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Abstract. In this paper, we show the equivalence between matrix rational interpolation problems
with poles as interpolation points and no-pole problems. This equivalence provides an effective
method for computing matrix rational interpolants having poles as interpolation points. However,
this equivalence is only valid in those cases where enough pole information is known. It is an open
problem on how one can transform the pole problem to a no-pole problem in other cases.
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1. Introduction

In this paper, we consider a matrix rational interpolation problem with data given
at one or more interpolation points. We also allow these interpolation points to be
poles of our matrix rational interpolant. In the case of the scalar pole-problem (also
allowing confluent interpolation points and∞ as an interpolation point), Gutknecht
[5] gives an algorithm computing the solution as a continued fraction along a diag-
onal or a staircase in the Newton-Padé table. Additional information about scalar
rational interpolants (for example concerning their existence and uniqueness) can
be found in Gutknecht [6] and Stahl [8]. In [13], Van Barel and Bultheel generalize
their algorithm of [9] also allowing confluent interpolation points, poles and ∞ as
an interpolation point.

The algorithm of [13] is based on the fact that all solutions of an equivalent
linearized interpolation problem can be written in terms of some basis vectors of
an IF[z]-submodule of the module of all polynomial vectors IFn[z]. To add a new
interpolation condition, we only have to update this set of basis vectors. This can
be done in a fast and reliable way leading to O(k2) FLOPS for k interpolation
conditions. For the pole-free problem, this was generalized to the vector case [1, 4,
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10, 11] and also to the matrix case [2, 3, 12]. Once we have the basis vectors, we
can parametrize all solutions of the original rational interpolation problem having
minimal complexity [12]. In this paper, we show how to transform the pole-problem
to a pole-free problem. The latter can be solved using one of the methods referred
to before.

In the next section, we define the rational interpolation problem that we want
to solve. This section also discusses the ~s-McMillan degree, used as a measure of
the complexity of a rational interpolant. Sections 3 and 4 introduces the concept of
(α, σ)-characteristics of a formal Laurent series around a point α, and shows how
they can be computed. In Section 5, we show that our original rational interpola-
tion problem with pole information is equivalent to another rational interpolation
problem without poles as interpolation points. However, as we show in Section 6, the
equivalence of the pole and the pole-free problem is only true when enough interpo-
lation data are known at each pole. It remains an open problem how to solve the
rational interpolation problem in an efficient way when this condition is not met.

2. Rational interpolation with poles

For the rational interpolation problem considered here, we have interpolation infor-
mation at each point (possibly a pole) α ∈ I, with I a non-empty, finite subset of IF,
IF a field. We will use the following notations: IF[z] the set of polynomials, IF[[z]]α
the set of formal power series around α ∈ IF, IF(z) the field of rational functions and
IF((z))α the field of formal Laurent series

IF((z))α = { 1
(z − α)k

· f : f ∈ IF[[z]]α, k ∈ ZZ (the set of integer numbers)}.

We also have the corresponding matrix versions, for example IFp×q((z))α where p, q
are positive integers. Note that IF[z] ⊂ IF(z) ⊂ IF((z))α.

In the sequel, the relations ≤,≥,min between integer vectors have to be under-
stood componentwise. The vector ~e := (1, 1, . . . , 1, 1) and ej is the j-th column of
the identity matrix.

Definition 1 The α-order, α ∈ IF, of T ∈ IFp×q((z))α is defined by

ordαT := sup{σ ∈ ZZ : T = (z − α)σ ·R with R ∈ IFp×q[[z]]α},

i.e., R is a formal matrix power series around α. Note that ordα0 = +∞. For
T ∈ IFp×q((z))α with rows T1, . . . ,Tp ∈ IF1×q((z))α the α-row order rordαT is a
vector with components ordαTi. Similarly we define the α-column order cordαT
with respect to the columns of T. 2

For a vector ~σ = (σ1, . . . , σm) with components from ZZ ∪ {+∞} we denote
(z − α)~σ := diag

(
(z − α)σ1 , . . . , (z − α)σm

)
, where (z − α)+∞ := 0. In this case we

can write for any T and α

T(z) = (z − α)rordαT ·R1(z) and T(z) = R2(z) · (z − α)cordαT, (1)
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where the rows of R1 and the columns of R2 corresponding to an α-order 6= +∞ are
unique power series around α with a non-zero value at α. The decomposition of (1)
is then made unique by putting the remaining rows of R1 and the remaining columns
of R2 equal to zero. We refer to (1) as the α-row and α-column representation of T.

