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Abstract

In this talk we will describe the design and implementation of procedures for computing
indefinite integrals of Jacobi Elliptic Functions in the computer algebra system Maple. The
routines take advantage of Maple’s ability to extend the int command and are careful to
return answers having a minimal size whenever possible.
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1 Introduction

The original design of Maple took into consideration that many commands would need to be
extensible. By this we mean that the system has a built-in knowledge of how to deal with
a particular set of functions but also allows users to add additional knowledge to the system
whenever possible. The best known example of this is the diff command for differentiating
functions. One can tell Maple how to differentiate a function F by defining a procedure with
name ‘diff /F¢. The system then knows how to handle the chain rule and all other differentiation
rules that occur naturally when differentiating an expression involving F. Other examples of
commands that support such extensibility include the series command and the int command

[5].

In the case of the integration defining a procedure ‘int/F* so that it returns say a function
G also allows Maple to do some simple deductions. For example in the case of

> int( x*F(x"2) , x)

Maple would then be able to determine that the result is G(2?)/2.

Unfortunately, in the case of integration, users have found it difficult to extend the inte-
gration knowledge base. Often this is the case because the integrands of interest involve more
than one function. In this paper we will describe how we have extended Maple’s int command
to support the integration of the 12 Jacobian Elliptic functions along with combinations of these
functions. The resulting functionality is currently included in the research version of Maple.

2 Preliminaries

The 12 Jacobi Elliptic functions (sn(z, k), cn(z, k), dn(z,k),...) ! (denoted by JacobiSN(x.k),
JacobiCN(x,k) etc in Maple) are doubly periodic meromorphic functions over the complex plane

' As in most texts we often drop the k parameter and so have sn(x),en(x),dn(z) etc.
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Figure 1: Lattice describing Jacobi pattern
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Figure 2: The Jacobi functions sn(z, 1) and ds(z, §)

[1]. These classical functions have been well studied since the early 19-th century and have nu-
merous applications. The lattice diagram in Figure 1 with K = K (k) and K’ = i- K(V1 — k?) is
often used to describe the fact that the Jacobi function pg(z, k) has a simple zero at p and a sim-

le pole at g. Here K (k) = [ ——d0
ple pole at ¢. Here K(k) fom
a visual representation of the two functions sn(z, %) and ds(z, %) (using plots[complexplot3d] in
Maple).

denotes the complete elliptic integral. Figure 2 gives

Formally, the Jacobi functions are defined by

sn(z) = sin(¢), cn(z) = cos(¢), dn(x) = /1 - k?sin?¢

where ¢ is the angle defined by
/¢ do
T = —————————
0 V1—k2sin?6

The angle ¢ is called the Jacobi amplitude (JacobiAM in Maple). The remaining 9 Jacobi

functions are defined in terms of these three functions, for example sc(z) = zzg; and ns(z) =

)" It is not surprising that there are algebraic relations between these functions which are
similar to the algebraic relations between the singly periodic trigonometric functions. Indeed



squares of copolar functions all have trig-style relationships. For example, we have

sn(z)? 4 en(z)? = 1 and E?sn(z)? + dn(z)* = 1.

A second important property of these Jacobi functions is that their derivatives are always
constant multiples of the products of the copolar functions. For example we have

sn/(z) = en(z)dn(z),cn’(z) = —sn(x)dn(x) and dn'(z) = —k*sn(x)cn(z)

with similar relations for the remaining 9 functions.

3 Integration of Single Jacobi Functions

In this section we describe some of the details involved in the design and implementation of our
integration procedures. In the case where we are integrating a rational expression of a single
Jacobian function, the ‘int/JacobiXX‘ mechanism is particularly effective. In all 12 cases the
code first determined that one is dealing with a rational function of a single Jacobi function. The
procedures then avoid unnecessary code duplication by funnelling through a single routine to
compute the integral with input only the single Jacobi function and the square of its derivative.
The single routine to compute the integral reduces the integral computation to an end table of
six forms for each Jacobi function. We also remark that in some cases the existing literature
does not provide the necessary formulas for our end tables. In these cases the formulas had to
be derived using alternate sources. In fact many of these derivations made use of our tools for
integrating multiple Jacobi functions.

