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Abstract

When a computer algebra system has an assump-
tion facility, it is possible to distinguish between
integration problems with respect to a real vari-
able, and those with respect to a complex vari-
able. Here, a class of integration problems is de-
fined in which the integrand consists of compo-
sitions of continuous functions and signum func-
tions. and integration is with respect to a real
variable. Algorithms are given for evaluating
such integrals.

1 Introduction

In recent years, ‘assume’ or ‘declare’ facilities have been im-
plemented in most of the available computer algebra systems
(CAS). As well, such facilities have been gaining wider ac-
ceptance within the user community. The presence of these
facilities has altered the way CAS behave, and many estab-
lished areas of symbolic computation need to be reconsid-
ered. The topic of this paper is an example of the impact on
one traditional field of computer algebra, namely, symbolic
integration.
Because the early versions of many present-day CAS

could not record the domain of a variable, they assumed
that the variable was complex. In particular the problem
∫

f(x) dx was usually interpreted as requiring the evalua-
tion of a complex integral, valid for x ∈ C. This immedi-
ately ruled out the possibility of formulating problems such
as
∫

|x| dx, because the absolute value function is not dif-
ferentiable in the complex plane. With domain information
available, it is possible to specify an integration problem

∫

f(x) dx for x ∈ R ,

and one consequence of this is the possibility that the above
problem may have a different answer from the problem

∫

f(x) dx for x ∈ C .

For example, consider the integral

∫

3x2

√

1 +
1

x2
dx .

Maple V and Mathematica evaluate this integral as

∫

3x2

√

1 +
1

x2
dx = (x3 + x)

√

1 +
1

x2
, (1)

because they assume x ∈ C. In contrast, Derive assumes
x ∈ R and returns

∫

3x2

√

1 +
1

x2
dx = [(x2 + 1)3/2 − 1] sgnx . (2)

Maple can also obtain this answer, as will be shown later.
Both answers are correct, and the difference lies in the as-
sumptions. Notice in particular that the integrand in equa-
tion (1) is continuous on R, but the right side of (2) is
discontinuous at x = 0.
The example just given can be treated as a member of

the class of integral problems studied here. In this paper,
we consider some classes of integration problems obtained
through the composition of continuous functions and signum
functions, or equivalents and discuss the implementations in
both Derive and in Maple V.
The interest in this class of problems arises because func-

tions that have piecewise definitions are widely used in engi-
neering, physics, and other areas. Such functions are often
constructed explicitly by users of CAS to represent discon-
tinuous processes. They can also appear as the result of
algebraic simplifications performed by a CAS on an inte-
grand, even if that integrand contained no signum functions
explicitly when first presented. An important feature of the
computations discussed here is the fact that they ensure that
the expressions obtained are valid on domains of maximum
extent.
We remark that functions equivalent to signum are sup-

ported by all the major CAS. However, the support takes
various forms and the definitions used by the different sys-
tems are not completely equivalent. Examples include the
SIGN function in Derive, the signum and piecewise func-
tions in Maple V and the UnitStep in Mathematica.

2 Definitions of functions

The signum function is defined differently in each of the ma-
jor CAS. This is not really surprising given that different ar-
eas of mathematics also use different definitions of a signum
function. However, these disagreements do not affect the



integration question, and a discussion of variations would
only distract attention from the main problem. Therefore
one particular definition, and a specific unambiguous nota-
tion, is used here, so that the issue of variations in defini-
tion does not intrude on this discussion of integration. A
signum function Snn : R → R that is 1 for all non-negative
real numbers, briefly an n-n signum, is defined by

Snn(x) =

{

1 , for x ≥ 0,
−1 , for x < 0.

(3)

Notice that Snn(x) is antisymmetric only on R\{0}. Some
comments on the implementation of this definition will be
made below.
The functions absolute value and Heaviside step are also

defined in terms of Snn by

|x| = xSnn(x) and H(x) =
1
2
+ 1

2
Snn(x) . (4)

The characteristic function χ of a closed interval [a, b] ⊂ R
is defined also in terms of Snn:

χ(x, [a, b]) = 1
2
Snn(x− a) + 1

2
Snn(b− x) . (5)

Notice that this definition implies that a point function, non-
zero only at a point a, can be defined as χ(x, [a, a]). It is
also useful to define the characteristic function of an open
interval ]a, b[.