Definition 2 The projection operator Πα,σ acting on T ∈ IFp×q((z))α is defined by

Πα,σT :=
σ−1∑
k=τ

Tk(z − α)k, where T(z) =
∞∑
k=τ

Tk(z − α)k.

Πα,σT will be called the (α, σ) main part of T. 2

The rational interpolation problem to be considered here is the following: Given
Tα ∈ IFp×q((z))α, ∀α ∈ I, find a rational function Z ∈ IFp×q(z) such that the
(α, σ(α)) main parts of Z and Tα are the same ∀α ∈ I. However, this problem has
an infinite number of solutions and as such we only look for those rational functions
which are in some sense solutions of minimal complexity. Complexity of a matrix
rational function can be defined in several ways. In our case we use the notion of a
~s-McMillan degree [12].

Definition 3 Let ~s = (s1, s2, . . . , sp+q) with each (shift parameter) si ∈ ZZ . The
~s-McMillan degree of a pair of matrix polynomials (N,D), with N ∈ IFp×q[z] and
D ∈ IFq×q[z], is defined as

~s-MM-deg (N,D) = max
{

deg detP : P is a q × q submatrix of z~s ·
[
N
D

]}
.

For any rational function Z ∈ IFp×q(z) let Z = N ·D−1 be a right coprime polynomial
matrix fraction description (RCPMFD). Then the ~s-McMillan degree of Z is defined
as

~s-MM-deg Z = ~s-MM-deg (N,D).

2

Note that the RCPMFD of a rational function is unique up to a right unimodular
factor U of both numerator and denominator [7, p. 441, Th. 6.5-4]); hence the
definition of a ~s-McMillan degree is well defined. When ~s = ~0 we get the classical
McMillan degree. The McMillan degree is a well-known concept in linear system
theory. It is a measure of the complexity of a linear system. (see e.g. [7, p. 439]).

The rational problem which we discuss is now given as follows.

Definition 4 Given Tα ∈ IFp×q((z))α, ∀α ∈ I, a vector ~s ∈ ZZ (p+q)×1 and the order
indices σ(α), find a Z ∈ IFp×q(z) with minimal ~s-McMillan degree such that

ordα(Tα − Z) ≥ σ(α) ∀α ∈ I. (2)

2

We will show that the original rational interpolation problem given some for-
mal Laurent series is equivalent to a rational interpolation problem with the same
interpolation points α ∈ I but given formal power series (no poles anymore).
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3. (α, σ)-characteristics

Since the rational interpolation problem studied in this paper only requires the (α, σ)
main part of given formal Laurent series, consideration will have to be taken when
we define characteristics limited to this main part.

Definition 5 A formal (matrix) Laurent series T ∈ IFp×q((z))α is called α-column
reduced iff in the α-column representation T(z) = R(z) · (z −α)cordαT the nonzero
columns of R(α) are linearly independent. T ∈ IFp×q((z))α is called (α, σ)-column
reduced iff Πα,σT(z) is α-column reduced. 2

Clearly if T is (α, σ)-column reduced then so is its Laurent polynomial counter-
part Πα,σT.

Definition 6 Given a formal (matrix) Laurent series T ∈ IFp×q((z))α, a matrix
polynomial DT ∈ IFq×q[z] is called an (α, σ)-column reducing denominator of T iff

(a) detDT(α) 6= 0 and hence D−1
T ∈ IFq×q[[z]]α,

(b) T ·DT is (α, σ)-column reduced.
(3)

2

Note that an (α, σ)-column reduced denominator does not depend on T but only
on Πα,σT. This can be verified using the following lemma.

Lemma 1 For any matrix Laurent series T1 around α and any matrix power series
T2 around α, both of suitable size, we have

Πα,σ(T1 ·T2) = Πα,σ(Πα,σ(T1) ·T2). (4)

Proof: Trivial. 2

Moreover, as seen in the following Theorem, there exist further invariances,
namely so-called (α, σ)-characteristics.

Theorem 1 Let T ∈ IFp×q((z))α, with corresponding (α, σ)-column reduced denom-
inator DT ∈ IFq×q[z] and α-column representation

Πα,σ(T ·DT) = NT · (z − α)~δ(T).

Then the entries of ~δ(T) are unique up to permutation.

