
Fraction-free Computation of Matrix Padé Systems

Bernhard Beckermann,

Laboratoire d’Analyse Numérique et d’Optimisation,

UFR IEEA – M3, USTL Flandres Artois,

F–59655 Villeneuve d’Ascq CEDEX, France,

e-mail: bbecker@ano.univ-lille1.fr

Stan Cabay,

Department of Computer Science,

University of Alberta, Edmonton, Alberta, Canada,

e-mail: cabay@cs.ualberta.ca

and

George Labahn

Department of Computer Science,

University of Waterloo, Waterloo, Ontario, Canada,

e-mail: glabahn@daisy.uwaterloo.ca

Abstract

We present a fraction-free approach to the computation of
matrix Padé systems. The method relies on determining
a modified Schur complement for the coefficient matrices of
the linear systems of equations that are associated to matrix
Padé approximation problems. By using this modified Schur
complement for these matrices we are able to obtain a fast
hybrid fraction-free algorithm for their computation. The
algorithm is general and requires no extra assumptions on
its input.

1 Introduction

Let A be a s×s matrix power series. A matrix Padé approx-
imant of type (p, q) for A is a pair of s×smatrix polynomials
U and V having degrees bounded by m and n, respectively,
which satisfy

A(z) · U(z)− V (z) = O(zp+q+1).

Technically speaking the above defines a right matrix Padé
approximant with a left approximant defined in the obvi-
ous way. In the scalar case this roughly means that A(z) ≈
V (z) · U(z)−1, at least for the first p + q + 1 terms. In the
matrix case there are additional problems since even form-
ing such a rational expression may be impossible due to the
singularity of U(z). Matrix Padé approximants appear in
such applications as solving systems of linear equations hav-
ing block Hankel or Toeplitz matrices [17], digital filtering
theory [9] and in the realization of linear feedback control
systems from input-output data [18]. In computer algebra
they are of interest because of their close relationship with
gcd and matrix gcd problems [11] and their use in the sec-
ond step of the Block Wiedemann Algorithm. Additional
applications are noted in [1].

Existing fast algorithms for the computation of matrix
Padé approximants such as [4, 16] all assume that the coef-
ficient matrices have entries from a field with the cost of a

single arithmetic operation a constant. In particular, these
algorithms do not take into consideration problems such as
growth of coefficients in intermediate operations.

In this paper we consider the problem of solving matrix
Padé approximation problems where the coefficient matrices
of our power series have entries from an integral domain
rather than a field. It is the purpose of this paper to compute
this approximation problem by the use of algorithms which
keep the growth of coefficients down to a reasonable size.
We do this by determining a known common divisor at each
recursive step of the computation. In this way our process is
similar to fraction-free algorithms for solving linear systems
[2], computation of scalar greatest common divisors [8, 13]
and scalar Padé approximation [11].

Our methods study the linear systems that are associated
to matrix Padé problems. These matrices have the structure
of block Sylvester matrices. By looking at the associated lin-
ear systems we are able to obtain recursive algorithms that
control the size of their output by predicting common divi-
sors along the recursive path. The main tool that we use is a
modified Schur complement for the coefficient matrices that
appear in our rational approximation problems. In all cases
our algorithms are fast. In most cases they are asymptoti-
cally at least an order of magnitude faster than any known
alternative fraction free method.

Our results have applications beyond the computation of
matrix rational approximations. For example, in the case of
structured matrix inversion, we provide fraction-free solvers
for linear systems having coefficient matrices with the struc-
ture of block Hankel or Toeplitz matrices [15].

We consider the method that is exploited here, that of
using a modified Schur complement on a structured system
of equations, to be a very general method for constructing
fraction-free algorithms for matrix-like rational approxima-
tion and interpolation problems. These matrix-like approx-
imation problems include Hermite-Padé, simultaneous Padé
and multi-point Padé approximation problems along with
their vector and matrix generalizations [1, 4]. Such com-
putations appear in such diverse applications as the Gfun

package of Salvy and Zimmerman [19] for determining recur-
rences relations, factorization of linear differential operators
[23], computation of matrix normal forms [24], inversion of
structured matrices [15] and computation of common divi-
sors of matrix greatest common divisors [7].

The remainder of this paper is organized as follows. In
Section 2 we introduce the main building blocks of our algo-
rithms, Mahler Matrix Padé systems, along with their asso-
ciated linear systems. In Section 3 we consider computing
such systems along an off-diagonal path and show how to
break the problem of computing one system into two smaller
systems via a modified Schur complement. Section 4 gives
a fast fraction-free hybrid algorithm for their computation
while the following section provides a complexity analysis
of the algorithm. Section 6 interprets the computation in
terms of matrix power series residual sequences and shows
the relationship between related computations, in particular
the scalar subresultant gcd algorithm. The last section in-
cludes a conclusion along with a discussion of future research
directions.