Tables of integrals exist, for example see Byrd and Friedman [2], which provide formulas for
many (but not all) of the basic mathematical information needed for mechanizing the integration
of Jacobi functions. In this section we show how we make use of these formulas along with some
modern technology from computer algebra (technology which actually dates from the late 1800’s)
for the integration of a rational function of sn(z). This technology, Hermite reduction, is used
to avoid unnecessary algebraic numbers or the need for polynomial factorization [3, 4]) in some
cases. The same technique can be applied for any rational expression of the other 11 Jacobi
functions. For any rational function R, we can always write

/R(sn(ac))dw = / \I/%L%dz with z = sn(z) (1)

where w(z) = (1 —2%)(1—k?2%). In (1) we have made use of the fact that sn’(z)? = w(sn(z)). A
similar relation exists for the other 11 Jacobi functions and allow us to avoid code duplication.

3.1 Polynomial Integrands
From Byrd and Friedmann we obtain formulas for

/sn(x)dx,/sn(x)zdx and /sn(x)3dac (2)
in terms of en, dn, log and the elliptic integrals F' and F and II. Byrd and Friedmann also

provide recurrence formulas for [sn(z)*dz in terms of [sn(z)*2dx and [ sn(z)*~*dz which
means that all we have a mechanical means to compute [ P(sn(z))dz for all polynomials P.



In our case we prefer to make use of the following. If P is a polynomial of degree p then
let A(z) and B(z) be polynomials with unknown coefficients of degree 3 and p — 4, respectively.
We can then set up and solve the p+ 1 linear equations in p+ 1 unknowns defined by equating
coeflicients in

P(z) = zB'(2)w(z) + B(2)w(z) + %zB(z)w’(z) + A(z).

Then one can easily verify that

/P(sn(ac))dw = sn(x)B(sn(z))w(sn(z)) + /A(sn(x))dx.

Thus, using (2) along with the information that A has degree at most 3, implies that integrals
of polynomial expressions of sn can be determined.

Example 3.1. Suppose k& = 2 and that we wish to compute the integral of sn(z)” — 3sn(z)® +

rolsn(xz). Equating the 8 coefficients on both sides of the equation

z=(2B'(2) + B(2))(4z* = 22 + 1) + %ZB(Z)(16Z3 —102) 4+ A(z)

with A(z), B(z) both being polynomials of degree 3 gives an 8 x 8 linear system. Solving this

linear system gives the resulting polynomials as A(z) = 32% — 252 and B(z2) = 2% + 2 2.

384 192
This then gives

[(sn(z)” = 3sn(z)® + Totsn(z))de = (% sn () + 35 sn (96)3) sn(z)en(x) dn (z)

— 3053 en (¢) dn (2) — 5 sn () en (2) dn ().

As mentioned previously, this process (called the Horowitz-Ostagradsky method) can be
used (with different choices of w) for the integration of polynomials of the other 11 Jacobi
functions (altering only w(z) and the table values for the integrals of the first three powers of
the respective Jacobi function).

3.2 Rational Integrands

From Byrd and Friedmann we obtain formulas for

/sn(g—a’ /1i;ffn<x> and /1;9% (3)

with a # 1 and a? # 1/k? again in terms of cn, dn, log and the elliptic integrals F and E and
II. Therefore, when there is a square-free denominator Q(z), then we can write the integral in

implicit form (sn(@)) (@)
P(sn(x Pla dx
[Gmm ™= = Fw ! = N

alQ(a)=0 7) -

The above result can be represented in Maple using a sum over RootOfs construction. Of
course if any of the roots of the denominator are known explicitedly then the above formulas
can be refined. Similarly, even when no explicit roots are available then one can still factor the

denominator over its field of coefficients and represent the answer as a sum of the expressions
found in (4).



When the denominator of our rational function has repeated roots then Byrd and Friedmann
also provide formulas to reduce

/mdx, /mdx and /m(m

in terms of lower orders. As such it is possible to obtain an answer for the integral of a ratio-
nal function of sn(z) simply by determining the partial fraction decomposition of the rational
function and then integrating term by term.

In this section we show how modern computer algebra often eliminates the need for a
complete factorization of the denominator by making use of a technique originally discovered by
Hermite in the late 1800s.

