation (2.4). Following the approach of [30], the matrix splitting167

in (5.3) is used to solve the American control problem with the regime coupling terms lagged behind one168

iteration. This local policy method is outlined in Algorithm 6.1. This method was suggested in [27] for169
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Algorithm 6.1 Local Policy Iteration

1: (V 0)0 = payoff
2: for n = 0, 1, 2, . . . , L− 1 do
3: (V n+1)0 = V n

4: for k = 0, 1, 2, . . . until converge do

5: Solve : max
Q`∈{0,1}

{
−A(Q)(V n+1)k+1 + B(Q)(V n+1)k + C(Q,V n)

}
= 0

6: if k > 0 and max
`

|(V n+1
` )k+1 − (V n+1

` )k|
max

[
scale, |(V n+1

` )k+1|
] < toleranceouter then

7: V n+1 = (V n+1)k+1; break from the iteration
8: end if
9: end for

10: end for

American options under jump diffusion. Note that we write Algorithm 6.1 for all timesteps, although the170

actual iteration occurs only within each timestep. This will facilitate comparison with the iterated optimal171

stopping algorithm. We remark that a related idea for impulse control problems was suggested in [10, 11].172

The relative convergence tolerance in Line 7 in Algorithm 6.1 uses a scale factor to ensure that unrealistic173

accuracy criteria is not required for very small option values. Typically scale = 1 for options priced in dollars.174

Line 5 in Algorithm 6.1 is solved by iterating on (V n+1)k+1. We use Algorithm 6.2 to solve for (V n+1)k+1.

Algorithm 6.2 Inner Iteration (Policy Iteration)

1: U0 = (V n+1)k

2: for m = 0, 1, 2, . . . until converge do

3: Qm = arg max
Q`∈{0,1}

{
−A(Q)Um +B(Q)(V n+1)k + C(Q,V n)

}
4: Solve: A(Qm)Um+1 = B(Qm)(V n+1)k + C(Qm, V n)

5: if k > 0 and max
`

|Um+1
` − Um` )|

max
[
scale, |Um+1

` )|
] < toleranceinner then

6: break from the iteration
7: end if
8: end for
9: (V n+1)k+1 = Um+1

175

For American options, Line 5 in Algorithm 6.1 reduces to solving a Linear Complementarity Problem176

(LCP). In general, even for a tridiagonal LCP problem, an iterative method is required [16] for the local177

American problem. In the special case of a simple put or call, only a single iteration is necessary [8], since178

the exercise region is simply connected to the boundary. Consequently, for a simple put or call, it would179

always be more efficient to use the direct Brennan and Schwartz method [8] to solve the local American180

problem, as in [27], for the local policy iteration. However, the standard Brennan and Schwartz algorithm181

[8] cannot be directly applied to more general problems, such as the American butterfly, which we will use182

as a test case.183

Theorem 6.1 Suppose (V n+1)k is the exact solution of Line 5 in Algorithm 6.1, and let Ek = (V n+1)k −184

V n+1 where V n+1 is the exact solution to equation (5.2). If the matrices A and B are given by equation185

(5.4) then the local policy iteration in Algorithm 6.1 converges at the rate186

‖Ek+1 ‖∞
‖Ek ‖∞

≤ θλ̂∆τ

1 + θ(r + λ̂)∆τ
where λ̂ = max

j
λj . (6.1)
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Proof . See [19]. �187

Remark 6.1 Result (6.1) is independent of the technique used to solve line 5 in Algorithm 6.1.188

Remark 6.2 In Theorem 6.1, we have assumed that (V n+1)k is the exact solution of Line 5 in Algorithm 6.1.189

In general, this will not be the case if an iterative method such as Algorithm 6.2 is used to solve Line 5 in190

Algorithm 6.1. A more detailed estimate for the convergence rate taking this into account is given in Appendix191

A.192

6.2 Iterated Optimal Stopping: Discretization193

The philosophy behind this approach is to discretize equation (3.1). In [25], the authors numerically solve a194

sequence of iterated optimal stopping problems to price an American put under a regime switching model.195

This global-in-time iteration is seen in Algorithm 6.3. Line 4 is solved in the same manner as described in196