Finally, we mention that most of the proofs in this paper
are simply short sketches. Complete proofs will be given in
a subsequent article which tackles the fraction-free compu-
tation of more general matrix-like rational approximants.

2 Mahler Matrix Padé Systems

Let A and B be matrix power series

A(z) =

∞∑

i=0

aiz
i and B(z) =

∞∑

i=0

biz
i

with the ai and bi square matrices of size s× s. We assume
that the entries of our matrices come from an integral do-
main D and that [a0, b0] is of full rank. This in fact is not
a strong restriction since our main application, matrix Padé
approximation, has B(z) = −I, the identity.

Definition 2.1 (Matrix Padé Approximants)
Let (p, q) be a pair of integers. A right matrix Padé ap-
proximant for (A,B) of type (p, q) is a pair U, V of matrix
polynomials, having degrees at most p and q, respectively,
such that

A(z) · U(z) +B(z) · V (z) = z
p+q+1

W (z) (1)

with W a matrix power series. 2

The matrix power series W is called the residual. When
B = −I one obtains the classic matrix Padé approximant
for A. There is also a corresponding definition of a left
matrix Padé approximant. A matrix Padé approximant of a
given type always exists [16, Theorem 2.2]. Technically, we
require that our domain be a field, however one can always
work with quotient fields and then clear denominators to
ensure existence for integral domains.

The primary tool that we use for the recursive compu-
tation of a Matrix Padé Approximant is a pair of such ap-
proximants organized in a matrix.

Definition 2.2 (Mahler Matrix Padé Systems (MMPS))
A (Right) Mahler Matrix Padé System for (A,B) of type
(p, q) is a block matrix polynomial

P =

[

S U
T V

]

with (S, T) an approximant of type (p, q − 1) and (U, V) an
approximant of type (p− 1, q). 2

For our purposes, we are interested in those MMPS which
have certain added invertibility conditions. In particular, we
are interested in the case where the leading coefficients of
both S and V are invertible. When both leading coefficients
are the identity we call this a monic normalization [6, Section
4.1]. However, since we are interested in fraction-free com-
putation we will weaken this requirement and ask that the
coefficients of both S and V be a (same) nonzero constant
times the identity and call it a nearly-monic normalization.
The nonzero constant will be referred to as a normalization
constant of the system.

Remark 2.3 A different type of Padé system is used in the
hybrid algorithms of [4, 15, 16, 17]. A Matrix Padé System
of type (p, q), has the first block column a matrix Padé ap-
proximant of type (p− 1, q− 1) and the second block column
is a matrix Padé approximant of type (p, q). The normal-
ization used in that case was that the residual, R of the first
block and the denominator, V , of the second block both have
nonsingular trailing matrices (called a co-monic normaliza-
tion [6, Section 4.1]).

It is not true that a nearly-monic MMPS always exists.
In order to determine when such a system in fact does exist,
we study the associated linear system. This linear system
is specified by the restrictions on the order of the products
in (1), on the degrees and finally also the particular highest
coefficients.

Let

Cp,q =















a0 b0
...

. . .
...

. . .
a0

b0
...

...
ap+q−1 · · · aq−1 bp+q−1 · · · bp−1

0 · · · 0 I 0 · · · 0
0 0 0 · · · 0 I















.

We will use the notation Cp,q(A,B) when we need to ex-
plicitly mention the dependence of this matrix on the power
series A and B.

Equating coefficients of (1) implies that a matrix Padé
approximant of type (p, q) can be build by solving the linear
system

Tp,q ·X = 0

for s linear independent solutions where Tp,q denotes the
block Sylvester matrix defined by the first p+ q block rows
of Cp,q.

Since the system has s more variables than equations
such a solution can always be constructed. Similarly, a
nearly-monic MMPS with normalization constant c 6= 0 ex-
ists if and only if we can solve the block system

Cp,q · P = c · E (2)

2

where

P =











s0 u0

...
...

sp up

t0 v0

...
...

tq vq











and E =











0 0
...

...
...

...
0 0
I 0
0 I











,

where here and in the sequel I denotes the identity matrix
of size s.

Clearly this is the case when Cp,q is nonsingular. We
also know from [15, Theorem 3.4] that the converse is true.
This is summarized in the following

Theorem 2.4 A nearly-monic MMPS of type (p, q) ex-
ists if and only if the matrix Cp,q is nonsingular. A nearly-
monic MMPS with a given normalization constant is unique.

2

Remark 2.5 In the case of Matrix Padé Systems, the cor-
responding statement is that a co-monic system exists if and
only if its associated block Sylvester matrix is nonsingular
[4, 15, 16].

