
Rank-Sensitive Computation of the Rank Profile
of a Polynomial Matrix

George Labahn

Cheriton School of Computer Science

University of Waterloo, Ontario, Canada

Vincent Neiger

Sorbonne Université, CNRS, LIP6

F-75005 Paris, France

Thi Xuan Vu

Department of Mathematics and Statistics

UiT, The Arctic University of Norway, Tromsø, Norway

Wei Zhou

Cheriton School of Computer Science

University of Waterloo, Ontario, Canada

ABSTRACT
Consider a matrix F ∈ K[𝑥]𝑚×𝑛 of univariate polynomials over a

fieldK. We study the problem of computing the column rank profile

of F. To this end we first give an algorithm which improves the

minimal kernel basis algorithm of Zhou, Labahn, and Storjohann

(Proceedings ISSAC 2012). We then provide a second algorithm

which computes the column rank profile of F with a rank-sensitive

complexity of 𝑂˜(𝑟𝜔−2𝑛(𝑚 + 𝐷)) operations in K. Here, 𝐷 is the

sum of row degrees of F, 𝜔 is the exponent of matrix multiplication,

and 𝑂˜(·) hides logarithmic factors.

CCS CONCEPTS
• Computing methodologies→ Algebraic algorithms; • The-
ory of computation→ Design and analysis of algorithms.

KEYWORDS
Polynomial matrix; kernel basis; rank profile; complexity.

ACM Reference Format:
George Labahn, Vincent Neiger, Thi Xuan Vu, and Wei Zhou. 2022. Rank-

Sensitive Computation of the Rank Profile of a Polynomial Matrix. In Pro-

ceedings of the 2022 International Symposium on Symbolic and Algebraic

Computation (ISSAC ’22), July 4–7, 2022, Villeneuve-d’Ascq, France. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3476446.3535495

1 INTRODUCTION
In this paper, we consider the computation of rank properties of a

univariate polynomial matrix F ∈ K[𝑥]𝑚×𝑛 over some base field K.
The rank of F can be determined by computing a basis for the left

(or for the right) kernel of F. Under the assumption𝑚 ≥ 𝑛 (which

implicitly requires the input matrix to have full rank, see Section 4),

an algorithm due to Zhou, Labahn, and Storjohann [39] computes a

minimal basis for the left kernel of F using𝑂˜(𝑚𝜔 ⌈𝜌/𝑛⌉) operations
in K, where 𝜌 is the sum of the 𝑛 largest row degrees of F. In this

cost bound, 𝜔 is the exponent of matrix multiplication, and 𝑂˜(·)
is 𝑂 (·) but ignoring logarithmic factors. A natural alternative is

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8688-3/22/07. . . $15.00

https://doi.org/10.1145/3476446.3535495

to compute a basis for the row space of F, called a row basis (or,

similarly, a column basis). However, the fastest known row basis

algorithm [37] starts by computing a basis of the left kernel of F,
so one may as well get the rank directly from the latter.

Currently the best known cost bound for computing the rank of

F only depends on the matrix dimensions𝑚 and 𝑛, and is not influ-

enced by the rank 𝑟 . More generally, the fastest known algorithms

for basic computations with univariate polynomial matrices are not

rank-sensitive. This is a significant drawback for the manipulation

of matrices whose rank is unknown, and possibly low a priori.

Furthermore, there are specific situations where rank deficiency

is actually expected by design, and one would like to take advantage

of this in algorithms. Recently, in a context of computing generators

of linearly recurrent sequences, minimal approximant bases of rank-

deficient, structured matrices F have been encountered [13, Sec. 5].

It has also been observed that, for the computation of the Hermite

normal form of F, finding the (column) rank profile of F provides a

direct reduction to the case of a square, nonsingular matrix [26],

for which fast methods are known [19]. A third situation occurs

in verification protocols for polynomial matrices: most protocols

proposed in [20] rely, directly or indirectly, on one for certifying

“rank(F) ≥ 𝛾” [20, Prot. 3], itself asking the Prover to locate a square,
nonsingular submatrix of F which has rank at least 𝛾 .

In fast K-linear algebra, rank-sensitive algorithms and complex-

ity bounds have proved highly valuable. For example, rank-sensitive

Gaussian elimination costs𝑂 (𝑟𝜔−2𝑚𝑛) operations in K [14, 29, 31],

for an input (constant) matrix A ∈ K𝑚×𝑛 of rank 𝑟 . More recently,

research on this topic has led to improvements of both complexity

bounds and software implementations, and has also provided deep

insight into the rank-related properties that are revealed depend-

ing on the chosen elimination strategies [6, 17]. For finding the

rank or rank profile and for solving linear systems, [5, 33] report

on running times as low as (𝑟𝜔 +𝑚 + 𝑛 + |A|)1+𝑜 (1) , with |A| the
number of nonzero entries ofA. Now, for univariate polynomial ma-

trices, despite the impact this would have on many computations,

there is still an important lack of efficient rank-sensitive methods

which would incorporate both fast linear algebra techniques and

fast univariate polynomial multiplication.

One possibility is to make use of classical algorithms such as

fraction-free Gaussian elimination (see [8]) while also keeping track

of row or column operations to obtain a kernel basis and rank pro-

file. The cost of such algorithms depends on𝑚, 𝑛, 𝑟 and the degree

of matrices but does not involve the exponent of matrix multipli-

cation 𝜔 . This is also the case for the algorithm of Mulders and

https://doi.org/10.1145/3476446.3535495
https://doi.org/10.1145/3476446.3535495

Storjohann [22] which transforms F to weak Popov form and com-

putes the rank profile with a cost of 𝑂 (𝑟𝑚𝑛 deg(F)2). Storjohann
[29, Chap. 2] gives a recursive version of fraction-free Gaussian

elimination which computes a kernel basis and rank profile of F
having complexity of 𝑂˜(𝑟𝜔−1𝑚𝑛 deg(F)2) operations in K. Storjo-
hann and Villard [32] later gave a Las Vegas randomized algorithm

which computed the rank and kernel basis of a polynomial matrix

with complexity 𝑂˜(𝑟𝜔−2𝑚𝑛 deg(F)).
The main contribution of this paper is a column rank profile al-

gorithm with a rank-sensitive cost of𝑂˜(𝑟𝜔−2𝑛(𝑚 +𝐷)) operations
inK. Here 𝐷 is the sum of the row degrees of F, with 𝐷 ≤ 𝑚 deg(F).
This is a follow-up and improvement to the algorithm given in the

PhD thesis of Zhou [35, Sec. 11].

We first revisit [35, Algo. 11.1], to augment the minimal kernel

basis algorithm of [39] so that it also determines the column rank

profile of the input matrix. How the variant here improves upon

those in the last two references is explained at the beginning of

Section 4. In particular, within the same complexity bound, the new

version supports arbitrary dimensions𝑚,𝑛 and rank 𝑟 of F, which
is essential for our purpose. This algorithm is not rank-sensitive: it

has a cost of 𝑂˜(𝑚𝜔−2 (𝑚 + 𝑛) (𝑚 + 𝐷)) operations in K.
We then give a rank-sensitive column rank profile algorithm,

which uses the above kernel basis algorithm as its main subroutine.

A sketch of a similar result has been given before in [35, Sec. 11.2],

where the approach is to incorporate the columns gradually, always

maintaining a number of columns which is bounded by the rank.

At each step the above kernel basis procedure is called to obtain a

partial column rank profile and discard rows that are K[𝑥]-linearly
dependent. At each step as well, to keep control of the cost of this

kernel computation, a row basis computation is applied beforehand

to reduce to a matrix having full row rank.

Here, we follow another path, by incorporating rows gradually.

This allows us to benefit from the fact that the kernel procedure has

quasi-linear cost with respect to the column dimension 𝑛, without

having to resort to row basis computations. To enable proceeding

row-wise, we exploit a property of kernel bases in so-called weak

Popov form, showing that they give direct access to a set of linearly

independent rows of the input in addition to its column rank profile.

Once all rows of F have been processed and a set of 𝑟 linearly

independent rows of F has been found, the column rank profile of

F can be extracted efficiently again through the kernel algorithm.

Outline. In Section 2, we give the basic definitions and properties

of our building blocks for polynomial matrix arithmetic including

kernel bases, pivot profiles and rank profiles, and weak Popov forms.

Section 3 introduces specific rank profile and kernel properties used

in our algorithms. Section 4 describes our algorithm for computing

the rank profile and kernel basis, while Section 5 presents our

algorithm for the rank-sensitive computation of the rank profile.

The paper ends with topics for future research, and contains as an

appendix an illustration of our examples through SageMath code.

2 PRELIMINARIES
In this section we describe the notations used in this paper, and then

give the basic definitions and a number of properties of polynomial

matrices including shifted degrees and pivot profiles, relation bases

and kernel bases, reduced forms and weak Popov forms.

2.1 Notation
We letK[𝑥] denote a univariate polynomial ring over a fieldKwith

K[𝑥]𝑚×𝑛 being the set of𝑚 × 𝑛 univariate polynomial matrices.