Proof: Suppose D1, D2 are two (α, σ)-reducing denominators of T, having the
α-column representations

Πα,σ(T ·D1) = N1 · (z − α)~δ1 , and Πα,σ(T ·D2) = N2 · (z − α)~δ2 .

Without loss of generality we may assume that the columns of D1, D2 are ordered
in such a manner that the components of both ~δ1 and ~δ2 are ascending. Suppose
that there exists a k with δ1,j = δ2,j , j = q, q − 1, . . . , k but δ1,k−1 > δ2,k−1. Since
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D1(α) is regular, we can form R := D−1
1 ·D2, a (matrix) power series about α. Set

Λj(z) := (z − α)~δj , j = 1, 2. Then using Lemma 1 we have

N2 · Λ2 = Πα,σ(T ·D2) = Πα,σ(T ·D1 ·D−1
1 ·D2)

= Πα,σ(Πα,σ(T ·D1) ·D−1
1 ·D2) = Πα,σ(N1 · Λ1 ·R).

Since Nj ·Λj = Πα,σ(Nj ·Λj), j = 1, 2 are both (α, σ)-column reduced, Definition 5
implies that R(α) has the following form

R(α) =

 R11 0 0
R21 0 0
R31 R3,2 R3,3


where the rows and columns are partitioned as: k− 2, 1, q− k+ 1. But R is regular
at α because D1(α) and D2(α) are both regular, a contradiction. 2

Definition 7 The entries of ~δ(T) defined in the previous theorem are called the
(α, σ)-characteristics1 of T. The number of finite (α, σ)-characteristics is called the
(α, σ)-index2 and denoted as κα,σ(T). In addition, the sum of the negative (α, σ)-
characteristics of T is called the (α, σ)-pole multiplicity and will be abbreviated as
∆(α, σ,T). 2

The dependency of (α, σ)-characteristics of T on σ can be described explicitly.

Theorem 2 Let T ∈ IFp×q((z))α, σ1 < σ2 and ~δ1 the (α, σ1)-characteristics and ~δ2
the (α, σ2)-characteristics of T, respectively. Then the entries of ~δ1 and ~δ2 smaller
than σ1 are unique up to permutation.

Proof: Let DT be an (α, σ2)-reducing denominator of T, then (after suitable
permutation of columns of DT) we may write

Πα,σ2(T ·DT) = [N−T N+
T ] ·

[
(z − α)~δ

−
0

0 (z − α)~δ
+

]

where all the entries of ~δ−2 are smaller than σ1 and ~δ+
2 contains the remaining entries.

Applying the projection operator Πα,σ1 gives

Πα,σ1(T ·DT) = [Πα,σ1

(
N−T · (z − α)~δ

−
)

(z − α)−~δ
−

0] ·
[

(z − α)~δ
−

0
0 0

]
which is obviously α-column reduced.3

2

As a consequence of Theorem 2, we may specify some cases where the (α, σ)-pole
multiplicity does not depend on σ.

1 Note the connection with the structural indices from linear system theory: see Kailath [7,
p. 447]

2 This number is bounded by min{p, q}, the maximal number of columns of NT(α) which can
be linearly independent.

3 In particular, we may conclude that an (α, σ2)-reducing denominator also is an (α, σ1)-reducing
denominator for σ1 < σ2.
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Corollary 1 Let T ∈ IFp×q((z))α with κα,σ = min{p, q} or σ ≥ 0. Then for
any T′ with ordα(T −T′) ≥ σ, the (α, 0)-characteristics of T and T′ coincide. In
particular, the pole multiplicities ∆(α, σ,T′), ∆(α, σ,T), ∆(α, 0,T′) and ∆(α, 0,T)
all are equal. 2

Multiplication with (z − α)τ changes the α-characteristics in the following way:

Corollary 2 Let T have the (α, σ)-characteristics ~δ and let DT be an (α, σ)-
reducing denominator of T. Then for any integer τ , the function Tτ := (z−α)τ ·T
has the (α, σ+τ)-characteristics ~δ+τ ·~e and DT is an (α, σ+τ)-reducing denominator
of Tτ . 2

4. Construction of (α, σ)-characteristics

How can we construct an (α, σ)-reduced denominator and, hence, the (α, σ)-characteristics
of a given formal Laurent series T? The following constructive method generates a
finite sequence (Nk, Dk, Vk)k with