Algorithm 6.2.197

Algorithm 6.3 Iterated Optimal Stopping

1: (V n)0 = payoff; n = 0, ..., L
2: for k = 0, 1, 2, . . . until converge do
3: for n = 0, 1, . . . , L− 1 do

4: Solve : max
Q`∈{0,1}

[
−A(Q)(V n+1)k+1 +B(Q)(V n+1)k + C(Q, (V n)k+1)

]
= 0

5: end for

6: if k > 0 and max
`,n

|(V n+1
` )k+1 − (V n+1

` )k|
max

[
scale, |(V n+1

` )k+1|
] < toleranceouter then

7: break from the iteration
8: end if
9: end for

By storing the solutions at all timesteps in a single vector and constructing two N(L + 1) × N(L + 1)198

matrices, Algorithm 6.3 can be rewritten in the same form as Algorithm 6.1. As with Theorem 6.1 we can199

determine the following convergence bound for the iterated optimal stopping iteration.200

Theorem 6.2 Assume that (V n+1)k is the exact solution to Line 4 in Algorithm 6.3. Let Ek = maxn ‖ (V n+1)k−201

V n+1 ‖∞ where V n+1 is the exact solution to equation (5.2) at timestep n+ 1. If the matrices A and B are202

given by equation (5.4) and fully implicit time stepping (θ = 1) is used, then the iterated optimal stopping203

iteration converges at the rate204

Ek+1

Ek
≤

1− 1[
1 + ∆τ(λ̂+ r)

]L
( λ̂

λ̂+ r

)
(6.2)

Proof . See [19]. �205

Remark 6.3 As the timestep size decreases, the global convergence bound (6.2) becomes206

lim
∆τ→0
L→∞
L∆τ=T

(
1−

[
1 + ∆τ(λ̂+ r)

]−L)(
λ̂
λ̂+r

)
=
(

1− e−T (λ̂+r)
)(

λ̂
λ̂+r

)
. (6.3)
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Hence, timestep refinements will only have a limited impact on the convergence of the iterated optimal207

stopping iteration. Contracts spanning longer periods of time have a theoretically worse convergence bound.208

Additionally, storage of solution vectors at every time level is required.209

The iterated optimal stopping convergence bound in (6.2) is worse than the local policy bound in (6.1)210

since211

λ̂∆τ

1 + (r + λ̂)∆τ
≤
(

1−
[
1 + ∆τ(λ̂+ r)

]−L)( λ̂

λ̂+ r

)
. (6.4)

Proposition 6.1 (Extension to Crank-Nicolson Case) Provided that212

∆τ ≤ 2(∆τ)e (6.5)

where (∆τ)e is the maximum stable explicit timestep size, then we can extend the above convergence analysis213

for the Crank Nicolson case (θ = 1/2)214

Ek+1

Ek
≤

1−

[
1− (1− θ)∆τ(λ̂+ r)

1 + θ∆τ(λ̂+ r)

]L( λ̂

λ̂+ r

)
. (6.6)

Proof . This follows the same steps as used in [19]. �215

Remark 6.4 In the limit as ∆t→ 0, then bound (6.6) becomes216

lim
∆τ→0
L→∞
L∆τ=T

(
1−

[
1− (1− θ)∆τ(λ̂+ r)

1 + θ∆τ(λ̂+ r)

]L)(
λ̂

λ̂+ r

)
=
(

1− e−T (λ̂+r)
)(

λ̂
λ̂+r

)
. (6.7)

This has the same limit as ∆τ → 0 as in equation (6.3). Condition (6.5) is required to ensure that iterated217

optimal stopping form of the global matrix is an M matrix [19]. This is a very severe condition in practice,218

and is not practically useful (that is, it would be better to simply use an explicit method in this case).219

Remark 6.5 (Rate of Convergence) A similar bound on the rate of convergence for the case of an Asian220

option under jump diffusion was obtained in [5], which is a special case of the more general result in [19]. It221

is straightforward to obtain obtain a similar convergence estimate for American Asian options, again using222

the method in [19]. In [5], this is referred to as exponential convergence. In the usual terminology of iterative223

methods, this would be refered to as linear convergence.224

In [25], the rather weaker estimate225

Ek+1

Ek
≤

(
λ̂

λ̂+ r

)
(6.8)

was obtained.226

Proposition 6.2 (Uniqueness of Solution: Algorithms 6.1 and 6.3) If the matrix A∗(Q) is an M-227

matrix, then if local policy iteration and iterated optimal stopping converge, they converge to the same solu-228

tion.229

Proof . From Algorithm 6.1 and Algorithm 6.3, we have that at convergence230

A∗(Q)V n+1 = C(Q,V n)