Example 2.6 Let A be the matrix power series having the
first 9 terms as

[

1 + z + 3 z2 + 4 z4 + 7 z7 2 z + z5 + z6

2− 2 z − 3 z3 + z6 − z8 2 z2 + 3 z3 + z4 − 3 z5 + 5 z6

]

and B = −I. Using fraction-free Gaussian elimination ap-
plied to the linear system (2) with p = 1 and q = 2 gives a
nearly monic MMPS

P(z) =









−2 + 6 z −4 2 0

6 6 z 0 3

−2 + 16 z −4− 4 z 2 + 2 z + 6 z2 6 z

−4 + 16 z −8 + 8 z 4− 4 z 6 z2









having normalization constant 6. Notice that there is no
nearly monic MMPS with a smaller normalization constant.

The first 3 terms of the residuals are then given by

R(z) =

[

18− 8 z + 30 z2 −16 z

24− 12 z − 18 z2 24 + 18 z + 6 z2

]

+O(z3)

and

W (z) =

[

8 z 3 z2

−6 9 + 3 z − 9 z2

]

+O(z3).

2

Example 2.7 In some cases one can derive formulas for a
MMPS of a given type directly by solving the linear system
of equations. For example, let A and B be scalar power
series with nonzero leading terms a0 and b0. For any positive

integer k we see that det(Ck,0) = ak
0 so that a MMPS of type

(k, 0) exists. Solving the linear system (2) gives

[

ak
0 · z

k −q(z)
0 ak

0

]

as a nearly-monic MMPS of type (k, 0) where q(z) = q0 +
· · ·+ qk−1z

k−1 solves the linear equation





a0

...
. . .

ak−1 · · · a0



 ·





q0
...

qk−1



 = a
k
0 ·





b0
...

bk−1



 .

In this case the normalization constant for the system is ak
0 ,

the determinant of Ck,0. We note that the polynomial q is
closely related to the classical operation of pseudo-division
[14]. Indeed q is the pseudo-quotient of a0z

m +a1z
m−1+ · · ·

divided into b0z
m+k−1 + b1z

m+k−2 + · · · where m ≥ k.

3 Off-diagonal Computation of Mahler Matrix Padé
Systems

Let (p, q) be a pair of integers such that Cp,q is nonsingular
(we call such a point a normal point [16]). By Cramer’s rule
one can always find a (unique) fraction-free solution to (2)
when c = det(Cp,q), which we call a Cramer solution. Be-
sides being a fraction-free solution (i.e. elements from D)
of our rational approximation problem, a Cramer solution
is known to have components of “reasonable size”. Further-
more a Cramer solution is exactly the one determined when
one uses fraction-free Gaussian elimination (c.f. [14]), and
hence is computable with a well known bound on the growth
of intermediate expressions. Example 2.7 gives a Cramer so-
lution along with the associated nearly-monic MMPS of type
(k, 0) in the case of a pair of scalar power series.

Fraction-free Gaussian elimination, however, does not
take advantage of the added structure of the matrix Cp,q. In
this section we will describe a recurrence from one normal
point to a later normal point, computing Cramer solutions
at every step. One can combine this with fraction-free Gaus-
sian elimination to “jump” over any singular locations and
hence obtain a hybrid algorithm. The main problem that
needs to be overcome is that the recurrence actually jump
from one Cramer solution to another Cramer solution.

Suppose that (p, q) is a normal point and that P is a
nearly monic MMPS that corresponds to a Cramer solution.
Let R and W be the residual matrix power series satisfying

[A(z), B(z)] ·P(z) = z
p+q[R(z),W (z)].

Let Û , V̂ be a matrix Padé approximant of type (r, r) for
the residuals (R,W). Then a matrix Padé approximant of
type (p+ r, q + r) is given by

[

U
V

]

= P ·

[

Û

V̂

]

.

Thus one can compute a matrix Padé approximant of a
certain type by computing the closest MMPS along an off-
diagonal path and then a matrix Padé approximant of the
residuals.

Suppose further that (r, r) is a normal point for the pair

(R,W) with P̂ the corresponding MMPS for the residuals.

3

Then the product P · P̂ is a nearly monic MMPS and so
(p+ r, q+ r) is a normal point for (A,B). In addition, if P∗

is the system that corresponds to a Cramer solution of type
(p+ r, q + r) then by Theorem 2.4 we have that

d ·P∗ = P · P̂

with d fromD or its quotient field. We obtain a fraction-free
recursion by determining the constant d in advance.

Let the components of P be given by

P =

[

S U
T V

]

and set M to be the (p+ q + 2r + 2) · s square matrix with
block structure given by

M =






















I

. . .
I

︸ ︷︷ ︸

p

I

. . .
I

︸ ︷︷ ︸

q

s0
...

. . .
sp s0

. . .
...
sp

t0
...