χ(x, ]a, b[) = χ(x, [a, b])− χ(x, [a, a])− χ(x, [b, b]) . (6)

For semi-infinite intervals, the χ function reverts to one
equivalent to Snn.
An alternative to signum functions has been introduced

by Maple. Maple V release 4 defines the function piecewise
by

piecewise(c1, f1, . . . , cn, fn, f) =











f1 , c1 true,
. . .
fn , cn true,
f, otherwise,

(7)

where the ci are Boolean expressions of the Maple type re-
lation and the fi are algebraic expressions. The relations ci
are evaluated in order from left to right, until one is found
to be true. In terms of this function, Snn is

Snn(x) = piecewise(x < 0,−1, 1) . (8)

Since piecewise is more general than signum, the converse
is more lengthy. Let condition ci be true on a union of
disjoint intervals Ii =

⋃

j Iij , where each Iij ⊂ R, and let
Ji = Ii\

⋃

k<i Ik, then a piecewise function can be ex-
pressed as a sum of χ functions.

piecewise(c1, f1, . . . , f) = f +
∑

i

(fi − f)χ(x, Ji) . (9)

Maple V can make a similar conversion of a piecewise func-
tion to a sum of Heaviside functions

f(x) = f0(x) +

p
∑

i=1

fi(x)H(x− ai). (10)

3 Definition of integration

The example in the introduction showed that different defi-
nitions of integration are possible. Therefore it is necessary
to define the integration problem and verify the existence of
a solution.
Definition 1. Let f : [a, b] → R be a function that is con-
tinuous except at the n points D = {xb

1 , x
b
2 , . . . , x

b
n} where

xb
i ∈ [a, b]. The function f is then piecewise continuous on
[a, b], and the points xb

i are the break points of f . 2

Definition 2. If the left and right limits of a piecewise
continuous function f separately exist at a break point xb,
then xb is called a bounded break point of f , otherwise it is
called an unbounded breakpoint. 2

Remark 1. A bounded break point is also called a jump
discontinuity. There is a possibility that the terms bounded
and unbounded will be taken to refer to number of break-
points rather than the behaviour of the function at a par-
ticular breakpoint; in the former case it is the set D that is
bounded or not, rather than the point itself. 2

If xb
i is a bounded breakpoint of f , then we denote the

left and right limits of f at xb
i by f(x

b
i−) and f(xb

i+). In
the case of bounded breakpoints a continuous integral always
exists.

Theorem 1. Let f : [a, b] → R be a piecewise-continuous
function with a set D of bounded breakpoints. There exists
a function g, called an integral of f on [a, b], written

∫

f(x) dx = g(x) , (11)

with the properties that g is continuous on [a, b] and g is
differentiable on [a, b]\D, where its derivative is g′ = f . 2

Remark 2. If g1 and g2 are integrals of f on [a, b], then
g1 = g2+K for some constant K. For on any open subinter-
val defined by successive breakpoints, namely ]xb

i , x
b
i+1[, the

functions differ by a constant, and one can write g1 − g2 =
Ki. Since g1 and g2 are separately continuous at each break-
point,

Ki = g1(x
b
i+1−)− g2(x

b
i+1−)

= g1(x
b
i+1+)− g2(x

b
i+1+) = Ki+1 . (12)

2

Remark 3. Clearly there exist functions g with the prop-
erty that g′ = f on [a, b]\D, but without the property that
g is continuous on [a, b]. Such functions are called anti-
derivatives or primitives of f , but are not called integrals,
the last term being reserved for functions continuous on
[a, b]. 2