(6.9)

with Q` = arg max
Qs∈{0,1}

[
−A∗(Q)V n+1 + C(Q,V n)

]
`
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American Put American Butterfly
Refinement Timesteps Nodes Unknowns Nodes Unknowns

0 25 29 58 51 153
1 50 57 114 101 303
2 100 113 226 201 603
3 200 225 450 401 1203
4 400 449 898 801 2403
5 800 897 1794 1601 4803
6 1600 1793 3586 3201 9603
7 3200 3585 7170 6401 19203

Table 1: Grid and timestep refinement levels used during numerical tests. On each refinement, a new grid
point is placed halfway between all old grid points and the number of timesteps is doubled. A constant
timestep size is used.

From Lemma 6.1, the solution of equation (6.9) is unique. �231

Remark 6.6 (Implementation Issues) The same algorithm is used to solve line 5 in Algorithm 6.1 as232

used in line 4 in Algorithm 6.3. Consequently, Algorithm 6.3 can be converted to Algorithm 6.1 by simply233

interchanging the n and k loops. This is a trivial implementation change, which has a significant effect on234

the properties of the algorithm.235

Remark 6.7 (Jump Diffusions) The iterated optimal stopping algorithm has been proposed as a method236

for pricing American options under jump diffusions [4]. The general analysis in [19] can be used to ob-237

tain convergence rate estimates for local policy iteration and iterated optimal stopping for this problem as238

well. Similar to the regime switching case, the convergence bounds for iterated optimal stopping compare239

unfavorably with local policy iteration.240

7 Numerical Examples241

The comparably poor upper bound on the convergence rate and heavy memory requirements would suggest242

that iterated optimal stopping is less computationally efficient compared to local policy iteration. Nonethe-243

less, several authors have used this type of iteration recently [4, 5, 25]. We therefore provide numerical244

comparisons of the local policy and iterated optimal stopping iterations in this section to verify that the245

observed performance of these two algorithms is consistent with the worst case upper bounds. Two numer-246

ical examples are treated in this section, an American put contract based on the data used in [25], and an247

American butterfly contract based on data from [19].248

The sequence of grid and timestep refinements can be seen in Table 1. The price grids consist of a249

fine mesh nearby the strikes and an increasingly coarser grid further away from the strike. On each grid250

refinement, new fine grid nodes are placed between each two coarse grid nodes, and the timesteps are doubled.251

A direct method is used to solve the linear tridiagonal matrix in line 4 of Algorithm 6.2.252

A scale factor of Ω = 106/∆τ and outer convergence tolerance of 10−6 is used for all experiments (line 6253

in Algorithms 6.1 and 6.3). The inner iteration tolerance in Algorithm 6.2 was 10−9.254

7.1 Validation255

In this section we show the convergence of the discretization as the grid is refined. Table 2 shows results256

for two of the American put cases reported in [25]. This is a two regime example. We use fully implicit257

timestepping with iterated optimal stopping. The parameter values for these results are shown in the table258
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(σ1, σ2) = (0.3, 0.5) (σ1, σ2) = (0.5, 0.4)

Value Value Value Value
Refinement (Regime 1) (Regime 2) (Regime 1) (Regime 2)

0 0.596066588 1.220613143 1.247602448 0.933862220
1 0.623233337 1.231744588 1.258122381 0.951342835
2 0.627143687 1.236397726 1.263093502 0.955611738
3 0.629053164 1.238462238 1.265163537 0.957249428
4 0.629544512 1.239313670 1.266042273 0.957915213
5 0.629756273 1.239696598 1.266438090 0.958209403
6 0.629846395 1.239878850 1.266626785 0.958348152
7 0.629888511 1.239968194 1.266719449 0.958416059

Le and Wang: 0.6300 1.2381 1.2647 0.9586

Table 2: American Put: convergence as the grid and timesteps tend to zero. Iterated optimal stopping is
used with fully implicit timesteps. Parameter values are r = 0.2, T = 1, Strike = 10, λ1,2 = 0.05, λ2,1 = 0.15.
Jump amplitudes are 1 and option values are at S = 10. Le and Wang results are from [25].