For F ∈ K[𝑥]𝑚×𝑛 and subsets 𝐼 of (1, . . . ,𝑚) and 𝐽 of (1, . . . , 𝑛), we
write F𝐼 ,𝐽 for the submatrix of F obtained by selecting rows indexed
by 𝐼 and columns indexed by 𝐽 . We let F𝐼 ,∗ = F𝐼 ,{1..𝑛} denote the
submatrix of F obtained by selecting the rows indexed by 𝐼 and

keeping all columns and F∗,𝐽 = F{1..𝑚},𝐽 for the submatrix of F
obtained by keeping all rows and selecting columns indexed by 𝐽 .

For a tuple of integers 𝒔 = (𝑠1, . . . , 𝑠𝑚) ∈ Z𝑚 , the sum of its

entries is denoted by |𝒔 | = 𝑠1 + · · · + 𝑠𝑚 . When this concerns an

input shift 𝒔, we will often write 𝐷 for this quantity, i.e. 𝐷 = |𝒔 |.

2.2 Kernel, row space, modules of relations
For a matrix F in K[𝑥]𝑚×𝑛 of rank 𝑟 , the set

K(F) :=
{
p ∈ K[𝑥]1×𝑚 | pF = 0

}
is a K[𝑥]-module of rank𝑚 − 𝑟 and is called the (left) kernel of F.
The row space of F is the module

{pF | p ∈ K[𝑥]1×𝑚} ⊆ K[𝑥]1×𝑛 .
A basis for one of these modules (a kernel basis or a row basis) is typ-

ically organized into a single polynomial matrix, for example, a basis

of K(F) being represented by a full rank matrix K ∈ K[𝑥] (𝑚−𝑟)×𝑚 .

Also, for a nonsingular matrix M in K[𝑥]𝑛×𝑛 ,
RM (F) :=

{
p ∈ K[𝑥]1×𝑚 | pF = 0 mod M

}
is a K[𝑥]-module of rank𝑚, called the (left) relation module of F
modulo M. Here, the notation A = 0 mod M means that A = QM
for some matrix Q.

Important particular cases are the relations of approximation and

those of interpolation [1, 2, 34]. For the latter,M = diag(𝑀1, . . . , 𝑀𝑛)
with𝑀𝑘 = (𝑥 −𝛼𝑘,1) · · · (𝑥 −𝛼𝑘,𝜏𝑘) for some 𝜏𝑘 ∈ Z>0 and 1 ≤ 𝑘 ≤
𝑛, where the 𝛼𝑘,𝑗 ’s are known elements from K. Approximation

is when these elements are zero: M = diag(𝑥𝜏1 , . . . , 𝑥𝜏𝑛), so that

working modM amounts to truncating the column 𝑗 modulo 𝑥𝜏 𝑗 .

The notions of right kernel, column space, column bases, and

right relations are of course defined similarly.

2.3 Shifted degrees, leading matrix
For a row vector p = [𝑝1 · · · 𝑝𝑛] in K[𝑥]1×𝑛 , its degree is

rdeg (p) = max

1≤𝑖≤𝑛
deg(𝑝𝑖)

that is, the largest degree of all its entries. Here we take the con-

vention that the degree of a zero polynomial or zero row is −∞. In
many cases it is useful to shift (or re-weigh) the degrees. Given a

shift 𝒔 = (𝑠1, . . . , 𝑠𝑛) ∈ Z𝑛 , the 𝒔-degree of p is defined as

rdeg𝒔 (p) = max

1≤𝑖≤𝑛
(𝑠𝑖 + deg(𝑝𝑖)).

Note that this is equal to rdeg (px𝒔), where x𝒔 is the diagonal matrix

with diagonal entries 𝑥𝑠1 , . . . , 𝑥𝑠𝑛 .

For a matrix P ∈ K[𝑥]𝑚×𝑛 and a shift 𝒔 ∈ Z𝑛 , the row degree

rdeg (P) of P is the list of the degrees of its rows, and similarly the

𝒔-row degree rdeg𝒔 (P) is the list of the 𝒔-degrees of its rows. Then,
the 𝒔-leading matrix lm𝒔 (P) of P is the matrix in K𝑚×𝑛 formed by

the coefficients of degree zero of x−𝒕 Px𝒔 , where 𝒕 = rdeg𝒔 (P). By
convention, a zero row in P yields a zero row in lm𝒔 (P).

2.4 Pivot and rank profiles
If the row vector p is nonzero, the 𝒔-pivot index of p is the largest

index 𝜋 such that deg(𝑝𝜋) + 𝑠𝜋 = rdeg𝒔 (p). In this case 𝑝𝜋 and

deg(𝑝𝜋) are the 𝒔-pivot entry and the 𝒔-pivot degree of p. Note that
𝜋 is also the index of the rightmost nonzero entry in lm𝒔 (p).

The pair (𝝅 , 𝜹) = (𝜋𝑖 , 𝛿𝑖)1≤𝑖≤𝑚 where 𝝅 = (𝜋𝑖)1≤𝑖≤𝑚 and 𝜹 =

(𝛿𝑖)1≤𝑖≤𝑚 are the 𝒔-pivot index and degree for each row of the

matrix P, is called the 𝒔-pivot profile of P. Observe that rdeg𝒔 (P) is
equal to (𝛿𝑖 + 𝑠𝜋𝑖)1≤𝑖≤𝑚 .

The (column) rank profile of P is the lexicographically minimal

list of integers 𝐽 = (𝑗1, . . . , 𝑗𝑟) such that P∗,𝐽 has rank 𝑟 = rank(F).
In what follows, rank profile always means column rank profile;

otherwise, we will write explicitly row rank profile.

A matrix H = [ℎ𝑖, 𝑗] ∈ K[𝑥]𝑟×𝑛 with 𝑟 ≤ 𝑛 is in Hermite normal

form [11, 21, 28] if there are indices 1 ≤ 𝑗1 < · · · < 𝑗𝑟 ≤ 𝑛 such that

(i) for 1 ≤ 𝑖 ≤ 𝑟 , ℎ𝑖, 𝑗𝑖 ≠ 0 is monic and ℎ𝑖, 𝑗 = 0 for 1 ≤ 𝑗 < 𝑗𝑖 ;

(ii) for 1 ≤ 𝑘 < 𝑖 ≤ 𝑟 , deg(ℎ𝑘,𝑗𝑖) < deg(ℎ𝑖, 𝑗𝑖).
In this case, (𝑗1, . . . , 𝑗𝑟) is the rank profile of H.

The Hermite normal form of P ∈ K[𝑥]𝑚×𝑛 is its unique row basis

H ∈ K[𝑥]𝑟×𝑛 , with 𝑟 = rank(P), which is in Hermite normal form.

Then, the rank profile of P is equal to that of H, since UP = [H0]
for some unimodular matrix U ∈ K[𝑥]𝑚×𝑚 .

2.5 Reduced forms, predictable degree
With the above definitions, P is said to be 𝒔-row reduced if lm𝒔 (P)
has full row rank. A core feature of these matrices is the predictable

degree property, which says that there cannot be any cancellation

of high-degree terms of the matrix via K[𝑥]-linear combinations of

the rows (see [7, 18] for the case 𝒔 = 0; [3, Lem. 3.6] for any 𝒔; and
[23, Thm. 1.11] for a proof of the equivalence in the next lemma).

Lemma 2.1 (Predictable degree). Let P ∈ K[𝑥]𝑚×𝑛 have no

zero row, let 𝒔 ∈ Z𝑛 and 𝒕 = rdeg𝒔 (P). Then, P is in 𝒔-reduced form if

and only if rdeg𝒔 (QP) = rdeg𝒕 (Q) for all Q ∈ K[𝑥]𝑘×𝑚 .

Corollary 2.2. Let P ∈ K[𝑥]𝑚×𝑛 and let 𝒔 ∈ Z𝑛 be such that P
is 𝒔-reduced. Let 𝒕 = rdeg𝒔 (P). Then, lm𝒔 (QP) = lm𝒕 (Q)lm𝒔 (P) for
any Q ∈ K[𝑥]𝑘×𝑚 .

Proof. Let 𝒅 = rdeg𝒕 (Q) ∈ Z𝑘 . By the predictable degree prop-

erty, 𝒅 = rdeg𝒔 (QP). The conclusion then follows from the identity

x−𝒅 QPx𝒔 = (x−𝒅 Qx𝒕) (x−𝒕 Px𝒔). □

As a consequence, shifted reduced forms are preserved by multi-

plication, provided the shifts are appropriately chosen. This result

is at the core of divide and conquer algorithms for bases of relation

modules [2, 9] and kernel bases [39, Thm. 3.9].

Lemma 2.3. Let P ∈ K[𝑥]𝑚×𝑛 and 𝒔 ∈ Z𝑛 such that P is in 𝒔-
reduced form. Let 𝒕 = rdeg𝒔 (P) ∈ Z𝑚 , and let Q ∈ K[𝑥]𝑘×𝑚 be in

𝒕-reduced form. Then, QP is in 𝒔-reduced form.