Initialization: D0 := Iq×q

Recurrence: Nk ∈ IFp×q((z))α, Nk := Πα,~σ(T ·Dk)
Recurrence: Dk+1 := Dk · Vk ∈ IFq×q[z], Dk+1(α) being regular,

and Nk being a Laurent polynomial around α. In the second recurence the polyno-
mial factor Vk is determined as follows:

If Nk is not α-column reduced, we know from Definition 5 that ∃a ∈ IFq×1 with

Rk(α) · a = 0 and Nk(z) = Rk(z) · (z − α)cordαNk

where a has zero entries when the corresponding columns of R(α) are zero. Let
cordmaxNk be equal to the maximum of the (finite) entries of cordαNk correspond-
ing to nonzero entries of Nk and let j be the index of this maximum in cordαNk.
Construct the polynomial vector v ∈ IFq×1[z] as

v := (z − α)−cordαNk+cordmaxNk·~ea

with the entries of v corresponding to zero entries of a also equal to zero. In this
case we take Vk = [e1, e2, · · · , ej−1, v, ej+1, · · · , eq] . Note that Vk(α) is regular.

If Nk is α-column reduced, Dk has the required properties of an (α, σ)-column
reduced denominator of T. That this process ends after a finite number of steps is
clear since at each step we increase the α-order of one of the non-zero columns of
Nk while at the same time the α-orders of the nonzero columns of Nk = Πα,σ(Nk)
are bounded by σ − 1.

We mention three important aspects of the above construction. First notice that
if T is a power series around α, then all Nk are matrix polynomials. Secondly, we
see that each Vk and therefore also each Dk may be assumed to be unimodular. The
final point is stated in the next theorem. Its proof makes repeated use of Lemma 1.
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Theorem 3 Let the matrix rational function Z have the RCPMFD Z = N · D−1

with matrix polynomials N ∈ IFp×q[z], D ∈ IFq×q[z], then there holds:
(a) If Z(α) is finite, then the (α, σ)-characteristics of Z and the (α, σ)-charac-

teristics of N coincide for all σ. In addition none of them are negative.
(b) With γ > ordαdetD we have κα,γ(D) = q, and with D having the (α, γ)-

characteristics δ1, . . . , δq′ ,0, . . . , 0, q′ minimal, Z has the (α, 0)-characteristics −δ1,
. . . , −δq′ , +∞, . . . , +∞.

Proof: Note that in case (a) it is also true that D(α) is regular. Hence we
may initialize the above procedure with D0 = D, i.e., there exists a unimodular
matrix V ∈ IFq×q[z] such that D ·V is an (α, σ)-reducing denominator and therefore
Πα,σ(N · V ) is (α, σ)-reduced, with its α-column representation yielding the (α, σ)-
characteristics of Z.

In order to prove (b), we first notice that detD 6= 0 and so the quantity γ is well-
defined. Suppose that the unimodular matrix V is an (α, γ)-reducing denominator
of D, i.e., there exist two polynomial matrices D0, D

′
0 with

D · V = D0 · (z − α)~δ + (z − α)γ ·D′0,

~δ containing only nonnegative integers or +∞, and the nonzero columns of D0 are
linearly independent at α. Taking determinants on both sides we see that none of the
columns of D0 may be different from zero , since otherwise the α-order of the right
hand side would be greater or equal to γ which is greater than ordαdet (D · V ) =
ordαdetD < γ. Consequently, κα,γ(D) = q, and we may combine the matrices
D0, D′0 such that without loss of generality D′0 = 0. By assumption, the pair
(N,D) and therefore the pair (N · V,D · V ) is right coprime. The first q′ columns
of D · V = D0 · (z − α)~δ are zero at α, and hence the first q′ columns of N · V
denoted by N+ must be linearly independent at α. We may conclude that D0 is an
(α, 0)-reducing denominator of Z since with ~δ′ := (δ1, . . . , δq′)

Πα,0(Z ·D0) = Πα,0(N · V · (z − α)−~δ) =
[

Πα,0(N+ · (z − α)−~δ
′
) 0

]
being obviously α-reduced. 2

Example 1 Given α = 0, σ = 2, we use the method described above to determine
the (α, σ)-characteristics of

T = N0 =
[

1 −1
0 0

]
z−1 +

[
1 2
0 0

]
z0 +

[
0 0
0 1

]
z1 + · · · . (5)