Strike (Put), K 10
Risk free rate, r .05
Maximum grid price, Simax

500
Transition probability 1→ 2, λ1,2 3
Transition probability 2→ 1, λ2,1 2
Jump amplitudes, ξ1,2, ξ2,1 1.0, 1.0
Volatilities, σ1, σ2 0.3, 0.4

Table 3: Input parameters and data for the American put problem.

caption. Our results are comparable with those in [25]. However, there is no report of grid/timestep size259

sensitivity or convergence criteria in [25].260

7.2 American Put261

A two-state model with no jumps in the asset price is used to price an American put whose payoff is given262

by V ∗ = max(K − S, 0) where K is the strike. The model parameters are shown in Table 3.263

Remark 7.1 (Termination of Iteration) Note that the termination criteria in line 6 of Algorithm 6.1264

and Algorithm 6.3 do not precisely correspond to the bounds in equations (6.1) and (6.2), since in practice we265

do not have the exact solution available. The termination criteria in Algorithms 6.1 and 6.3 can be regarded266

as practical implementations. However, we expect (as will be verified in the numerical tests) that the trends267

in the number of iterations will be roughly consistent with the bounds in equations (6.1) and (6.2).268

Refinement results using the local policy iteration with fully implicit and Crank-Nicolson timesteps are269

shown in Tables 4 and 6 respectively. The number of iterations required for convergence is reported for270

various grid/timestep refinements and contract lengths.271

Similar results using the iterated optimal stopping iteration are in Tables 5 and 7. The table head-272

ing “Inner Iterations” refers to those iterations required to solve lines 5 and 4 in Algorithms 6.1 and 6.3273

respectively.274

Remark 7.2 (Condition (6.5)) For all the Crank-Nicolson tests, we violate condition (6.5). This has275

no effect on the local policy iteration algorithm, but convergence of the iterated optimal stopping algorithm276

cannot be guaranteed if condition (6.5) is not satisfied.277
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Refinement Value Outer Iterations Inner Iterations Normalized
per Timestep per Outer Iteration CPU Time

T
=

1
0 1.149561815 6.00 2.10 1
1 1.165728338 5.00 2.12 2
2 1.171152560 4.00 2.11 4
3 1.173223677 3.21 2.11 8
4 1.174102036 3.00 2.11 22
5 1.174505970 3.00 2.09 68
6 1.174699595 2.45 2.11 200
7 1.174795968 2.05 2.11 713

T
=

1
0

0 2.480493130 15.6 2.06 3
1 2.527224461 10.4 2.07 4
2 2.545702990 7.28 2.10 7
3 2.552125529 5.45 2.12 13
4 2.554365849 4.38 2.15 30
5 2.555244216 3.76 2.16 84
6 2.555626744 3.07 2.18 248
7 2.555804716 3.00 2.18 925

Table 4: American Put — Refinement results for the local policy iteration using fully implicit timesteps.
Option values are at S = 10 in Regime 1. One unit of CPU time is based on level zero, T = 1. Compare
with Table 5.

Refinement Value Outer Iterations Inner Iterations Normalized
per Timestep CPU Time

per Outer Iteration

T
=

1

0 1.149561951 14 1.98 4
1 1.165728413 14 1.98 8
2 1.171152525 13 2.04 17
3 1.173224277 13 2.12 43
4 1.174102017 13 2.28 125
5 1.174505855 13 2.52 417
6 1.174700149 13 2.89 1583
7 1.174796138 13 3.46 6809

T
=

1
0

0 2.480497995 59 1.90 15
1 2.527228409 54 1.90 30
2 2.545706581 51 2.01 67
3 2.552129517 49 2.17 167
4 2.554369087 49 2.46 498
5 2.555247451 48 2.98 1739
6 2.555628049 48 3.86 7290
7 2.555804652 48 5.15 35274

Table 5: American put — Refinement results for the iterated optimal stopping iteration using fully implicit
timesteps. Option values are at S = 10 in Regime 1. CPU times are normalized so that the time for local
policy iteration, level zero is one unit (see Table 4). Compare with Table 4.
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Refinement Value Outer Iterations Inner Iterations Normalized
per Timestep per Outer Iteration CPU Time