Proof. The assumptions imply that both lm𝒕 (Q) and lm𝒔 (P)
have full row rank. Thus their product has full row rank as well,

and according to Corollary 2.2 this product is lm𝒔 (QP). □

2.6 Weak Popov forms, predictable pivot
A matrix P = [𝑝𝑖, 𝑗] ∈ K[𝑥]𝑟×𝑛 with no zero row is 𝒔-Popov if

(i) its 𝒔-pivot index (𝜋1, . . . , 𝜋𝑟) is strictly increasing;

(ii) for 1 ≤ 𝑖 ≤ 𝑟 , 𝑝𝑖,𝜋𝑖 is monic;

(iii) for each 𝑘, 𝑖 ∈ {1, . . . , 𝑟 } with 𝑘 ≠ 𝑖 , deg(𝑝𝑘,𝜋𝑖) < deg(𝑝𝑖,𝜋𝑖).
If P only satisfies the first condition, it is said to be 𝒔-weak Popov.
Any 𝒔-weak Popov matrix is 𝒔-reduced. Furthermore, each matrix

has a unique row basis in 𝒔-Popov form.

We remark that, for weak Popov forms, it is sometimes only

required (see e.g. [22]) that the pivot indices be pairwise distinct,

instead of increasing. Then, the forms with the added requirement

of increasing indices were called ordered weak Popov forms. Here,

we will only manipulate ordered weak Popov forms, and therefore

we call them weak Popov forms for ease of presentation.

The shifted weak Popov form satisfies the following refinement

of the predictable degree property and is also compatible with

multiplication under well-chosen shifts (see [4, Sec. 5] for related

considerations and [25, Lem. 2.6] for a proof of the next lemmas).

Lemma 2.4 (Predictable pivot). Let P ∈ K[𝑥]𝑚×𝑛 have no zero

row, let 𝒔 ∈ Z𝑛 and 𝒕 = rdeg𝒔 (P), and let (𝜋𝑖 , 𝛿𝑖)1≤𝑖≤𝑚 be the 𝒔-pivot
profile of P. If P is in 𝒔-weak Popov form, then the 𝒔-pivot profile of
QP is (𝜋 𝑗𝑖 , 𝛿 𝑗𝑖 + 𝑑𝑖)1≤𝑖≤𝑘 for all Q ∈ K[𝑥]𝑘×𝑚 , where (𝑗𝑖 , 𝑑𝑖)1≤𝑖≤𝑘
is the 𝒕-pivot profile of Q.

Lemma 2.5. Let P ∈ K[𝑥]𝑚×𝑛 and 𝒔 ∈ Z𝑛 such that P is in 𝒔-weak
Popov form. Let 𝒕 = rdeg𝒔 (P) ∈ Z𝑚 , and let Q ∈ K[𝑥]𝑘×𝑚 be in

𝒕-weak Popov form. Then, QP is in 𝒔-weak Popov form.

Proof. By assumption, the 𝒔-pivot index (𝜋𝑖)1≤𝑖≤𝑚 of P and

the 𝒕-pivot index (𝑗𝑖)1≤𝑖≤𝑘 of Q are both strictly increasing. Then,

by Lemma 2.4, the 𝒔-pivot index of QP is the subtuple (𝜋 𝑗𝑖)1≤𝑖≤𝑘 ,
which is strictly increasing. HenceQP is in 𝒔-weak Popov form. □

Note however that a similar product of shifted Popov forms does

not yield a shifted Popov form, but only a shifted weak Popov form.

2.7 Example
We will use the following as a running example in this paper.

Example 2.6. Working over K = F2, let F ∈ K[𝑥]5×5 be given by
𝑥2 𝑥3 + 1 𝑥8 + 𝑥6 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 𝑥4 + 1 𝑥3 + 1
0 𝑥4 + 1 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 𝑥 + 1 𝑥2 + 1
0 𝑥2 + 1 𝑥 + 1 0 1

0 0 𝑥8 + 1 𝑥4 + 1 0

0 0 𝑥4 + 1 1 0


Then the matrix[

0 1 𝑥2 + 1 0 𝑥 + 1
0 1 𝑥2 + 1 1 𝑥4 + 𝑥

]
∈ K[𝑥]2×5

is a weak Popov basis of K(F) (which is not in Popov form). It has

pivot index 𝝅 = (3, 5) and pivot degree 𝜹 = (2, 4). Here is now an

𝒔-weak Popov basis ofK(F) for the shift 𝒔 = rdeg (F) = (8, 5, 2, 8, 4):

K =

[
0 𝑥3 𝑥5 + 𝑥3 1 𝑥3 + 1
0 1 𝑥2 + 1 0 𝑥 + 1

]
∈ K[𝑥]2×5 .

Its 𝒔-pivot index is (4, 5) and its 𝒔-pivot degree is (0, 1). □

The above kernel bases were computed using the SageMath

software, as described in Fig. 1 on Page 9.

3 RANK AND DEGREE PROPERTIES
RELATED TO KERNEL BASES

In this section we discuss rank and degree properties related to ker-

nel bases and which are central for the correctness and complexity

of the algorithms in Sections 4 and 5.

Lemma 3.1. Let F ∈ K[𝑥]𝑚×𝑛 have rank 𝑟 . For any V ∈ K[𝑥]𝑛×𝑘
such that FV has rank 𝑟 , we have K(F) = K(FV). As a corollary, if
𝐽 ⊆ {1, . . . , 𝑛} is such that F∗,𝐽 has rank 𝑟 , then K(F) = K(F∗,𝐽).

Proof. The second statement follows from the first one, by build-

ing V from the columns of the identity matrix I𝑛 with index in 𝐽 .

Concerning the first statement, the rank assumption implies

that the left kernels K(F) and K(FV) have the same rank𝑚 − 𝑟 .
Let K1 ∈ K[𝑥] (𝑚−𝑟)×𝑚 and K2 ∈ K[𝑥] (𝑚−𝑟)×𝑚 be bases of K(F)
and K(FV), respectively. It is clear that K(F) ⊆ K(FV), hence
K1 = UK2 for some nonsingular U ∈ K[𝑥] (𝑚−𝑟)×(𝑚−𝑟) . The fact
that kernel bases have unimodular column bases [38] ensures that

U is unimodular, and thus K(F) = K(FV). □

Lemma 3.2. If F ∈ K[𝑥]𝑚×𝑛 and G ∈ K[𝑥]ℓ×𝑛 are two matrices

which have the same right kernel, then F andG have the same column

rank profile. As a corollary, if 𝐼 ⊆ {1, . . . ,𝑚} is such that F𝐼 ,∗ has the
same rank as F, then F𝐼 ,∗ has the same rank profile as F.

Proof. The second statement follows from the first: applying

Lemma 3.1 to FT and (F𝐼 ,∗)T = (FT)∗,𝐼 shows that these matrices

have the same left kernel, i.e. F and F𝐼 ,∗ have the same right kernel.

Let 𝐽1 and 𝐽2 be the rank profiles of F and G, respectively. Let
𝑗 ∈ {1, . . . , 𝑛} be such that 𝑗 ∉ 𝐽1, meaning that there exists a vector

u = [𝑢1 · · ·𝑢 𝑗]T ∈ K[𝑥] 𝑗×1 such that 𝑢 𝑗 ≠ 0 and F∗,1.. 𝑗 u = 0.

Since the right kernel of F is contained in that of G, it follows that
G∗,1.. 𝑗u = 0, and therefore 𝑗 ∉ 𝐽2. We have proved 𝐽2 ⊆ 𝐽1, and the

same arguments prove 𝐽1 ⊆ 𝐽2, by symmetry. Hence 𝐽2 = 𝐽1. □

Theorem 3.3. Let F ∈ K[𝑥]𝑚×𝑛 have rank 𝑟 , let 𝒔 ∈ Z𝑚 , and let

K ∈ K[𝑥] (𝑚−𝑟)×𝑚 be an 𝒔-weak Popov basis of K(F). Let (𝝅 , 𝜹) be
the 𝒔-pivot profile of K, and let 𝝅𝑐 = {1, . . . ,𝑚} \ 𝝅 be the indices of

the columns of K which do not contain an 𝒔-pivot entry of K. Assume

also that F factors as F = SR where R ∈ K[𝑥]𝑟×𝑛 and S ∈ K[𝑥]𝑚×𝑟 .
Then,

(i) F𝝅𝑐 ,∗ ∈ K[𝑥]𝑟×𝑛 has rank 𝑟 , which is the size of 𝝅𝑐 ;
(ii) S𝝅𝑐 ,∗ ∈ K[𝑥]𝑟×𝑟 is nonsingular and |𝜹 | ≤ deg(det(S𝝅𝑐 ,∗)),

hence in particular |𝜹 | ≤ |rdeg (F𝝅𝑐 ,∗) | ≤ 𝑟 deg(F);
(iii) if 𝒔 ≥ rdeg (F), then |rdeg𝒔 (K) | ≤ |𝒔 |.

Concerning the matrices R and S, note that they have rank 𝑟 ,

since otherwise we would have rank(F) = rank(SR) < 𝑟 . Taking a

row basis of F for R proves the existence of such matrices.

Item (i) states that, from any shifted weak Popov basis of the left

kernel of F, we can immediately deduce a set of 𝑟 = rank(F) rows of
Fwhich areK[𝑥]-linearly independent. Item (iii) is the main degree

property that was exploited in the design of the fastest known

minimal kernel basis algorithm [39] (see [39, Thm. 3.4]), explaining

also why this algorithm restricts to shifts such that 𝒔 ≥ rdeg (F).
Here we prove it as a consequence of the property in Item (ii), which

gives more precise degree information in particular through better

accounting for the rank of F.
We now prove Theorem 3.3.