Theorem 2. Let f : [a, b] → R be a piecewise continuous
function with a set D of unbounded breakpoints. For each
closed subinterval Ii = [x

b
i−1, x

b
i ], let the quantity

∫

Ii

f(x)dx



exist in the sense of improper integrals. There exists a func-
tion g, called an integral of f on [a, b], which is continuous
on [a, b], and for which g′ = f on [a, b]\D.
Proof: Let gi be an integral of f on ]x

b
i−1, x

b
i [. By definition,

ĝi = gi − gi(x
b
i−1+) exists. The function

g(x) =
∑

i

(

ĝi(x)χ(x, [x
b
i−1, x

b
i [) +

∑

j<i

ĝj(x
b
j−)

)

is the required function. The definition of χ is an obvious
extension of the one given above. 2

A complete problem specification is therefore as follows.
Given a piecewise-continuous function f , together with an
interval [a, b] on which it is integrable, find g, an integral
of f on [a, b]. In practice, users do not specify the interval
[a, b] when posing indefinite integration problems to CAS,
and furthermore no CAS offers the syntax to accept such a
specification. Therefore we now define the domain of maxi-
mum extent [1] in order to overcome this difficulty.

Definition 3: Given a function f : R → R that is integrable
on domains Ci ⊂ R, a function g is an integral on the domain
of maximum extent if g is continuous everywhere on

⋃

Ci
and differentiable almost everywhere on

⋃

Ci, and moreover
g′ = f almost everywhere on

⋃

Ci. 2

Therefore the modified problem definition requires that
in the absence of a specified [a, b], the integral should be
valid on the domain of maximum extent. If the function
f is integrable only on the open subintervals Ii =]xi−1, xi[,
then all one has to find are the functions gi such that g

′
i = f

on Ii.

4 Integration rules for signum

For reasons of efficiency, and because different CAS offer
different syntax to users, it is necessary to develop several
related algorithms for integration. We begin with integrands
expressed using signum.

Lemma 3. Let {si|i = 1..p}, p ∈ N , be a set of constants,
each taking one of the values ±1. Let f(x, {si|i = 1..p})
be a function that is continuous for fixed {si} on [a, b]. Let
{Snn(αix + βi)|i = 1..p} be a set of signum functions with
∀i, αi 6= 0, then

∫

f(x, {Snn(αix+ βi)|i = 1..p}) dx =
∫

f̂(x, {Snn(x− xb
i )|i = 1..p}) dx , (13)

where f̂(x, {si|i = 1..p}) = f(x, {Snn(αi)si|i = 1..p}) and
xb
i = −βi/αi.

Proof. For αi > 0, the function Snn(αix + βi) and the
function Snn(αi)Snn(x − xb

i ) are identical. For αi < 0, the
two functions differ only at x = xb

i , and functions that are
bounded and equal almost everywhere have the same inte-
gral. The redefinition of f is trivial. Clearly, the points xb

i

are breakpoints of f̂ . 2

We consider first the integration of a function having one
breakpoint and then generalize the result to many break-
points.

Theorem 4: Let x ∈ [a, b] and s = ±1, and let f(x, s) be a
function that is continuous with respect to x on [a, b]. Let
g(x, s) be an integral of f with respect to x on [a, b]. Then

∫

f(x, Snn(x− xb)) dx = G(x)

= g(x, Snn(x− xb))− JSnn(x− xb) , (14)

where
J = 1

2
g(xb, 1)− 1

2
g(xb,−1) .

Proof: We write ∂x = ∂/∂x. For the case x
b /∈ [a, b],

Snn(x− xb) is constant on [a, b], and

∂xg(x, Snn(x− xb)) = f(x, Snn(x− xb)) .

If xb ∈ [a, b], then for x > xb, Snn(x − xb) = 1. Therefore
for x ∈]xb, b],

∂x[g(x, Snn(x− xb))− JSnn(x− xb)]

= ∂x[g(x, 1)− J ] = f(x, 1)

= f(x, Snn(x− xb)) .

On [a, xb[, subject to the change Snn(x − xb) = −1, the
same proof applies. At the point x = xb, the right-hand
side of (14) must be continuous. The right limit of G(x) at
xb is

lim
x→xb+

[g(x, Snn(x− xb)− JSnn(x− xb)]

= lim
x→xb+

[g(x, 1)− J ]

= g(xb+, 1)− J .