T
=

1
0 1.158047827 5.08 2.09 1
1 1.170297442 4.06 2.13 2
2 1.173605701 3.69 2.11 4
3 1.174518713 3.02 2.09 8
4 1.174777835 3.00 2.08 23
5 1.174855570 3.00 2.06 73
6 1.174879679 2.15 2.04 191
7 1.174888084 2.01 2.07 713

T
=

1
0

0 2.494986976 11.4 2.07 2
1 2.535628033 7.80 2.08 3
2 2.550159207 5.94 2.11 6
3 2.554443725 4.79 2.12 12
4 2.555558848 4.02 2.15 30
5 2.555855693 3.18 2.16 80
6 2.555939143 3.01 2.15 266
7 2.555963088 2.98 2.15 1015

Table 6: American Put — Refinement results for the local policy iteration using Crank-Nicolson timesteps.
Option values are at S = 10 in Regime 1. One unit of CPU time is based on level zero, T = 1. Compare
with Table 7.

Refinement Value Outer Iterations Inner Iterations Normalized
per Timestep CPU Time

per Outer Iteration

T
=

1

0 1.158047915 11 2.04 3
1 1.170297512 10 2.04 6
2 1.173605959 10 2.04 14
3 1.174518781 10 2.06 35
4 1.174777806 10 2.15 100
5 1.174855530 10 2.34 331
6 1.174879899 10 2.59 1233
7 1.174888119 10 3.01 5286

T
=

1
0

0 2.494988694 37 2.02 10
1 2.535630069 33 1.99 20
2 2.550160719 32 2.01 44
3 2.554444966 31 2.16 111
4 2.555558751 30 2.42 325
5 2.555856723 30 2.83 1139
6 2.555939003 30 3.44 4597
7 2.555962940 30 4.40 21570

Table 7: American Put — Refinement results for the iterated optimal stopping iteration using Crank-Nicolson
timesteps. Option values are at S = 10 in Regime 1. CPU times are normalized so that the time for local
policy iteration, level zero is one unit (see Table 6). Compare with Table 6.
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As expected from the convergence bound in (6.1), the local policy method requires fewer outer iterations278

as the grid and timesteps are refined. This holds for both the shorter T = 1 contract and the longer T = 10279

contract. Hence when solving larger problems, fewer outer iterations are needed.280

In contrast, the iterated optimal stopping iteration exhibits several undesirable characteristics. The281

number of outer iterations approaches a fixed non-zero value as the grid and timestep is refined. This value282

gets increasingly larger for longer contract lengths in accordance with (6.3). The number of inner iterations283

increases with the refinement level. This is a bit surprising, since the same algorithm is used to solve line 5284

in Algorithm 6.1 and line 4 in Algorithm 6.3. A detailed examination revealed a large increase in the number285

of inner iterations within the first few outer iterations as grid refinements were made. This may be due to286

the poor initial estimate for the solution in the case of iterated optimal stopping. As a result, the CPU run287

times grow quite rapidly with every grid refinement as compared to the local policy run times.288

Remark 7.3 (Complexity of Both Methods) Since Algorithm 6.2 is the same for both methods, the289

ratio of the number of floating point operations for both methods is290

Flops for Iterated Optimal Stopping

Flops for Local Policy Iteration
=

Outer Iterations× Inner Iterations : Iterated Stopping

Outer Iterations× Inner Iterations : Local Policy
.

(7.1)

The ratio of CPU times in the Tables is approximately equal to the ratio of complexities in equation (7.1),291

for the finer grids (the timings are not accurate for the coarse grids).292

7.3 American Butterfly293

An American butterfly contract is priced with a payoff given by294

V ∗ = max(S −K1, 0)− 2 max(S − (K1 +K2)/2, 0) + max(S −K2, 0) (7.2)

where K1 and K2 represent the two strikes. Data and parameter values for the butterfly example are shown295

below. We assume the existence of an American contract with payoff (7.2), which can only be early exercised296

as a unit. This contract has been used as severe test case by several authors [1, 29, 26].297

K1 = 90 ; K2 = 110 ; r = 0.02 ; Simax = 5000

(7.3)

λ =

 −3.2 0.2 3.0
1.0 −1.08 .08
3.0 0.2 −3.2

 ; ξ =

 1.0 0.90 1.1
1.2 1.0 1.3
0.95 0.8 1.0

 ; σ =

 .2
.15
.30

 .