Because N0 is not α-column reduced, we multiply to the right by

V0 =
[

1 1
0 1

]
. (6)

We get after projection

N1 =
[

1 0
0 0

]
z−1 +

[
1 3
0 0

]
z0 +

[
0 0
0 1

]
z1. (7)
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Because N1 still is not α-column reduced, we multiply to the right by

V1 =
[

1 −3z
0 1

]
. (8)

We get after projection

N2 =
[

1 0
0 0

]
z−1 +

[
1 0
0 0

]
z0 +

[
0 −3
0 1

]
z1. (9)

This last result N2 = Πα,σ(T · D2) is α-column reduced. Therefore, the (α, σ)-
characteristics are in this case: −1 and 1, the (α, σ)-pole multiplicity ∆(α, σ,T) =
−1 and the (α, σ)-index κα,σ = 2. 2

5. Equivalence

Before we can show equivalence between the original rational interpolation problem
with pole information and another rational interpolation problem without poles as
interpolation points, we need the following theorem.

Theorem 4 For each matrix rational function Z ∈ IFp×q(z) with (α, 0)-charac-
teristics ~δ and for each τ ≥ 0 with ~δ + τ · ~e ≥ 0,

~s-MM-deg Z = ~r-MM-deg
(

(z − α)τ · Z
)
−∆(α, 0, Z) (10)

with ~r := ~s− τ · (1, . . . , 1, 0, . . . , 0) (q zeros).

Proof: Because ~δτ := ~δ + τ · ~e ≥ 0, by Corollary 2 the matrix rational function
Zτ := (z−α)τ ·Z has the (α, τ)-characteristics ~δτ , and Zτ (α) is finite. By the proof
of Theorem 3(a) we get a RCPMFD Nτ · D−1

τ for Zτ with Dτ an (α, τ)-reducing
denominator of Zτ , i.e.,

Zτ ·Dτ = Nτ = N ′τ · (z − α)~δτ + (z − α)τ ·N ′′τ

with N ′′τ being polynomial. Without loss of generality we may suppose that the
components of ~δτ are either smaller than τ or equal to +∞, and in addition ordered
such that with ~δ−τ containing the finite entries of ~δτ (which then are non–negative
and smaller than τ) we obtain the consistent partitions

N ′τ =
[
N−τ · (z − α)~δ

−
0
]
, Dτ =

[
D−τ D+

τ

]
.

Notice that the matrix N−τ (α) by definition of (α, τ)-characteristics has maximal
rank, and Dτ (α) is regular, hence also the matrix D+

τ (α) has maximal rank.
A RCPMFD N ·D−1 for Z can be based upon Nτ and Dτ as follows. Define

Λ+ :=
[

(z − α)−~δ
−
τ 0

0 (z − α)−τ · I

]
, Λ− :=

[
(z − α)τ~e−~δ

−
τ 0

0 I

]
,
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where Λ− := (z − α)τ · Λ+ is polynomial. Because Z = (z − α)−τ · Zτ , a poly-
nomial matrix fraction description of Z is given by the numerator N := Nτ · Λ+

and the denominator D := Dτ · Λ−. In order to show that (N,D) also is right
coprime and therefore a RCPMFD for Z, we prove the equivalent condition that[
N(z)T D(z)T

]T has maximal rank ∀z ∈ IF (cf., [7, Lemma 6.3-6, p. 379]). In case
z 6= α, this condition follows immediately from the right coprimeness of (Nτ , Dτ ).
For z = α we obtain[

N
D

]
(α) =

[
Nτ · Λ+

Dτ · Λ−
]

(α) =
[
N−τ (α) 0
X D+

τ (α)

]
having also maximal rank (independently of the suitable matrix X) as shown above.

Hence, for the McMillan degree there holds

~s-MM-deg Z = ~s-MM-deg (Nτ · Λ+, Dτ · Λ−)
= ~r-MM-deg (Nτ · Λ+ · (z − α)τ , Dτ · Λ−)
= ~r-MM-deg (Nτ , Dτ ) + deg det Λ−

= ~r-MM-deg Zτ + deg det Λ−.

Note that, by Corollary 2, Dτ also is an (α, 0)-reducing denominator of Z, such that
∆(α, 0, Z) = −deg det Λ−. 2

Now we are able to show the main assertion.