. . .
tq t0

. . .
...
tq

︸ ︷︷ ︸

r+1

u0

...
. . .

up u0

. . .
...
up

v0

...
. . .

vq v0

. . .
...
vq





















︸ ︷︷ ︸

r+1

Theorem 3.1 (Modified Schur Complement)

Let Ĉr,r = Cr,r(R,W), with (R,W) being the residual ma-
trix power series of the MMPS of type (p, q). Then

Cp+r,q+r ·M =








I

. . .
I

c · I
c · I







·

[
C̄p,q 0

Ĉr,r

]

(3)
where Cp+r,q+r = Cp+r,q+r(A,B), Cp,q = Cp,q(A,B) and
C̄p,q a block matrix with determinant determined by c =

det(Cp,q) = (−1)qs2

· det(C̄p,q).
Furthermore, M is nonsingular with

det(M) = (−1)(r+1)s2

· c2s(r+1)
,

and

det(Cp+r,q+r) · [det(Cp,q)]
2sr−1 = (−1)(q+r+1)s2

det(Ĉr,r).
(4)

Proof: The first part of the theorem follows from mul-
tiplying out the two matrices on the left of equation (3) and
noting the order conditions defining the MMPS’s. The up-
per left hand corner block matrix with block sizes (p+ q)×
(p+ q) is the same as Cp,q after removing the last two block
rows and the block columns p+1 and p+1+q+1. According
to the particular structure of the last two block columns we

have det(C̄p,q) = (−1)qs2

· det(Cp,q).

The second part of the theorem follows from reducing
the determinant of M (by expanding along identity row and
columns) to that of the determinant of











sp · · · up · · ·
. . .

...
. . .

...
sp up

tq · · · vq · · ·
. . .

...
. . .

...
tq vq











times (−1)(r+1)s2

.
Since tq = up = 0 and sp = vq = c · I the determinant of

the latter matrix is given by c2s(r+1). A proof of (4) follows
immediately by taking determinants in (3). 2

Suppose that det(Cp,q) 6= 0, and denote by P the cor-
responding Cramer solution of type (p, q). Let (R,W) be
the residual matrix power series for P, the corresponding
MMPS. We wish to compute the “next” existing Cramer
solution P ∗ of type (p+ r, q + r), r ≥ 1. From Theorem 3.1

we know that det(Ĉr,r) and det(Cp+r,q+r) only vanish simul-
taneously. Thus, according to Theorem 2.4, it is sufficient

to find the smallest r > 0 with Ĉr,r being nonsingular.

Let P̂ be the Cramer solution for the linear system Ĉr,r

determined by the residual matrix power series (R,W). Let

P̄ = M ·

[
0

P̂

]

(5)

and ĉ = det(Ĉr,r). By Theorem 3.1 we see that P̄ is a
solution to equation (2) with normalization constant

c
(2s+1) · ĉ = det(Cp+r,q+r) · det(M).

Hence c2s · P̄ is det(M) times the Cramer solution of type
(p+r, q+r). In terms of the associated nearly-monic MMPS
we have, by uniqueness,

det(M) ·P∗ = ±c2s ·P · P̂. (6)

Theorem 3.2 Let det(Ĉr,r) 6= 0, and denote by P̂ the MMPS
for the corresponding Cramer solution of type (r, r). Then

(−1)(q+r+1)s2

[det(Cp,q)]
2sr ·P∗ = P · P̂.

Proof: Define P̄ := P · P̂. It is easily checked that P̄ is
a nearly–monic MMPS of order (p+ r, q+ r), and thus P̄ =
d · P∗ by uniqueness. The constant d may be obtained by
comparing the leading coefficients with the help of formula
(4) from Theorem 3.1. 2

In terms of MMPS one can obtain the system P∗ by first
computing the MMPS for the smaller problems, multiplying
the two matrix polynomials and then dividing out by the
known common factor ±c2sr.

4

4 A Fraction-free Matrix Padé Algorithm

The discussion following Theorem 3.1 along with Theorem
3.2 provides a recursive algorithm for computing a nearly
monic MMPS that corresponds to determining a Cramer
solution in terms of previous Cramer solutions along an off-
diagonal path:

FF Matrix Padé Algorithm
Given: p ≤ q, compute the MMPS at the last normal point
along the path (r, q − p+ r)r=0,...,.

• [Initialization]
For r0 = 1, . . . up to a maximum of p, use fraction-
free Gaussian elimination to find the first nonsingular
matrix Cr0,q−p+r0 and the MMPS P0 of type (r0, q −
p+ r0) for (A,B) associated to the Cramer solution of
the corresponding linear system.

• [Iteration]
While pi < p do: given a normal point (pi, qi) and
MMPS Pi of type (pi, qi) (with qi − pi = q − p) for
(A,B) associated to the Cramer solution of the corre-
sponding linear system.

– [Compute Residual Mahler System]
For ri = 1, . . . up to a maximum of p − pi com-
pute ri terms of the residual matrix power series.
Use fraction-free Gaussian elimination to deter-
mine the first normal point (ri, ri) of the residual

power series. Let P̂i be the MMPS associated to
the Cramer solution of the corresponding linear
system.

– [Compute New Mahler System]

Compute P̄ = Pi · P̂i and ci, the leading coef-
ficient of Pi. Divide each element of P̄ by the
known common divisor c2sri to obtain the new
MMPS Pi+1. This MMPS is the one associated
to the Cramer solution of the corresponding lin-
ear system (pi+1, qi+1) = (pi + ri, qi + ri). Set
i = i+ 1 and return to the iteration step.