Note that in this case, the solutions will not have continuous (Vj)S . The payoff is also not convex, hence298

this precludes the analysis in [25]. However, this does not cause any difficulty if we pose the solution to299

problem (2.4) in terms of viscosity solutions.300

Refinement results for the butterfly payoff using the local policy iteration with fully implicit and Crank-301

Nicolson timestepping are displayed in Tables 8 and 10 respectively. Accompanying iterated optimal stopping302

refinement results are in Tables 9 and 11. Note that the same issues affecting the iterated optimal stopping303

method discussed in Section 7.2 persist when using the second order Crank-Nicolson discretization. The304

method requires significantly longer runtimes as compared to the local policy iteration, particularly for305

highly refined grids and longer contract lengths.306

In view of Remark 7.1, we carried out additional tests to check the convergence bound in (6.2) for307

the American Butterfly example. In these tests, an approximation to the successive error ratio Ek+1/Ek308

was computed. The exact option values are approximated with a numerical solution generated using a309

convergence tolerance of 10−12. The approximate error terms Ek were then calculated at each iteration and310

timestep. The average and maximum ratio of successive error estimates for a fully implicit iterated optimal311

stopping iteration are shown in Table 12. The observed error ratios tend to the bound (6.2) as the expiry312

time increases.313
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Refinement Value Outer Iterations Inner Iterations Normalized
per Timestep per Outer Iteration CPU Time

T
=

0
.5

0 4.414610687 5.64 2.14 1
1 4.437635032 4.96 2.15 2
2 4.450644836 4.00 2.19 5
3 4.456010904 3.47 2.21 13
4 4.458284154 3.02 2.24 42
5 4.459342999 3.00 2.24 156
6 4.459853289 3.00 2.23 717
7 4.460104008 2.26 2.23 2710

T
=

1
0

0 8.503526680 20.0 2.04 3
1 8.391584342 12.6 2.07 5
2 8.371971829 8.60 2.10 9
3 8.370349958 6.35 2.12 22
4 8.370656431 5.10 2.15 64
5 8.371011766 4.12 2.19 199
6 8.371245326 3.42 2.23 803
7 8.371375743 3.05 2.24 3414

Table 8: American Butterfly — Refinement results for the local policy iteration using fully implicit timesteps.
Option values are at S = 93 in Regime 2. CPU times are normalized so that the time for local policy iteration,
level zero is one unit. Compare with Table 9.

Refinement Value Outer Iterations Inner Iterations Normalized
per Timestep CPU Time

per Outer Iteration

T
=

0
.5

0 4.414610844 12 2.21 3
1 4.437635066 12 2.37 7
2 4.450644870 12 2.65 21
3 4.456011081 12 3.10 73
4 4.458284196 12 3.76 288
5 4.459343003 12 4.77 1295
6 4.459853288 12 6.35 7618
7 4.460104147 12 8.74 45699

T
=

1
0

0 8.503527951 71 1.99 16
1 8.391586147 65 2.08 36
2 8.371973661 62 2.26 99
3 8.370351440 60 2.67 328
4 8.370657097 59 3.35 1290
5 8.371012428 58 4.56 6015
6 8.371246794 58 6.28 36450
7 8.371376073 58 8.76 222080

Table 9: American Butterfly — Refinement results for the iterated optimal stopping iteration using fully
implicit timesteps. Option values are at S = 93 in Regime 2. CPU times are normalized so that the time
for local policy iteration, level 0 is one unit (see Table 8). Compare with Table 8.
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Refinement Value Outer Iterations Inner Iterations Normalized
per Timestep per Outer Iteration CPU Time

T
=

0
.5

0 4.440162686 5.08 2.12 1
1 4.451422139 4.06 2.15 2
2 4.457862480 3.94 2.15 6
3 4.459717103 3.08 2.17 15
4 4.460172252 3.01 2.17 52
5 4.460299471 3.00 2.18 197
6 4.460336267 2.61 2.06 767
7 4.460347552 2.09 2.21 3123

T
=

1
0

0 8.521803224 14.0 2.05 2
1 8.400544555 9.40 2.09 4
2 8.376389091 6.84 2.11 9
3 8.372576548 5.21 2.14 24
4 8.371770123 4.25 2.17 70
5 8.371587805 3.84 2.19 244
6 8.371527683 3.10 2.22 947
7 8.371517241 3.01 2.22 4226

Table 10: American Butterfly — Refinement results for the local policy iteration using Crank-Nicolson
timesteps. Option values are at S = 93 in Regime 2. CPU times are normalized so that the time for local
policy iteration, level zero is one unit. Compare with Table 11.