Suppose now that we wish to integrate

P
[ Blanto,, 5
Q(sn(z))
with P and @ relatively prime polynomials. We can assume that P has smaller degree than
() since otherwise we would simply divide the denominator into the numerator and have the

polynomial remainder integrated as in the previous subsection. In addition we can compute a
square-free factorization of Q(z):

Q(2) = q1(2)2(2)% - - qn(2)"

with ged(gi(2),¢;(2)) = 1 and ged(gi(2), ¢/(2)) = 1. Such a factorization (obtained in Maple via
the command sqrfree(q,z)) can be computed via only ged computations [4]. Using the extended
Euclidean algorithm one can then decompose the integral (5) into

n j—1

P(sn(x)) pisln(e) |
/Q(sn(m))d ZZ/ )’d

e g;(sn(z)

with p; ;(z) having degree at most the degree of ¢;(z).

3.2.1 Hermite Reduction : 1

Consider now the case where we are integrating

[ tonte),
g(sn(z))’
with degree p < degree ¢ and where the polynomial ¢(z) is (1) square-free and (2) has no factors

in common with w(z). Then we can solve (via the extended Euclidean algorithm) the linear
diophantine equation

p(z) = q(z)u(z) + ¢ (2)w(z)v(2)
with degree u(z) < degree ¢(z) + degree w(z) — 1 (cf. [4]). Integration by parts plus some
additional algebra gives

plsn(@)) - v(sn(z))sn’'(2) plsn(@)) .
[ sty = @ dtentens +J dtentener °

Where p(z) = u(z) + ﬁ@v’(z)w(z) + v(z)w'(2)). This gives a reduction procedure resulting
[ B gy pienta) | palone)) | pstento), .

v g(sn(z))

g(sn(z))’ g(sn(z))! g(sn(z))




with p1(2),...,pi—1(2) polynomials. Note that it may happen that the degree of p;_1(z) is
greater than or equal to the degree of ¢(z). Polynomial division combined with the integration
of polynomials of sn(z) then leaves the remaining problem being one where the numerator has
degree less than the denominator.

()2 —1230sn(x)—5544

Example 3.2. Let & = 2. Then Hermite reduction for the integrand llsn Gnle)12)°

results in

411sn(x)?—1230sn(z)—5544 . (50 sn(x)>—160 sn(x)—|—389) cn(z)dn(z)
= ey dr = 3o (°12)
502z + 2 E (sn(z),2) — 37)56_|_2 dz.

3.2.2 Hermite Reduction : II

Suppose now that ¢(z) is a factor of w(z) with w(z) = ¢(2) - ¢(2) so that ¢(z) and w(z) are no
longer relatively prime. Then one can solve the linear diophantine equation

p(2) = q(z)u(2) + ¢'(2)e(2)v(2)
in order to obtain the reduction formula

p(sn(z)) , 2v(sn(x)) p(sn(z)) N
| Fnier® = T zatenior * ] denteyr )

with p(z) = u(z) 4+ 375 (20'(2)e(z) + v(2)c/(2)). Therefore

)
pen(e)) _piln(e) | pialen(@) | [ pis(on(e)
[ sonaris = Sy e Mty ©)

with p1(2),...,pi—1(2) polynomials. Again it might happen that the degree of p;_1(2) is not less
than the degree of ¢(z).

Note that if a(z) = b(2)c(z) with ged(b(2), ¢(z)) =1 then
b)) )
a(z)t b(z)! c(z)’
where u(z),v(z) solve the linear diophantine equation
p() = u(2)e(2) + v(2)b(2)'

As such one can always reduce an integral of the form [ p(sn(x))/q(sn(z))'dz to one of the
above two Hermite reduction cases.

(x)2—(1—k2)sn(x)4—|—k2 sn(x)6

Example 3.3. In the case of integrand == we can determine the com-

(sn(2)2+1)°
plete internal via
f E2sn(2)—(1-k?)sn(x)*+sn(z)? de — £$ _ sn(z)en(z)dn(x) (3+5k2)sn(x)cn(x)dn(x) B k? (3—|—5k2)x
(sn(z)24+1)° 4 4(sn(z)2+1)? 16(1+k2)(sn(x)2+1) 16(1+k2)

B (3—|—5 k2)(x—E(sn(x),k)) (—1—|—10 k2+7k4)ﬂ(sn(x),—1,k)

16(1+K2) 16(1+K2)

Notice that the roots 47 of the denominator 22 + 1 do not appear in the final result nor is there
any need for arithmetic in the rationals extended by 7 in this case.