Proof. For Item (i) it suffices to prove that K(F𝝅𝑐 ,∗) = {0}. Let
v ∈ K[𝑥]1×𝑟 be such that vF𝝅𝑐 ,∗ = 0. Constructw ∈ K[𝑥]1×𝑚 such

that w∗,𝝅 = 0 and w∗,𝝅𝑐 = v. The vector w is in K(F), so w = uK
for some u ∈ K[𝑥]1×(𝑚−𝑟) , and hence 0 = w∗,𝝅 = uK∗,𝝅 . Thus
u = 0 since K∗,𝝅 is nonsingular, implying v = w∗,𝝅𝑐 = uK∗,𝝅𝑐 = 0.

To prove Item (ii) set

S1 = S𝝅𝑐 ,∗ ∈ K[𝑥]𝑟×𝑟 and S2 = S𝝅 ,∗ ∈ K[𝑥] (𝑚−𝑟)×𝑟

as well as

K1 = K∗,𝝅𝑐 ∈ K[𝑥] (𝑚−𝑟)×𝑟 and K2 = K∗,𝝅 ∈ K[𝑥] (𝑚−𝑟)×(𝑚−𝑟) .

Then S1 is nonsingular since F𝝅𝑐 ,∗ = S1R has rank 𝑟 . We are going

to prove that K2 is an 𝒔𝝅 -weak Popov basis of RS1 (S2), where 𝒔𝝅 ∈
Z𝑚−𝑟 is the subshift of 𝒔 formed by its entries with index in 𝝅 . From
this, [27, Cor. 2.4] ensures that deg(det(K2)) = |𝜹 | ≤ deg(det(S1)).

Since F = SR, with R full row rank, we have K(F) = K(S) and
so K is an 𝒔-weak Popov basis of K(S). From KS = 0 we obtain

K1S1 + K2S2 = 0 and so the rows of K2 are in RS1 (S2). It remains

to show that any p ∈ RS1 (S2) is a K[𝑥]-linear combination of the

rows of K2. By definition of RS1 (S2), there exists q ∈ K[𝑥]1×𝑟 such
that pS2 = qS1. Considering v ∈ K[𝑥]1×𝑚 such that v∗,𝝅 = p and

v∗,𝝅𝑐 = −q, we have vS = v∗,𝝅𝑐 S1 + v∗,𝝅S2 = −qS1 + pS2 = 0, that
is, v ∈ K(S). Thus, v = uK for some u ∈ K[𝑥]1×(𝑚−𝑟) , and we

obtain p = v∗,𝝅 = uK∗,𝝅 = uK2.

Let F1 = F𝝅𝑐 ,∗ ∈ K[𝑥]𝑟×𝑛 and 𝒕 = rdeg (F1) ∈ Z𝑟 . In order

to prove the last two bounds on |𝜹 |, observe that |𝒕 | ≤ 𝑟 deg(F)
is clear since F1 consists of 𝑟 rows of F. It remains to show that

deg(det(S1)) ≤ |𝒕 |. Let U ∈ K[𝑥]𝑛×𝑟 be such that F1U is the

−𝒕-column Popov form of F1. Since cdeg−𝒕 (F1) ≤ 0, the min-

imality of the shifted column degrees of shifted reduced forms

[35, Sec. 2.7] implies cdeg−𝒕 (F1U) ≤ 0 as well. According to [37,

Lem. 2.2], this translates as rdeg (F1U) ≤ 𝒕 , and so |rdeg (F1U) | ≤ |𝒕 |.
Since F1U is −𝒕-column Popov, it is also row reduced, and there-

fore |rdeg (F1U) | = deg(det(F1U)) [18, Sec. 6.3.2]. It follows that
deg(det(F1U)) ≤ |𝒕 | and, using F1 = S1R, we obtain

deg(det(S1)) + deg(det(RU)) = deg(det(S1RU)) ≤ |𝒕 |.

To prove Item (iii), recall that rdeg𝒔 (K) = (𝛿𝑖 + 𝑠𝜋𝑖)1≤𝑖≤𝑚−𝑟 ,
and therefore |rdeg𝒔 (K) | = |𝜹 | + |𝒔𝝅 |. From Item (ii) we get that

|rdeg𝒔 (K) | ≤ |rdeg (F𝝅𝑐 ,∗) | + |𝒔𝝅 |, and from the assumption 𝒔 ≥
rdeg (F) we conclude that |rdeg𝒔 (K) | ≤ |𝒔𝝅𝑐 | + |𝒔𝝅 | = |𝒔 |. □

Example 3.4. Following on from Example 2.6, consider the ma-

trices F and K and the shift 𝒔 = rdeg (F) = (8, 5, 2, 8, 4). Since the
𝒔-pivot index of K is 𝝅 = (4, 5), the indices of the columns of K
which do not contain an 𝒔-pivot entry are 𝝅𝑐 = (1, 2, 3).

Regarding Item (i), from the above 𝒔-pivot information we get

that the rank of F is 3 and the rows (1, 2, 3) of F are K[𝑥]-linearly
independent. The other kernel basis considered in Example 2.6

shows that the rows (1, 2, 4) are also K[𝑥]-linearly independent.

Regarding Item (ii), observe that the row degree of F𝝅𝑐 ,∗ is
(8, 5, 2), so |rdeg𝒔 (F𝝅𝑐 ,∗) | = 15. From Example 2.6, the 𝒔-pivot de-
gree of K is 𝜹 = (8, 7), so |𝜹 | = 15. Furthermore here 𝑟 deg(F) =
3 · 8 = 24. Thus, here we have |𝜹 | = |rdeg (F𝝅𝑐 ,∗) | ≤ 𝑟 deg(F).

Finally, regarding Item (iii), |rdeg𝒔 (K) | = | (8, 5) | = 13, which is

bounded from above by |𝒔 | = 27. □

4 COMPUTING THE RANK PROFILE AND A
KERNEL BASIS

In this section we give an improved version of the minimal kernel

basis algorithm in [39]. In addition to the new algorithm we also

include a proof of correctness and determine its complexity.

4.1 Algorithm
Our improvements of the algorithm, compared to the versions in

in [39] [35, Sec. 11], is summarized as follows:

(i) Besides a kernel basis, the algorithm also finds the column

rank profile of F, without additional operations, based on the

approach in [35, Sec. 11.1].

(ii) The output kernel basis K is in 𝒔-weak Popov form instead

of 𝒔-reduced form. This has the advantage of revealing the

𝒔-pivot profile, which can be used for example to further

transform K into 𝒔-Popov form [25, Sec. 5]. Thanks to Item (i)

of Theorem 3.3, this also reveals a set of rank(F) rows of
F that are K[𝑥]-linearly independent, a property that we

exploit in Algorithm 2.

(iii) The algorithm supports any input matrix F, without assump-

tion on its rank or dimensions. In comparison, the assump-

tion𝑚 ≥ 𝑛 is made in the complexity analysis in [35, 39],

which implicitly requires that the input F have full column

rank (indeed, if F is rank-deficient, the algorithm in these

references cannot guarantee that the assumption𝑚 ≥ 𝑛 is

satisfied in recursive calls).

(iv) The algorithm may use any relation basis (Lines 17 to 19),

instead of restricting to approximant bases. As early experi-

ments have showed [12, Sec. 4.2], this can lead to speed-ups

at least by constant factors, for example by relying on well-

chosen interpolation bases. Still, as seen in Theorem 4.1

and Section 4.3, for one specific point of the complexity anal-

ysis we restrict to relation bases modulo a diagonal matrix.

Theorem 4.1. Let F ∈ K[𝑥]𝑚×𝑛 have rank 𝑟 , and let 𝒔 ∈ Z𝑚≥0 such
that 𝒔 ≥ rdeg (F). The call KernelBasis-RankProfile(F, 𝒔) returns
an 𝒔-weak Popov basis K ∈ K[𝑥] (𝑚−𝑟)×𝑚 of K(F) and the column

rank profile (𝑗1, . . . , 𝑗𝑟) ∈ Z𝑟>0 of F. Assuming that𝑚 ∈ 𝑂 (𝑛) and
that one chooses a matrix M at Line 18 which is diagonal with all

entries of degree 𝜏 , this algorithm uses 𝑂˜(𝑚𝜔−2 (𝑚 + 𝑛) (𝑚 + 𝐷))
operations in K, where 𝐷 = |𝒔 |.

Example 4.2. Let F ∈ F2 [𝑥]5×5 be the matrix from Example 2.6,

and consider the shift 𝒔 = rdeg (F) = (8, 5, 2, 8, 4). At the top level

of the recursion, Algorithm 1 first finds the kernel basis of the 5× 2
submatrix F1 = F∗,1..2, via a recursive call. With 5 ≥ 2 · 2, this call
runs Lines 7 to 13, with 𝜏 = ⌈ 2·27

3
⌉ = 18. This eventually yields

K1 =


0 1 𝑥2 + 1 0 0

0 0 0 1 0

0 0 0 0 1

 and rank profile 𝐽1 = (1, 2).

In this case, using an approximant basis of F1 at order 𝜏 yields the
three above rows of the kernel, and two additional rows (this can be

observed by running the code in Fig. 1 on Page 9). On this specific

example it is easily observed that rank(F1) = 2, so one may infer

that K1 and 𝐽1 are directly deduced from A, without running the

recursive call at Line 27.