Refinement Value Outer Iterations Inner Iterations Normalized
per Timestep CPU Time

per Outer Iteration

T
=

0
.5

0 4.440162700 10 2.17 3
1 4.451422164 9 2.33 7
2 4.457862497 9 2.56 19
3 4.459717136 9 2.90 66
4 4.460172252 9 3.42 256
5 4.460299466 9 4.22 1144
6 4.460336333 9 5.39 6429
7 4.460347592 9 7.18 36853

T
=

1
0

0 8.521803835 44 2.13 12
1 8.400545174 40 2.19 28
2 8.376389721 38 2.41 78
3 8.372577132 37 2.73 258
4 8.371770660 36 3.33 999
5 8.371588095 36 4.11 4494
6 8.371527985 36 5.32 25490
7 8.371517265 36 7.20 148238

Table 11: American Butterfly — Refinement results for the iterated optimal stopping iteration using Crank-
Nicolson timesteps. Option values are at S = 93 in Regime 2. CPU times are normalized so that the time
for local policy iteration, level zero is one unit (see Table 10). Compare with Table 10.
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Refinement Convergence Bounds Approximate Error Ratio
Optimal Stopping

Local Policy Optimal Stopping Avg Value Max Value

T
=

0
.5

0 0.060 0.785 0.241 0.349
1 0.031 0.790 0.231 0.365
2 0.016 0.793 0.224 0.362
3 0.008 0.794 0.221 0.362
4 0.004 0.794 0.219 0.362

T
=

1
0

0 0.559 0.994 0.819 0.940
1 0.389 0.994 0.793 0.925
2 0.242 0.994 0.779 0.922
3 0.138 0.994 0.771 0.920
4 0.074 0.994 0.767 0.920

Table 12: Approximate error ratios, Ek+1/Ek, for the iterated optimal stopping iteration. American Butter-
fly case. The approximate error ratio values are computed using fully implicit timesteps. The convergence
bounds also correspond to fully implicit timesteps (see (6.1) and (6.2)). The exact solution was approximated
by generating a solution with a convergence tolerance of 10−12.

8 Conclusions314

Analysis of the iterated optimal stopping algorithm proposed in [25] for American options under regime315

switching shows that this technique is inferior in terms of worst case bounds on the rate of convergence316

compared with local policy iteration [27, 19]. Numerical tests indicate that the observed performance of both317

these methods is consistent with the bounds on the convergence rates, using a common type of convergence318

test. In addition, iterated optimal stopping requires considerably more storage compared to local policy319

iteration.320

We also note that iterated optimal stopping has been proposed for jump diffusion problems [4, 5]. The321

analysis of the convergence rates for these problems is similar to that for regime switching, and can be easily322

carried out using the general form for the discretized equations as discussed in [19]. The analysis shows that323

the convergence bounds for iterated optimal stopping are worse than for local policy iteration.324

Since it is a simple matter to convert an iterated optimal stopping implementation to local policy iteration325

(this simply involves interchanging two loops), we strongly recommend use of local policy iteration.326

Appendix327

A Error Bound for Local Policy Iteration with Inexact Inner So-328

lution329

In this Appendix, we generalize the result in Theorem 6.1 to include the effect of an approximate solution330

to Line 5 in Algorithm 6.1. We need only generalize the steps used in [19].331

If V n+1 is a solution to equation (5.2) then332

max
Q′

{
−A(Q′)V n+1 + B(Q′)V n+1 + C(Q′, V n)

}
= 0 , (A.1)

while from Algorithm 6.1, we have333

max
Q

{
−A(Q)(V n+1)k+1 + B(Q)(V n+1)k + C(Q,V n)

}
= Ek. (A.2)
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The term Ek in equation (A.2) takes into account that that we may not necessarily have the exact solution334

to Line 5 in Algorithm 6.1, if we use Algorithm 6.2.335

Subtracting equation (A.1) from equation (A.2) we obtain336

Ek = max
Q

{
−A(Q)(V n+1)k+1 + B(Q)(V n+1)k + C(Q,V n)