2

We remark that for our purposes a leading coefficient of a
matrix polynomial is the coefficient matrix that corresponds
in row i to the ni coefficient of z for ni the maximum degree
of entries in the i-th row.

Example 4.1 We illustrate the FF Matrix Padé algorithm
by giving an example of a single step of the iteration. Let D
be the integers and A, B the matrix power series of Exam-
ple 2.6. From this example, we have already obtained P, a
MMPS of type (1, 2) for (A,B) corresponding to the Cramer
solution. In this case the normalization constant is 6.

Working with the residual matrix power series and using
fraction-free Gaussian elimination shows that (1, 1) is the

first normal point along the path (t, t)t=1,.... Then P̂, the
MMPS corresponding to the Cramer solution of type (1, 1)
for the residual is given by








−18144 z 0

25272 31104− 18144 z

91368 62208

−6480 −41472

0 0

−7776 11664

−15552− 18144 z 23328

10368 −15552− 18144 z








Multiplying P · P̂ and dividing out by the common factor
64 = 1296 gives









63 + 28 z − 84 z2 56 z

−15 + 33 z −96 + 144 z − 84 z2

63 + 61 z + 199 z2 −136 z + 344 z2

126− 70 z − 254 z2 112 z − 304 z2

−28 z 0

24− 36 z −36 + 12 z

20 z − 100 z2 − 84 z3 −72 z + 24 z2

−56 z + 104 z2 −72 z2 − 84 z3









the MMPS of type (2, 3) for (A,B) corresponding to the
Cramer solution. Note that the normalization constant in
this case is −84 and hence the common divisor for the next
step would be 49787136 (should (3, 4) be a normal point).

2

For a given pair (A,B) our algorithm computes a se-
quence {Pi}i=1,... of MMPS of types {(pi, qi)}i=1,.... For
each i there exists a pair of residual matrix power series
(Ri,Wi) and a MMPS P̂ of type (ri, ri) with ri = qi+1 − qi

such that

[A(z), B(z)] ·Pi(z) = z
pi+qi [Ri(z),Wi(z)] (7)

[Ri(z),Wi(z)] · P̂i(z) = z
2ri [R̂i+1(z), Ŵi+1(z)] (8)

ci
2ris ·Pi+1(z) = Pi(z) · P̂i(z) (9)

where lcoeff(Pi(z)) = ci · I2s.
Note that, because of the uniqueness of nearly-normal

MMPS at a normal point we always have that

[R̂i+1(z), Ŵi+1(z)] = ci
2ris · [Ri+1(z),Wi+1(z)]

for each i ≥ 1. This allows us to interpret our computational
process as a matrix power series residual sequence. By this
we mean that our algorithm computes a sequence {P̂i}i=0,...

of MMPS for a sequence of residuals (Ri,Wi) such that

[R0(z),W0(z)] = [A(z), B(z)],

with

[R0(z),W0(z)] · P̂0(z) = z
p0+q0 · [R1(z),W1(z)]

and, for i > 0,

[Ri(z),Wi(z)] · P̂i(z) = z
2ri · βi · [Ri+1(z),Wi+1(z)]

with βi ∈ D. From equation (9) we have that, for each i,
βi = ci

2ris where lcoeff(Pi(z)) = ci · I2s. In terms of the

sequence P̂i(z) the βi are given by

β0 := 1;βi+1 = ĉi · βi
1−2ris for i ≥ 1

where lcoeff(P̂i(z)) = ĉi · I2s.
This interpretation allows one to view our computation

in a similar light to that used for classical PRS type methods
for computing polynomial gcd’s.

5

Table 1: Size Estimates

Variables Size Estimates
A,B O(κ)
R,W O(s · (p+ q) · κ)
P O(s(p+ q) · κ)

P̂ O(rs2(p+ q) · κ)
P̄ O(rs2(p+ q) · κ)

5 Complexity

In this section, we derive asymptotic estimates for the cost of
our fraction-free algorithm. We assume that classical meth-
ods are used for performing all arithmetic in D. In addition,
to keep the analysis tractable we assume that

size(a+ b) = O(max{size(a), size(b)})
size(a · b) = O(size(a) + size(b))
cost(a+ b) = O(1)
cost(a · b) = O(size(a) · size(b))

where the function “size” measures the total storage re-
quired for its arguments and the function “cost” estimates
the number of boolean operations (machine cycles) required
to perform the indicated arithmetic. These assumptions are
justified for large operands where, for example, the cost of
addition is negligible in comparison to the cost of multipli-
cation. Using this model, the cost of fraction-free Gaussian
elimination of an n×n system is O(n5 ·N2) where N is the
largest size of the coefficients of the system.