Algorithm 1 KernelBasis-RankProfile(F, 𝒔)
Input: a matrix F ∈ K[𝑥]𝑚×𝑛 , a shift 𝒔 ∈ Z𝑚≥0
Requirement: 𝒔 ≥ rdeg (F) entrywise
Output: an 𝒔-ordered weak Popov basis K ∈ K[𝑥] (𝑚−𝑟)×𝑚 of

K(F) and the column rank profile (𝑗1, . . . , 𝑗𝑟) ∈ Z𝑟>0 of F
1: if F = 0 then ⊲ kernel of zero is identity

2: return I𝑚 ∈ K[𝑥]𝑚×𝑚 , () ∈ Z0
>0

3: if 𝑚 = 1 then ⊲ kernel of nonzero 1 × 𝑛 matrix is empty

4: 𝑗 ∈ {1, . . . , 𝑛} ← index of first nonzero entry in F
5: return [] ∈ K[𝑥]0×1, (𝑗) ∈ Z1

>0

6: if 𝑚 < 2𝑛 then ⊲ “wide” matrix: divide and conquer on columns

7: F1 ∈ K[𝑥]𝑚×⌊𝑛/2⌋ ← F∗,{1,..., ⌊𝑛/2⌋ }
8: K1 ∈ K[𝑥]ℓ1×𝑚, 𝐽1 ∈ Z𝑟1>0 ←

KernelBasis-RankProfile(F1, 𝒔)
9: F2 ∈ K[𝑥]ℓ1×⌈𝑛/2⌉ ← K1 · F∗,{ ⌊𝑛/2⌋+1,...,𝑛}
10: K2 ∈ K[𝑥]ℓ2×ℓ1 , 𝐽2 ∈ Z𝑟2>0 ←

KernelBasis-RankProfile(F2, rdeg𝒔 (K1))
11: ⊲ note: 𝑟1 = rank(F1) , 𝑟2 = rank(F2) , ℓ1 =𝑚 − 𝑟1, and ℓ2 = ℓ1 − 𝑟2
12: 𝐽2 ∈ Z𝑟2>0 ← shift 𝐽2 by adding ⌊𝑛/2⌋ to all entries

13: return K2 · K1, (𝐽1, 𝐽2) ∈ Z𝑟1+𝑟2>0

14: ⊲ from here we are in the case F ≠ 0,𝑚 ≥ 2, and 𝑛 ≤ 𝑚
2

15: ⊲ minimize shift while preserving 𝒔 ≥ rdeg (F)
16: 𝜇 ← min(𝒔 − rdeg (F)); 𝒔 ← 𝒔 − (𝜇, . . . , 𝜇); 𝜏 ←

⌈
2 |𝒔 |
𝑚−𝑛

⌉
17: ⊲ choose type of relations and compute relation basis

18: M ∈ K[𝑥]𝑛×𝑛 ← choose any matrix in Hermite normal form

with min(cdeg (M)) ≥ 𝜏 ⊲ for exampleM = diag(𝑥𝜏 , . . . , 𝑥𝜏)
19: A← 𝒔-weak Popov basis of RM (F)
20: ⊲ compute residual and indices 𝐼 of rows already in kernel

21: 𝐼 ← {𝑖 ∈ {1, . . . ,𝑚} | rdeg𝒔 (A𝑖,∗) < 𝜏} ⊲ rows in kernel

22: 𝐼𝑐 ← {1, . . . ,𝑚} \ 𝐼 ⊲ rows expected not to be in kernel

23: G← A𝐼𝑐 ,∗ FM−1 ⊲ if M = diag(𝑥𝜏 , . . . , 𝑥𝜏) , this is 𝑥−𝜏A𝐼𝑐 ,∗ F
24: if G has zero rows, update (𝐼 , 𝐼𝑐 ,G) accordingly
25: ⊲ compute kernel of residual recursively and merge results

26: 𝒕 ← rdeg𝒔 (A𝐼𝑐 ,∗) − (𝛾, . . . , 𝛾) where 𝛾 = min(cdeg (M))
27: K2, 𝐽 ← KernelBasis-RankProfile(G, 𝒕)
28: K← matrix formed by both the rows of K2 ·A𝐼𝑐 ,∗ and those of

A𝐼 ,∗, sorted by increasing 𝒔-pivot index
29: return K, 𝐽

Multiplying K1 by the last three columns of F gives

F2 =

𝑥5 + 𝑥4 + 𝑥 + 1 𝑥 + 1 0

𝑥8 + 1 𝑥4 + 1 0

𝑥4 + 1 1 0

 ∈ K[𝑥]3×3 .
Since this matrix has𝑚 < 2𝑛, we then recurse along the first column

of F2, with shift rdeg𝒔 (K1) = (5, 8, 4). This gives a (5, 8, 4)-weak
Popov basis of the kernel of that column, as

K′
1
=

[
𝑥3 1 𝑥3 + 1
1 0 𝑥 + 1

]
∈ K[𝑥]2×3 .

This also provides the rank profile (1) of that column.

Multiplying K′
1
by the last two columns of F2 gives a zero matrix,

with the identity as the kernel basis. Hence K2 = K′
1
is the sought

(5, 8, 4)-weak Popov basis of K(F2), and the rank profile of F2 is

𝐽2 = (1). Then the latter is shifted to 𝐽2 = (1+ ⌊5/2⌋) = (3), to keep
track of the position of the column block F2 in the input F.

Concatenating 𝐽1 and 𝐽2 yields the rank profile (1, 2, 3) of F, and
the product K2K1 is the kernel basis K given in Example 2.6. □

4.2 Proof of correctness
In this subsection, we prove the correctness of Algorithm 1.

Cases F = 0 or𝑚 = 1. The correctness of Lines 1 to 5 is clear.

Case 2𝑛 > 𝑚. Here the algorithm runs Lines 7 to 13 and returns.

We assume correctness for the recursive calls at Lines 8 and 10.

From 𝒔 ≥ rdeg (F), we get rdeg𝒔 (K1) ≥ rdeg (K1F) ≥ rdeg (F2) and
the requirement of the call at Line 10 is satisfied. Lemma 2.5 implies

that the matrix K2K1 is in 𝒔-weak Popov form. Furthermore,

K2K1F = K2K1 [F1 F∗,{ ⌊𝑛/2⌋+1,...,𝑛}] = K2 [0 F2] = 0.

To prove that K2K1 generates the kernelK(F), we let p ∈ K(F) and
prove that p = uK2K1 for some u ∈ K[𝑥]1×ℓ2 . Since p is in K(F1),
and K1 is a basis of the latter kernel, we have that p = vK1 for some

v ∈ K[𝑥]1×ℓ1 . By construction of F2, pF = [0 vF2]. Then pF = 0
implies v ∈ K(F2) and, since K2 is a basis of the latter kernel, we

have v = uK2 for some u ∈ K[𝑥]1×ℓ2 . This yields p = uK2K1. Thus

K2K1 is an 𝒔-weak Popov basis of K(F).
In order to prove that (𝐽1, 𝐽2) is the rank profile of F, the main

observation is that since K1 has full row rank, it can be completed

into a nonsingular matrix U = [∗K1
] ∈ K[𝑥]𝑚×𝑚 . Then,

UF =

[
V ∗

0 F2

]
for some V ∈ K[𝑥]𝑟1×⌊𝑛/2⌋ .

V has the same rank profile as [V0] and, since U is nonsingular,

UF1 = [V0] has the same rank profile as F1, which is 𝐽1. In particular,
V has full row rank, and then the triangular form of UF implies that

its rank profile is the concatenation of 𝐽1 and of 𝐽2, the latter being

the rank profile of F2 shifted by adding ⌊𝑛/2⌋ to all entries. Since
UF and F have the same rank profile, F has rank profile (𝐽1, 𝐽2).

Case 𝑛 ≤ 𝑚/2. The algorithm runs Lines 15 to 29 and returns.

The basis A of RM (F) at Line 19 is such that AF = QM for some

Q ∈ K[𝑥]𝑚×𝑛 . Since both A and M are nonsingular, with M being

upper triangular, implies thatQ = AFM−1 has the same rank profile

as F. By the construction at Lines 20 to 24, we see that there is an

𝑚 ×𝑚 permutation matrix P such that

PQ = PAFM−1 =
[
A𝐼𝑐 ,∗FM−1

A𝐼 ,∗FM−1

]
=

[
G
0

]
.

Thus G has the same rank profile as PQ, and hence the same rank

profile as F. Thus, to conclude the proof for the rank profile, it

suffices to verify that the recursive call at Line 27 computes the rank

profile of G, which is true provided that 𝒕 satisfies the requirements

𝒕 ≥ 0 and 𝒕 ≥ rdeg (G). We prove this in the next paragraph.