Theorem 5 Given the set I of interpolation points α, the formal Laurent series
Tα, the order indices σ(α), ∀α ∈ I and the shift parameters ~s. Let Rα, ρ(α), τ(α),
∀α ∈ I, τ, ω be defined as follows:

(a) choose τα such that − τ(α) ≤ min{0, ordα(Tα)},
(b) τ :=

∑
α∈I τ(α),

(c) ~r := ~s− τ · (1, . . . , 1, 0, . . . , 0) (q zeros),
(d) ρ(α) := σ(α) + τ(α)
(e) Rα := ω ·Tα ∈ IFp×q[[z]]α with ω :=

∏
α∈I(z − α)τ(α),

(f) ∆ :=
∑
α∈I ∆(α, σ(α),Tα).

(11)

Moreover, let

∀α ∈ I :
(a) κα,σ(α)(Tα) = min{p, q}
or
(b) σ(α) ≥ 0.

(12)

(a) For each Z satisfying (2) we have

~s-MM-deg Z = ~r-MM-deg (ω · Z)−∆. (13)

(b) If Zτ is a solution to the rational interpolation problem with respect to (Rα, ρ(α),
∀α ∈ I, ~r) then Z := 1

ω · Zτ is a solution to the rational interpolation problem with
respect to (Tα, σ(α),∀α ∈ I, ~s).

Proof: By Corollary 1 the (α, 0)-characteristics of Tα and Z coincide and ∆(α,
σ(α), Tα) = ∆(α, 0, Z). Hence, part (a) follows by successively applying Theorem
4. Assertion (b) is an immediate consequence. 2
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Example 2 Take interpolation in 0, 1 and −1 with

σ(0) = 2, σ(1) = −1, σ(−1) = 0, Tα = T =

[
−1

(z+1)·(z−1)2 z − 2
z 1

(z−1)3

]
(14)

We can apply Theorem 5 because σ(0) ≥ 0, the negative (α, σ(α)) = (1,−1)-
characteristics of T are −3 and −2, i.e. they are all known, and σ(−1) ≥ 0. Let
us choose the shift parameters ~s = (1, 1, 0, 0). We can take τ(0) = 0, τ(1) = 3
and τ(−1) = 1. Hence, ρ(0) = 2, ρ(1) = 2, ρ(−1) = 1, ω(z) = (z − 1)3(z + 1),
~r = (−3,−3, 0, 0) and Rα = R = T · ω, ∀α ∈ I = {0, 1,−1}. To solve the pole-free
problem, we use the module-theoretic framework of [12]. A basis for the submod-
ule corresponding to (R, ρ(α),∀α ∈ I, ~r) is given by the columns of the polynomial
matrix P: −(3z − 2)(z + 1)(z − 1)2 −(z − 1) −(z + 1)(z − 1) (z + 1)(z − 1)2(z − 2)

z + 1 −(z + 1)(z − 1)2z −(z + 1)(z − 1)2z −(z + 1)2

0 −1 −(z + 1) 0
−1 0 0 z + 1


with corresponding ~r-degrees (1, 1, 1, 1). All solutions Zτ of the “no-pole” problem
having minimal ~r-MM-degree 2 can be written as Zτ = Nτ ·D−1

τ with

[
Nτ
Dτ

]
= P ·


1 0
0 1
a c
b d

 with a, b, c, d ∈ IF

and Dτ (0) regular, i.e. b 6= 1 and c 6= −1, Dτ (1) regular, i.e. b 6= 2 and c 6= −2,
Dτ (−1) regular, giving no further conditions on a, b, c or d.

Hence, all solutions Z of the “pole” problem can be written as Z = Zτ/ω having
minimal ~s-MM-degree

~s-MM-deg Z = ~r-MM-deg Zτ −∆ = 2− (−3− 2− 1) = 8.

2

Note that the equivalence is also valid when we consider vector order indices ~σ(α)
instead of scalar ones.

Corollary 3 Consider the rational interpolation problem of Definition 4 but with

cordα(Tα − Z) ≥ ~σ(α) ∀α ∈ I

instead of (2). Take the notation of Theorem 5 except for ρ(α) for which a vector
variant is defined as ~ρ(α) := ~σ(α) + τ~e. Instead of (12), we assume that

∀α ∈ I :
(a) κα,σmin(α)(Tα) = min{p, q}
or
(b) ~σ(α) ≥ 0

(15)
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with σmin(α) = minpi=1{σi(α)}. ∆ is defined as

∆ =
∑
α∈I

∆(α, σmin(α),Tα).