In terms of size, suppose that every term in both A and
B is bounded by the constant κ. We obtain the size for
P from the fact that its components are Cramer solutions
and hence have sizes easily derived from Cramer’s rule. The
residuals R and W are computed from the original power
series multiplied by P and hence their sizes are determined
by the multiplications. Similarly, the system P̂ has size
determined from the sizes of the residual series. Finally, the
updated system has size again determined by the original
power series. The sizes are included in Table 1.

In terms of complexity of arithmetic operations, the cost
of each iteration of the FF Matrix Padé algorithm is the
cost of generating the residual matrix power series along
with the cost of fraction-free Gaussian elimination to deter-
mine the first normal point and compute the corresponding
Cramer solution. Clearly the overall complexity depends on
the largest “jump” required for one of these iterative steps.

Given an existing P, we compute the first 2r terms of
the matrix residuals by

cost(R,W) = O(r · s2 · size(P) · (s · (p+ q) · κ))
= O(r · s4 · (p+ q)2 · κ2).

The cost of fraction-free Gaussian elimination [2], used to
solve (2), is then given by

cost(P̂) = O(r5 · s5 · size2(R,W))
= O(r5 · s7 · (p+ q)2 · κ2).

The remaining costs of the other computations are sum-
marized in Table 2.

Table 2: Cost Estimates

Variables Cost Estimates
R,W O(rs4 · (p+ q)2 · κ2)

P̂ O(r5s7(p+ q)2 · κ2)
P̄ O(r2s6(p+ q)3 · κ2)
P O(r2s6(p+ q)3 · κ2)

To obtain a cost estimate of the algorithm, we sum the
estimates given in Table 2 over all iterations. The algorithm
computes a sequence of jumps r0, . . . , rk such that the final
MMPS occurs with degree bounds (pF , qF) with

pF =

k∑

i=0

ri, qF = (q − p) +

k∑

i=0

ri.

If we assume that our step sizes are bounded by a small
value (this is the case in most applications - indeed in most
cases the assumption is made that ri = 1 for all i (called a
normal case)). In such cases the algorithm has a total cost
estimate of

O(

k∑

i=0

r
2
i s

6(pi + qi)
3
κ

2) = O(s6(pF + qF)
4 · κ2).

For large pF , qF this compares with fraction-free Gaussian
elimination which has a cost estimate of O(s5(pF +qF)

5 ·κ2)
for solving the linear system.

6 Scalar Mahler Systems

In the case of scalar power series our algorithm requires
O((pF + qF)

4 ·κ2) arithmetic operations, an order of magni-
tude improvement over fraction-free Gaussian elimination.
However, we have already seen in some cases that it is pos-
sible to replace elimination with pseudo-division, reducing
the cost of a substep by an order of magnitude. Example 2.7
illustrates this for systems of type (k, 0) when A begins with
a non-zero coefficient. A similar formula holds for systems
of type (0, k) when B begins with a non-zero coefficient. In
this section we show that in the scalar case we can replace
elimination with pseudo-division in all the steps of our al-
gorithm.

Lemma 6.1 Let A and B be scalar power series with
a0 6= 0 and b0 = · · · = bk−1 = 0, bk 6= 0 with k ≥ 1. Then
(k, k) is a normal point for (A,B) and P, the MMPS of type
(k, k) associated to the corresponding Cramer solution, is

P(z) = (−a0)
k ·

[

bk
k · z

k 0
−q(z) bk

k · z
k

]

(10)

where q(z) = q0 + q1z + · · ·+ qk−1z
k−1 satisfies





bk

...
. . .

b2k−1 · · · bk



 ·





q0
...

qk−1



 = b
k
k ·





a0

...
ak−1



 . (11)

6

Proof: The determinant of Ck,k is easily seen to be
(−a0 · bk)

k so (k, k) is a normal point. The MMPS in equa-
tion (10) is determined directly by solving the associated
linear system of equations. 2

We note that the polynomial q is the pseudo-quotient of
bkz

m +bk+1z
m−1+ · · · divided into a0z

m+k−1+a1z
m+k−2+

· · · where m ≥ k.
A similar formula exists for a MMPS of type (k, k) when

A and B are scalar power series with a0 = · · · = ak−1 =
0, ak 6= 0 (k ≥ 1) and b0 6= 0. It is also straightforward to
see that these give the first normal point along the diagonal.

A formula for determining the first normal point of type
(k, k) when both A and B start with nonzero terms requires
a bit more effort. Note that if one uses fraction-free Gaus-
sian elimination on the columns of Ck,k (which, given the
structure of these matrices, is more natural than trying row
elimination) then the first step is to form the coefficients in
the series b0A− a0B. It turns out that the number of terms
eliminated in this single step determines the location of the
first normal point. Indeed we have

Lemma 6.2 Let A and B be two power series and a0 6= 0
and b0 6= 0. Let H be the power series determined by

b0 ·A(z)− a0 ·B(z) = z
k
H(z).