Observe that the shift built at Line 16 satisfies 𝒔 ≥ rdeg (F). This
implies rdeg𝒔 (A𝐼𝑐 ,∗) ≥ rdeg (A𝐼𝑐 ,∗F) and, defining 𝒅 = cdeg (M),

𝒕 ≥ rdeg (A𝐼𝑐 ,∗F) − (𝛾, . . . , 𝛾) = rdeg (GM) − (𝛾, . . . , 𝛾)
= rdeg(−𝛾,...,−𝛾) (GM) ≥ rdeg−𝒅 (GM),

where the last inequality comes from (𝛾, . . . , 𝛾) ≤ 𝒅. Now the fact

that M is in Hermite form ensures that it is in −𝒅-reduced form

with rdeg−𝒅 (M) = 0, so that the predictable degree property yields

rdeg−𝒅 (GM) = rdeg (G). Thus 𝒕 ≥ rdeg (G), and 𝒕 ≥ 0 follows

since G has no zero row by construction.

This also ensures that K2 is a 𝒕-weak Popov basis of K(G) =
K(A𝐼𝑐 ,∗F). Lemmas 2.4 and 2.5 then imply that K2A𝐼𝑐 ,∗ is 𝒔-weak
Popov, with 𝒔-pivot index a subset of that of A𝐼𝑐 ,∗. Since the latter
is disjoint from the 𝒔-pivot index of A𝐼 ,∗ and since K2A𝐼𝑐 ,∗ and A𝐼 ,∗
are both 𝒔-weak Popov, it follows that K is 𝒔-weak Popov. Since 𝒔
and 𝒔 only differ by a constant, K is 𝒔-weak Popov.

By construction, A𝐼 ,∗F = 0 and 0 = K2G = K2A𝐼𝑐 ,∗F, and so

KF = 0. It remains to prove that any p ∈ K(F) is a K[𝑥]-linear
combination of the rows of K. Since p is in RM (F), we get p = qA =

q𝐼A𝐼 ,∗ + q𝑐𝐼A𝐼𝑐 ,∗ for some q ∈ K[𝑥]1×𝑚 and its subvectors q𝐼 and
q𝑐
𝐼
with indices in 𝐼 and 𝐼𝑐 , respectively. Then,

0 = pF = q𝐼A𝐼 ,∗F + q𝑐𝐼A𝐼𝑐 ,∗F = q𝑐𝐼A𝐼𝑐 ,∗F,

which gives q𝑐
𝐼
∈ K(A𝐼𝑐 ,∗F) = K(GM) = K(G). Therefore q𝑐𝐼 =

rK2 for some vector r, and we get p = q𝐼A𝐼 ,∗ + rK2A𝐼𝑐 ,∗.
Remark: As one can see above, M is required to be in Hermite

normal form only for ensuring that the rank profile is not modified

when right-multiplying byM. Hence, if one is only interested in a

kernel basis, any column reduced matrixM will do.

4.3 Proof of complexity
The efficiency is based on three main ingredients. First, a fast al-

gorithm for computing an 𝒔-weak Popov basis of RM (F). Second,
the fast multiplication of matrices which have unbalanced, but

controlled, shifted row degrees. Third, the next lemma, which is

a generalization and variant of [39, Thm. 3.6]: it states that the re-

lation basis at Line 19 yields a substantial amount of kernel rows,

effectively reducing the number of rows that remain to be found.

Lemma 4.3. Let F ∈ K[𝑥]𝑚×𝑛 have rank 𝑟 , and let 𝒔 ∈ Z𝑚≥0 such
that 𝒔 ≥ rdeg (F). Let K ∈ K[𝑥] (𝑚−𝑟)×𝑚 be an 𝒔-reduced basis of

K(F). For any 𝑘 > 0, at most ⌊𝑘⌋ rows of K have 𝒔-degree more than

or equal to 𝜏 = ⌈|𝒔 |/𝑘⌉. Then, let M ∈ K[𝑥]𝑛×𝑛 be column reduced

with min(cdeg (M)) ≥ 𝜏 . For any 𝒔-reduced basis A ∈ K[𝑥]𝑚×𝑚 of

RM (F), at most 𝑟 + ⌊𝑘⌋ rows of A are not in K(F).

Proof. If 𝜌 is the number of rows of K whose 𝒔-degree is ≥ 𝜏 ,

then |rdeg𝒔 (K) | ≥ 𝜌𝜏 . Thus, from the bound |rdeg𝒔 (K) | ≤ |𝒔 | ≤ 𝑘𝜏

(see Item (iii) of Theorem 3.3), we get 𝜌 ≤ 𝑘 . It follows that there

are 𝜎 =𝑚 − 𝑟 − 𝜌 ≥ 𝑚 − 𝑟 − 𝑘 rows of K whose 𝒔-degree is < 𝜏 .

We claim that, as a consequence, there are at least 𝜎 rows of A
which are in K(F). First, since all rows of K are also in RM (F), by
minimality of the 𝒔-degree ofA, there are at least 𝜎 rows ofAwhich

have 𝒔-degree < 𝜏 . The claim then follows from the fact that any

p ∈ RM (F) such that rdeg𝒔 (p) < 𝜏 is in K(F). Indeed, pF = qM
for some q ∈ K[𝑥]1×𝑛 . On the one hand, rdeg (pF) ≤ rdeg𝒔 (p) < 𝜏 ,

since 𝒔 ≥ rdeg (F). On the other hand, M is column reduced with

𝒅 = cdeg (M), and thus it is also −𝒅-reduced with rdeg−𝒅 (M) = 0.
Hence, assuming pF ≠ 0 is nonzero (and therefore q ≠ 0), and using
𝜏 ≤ min(𝒅) as well as the predictable degree property, we obtain

𝜏 > rdeg (pF) = rdeg (qM) = 𝜏 + rdeg(−𝜏,...,−𝜏) (qM)
≥ 𝜏 + rdeg−𝒅 (qM) = 𝜏 + rdeg (q) ≥ 𝜏 .

This is a contradiction, hence pF = 0, i.e. p ∈ K(F).
In conclusion, A has at most𝑚−𝜎 ≤ 𝑟 +𝑘 rows not inK(F). □

Note that if we take 𝑘 ≤ 𝑚−𝑟
2

, then this number is 𝑟 + 𝑘 ≤ 𝑚+𝑟
2

.

For example, if 𝑛 < 𝑚 and no information on 𝑟 is known, one can

take 𝑘 = 𝑚−𝑛
2

, and then 𝑟 + 𝑘 = 𝑚+𝑛
2

. This is the choice made in

Algorithm 1, which leads to 𝜏 = ⌈2|𝒔 |/(𝑚 − 𝑛)⌉. Furthermore, since

2𝑛 ≤ 𝑚 in that algorithm, we obtain 𝑟 + 𝑘 = 𝑚+𝑛
2
≤ 3𝑚

4
.

Corollary 4.4. At Line 23 of Algorithm 1, the matrix G has at

most
3𝑚
4

rows.

This lemma ensures that, when the algorithm enters Lines 15

to 29, then the number of rows becomes at most 3𝑚/4 in the recur-

sive call (and the number of columns is unchanged). On the other

hand, when the algorithm enters Lines 7 to 13, then the number of

columns becomes at most ⌈𝑛/2⌉ in each of the two recursive calls

(and the number of rows remains bounded from above by𝑚).

Note that we have proved in Section 4.2 that in each recursive

call, the input shift is an upper bound on the row degrees of the

input matrix. Now, we observe further that each of these shifts has

a sum of entries at most |𝒔 |. This is clear at Line 8 which uses the

input shift 𝒔, and at Line 10 since the shift satisfies |rdeg𝒔 (K1) | ≤ |𝒔 |
according to Item (iii) of Theorem 3.3. Now, at Lines 26 and 27, the

shift 𝒕 has entries at most those of the subtuple 𝒔𝐼𝑐 , since

rdeg𝒔 (A) − (𝛾, . . . , 𝛾) = 𝒔 + 𝜹 − (𝛾 + 𝜇, . . . , 𝛾 + 𝜇)
where 𝜹 is the 𝒔-pivot degree of A, with 𝜹 ≤ (𝛾, . . . , 𝛾) under our
assumption cdeg (M) = (𝛾, . . . , 𝛾).

Recall the notation 𝐷 = |𝒔 |, and note that𝑚⌈𝐷/𝑚⌉ = Θ(𝑚 + 𝐷).
Based on [39, Thm. 3.7], one can verify that the matrix products

at Lines 9, 13, 23 and 28, use 𝑂˜(𝑚𝜔−2 (𝑚 + 𝑛) (𝑚 + 𝐷)) operations
in K. Note that the right-multiplication by M−1 at Line 23 is only a

matter of univariate polynomial exact division: the matrix A𝐼𝑐 ,∗ F
is known to be a left multiple ofM by construction, and the latter

matrix is diagonal by assumption.

It remains to observe that the computation of A at Line 19 costs

𝑂˜(𝑚𝜔−1𝑛𝜏) operations in K, since M is diagonal [24, Thm. 1.4].

Since we are in the case 𝑛 ≤ 𝑚/2, we have𝑚 − 𝑛 ≥ 𝑚/2 and thus

𝜏 =

⌈
2|𝒔 |

𝑚 − 𝑛

⌉
∈ 𝑂

(
1 + 𝐷

𝑚 − 𝑛

)
⊆ 𝑂

(
1 + 𝐷

𝑚

)
.

Hence the above cost for computing A is in 𝑂˜(𝑚𝜔−2𝑛(𝑚 + 𝐷)).
We conclude that all computations apart from recursive calls use

a total of 𝑂˜(𝑚𝜔−2 (𝑚 + 𝑛) (𝑚 + 𝐷)) operations in K, leading to the

cost bound announced in Theorem 4.1.