Since g(x, s) is the integral of f(x, s), g(xb+, 1) = g(xb, 1),
and the limit is

lim
x→xb+

G(x) = 1
2
g(xb, 1) + 1

2
g(xb,−1) .

A similar calculation shows the left limit has the same value.
Finally, substituting x = xb into the right-hand side of (14)
gives

G(xb) = g(xb, Snn(0))− JSnn(0) = g(xb, 1)− J

= 1
2
g(xb, 1) + 1

2
g(xb,−1) .

Therefore, G is continuous as required. Notice that for many
other signum functions, in particular for the one defining
sgn(0) = 0, the theorem would not be true. 2

We now generalize the theorem to integrands containing
a finite number of signum functions.



Theorem 5: Let f(x, {si|i = 1..p}) be a function that is
continuous with respect to x on [a, b], and let {xb

i |i = 1..p}
be a set of distinct points with xb

1 > xb
2 > . . . > xb

p. Let
g(x, {si|i = 1..p}) be an integral of f on [a, b], then

∫

f(x, Snn(x− xb
i )|i = 1..p})dx

= G(x) = g(x, {Snn(x− xb
i )|i = 1..p})

−
p
∑

i=1

JiSnn(x− xb
i ) , (15)

where

Jj = 1
2
g(xb

j , S
<
j , 1, S

>
j )− 1

2
g(xb

j , S
<
j ,−1, S>j ) ,

S<j = {sgn(xb
j − xb

i ) = −1|i < j} ,
S>j = {sgn(xb

j − xb
i ) = 1|i > j} .

Proof. Let the interval [a, b] be partitioned into subintervals
[ai, ai+1], where a0 = a, xb

i < ai < xb
i+1 and ap+1 = b. By

the previous theorem, (15) is an integral on each [ai, ai+1],
and by construction and hypothesis it is continuous on each
[xb
i , x

b
i+1], therefore it is continuous and an integral on [a, b].

2

In the case of integration on an unspecified domain we
require.

Theorem 6. If f(x, {si|i = 1..p}) is integrable with respect
to x, for {si} fixed and equal to ±1, on domains Ri ⊂ R,
and g(x, {si}) is the integral of f on the domain of maximum
extent, i.e.

⋃

Ri, then G(x) defined in (15) is also an integral
on the domain of maximum extent, provided Ji = 0 if x

b
i 6∈

⋃

Ri. 2

The next theorem applies to the case in which an inte-
grable singularity coincides with the breakpoint of a signum
function.

Theorem 7. Let x ∈ [a, b] and s = ±1, and let f(x, s) be a
function such that f is continuous with respect to x on [a, b]
except at xb ∈ [a, b]. Let f(x, s) be integrable at xb. Then

∫

f(x, Snn(x− xb))dx = G(x) = g(x, Snn(x− xb)) , (16)

where g(x, s) is an integral of f(x, s) on [a, b] subject to
g(xb, s) = 0.
Proof. Let ga(x, s) =

∫ x

a
f(y, s)dy. By theorem 3, ga is

continuous on [a, b]. Define g(x, s) = ga(x, s) − ga(x
b, s).

For x < xb,

∂xg(x, Snn(x− xb)) = ∂xg(x,−1) = f(x, Snn(x− xb)) ,

and likewise for x > xb. At xb,

lim
x→xb−

G(x) = lim
x→xb+

= G(xb) = 0

2

5 Integration of signum

The above theorems can be summarized in the following
algorithm. Given an integral with respect to a real vari-
able containing signum or Heaviside functions, the algorithm
used by Derive roughly proceeds as follows.

1. Use the definitions (4) to convert Heaviside to signum
functions.

2. Check each signum has a linear argument, and replace
each sgn(αix + βi) with Snn(αi)Snn(x − xb

i ). If any
signums contain other arguments, the algorithm fails.