Then (k, k) is a normal point of (A,B) and P, the MMPS of
type (k, k) associated to the corresponding Cramer solution
is

P(z) =

[

hk
0 · z

k − b0 · q(z) −b0 · q̄(z)
a0 · q(z) hk

0 · z
k + a0 · q̄(z)

]

(12)

where q(z) = q0 + q1z + · · ·+ qk−1z
k−1 satisfies





h0

...
. . .

hk−1 · · · h0



 ·





q0
...

qk−1



 = h
k
0 ·





a0

...
ak−1



 (13)

and q̄(z) = q̄0 + q̄1z + · · ·+ q̄k−1z
k−1 satisfies





h0

...
. . .

hk−1 · · · h0



 ·





q̄0
...

q̄k−1



 = h
k
0 ·





b0
...

bk−1



 . (14)

Proof: The determinant of Ck,k is easily seen to be hk
0

so (k, k) is a normal point. The MMPS in equation (12) is
determined directly by solving the associated linear system
of equations. That one has a Mahler system can also be
verified by simply multiplying [A(z), B(z)] ·P(z) and noting
that one has the correct order conditions. 2

We note that both polynomials q and q̄ are pseudo-
quotients. In addition one easily verifies the link b0 ·q = a0 ·q̄
so that in fact only one of the systems (13), (14), has to be
solved explicitly.

Lemmas 6.1 and 6.2 along with Example 2.7 provide a
faster way of computing all intermediate steps in the fraction-
free algorithm of section 4. In this case we are replacing
fraction-free Gaussian elimination by at most two pseudo-
divisions at every step, reducing each of these intermediate

steps by an order of magnitude. The resulting algorithm has
a cost of O((pF + qF)

3 · κ2). Finally, these results do not
carry over to the matrix case since a non-zero element is not
always invertible in the non-scalar case.

Example 6.3 Let A and B be scalar power series given by

A(z) = 1 + z
2 − 3 z4 − 3 z5 + 8 z6 + 2 z7 − 5 z8 +O(z14)

and

B(z) = 3 + 5 z2 − 4 z4 − 9 z5 + 21 z6 +O(z14).

Then from Example 2.7 we determine that the MMPS of
type (0, 2) for (A,B) is given by

P1(z) =

[
9 0

−3 9 z2

]

with residuals

R1(z) = −6− 15 z2 + 9 z4 + · · ·

and
W1(z) = 27 + 45 z2 − 36 z4 + · · · .

Computing 27R1 + 6W1 gives

−135z2 + 27z4 + · · · (15)

hence the first normal point is at (2, 2) for the residuals and
so at (2, 4) for the original power series. The MMPS of type
(2, 2) for the residuals is determined by pseudo-division of
the power series (15) into R1 and then W1 and is given by

P̂1(z) =

[

−21870 + 18225 z2 98415

−4860 21870 + 18225 z2

]

.

Combining these and removing the common factor 94 = 6561
gives the MMPS of type (2, 4) for (A,B) as

P2(z) =

[

−30 + 25 z2 135

10− 15 z2 −45 + 30 z2 + 25 z4

]

with residuals

R2(z) = −45 + 35 z2 + 50 z3 − 125 z4 + · · ·

and

W2(z) = 140− 145 z2 − 225 z3 + 525 z4 + · · · .

Forming 140R2 + 45W2 gives

−1625z2 − 3125z3 + 6125z4 + · · ·

As before the first normal point of the residuals is then at
(2, 2) and hence the next normal point is (4, 6) for the orig-
inal power series. Computing the MMPS for the residuals
via Lemma 6.2, multiplying with the system at (2, 4) and
dividing by 254 = 390625 gives the MMPS of type (4, 6).
Continuing on would determine that the next normal points
are at (5, 7) and (6, 8). For these three normal points the
normalization-constants for the corresponding nearly-monic
systems are 169, −9326 and 260708. 2

7

7 Conclusions

In this paper we have given an algorithm for the computa-
tion of nearly-monic MMPS for matrix power series having
matrix coefficients from an integral domain. The algorithm
is fraction-free in the sense that it does not require any arith-
metic in quotient fields. In addition, the algorithm requires
no extra conditions on the input and in most cases is at
least an order of magnitude faster than existing fraction-
free methods.

Fraction-free algorithms are useful for practical compu-
tation. They are also important as a necessary first step in
developing other algorithms that control coefficient growth,
in particular for developing algorithms based on modular
reduction. We plan on using our theoretical results to build
modular algorithms for matrix Padé approximants, with
an expected additional order of magnitude improvement in
complexity.