5 FINDING THE COLUMN RANK PROFILE
AND LINEARLY INDEPENDENT ROWS

Let F be a polynomial matrix of rank 𝑟 . This section presents a

rank-sensitive algorithm to find both the rank profile of F and a set

of 𝑟 rows of F which are K[𝑥]-linearly independent. In particular,

this information locates an 𝑟 × 𝑟 nonsingular submatrix of F.

5.1 Algorithm
The idea is to maintain a subset 𝑈 of the top rows of F, which
are known to have full rank, and to incorporate new rows from

the bottom part of F. Precisely, 𝑈 locates 𝑘 rows with index in

(1, . . . , 𝜃 − 1), and the next step finds a set of rows of maximal rank

in the matrixG formed by joining these 𝑘 rows F𝑈 ,∗ with the 𝑘 rows

with indices (𝜃, . . . , 𝜃 +𝑘 − 1) of F (or only up to𝑚 if 𝜃 +𝑘 − 1 ≥ 𝑚).

Algorithm 2 ColumnRankProfile(F, 𝜃,𝑈)
Input: a matrix F ∈ K[𝑥]𝑚×𝑛 , an integer 𝜃 ∈ {1, . . . ,𝑚 + 1}, a list

𝑈 ⊆ {1, . . . , 𝜃 − 1} of size 𝑘 ≥ 0

Requirement: 𝑘 = 0 or rank(F𝑈 ,∗) = rank(F
1..𝜃−1,∗) = 𝑘

Output: lists 𝐼 ⊆ {1, . . . ,𝑚} and 𝐽 ⊆ {1, . . . , 𝑛}, both of size 𝑟 =

rank(F), such that F𝐼 ,𝐽 ∈ K[𝑥]𝑟×𝑟 is nonsingular and 𝐽 is the

rank profile of F
1: if 𝑘 = 𝑛 then return𝑈 , (1, . . . , 𝑛)
2: if 𝑘 = 0 then
3: 𝑖 ← index of the first nonzero row of F
4: return ColumnRankProfile(F, 𝑖 + 1, (𝑖))
5: ⊲ 𝑘 > 0 independent rows are known among the rows 1, . . . , 𝜃 − 1
6: ℓ ← min(𝑘,𝑚 − 𝜃 + 1) ⊲ now incorporate rows 𝜃, . . . , 𝜃 + ℓ − 1
7: 𝑉 ← 𝑈 ∪ (𝜃, 𝜃 + 1, . . . , 𝜃 + ℓ − 1)
8: G← F𝑉 ,∗ ∈ K[𝑥] (𝑘+ℓ)×𝑛 ; 𝒔 ← rdeg (G)
9: K, 𝐽 ← KernelBasis-RankProfile(G, 𝒔)
10: (𝝅 , 𝜹) ← 𝒔-pivot profile of K; 𝝅𝑐 ← {1, . . . , 𝑘 + ℓ} \ 𝝅
11: 𝑈 ′ ← ∅
12: for 𝑖 ∈ 𝝅𝑐 do
13: if 𝑖 ≤ 𝑘 then add the 𝑖th element of𝑈 to𝑈 ′

14: else add 𝜃 + 𝑖 − 𝑘 − 1 to𝑈 ′
15: 𝜃 ′ ← 𝜃 + ℓ
16: if 𝜃 ′ > 𝑚 then return𝑈 ′, 𝐽
17: return ColumnRankProfile(F, 𝜃 ′,𝑈 ′)

Finding a set of rows of maximal rank of G is done efficiently

via Algorithm 1 and the property in Item (i) of Theorem 3.3, which

locates independent rows from the 𝒔-pivot index of the kernel basis.
Since the call to Algorithm 1 also provides the column rank profile of

G, we eventually obtain 𝐼 and 𝐽 identifying a nonsingular submatrix

of F of size 𝑟 × 𝑟 , with 𝐽 the rank profile of F𝐼 ,∗. By Lemma 3.2, the

latter is also the rank profile of F.
Starting with 𝑘 = 1 and𝑈 locating the first nonzero row of F, this

leads to a rank-sensitive algorithm, which at any stage considers a

submatrix of F with 𝑛 columns and at most 2𝑘 ≤ 2𝑟 rows.

Theorem 5.1. Let F ∈ K[𝑥]𝑚×𝑛 have rank 𝑟 . Assume that rdeg (F)
is nondecreasing, and that (𝜃,𝑈) satisfies the input requirements.

Then ColumnRankProfile(F, 𝜃,𝑈) uses 𝑂˜(𝑟𝜔−2𝑛(𝑚 + 𝐷)) opera-
tions in K, where 𝐷 is the sum of the nonnegative entries of rdeg (F).
It returns lists 𝐼 ⊆ {1, . . . ,𝑚} and 𝐽 ⊆ {1, . . . , 𝑛}, both of size 𝑟 , such

that F𝐼 ,𝐽 ∈ K[𝑥]𝑟×𝑟 is nonsingular and 𝐽 is the rank profile of F.

Before proving the theorem we note that, if nothing particular

is known about F a priori, one can call this algorithm with 𝜃 = 1

and 𝑘 = 0 (meaning𝑈 = ∅). One can also permute the rows of F to

ensure that its row degrees are nondecreasing.

Corollary 5.2. Given F ∈ K[𝑥]𝑚×𝑛 , one can locate an 𝑟 × 𝑟

nonsingular submatrix F𝐼 ,𝐽 of F using 𝑂˜(𝑟𝜔−2𝑛(𝑚 + 𝐷)) operations
in K, where 𝑟 is the rank of F, 𝐽 is the column rank profile of F𝐼 ,∗, and
𝐷 is the sum of the degrees of the nonzero rows of F.

5.2 Proof of correctness
If 𝑘 = 𝑛, the requirement rank(F𝑈 ,∗) = 𝑛 implies that the 𝑛 × 𝑛
matrix F𝑈 ,1..𝑛 is nonsingular, proving the correctness of Line 1.

If 𝑘 = 0, then the correctness Lines 2 to 4 follows from the fact

the input requirements are satisfied for 𝜃 = 𝑖 + 1 and𝑈 = (𝑖).

The integer ℓ at Line 6 is such that 0 ≤ ℓ ≤ 𝑘 and 𝜃 + ℓ − 1 ≤ 𝑚.

Then, at Line 7, the list𝑉 contains 𝑘+ℓ distinct indices, with the first
𝑘 in𝑈 and the others in {𝜃, . . . ,𝑚}. As a result, the matrixG = F𝑉 ,∗
at Line 8 has rank between 𝑘 and 𝑘 + ℓ . By Item (i) of Theorem 3.3,

the list 𝝅𝑐 computed at Lines 9 and 10 identifies rank(G) rows of
G which are K[𝑥]-linearly independent.

These rows provide a set of rows of F which have maximal

rank among its first 𝜃 + ℓ − 1 rows. The role of Lines 11 to 14 is

simply to link the row indices in G, as they appear in 𝝅𝑐 , to the

corresponding row indices in F. This therefore provides𝑈 ′ such that
𝑈 ′ ⊆ {1, . . . , 𝜃+ℓ−1}, whose size 𝑘 ′ is between 𝑘 and 𝑘+ℓ , and such
that F𝑈 ′,∗ has full row rank with rank(F𝑈 ′,∗) = rank(F

1..𝜃+ℓ−1,∗).
Then Line 15 updates 𝜃 to 𝜃 ′, to reflect that we have now covered

all rows with indices in {1, . . . , 𝜃 + ℓ − 1}, and that we can proceed

with the remaining rows starting at index 𝜃 ′ = 𝜃 + ℓ .
In the case where 𝜃 ′ = 𝜃 +ℓ > 𝑚 (Line 16), all rows of F have been

processed and the algorithm can return𝑈 ′ and 𝐽 . The correctness

concerning 𝑈 ′ has been discussed above, and the fact that 𝐽 is the

rank profile of F𝑈 ′,∗ follows from Theorem 4.1.

Otherwise, if 𝜃 ′ ≤ 𝑚, we proceed with the remaining bottom

part of F recursively (Line 17). The properties of𝑈 ′ described above
show that the input requirement are satisfied in this recursive call.

Thus, for correctness, it only remains to observe the algorithm

terminates since all recursive calls involve a strictly larger set 𝑈

(whose size is bounded by the rank 𝑟 of F), or a strictly larger index

𝜃 (which is bounded by𝑚 + 1).
Remark: the independent rows of F found via the 𝒔-pivot profile

of K do not necessarily contain the 𝑘 independent rows that were

already identified by 𝑈 ; in other words, 𝑈 is not necessarily con-

tained in 𝑈 ′. Having 𝑈 ⊆ 𝑈 ′ would have guaranteed that 𝐼 is the

row rank profile of F, yet the straightforward modification of this

algorithm that would ensure𝑈 ⊆ 𝑈 ′ involves a different choice of
shift 𝒔 which would make Line 9 too costly.

5.3 Proof of complexity
The only costly operation performed in Algorithm 2, apart from

recursive calls, is the computation of the kernel basis and rank

profile of the matrix G, via Algorithm 1 at Line 9. The main task for

the complexity analysis is therefore to analyze how the dimensions

and row degrees of G evolve during the run of the algorithm.