}
−max

Q′

{
−A(Q′)V n+1 + B(Q′)V n+1 + C(Q′, V n)

}
≤ max

Q

{
−A(Q)((V n+1)k+1 − V n+1) + B(Q)((V n+1)k − V n+1)

}
. (A.3)

If Q̂ satisfies337

Q̂ ∈ arg max
Q

{
A(Q)((V n+1)k+1 − V n+1) + B(Q)((V n+1)k − V n+1)

}
. (A.4)

then, from equation (A.3), we have, (Ek+1 = (V n+1)k+1 − V n+1)338

A(Q̂)Ek+1 ≤ B(Q̂)Ek − Ek , (A.5)

or, since A(Q) is an M matrix,339

Ek+1 ≤ A(Q̂)−1B(Q̂)Ek −A(Q̂)−1Ek ≤ C1‖Ek‖∞e + C2‖Ek‖∞e

C1 = max
Q
‖A(Q)−1B(Q)‖∞

C2 = max
Q
‖A(Q)−1‖∞ (A.6)

where e = [1, 1, . . . , 1]′. Similarly340

Ek = max
Q

{
−A(Q)(V n+1)k+1 + B(Q)(V n+1)k + C(Q,V n)

}
−max

Q′

{
−A(Q′)V n+1 + B(Q′)V n+1 + C(Q′, V n)

}
≥ min

Q

{
−A(Q)((V n+1)k+1 − V n+1) + B(Q)((V n+1)k − V n+1)

}
. (A.7)

Hence if341

Q̄ ∈ arg min
Q∈Z

{
−A(Q)((V n+1)k+1 − V n+1) + B(Q)((V n+1)k − V n+1)

}
, (A.8)

then342

Ek+1 ≥ A(Q̄)−1B(Q̄)Ek −A(Q̂)−1Ek ≥ −C1‖Ek‖∞e− C2‖Ek‖∞e . (A.9)

Equations (A.6) and (A.9) then give343

‖Ek+1‖∞ ≤ C1‖Ek‖∞ + C2‖Emax‖∞
‖Emax‖∞ = max

k
‖Ek‖∞ . (A.10)

From [19], we have that344

C1 ≤ θλ̂∆τ

1 + θ(r + λ̂)∆τ
; λ̂ = max

j
λj

< 1 , (A.11)

and C2 bounded, hence345

‖Ek+1‖∞ ≤ Ck+1
1 ‖E0‖∞ + C2

(
1− Ck+1

1

1− C1

)
‖Emax‖∞ , (A.12)
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and in view of equation (A.11), we obtain346

lim
k→∞

‖Ek+1‖∞ ≤ C2

1− C1
‖Emax‖∞ . (A.13)

Manipulation of Line 4 in Algorithm 6.2 results in347

A(Qm)(Um+1 − Um) = max
Q

{
−A(Q)Um + B(Q)(V n+1)k + C(Q,V n)

}
(A.14)

Recall that at convergence of Algorithm 6.2, we have348

(V n+1)k+1 = Um+1 . (A.15)

When Algorithm 6.2 terminates, we have349

Ek = max
Q

{
−A(Q)(V n+1)k+1 + B(Q)(V n+1)k + C(Q,V n)

}
, (A.16)

then, from equations (A.14) and (A.16) (with Um+1 = (V n+1)k+1)350

Ek = A(Qm)(Um+1 − Um) + max
Q

{
−A(Q)Um+1 + B(Q)(V n+1)k + C(Q,V n)

}
−max

Q

{
−A(Q)Um + B(Q)(V n+1)k + C(Q,V n)

}
(A.17)

and then351

|Ek| ≤ |A(Qm)(Um+1 − Um)|+ max
Q
|A(Q)(Um+1 − Um)| , (A.18)

which implies352

‖Ek‖∞ ≤ 2 ·max
Q
‖A(Q)‖∞‖Um+1 − Um‖∞ . (A.19)

SinceA(Qm) is bounded, ‖Ek‖∞ (and hence ‖Emax‖∞) can be made arbitrarily small by making toleranceinner353

small in Algorithm 6.2.354
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