3. Order the breakpoints so that the integrand is in the

form f̂(x, {Snn(x − xb
k)|k = 1..p}) where p is an inte-

ger, the {xb
k} are the ordered breakpoints of the inte-

grand, with xb
1 < xb

2 < . . . < xb
p. Further the function

f̂(x, {sk|k = 1..p}), with the {sk} being symbolic con-
stants, contains no signum function.

4. Pass the function f̂(x, {sk}) to the system integrator.
Assume it returns a function g(x, {sk}), else FAIL.

5. For k from 1 to p, compute

Jk =
1
2
G(xb

k, {S<, 1, S>})− 1
2
G(xb

k, {S<,−1, S>})

where S< is a set of k− 1 entries equal to 1 and S> is
a set of p− k entries −1.

6. Return the expression

G(x, {Snn(x− xb
k)|k = 1..p})−

p
∑

i=1

JkSnn(x− xb
k) .

2

Example 1. Consider the example given in the introduc-
tion. This integral is evaluated as follows.

∫

3x2
√

1 + 1/x2 dx =

∫

3x sgn(x)
√

x2 + 1 dx .

In the integrand, we have left the traditional signum nota-
tion. Now, since

∫

3xs
√

x2 + 1 dx = s(x2 + 1)3/2 ,

we find J = 2 and hence obtain
∫

3x2
√

1 + 1/x2 dx = Snn(x)
[

(1 + x2)3/2 − 1
]

.

Continuity at the origin has already been noted. 2

Example 2. In this example we illustrate the need for
definition (3). For the integral of (x + 2)1+sgn x, f(x, s) =
(x+ 2)1+s and g = (x+ 2)2+s/(2 + s) and J = 2/3. Thus

∫

(x+ 2)1+sgn xdx =
(x+ 2)2+Snn(x)

2 + Snn(x)
− Snn(x)

3
(17)

At x = 0, this evaluates to the correct 5/3 using defini-
tion (1). In contrast, the other common definition in which



sgn(0) = 0 would yield the value 2 and hence create a re-
movable discontinuity at x = 0. 2

Example 3. The algorithm relies on the underlying inte-
gration system to return a continuous expression for g(x, s),
in the notation of the theorems. For example, the result

∫

3 sgn(x− π)

5− 4 cosx dx =

(

x− π + 2arctan
sinx

2− cosx

)

Snn(x−π)

cannot be obtained if the system computes the integration:
∫

3s/(5− 4 cosx)dx = 2s arctan(3 tan(x/2)). 2

Example 4. Note that there is no difficulty if the integrand
is singular at the break point of a signum. For example,

∫

sgnx dx

x1/3
= 3

2
x2/3Snn(x) ,

where the fractional powers are interpreted as real-valued.
2

Example 5. In this example we use Heaviside functions
set in the context of a simple differential equation, even
though the present algorithm applies only to integration.
From engineering beam theory, the bending moment M(x)
in a beam that extends from x = 0 to x = l and supports
point loads Pa and Pb at x = a and x = b is given by the
equation

dM

dx
=

{

K, for 0 ≤ x ≤ a ;
K + Pa, for a ≤ x ≤ b ;
K + Pa + Pb, for b ≤ x ≤ l .

Here K is a constant to be determined from the boundary
conditions, which are M(0) = M(l) = 0 for the case of free
ends. Engineers commonly solve equations like this using
a specialised system of notation called Macaulay brackets
[2], which essentially develop a subset of the results above.
Instead, the equation is written

dM

dx
= K + PaH(x− a) + PbH(x− b) , (18)

and integrated. The integral of the Heaviside function is

∫

H(x−a) dx =
∫

( 1
2
+ 1

2
Snn(x−a)) dx = (x−a)H(x−a)

and then integrating gives

M = Kx+M0 + Pa(x− a)H(x− a) + Pb(x− b)H(x− b) .