4 Integration with Multiple Jacobi Functions

In the case where there are multiple Jacobi functions in the integrand, there are reduction
formulas which allow one to break down these cases to groups which eventually reduce to the
case of one integration of a rational functions of a single Jacobi function or to the integration of
a rational function. In this case one of the issues includes deciding which one of many reductions
should be used to obtain the smallest and most useful output in most cases.

Assume first that the integrand consists of a rational function of sn(z) and its two copolar
functions ecn(2) and dn(z). Then, as mentioned in Byrd and Friedmann, the trig-style identities
between these functions implies that

R(sn(z),en(z),dn(z)) = Ri(sn(z)) 4+ Ra(sn(z))en(z) + Rs(sn(z))dn(z) + Ra(sn(z))en(z)dn(z)

where Rj, Ry, Rz and R4 are all rational functions. Continuing further, Byrd and Friedmann
point out that

[ Ra(sn(@))en(@)de = 2 J prbm Ro(r2)dt  with t = 720

dn(z)+1
[ Rs(sn(z))dn(z)dz = 2 [ 1_;,52 R3(1_|2.tt2)dt with ¢ = c;(nx()xq)q
S Ra(sn(z))en(z)dn(z)de = [ Ry(t)dt with t = sn(z)

while of course [ R;(sn(z))dz is determined using the methods of the previous sections.

In addition there are instances where we take advantage of much simpler changes of variable.
In particular, we have the formulas

/R(cn(x))sn(w)dn(x)dw = —/R(t)dt with t = en(z)

and
1
/R(dn(x))sn(x)cn(x)dw =12 / R(t)dt with t = dn(z).
Thus for example, integrals of the form
[sn(z)"en(x)dn(z)"de = [pi(t)dt with t = sn(z) when {,n odd
= [p2(t)dt with ¢t = en(z) when m,n odd
= [ps(t)dt with t = dn(z) when m,( odd

and so forth (where py, py, p3 are all polynomials).

There are similar reductions for all other rational functions of a single Jacobi function
along with its two copolar functions. We have implemented this using the same code for the
groups {sc(z),ne(x),de(x)}, {sd(x),nd(x),cd(z)} and {cs(z),ns(z),ds(z)}. In all other cases

we convert all input functions into rational functions of sn, ¢n and dn.

Interestingly enough one can use the above formulas to obtain those formulas that are
needed for our integrator but which do not appear in Byrd and Friedmann. For example, the

formula
o? (sd())? o _ 2,2
72—14-?—& k
2.9 arctanh 2(cd(e)+nd(z))
a? k2a+11 (sn(x)71+a2k ,k) Vica242a2k2—adk2 falkd
dl’ _ _ a
f sd(z)—a 1+a?k? + V1—a2+42a2k2—atk2+atk?

needed for integrating rational functions of sc¢(z) was determined by conversion to

dn(z) . sn(z) (Ve — o krsn(z)? —1 .
/ sn(z) — oedn(x)d B / (14 a?k?)sn(x)? — oezd (z)d / (14 a?k?)sn(x)? — oezd '




5 Conclusion

In this paper we have given some of the details about the mathematical algorithms and design
decisions that were involved in incorporating a procedure for integrating Jacobi elliptic functions
in Maple. We have described the case of a rational function in sn(z). However the same code is
used for rational functions of any of the 12 Jacobi functions. In the case of rational expressions
containing multiple Jacobi functions we follow a process of reduction into four or less integrals of
rational functions. In the case where multiple answers are possible an important consideration
in our work was returning closed form solutions that were as simple as possible. Of course all
results found in Byrd and Friedmann [2], the standard reference, are produced by our code (a
minimum goal) and verified through differentiation and simplification. In some cases incorrect
answers were found in [2] and corrected (as one could easily guess, all errors were minor typos).

For future research we mention that we still wish to find the minimum form of any closed
form solution returned by our code. In the case of a rational expression of a single Jacobian
function this would ensure that a minimum number of algebraic numbers are used to represent
a given Jacobi elliptic integral. This is the case for integration of rational functions and also for
integration of algebraic functions when the result is elementary (cf. [3, 4]). Finally, it remains
to consider the case of definite integration where changes of variables may result in branching
issues.
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