It is well-known that computing scalar Padé approxi-
mants along an off-diagonal path is closely related to com-
puting greatest common divisors of two polynomials using
the extended Euclidean algorithm [10, 11] (with the order
of the coefficients of the polynomial reversed). Since our
scalar algorithm computes Padé approximants along an off-
diagonal path there is also a relation between our algorithm
and fraction-free computation of greatest common divisors.
We expect that our algorithm gives the subresultant gcd
algorithm [8, 13] as a special case. One can compare Exam-
ple 6.3 to a well-known gcd example first given by Knuth
[14, Example7.6] as an example of a possible relationship
between these two algorithms. A similar statement can be
made regarding our algorithm and algorithms for fraction-
free solving of Hankel systems [20] since the relationship be-
tween solving Hankel systems, computing Padé systems and
the extended Euclidean algorithm is also well-known [21].

Finally, our algorithm computes matrix Padé approxi-
mants along an off-diagonal path in a hybrid way - recursing
from normal point to normal point with the intermediate
computations done via fraction-free Gaussian elimination.
We expect that the algorithm described in this paper can
be easily extended to compute along arbitrary paths, some-
thing that is not possible yet for the σ-bases algorithms of
[4, 5]. This becomes significant in many applications where
particular paths are known to consist of only normal points.
For example, in the case of positive-definite block Toeplitz
linear systems a vertical path has only normal points while
nothing can be said about the corresponding off-diagonal
path.

References

[1] G.A. Baker & P.R. Graves-Morris, Padé Approximants ,
second edition, Cambridge Univ. Press, Cambridge, UK
(1995).

[2] E. Bareiss, Sylvester’s Identity and multistep integer-
preserving Gaussian elimination, Math. Comp., 22(103)
(1968) 565-578.

[3] B. Beckermann, Zur Interpolation mit polynomialen Lin-
earkombinationen beliebiger Funktionen, Thesis, Univ.
Hannover, 1990.

[4] B. Beckermann & G. Labahn, A uniform approach for Her-
mite Padé and simultaneous Padé Approximants and their
matrix generalizations, Numerical Algorithms 3 (1992) 45-
54.

[5] B. Beckermann & G. Labahn, A uniform approach for the
fast, reliable computation of Matrix-type Padé approxi-
mants, SIAM J. Matrix Anal. Appl. 15 (1994) 804-823.

[6] B. Beckermann & G. Labahn, Recursiveness in Matrix
Interpolation Problems, To appear in J. Comput. Appl.
Math. (1997) 29 pages.

[7] B. Beckermann & G. Labahn, Fraction-free Computation
of Matrix GCD’s and Rational Interpolants. Manuscript.

[8] W. Brown & J.F. Traub, On Euclid’s algorithm and the
theory of subresultants, J. ACM 18 (1971) 505-514.

[9] A. Bultheel, Algorithms to compute the reflection coeffi-
cients of digital filters, Numerical Methods of Approxima-
tion Thoery, 7(1983)

[10] S. Cabay & D.K. Choi, Algebraic Computations of scaled
Padé Fractions, SIAM J. of Computing, 6 (1986) 243-270.

[11] S. Cabay & P. Kossowski, Power Series remainder se-
quences and Padé fractions over an integral domain, J.
Symbolic Computation, 10 (1990), pp. 139-163.

[12] S. Cabay & G. Labahn, A superfast algorithm for multi-
dimensional Padé systems, Numerical Algorithms 2 (1992)
201-224.

[13] G. Collins, Subresultant and Reduced Polynomial Remain-
der Sequences. J. ACM 14, (1967) 128-142

[14] K.O. Geddes, S.R. Czapor & G. Labahn, Algorithms for
Computer Algebra, (Kluwer, Boston, MA, 1992)

[15] G. Labahn, Inversion Components of Block Hankel-like
Matrices, Linear Algebra and its Applications 177 (1992)
7-48

[16] G. Labahn & S. Cabay, Matrix Padé fractions and their
computation, SIAM J. of Computing 18 (1989) 639-657.

[17] G. Labahn, D.K. Choi & S. Cabay, Inverse of Block Hankel
and Block Toeplitz matrices, SIAM J. of Computing, 19(1)
(1990) 98-123.

[18] H.H. Rosenbrock, State-Space and Multivariable Theory.
New York: Wiley, 1970.

[19] B. Salvy & P. Zimmermann, Gfun: a Maple package for
the manipulation of generating and holonomic functions in
one variable, ACM Transactions on Mathematical Software
(TOMS), 20(2) (1994) 163-177.

[20] J.R. Sendra & J. Llovet, An Extended Polynomial GCD
Algorithm using Hankel Matrices, J. Symbolic Computa-
tion 13(1) (1992) 25-40.

[21] Y. Sugiyama, An Algorithm for Solving Discrete-time
Wiener-Hopf Equations based on Euclid’s Algorithm,
IEEE Trans. Inform. Theory 32 (1986) 394-409.

[22] M. Van Barel & A. Bultheel, A general module theoretic
framework for vector M-Padé and matrix rational interpo-
lation, Numerical Algorithms 3 (1992) 451-462.

[23] M. Van Hoeij, Factorization of Differential Operators with
Rational Function Coefficients. To appear Journal of Sym-
bolic Computation (1997).

[24] G. Villard, Personal Communication (1996)

8