Since M(0) = 0, we have M0 = 0, and M(l) = 0 gives

K = −[Pa(l − a) + Pb(l − b)]/l

The result for M can be integrated further to obtain the
displacement of the beam. 2

6 Integration of Piecewise Functions in Maple

In this section we discuss the algorithm used in Maple for
integration of piecewise functions. We also show how this al-
gorithm can be extended to cover absolute value and signum
functions in the obvious way. In this case all functions are
converted to Heaviside step functions which are then in turn
simplified using the normal form algorithm of v. Mohren-
schildt [3]. The integration is then performed on these step
functions with care taken to construct the functions in order
to remain continuous over as large a region as possible.
Let f be a piecewise function of the form

f(x) = piecewise(c1, f1(x), . . . , cp, fp(x), fp+1(x)) (19)

where the ci are boolean combinations of linear ordering
relations in one variable. Thus ci = x ≥ a ∧ x < b or
ci = ¬x ≤ a and the functions fi are bounded in [x

b
i−1, x

b
i ].

To compute the integral of this piecewise functions we
first convert to its Heaviside representation

f(x) = h0(x) +

p
∑

i=1

hi(x)H(x− xb
i ) (20)

using the rules T defined by :

T (x > xb
i ) → H(x− xb

i ) (also same for T (x ≥ xb
i ))

T (x < xb
i ) → H(−x+ xb

i ) (also same for T (x ≤ xb
i ))

T (¬ci) → 1− T (c1)

T (ci ∧ cj) → T (ci)T (cj)

T (ci ∨ cj) → H(T (ci) + T (cj))

and

T (piecewise(c1, f1(x), c2, · · · , fp+1(x)))→ fp+1(x)

+T (c1)(f1(x)−fp+1(x))+T (c2)(f2(x)−f1(x)−fp+1(x))+· · ·
Using

H(x− a)H(x− b) → H(x−max(a, b))

H(−x+ a) → 1−H(x− a)

H(fH(x− a) + g) → H(x− a)H(f + g)

+(1−H(x− a))H(g)

where in the last equation f = ±1 and g is a linear combi-
nation of H, we end up in form (20) after a finite number of
reductions (c.f. v. Mohrenschildt [3]). Note, that by using
the identity H(x − a) = 1 −H(−x + a) we can change the
value of the function in a finite number of points. However
this does not alter the value of the integral. For example
piecewise(x > a∧x ≤ b, f(x)), assuming a < b, converts to

f(x)H(x− a)H(−x+ b)

which in turn reduces to

f(x)H(x− a)− f(x)H(x− b).

Lemma 9. Let f : R → R be specified by

f(x) = f0(x) +

p
∑

i=1

fi(x)H(x− xb
i ). (21)



Then an integral of this function is given by

g(x) =

∫ ∞

−∞

f0(x)dx+

p
∑

i=1

(ĝi(x)− ĝi(x
b
i ))H(x− xb

i ) (22)

where

ĝi(x) =

∫ x

xb

k

fi(x)dx.

Proof. Clearly g′ = f , since for each i, ĝi(x)
′ = fi(x). Also

g(x) is continuous since g(x) is a sum of continuous functions
(ĝi(x)− ĝi(x

b
i ))H(x− xb

i ). 2

Once an integrand has been converted to Heaviside func-
tions and integrated the result can be converted back to a
piecewise function. Indeed an expression

f(x) = f0(x) +
n
∑

i=1

fi(x)H(x− xb
i )

is converted back to a piecewise representation by











f0(x) x ≤ −xb
1

f0(x) + f1(x) x ≤ xb
2

. . . . . .
f0(x) + · · ·+ fp(x)

.

Similar conversions back are also possible in the case of
signum functions and absolute value functions.

Example 7. Suppose

f(x) =











cos(x) x < 0
sin(x) x < π
x2 x < 6
ln(x) otherwise

.

Then we convert to Heaviside, integrate and convert back:

f(x) = (sin(x)− cos(x))H(x) +
(

x2 − sin(x)
)

H(x− π)

+
(

ln(x)− x2)H(x− 6) + cos(x)

∫

f(x)dx = (1− sin(x)− cos(x))H(x) +
(

x3

3
− π3

3

+ cos(x) + 1)H(x− π) + (x ln(x)− x

−6 ln(6)− 1/3x3 + 78
)

H(x− 6) + sin(x)

which converts to piecewise functions via

∫

f(x)dx =















sin(x) x ≤ 0
1− cos(x) x ≤ π
2 + 1/3x3 − 1/3π3 x ≤ 6
80 + x ln(x)− x− 6 ln(6)− π3

3
6 < x

2

The example in the introduction can be handled in Maple
V release 4 as follows.