In this case, the results of Theorem 5 are also valid.

Proof: The condition (15) guarantees that the (α, 0)-indices of Z are fixed. 2

6. Open problem

If condition (12) in Theorem 5 (or (15) of Corollary 3) is not satisfied, then it is an
open problem how the original rational interpolation problem can be transformed
into one without pole information. As an example we have:

Example 3 Take interpolation in 0 and 1 with

σ(0) = 2, σ(1) = −3, Tα = T =
[ 1

1−z 0
0 1

(1−z)5

]
(16)

Then we have

ω(z) = (1− z)5, τ = 5, ρ(0) = 2, ρ(1) = 2. (17)

Note that T has the negative (1,+∞)-characteristics −5 and −1, but (1, σ(1)) char-
acteristics −5 and +∞. For the submodule induced by the interpolation conditions
due to ρ(α) and Rα = ω ·Tα we have as two bases the columns of the matrices

P1 =


z2(1− z)2 0 (1− z)4 0

0 z2(1− z)2 0 1 + 5z
0 0 1 0
0 0 0 1

 ,

P2 =


z2(1− z)2 0 (1− z)2(1− 2z) 0

0 z2(1− z)2 0 1 + 5z
0 0 1 0
0 0 0 1

 .
(a) Take ~s = (1, 1, 0, 0) and therefore ~r = (−4,−4, 0, 0). Then both bases P1 and
P2 are ~r-column-reduced. We obtain the two “no-pole” solutions with minimal
~r-McMillan degree

Z ′1 = R =
[

(1− z)4 0
0 1 + 5z

]
, Z ′2 =

[
(1− z)2(1− 2z) 0

0 1 + 5z

]
(18)

which yields for our “pole-problem” the two solutions

Z1 =
1
ω
· Z ′1 = T with ~s-MM-deg Z1 = ~r-MM-deg Z ′1 + 6 = 0 + 6 = 6

Z2 =
1
ω
· Z ′2 with ~s-MM-deg Z2 = ~r-MM-deg Z ′2 + 8 = 0 + 8 = 8
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where we have applied Theorem 4 for computing the McMillan-degree. We see
that two solutions of the “no-pole-problem” with minimal ~r-MM-degree lead to
solutions of the “pole-problem” with different ~s-MM-degrees, Z1 having minimal
~s-MM-degree.

(b) Take ~s = (2, 2, 0, 0) and therefore ~r = (−3,−3, 0, 0). Then only the basis P2

is ~r-column-reduced. We obtain the two “no-pole” solutions Z ′1 and Z ′2 of (18), but

Z1 =
1
ω
· Z ′1 = T with ~s-MM-deg Z1 = ~r-MM-deg Z ′1 + 6 = 1 + 6 = 7

Z2 =
1
ω
· Z ′2 with ~s-MM-deg Z2 = ~r-MM-deg Z ′2 + 8 = 0 + 8 = 8.

Here the solution Z1 of the “pole-problem” with minimal ~s-MM-degree does not
result from a solution of the “no-pole-problem” with minimal ~r-MM-degree.

2

7. Conclusion

In this paper, we have shown that the matrix rational interpolation problem with
poles as interpolation points can be transformed into a “pole-free” problem if enough
pole-information is known. As a result, all solutions of the original problem having
minimal complexity can be written down.

However, when not enough pole-information is available, it remains an open prob-
lem how we can represent all matrix rational functions satisfying the interpolation
conditions.
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56:547–589, 1989.

6. M.H. Gutknecht. The rational interpolation problem revisited. Rocky Mountain J. Math.,
21(1):263–280, 1991.

7. T. Kailath. Linear Systems. Prentice-Hall, 1980.
8. H. Stahl. Existence and uniqueness of rational interpolants with free and prescribed poles. In

E.B. Saff, editor, Approximation Theory, Tampa, 1985-1986, pages 180–208. Springer, 1987.
9. M. Van Barel and A. Bultheel. A new approach to the rational interpolation problem. J.

Comput. Appl. Math., 32(1-2):281–289, 1990.
10. M. Van Barel and A. Bultheel. A new approach to the rational interpolation problem: the

vector case. J. Comput. Appl. Math., 33(3):331–346, 1990.
11. M. Van Barel and A. Bultheel. The computation of non-perfect Padé-Hermite approximants.
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