> assume(x,real):
> f:= simplify( 3*x^2*sqrt(1+1/x^2) ) ;

3*x*signum(x)*(x^2+1)^(1/2)
> f:= convert(f,piecewise);

{

−3x
√
x2 + 1 x ≤ 0

3x
√
x2 + 1 0 < x

> int(f,x)

{

−
(

x2 + 1
)3/2

x ≤ 0
(

x2 + 1
)3/2 − 2 0 < x

The last result differs from equation (2) by the constant −1.

Example 8. The assume system works together with the
piecewise function.

> assume(a<b);
> f := piecewise(x<a,-x,x<b,2*x,x>=b,1):
> int(f,x);

{−1/2x2 x ≤ a
x2 − 3/2 a2 x ≤ b
−3/2 a2 + b2 + x− b b < x

2

Example 9. The conditions of a piecewise function do not
have to be linear. Maple can linearized using simplify (which
in fact is the normal form conversion discussed previously).
The simplify below shows the linear from.

> f:= piecewise( x^2<1,x^4,x^2):
> f1:= piecewise( x<2, f, x + 2);

f1 :=

{

{

x4 x2 < 1
x2 otherwise

x < 2

x+ 2 otherwise

> f2:= simplify(f1);










x2 x ≤ −1
x4 x ≤ 1
x2 x ≤ 2
x+ 2 2 < x

> int(f1,x);














1/3x3 x ≤ −1
1/5x5 − 2/15 x ≤ 1
− 4

15
+ 1/3x3 x ≤ 2

− 18
5
+ 1/2x2 + 2x 2 < x

We remark that the simplification is done automatically in
the first step of the integration algorithm during the conver-
sion to Heaviside functions. 2

Example 10. The function abs(2 − abs(x)) can be inte-
grated in two ways in Maple. The first uses the standard
integrator

int(abs(2-abs(x)),x);

1/2
|2− |x||x (−4 + |x|)

−2 + |x|
leaving a result with discontinuities at−2 and 2. By convert-
ing first to piecewise functions we get a continuous integral
of the function.

> f := convert(abs(2-abs(x)),piecewise);



f :=











−2− x x ≤ −2
2 + x x ≤ 0
2− x x ≤ 2
x− 2 2 < x

> g := int(f,x);

g :=











−2x− 1/2x2 x ≤ −2
2x+ 4 + 1/2x2 x ≤ 0
2x+ 4− 1/2x2 x ≤ 2
−2x+ 8 + 1/2x2 2 < x

> convert( g, abs );

−x
2
|x|+ (x

2
+ 1) |x+ 2|+ (x

2
− 1) |x− 2| − 2x+ 4

Some further applications can be found in [4]. 2

7 Conclusions

The existing implementations in Derive and Maple are not
completely reflected in this presentation. For example, the
definition Snn(x) is not used by Derive. In Derive, Example
1 is evaluated at x = 0 by taking a limit. The signum
function in Maple can be modified to make it act like Snn(x)
by setting an environment variable.
Although similar facilities may be present in other sys-

tems, we do not have access to them.
The correct integration of piecewise-continuous functions

is not solely a CAS issue. The average user of a CAS has re-
ceived little instruction from elementary mathematics books
on working with functions as simple as |x|— indeed no table
of integrals contains an entry for this function — and with-
out that background users might be slow to accept them.
In addition, the integration of piecewise functions requires
users to understand the difference between integration with
respect to a complex variable and with respect to a real vari-
able. There has already been a significant impact by CAS
on the practice and teaching of mathematics, and piecewise-
continuous functions could be another area in which CAS
will lead the way.
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Zürich (1994)

[4] Mohrenschildt, M. v., A Normal Form for Function
Rings of Piecewise Functions, Tech Report CS-96-14,
Univ. of Waterloo (1996)