Fix some input (F, 𝜃,𝑈), and assume the cardinality 𝑘 of 𝑈 is

nonzero; otherwise, we are brought to this situation by Line 4 after

at most 𝑚𝑛 zero tests performed by Line 3. For this input, let 𝜌

be the number of recursive steps before arriving at a base case

(either Line 1 or Line 16). Let (𝜃0,𝑈0) = (𝜃,𝑈) be the original input
and (𝜃1,𝑈1), . . . , (𝜃𝜌 ,𝑈𝜌) be the input of the successive recursive
calls when running the algorithm on (F, 𝜃,𝑈). Let also 𝑘𝑖 be the

cardinality of 𝑈𝑖 for 1 ≤ 𝑖 ≤ 𝜌 . Observe that 𝜃0 < 𝜃1 < · · · < 𝜃𝜌
and 𝑘0 ≤ 𝑘1 ≤ · · · ≤ 𝑘𝜌 , but recall from the remark in Section 5.2

that𝑈𝑖 is not necessarily a subset of𝑈𝑖+1.
Let ℓ𝑖 = min(𝑘𝑖 ,𝑚 − 𝜃𝑖 + 1) as in Line 6, and G𝑖 be the matrix

built at Line 8, which has 𝑘𝑖 + ℓ𝑖 rows. By Theorem 4.1, Line 9 costs

𝑂̃

(
(𝑘𝑖 + ℓ𝑖)𝜔−2 (𝑘𝑖 + ℓ𝑖 + 𝑛) (𝑘𝑖 + ℓ𝑖 + 𝐷𝑖)

)
,

where 𝐷𝑖 = |rdeg (G𝑖) |. Now, since 𝑘𝑖 = rank(F𝑈𝑖 ,∗) ≤ 𝑟 ≤ 𝑛 and

𝑘𝑖 +ℓ𝑖 ≤ 2𝑘𝑖 , the above cost bound is within𝑂˜(𝑟𝜔−2𝑛(𝑘𝑖 +𝐷𝑖)). The

rest of this section shows that

∑
0≤𝑖≤𝜌 𝑘𝑖 +𝐷𝑖 is in𝑂 (𝑚 +𝐷 log(𝑟)),

which proves the complexity bound 𝑂˜(𝑟𝜔−2𝑛(𝑚 + 𝐷)).
Due to Line 15, 𝜃𝑖+1 = 𝜃𝑖 + ℓ𝑖 for 0 ≤ 𝑖 < 𝜌 . Observe that ℓ𝑖 = 𝑘𝑖

for 𝑖 < 𝜌 ; otherwise ℓ𝑖 =𝑚−𝜃𝑖 + 1 and 𝜃𝑖+1 = 𝜃𝑖 + ℓ𝑖 =𝑚 + 1, hence
the algorithm would stop at Line 16 before the 𝜌-th recursive call. It

follows that 𝜃𝑖 = 𝜃0 +
∑
0≤ 𝑗<𝑖 𝑘 𝑗 for 0 ≤ 𝑖 ≤ 𝜌 . Line 16 ensures that

𝜃𝜌 ≤ 𝑚 in the last recursive call, hence 𝑘0+· · ·+𝑘𝜌−1 = 𝜃𝜌 −𝜃0 ≤ 𝑚.

We finally deduce 𝑘0 + · · · + 𝑘𝜌 ≤ 𝑚 + 𝑘𝜌 ≤ 𝑚 + 𝑟 ≤ 2𝑚.

It remains to prove𝐷0+· · ·+𝐷𝜌 ∈ 𝑂 (𝐷 log(𝑟)). By construction,
G𝑖 consists of 𝑘𝑖+ℓ𝑖 rows among the first {1, . . . , 𝜃𝑖+ℓ𝑖−1} rows of F.
Consequently, since rdeg (F) is nondecreasing, 𝐷𝑖 ≤ |rdeg (F𝑆𝑖 ,∗) |
where 𝑆𝑖 = {𝜃𝑖 − 𝑘𝑖 , 𝜃𝑖 − 𝑘𝑖 + 1, . . . , 𝜃𝑖 + ℓ𝑖 − 1}. We claim that a

given row 𝑗 ∈ {1, . . . ,𝑚} of F may appear in at most ⌊log
2
(𝑟)⌋ + 2

sets among 𝑆0, . . . , 𝑆𝜌 , that is, #{0 ≤ 𝑖 ≤ 𝜌 | 𝑗 ∈ 𝑆𝑖 } ≤ ⌊log2 (𝑟)⌋ + 2.
Below we prove this claim, which concludes the proof since then∑

0≤𝑖≤𝜌
𝐷𝑖 ≤

∑
0≤𝑖≤𝜌

|rdeg (F𝑆𝑖 ,∗) | =
∑

0≤𝑖≤𝜌

∑
𝑗 ∈𝑆𝑖

rdeg (F𝑗,∗)

=
∑

1≤ 𝑗≤𝑚

∑
0≤𝑖≤𝜌
𝑗 ∈𝑆𝑖

rdeg (F𝑗,∗) ≤ 𝐷 (⌊log
2
(𝑟)⌋ + 2).

Since (min(𝑆𝑖))𝑖 and (max(𝑆𝑖))𝑖 are nondecreasing, having 𝑗 ∈
𝑆𝑖1 ∩ 𝑆𝑖2 for some 𝑖1 < 𝑖2 implies 𝑗 ∈ 𝑆𝑖 for all 𝑖1 ≤ 𝑖 ≤ 𝑖2. So we

consider 𝑗 ∈ 𝑆𝑖 , . . . , 𝑆𝑖+𝑐−1 for some 𝑐 > 0 and 0 ≤ 𝑖 ≤ 𝜌 − 𝑐 + 1.
The fact that 𝑗 ∈ 𝑆𝑖 implies 𝑗 ≤ 𝜃𝑖 + ℓ𝑖 −1 = 𝜃𝑖+1−1. On the other

hand, 𝑗 ∈ 𝑆𝑖+𝛾 for 0 ≤ 𝛾 ≤ 𝑐 − 1 implies 𝑗 ≥ 𝜃𝑖+𝛾 −𝑘𝑖+𝛾 . We deduce

𝑘𝑖+𝛾 ≥ 𝜃𝑖+𝛾 − 𝜃𝑖+1 + 1 = 𝑘𝑖+𝛾−1 + · · · +𝑘𝑖+2 +𝑘𝑖+1 + 1. Starting from
𝑘𝑖+1 ≥ 1, using this inequality iteratively for 𝛾 = 2, . . . , 𝑐 − 1 shows
that 𝑘𝑖+𝑐−1 ≥ 2

𝑐−2
. Since 𝑘𝑖+𝑐−1 ≤ 𝑟 , we get 𝑐 ≤ ⌊log

2
(𝑟)⌋ + 2.

6 TOPICS FOR FURTHER RESEARCH
Our algorithm can find the rank profile with a rank-sensitive cost.

However the same cannot be said for such computations as kernel

basis, column basis, and approximant/order bases; or for computing

normal forms such as Hermite or Popov. We would like to make

progress on filling this gap thanks to the new results in this paper.

In addition, we are interested in applying our work in situations (in-

cluding those mentioned in the introduction) where rank-sensitive

algorithms would allow one to tackle significantly larger problems.

Another feature of our algorithms is that the complexity depends

on the average row degree of the input matrix. However, they do not

handle unbalanced column degrees, where the matrix might have

average row degree close to the global degree but average column

degree quite smaller. We would like to improve the cost towards the

minimum of the average of both row and column degrees, or even

on a notion of generic determinant bound [10, Sec. 6] generalized

to rectangular matrices. We believe that partial linearization [30,

Sec. 3] [10, Sec. 6] may lead to such an improvement.

Finally, while it has been popular in recent times to give 𝑂˜(·)
complexities which hide log terms, there remains a strong interest

in the more precise 𝑂 (·) measure. In fact this is often the first

audience question asked when an algorithm is presented with𝑂˜(·)
complexity. We would like to determine the logarithmic terms for

the algorithms presented in this paper. Although technical, this

seems feasible since the logarithmic factors in the complexity of the

core tools are now well understood, specifically approximant bases

[9, 16, 36] and multiplication with unbalanced degrees [15, 39].

Figure 1: SageMath code for Examples 2.6, 3.4 and 4.2. This code is written using SageMath (version 9.3 or later required) and illustrates

many of the points in the three listed examples: running this code will show the matrices and some additional information. This code can also be

easily adapted to make related experiments.

For a detailed documentation of functionalities for univariate polynomial matrices, including
the minimal_kernel_basis and minimal_approximant_basis methods used below, see
https://doc.sagemath.org/html/en/reference/matrices/sage/matrix/matrix_polynomial_dense.html
(the code below requires SageMath >=9.3; some other functionalities require SageMath 9.4 or 9.5)

pR.<x> = GF(2)[]
F = Matrix(pR, 5, 5, \

[[x^2,x^3+1,x^8+x^6+x^4+x^3+x^2+x,x^4+1,x^3+1], \
[0,x^4+1,x^5+x^4+x^3+x^2,x+1,x^2+1], \
[0,x^2+1,x+1,0,1], \
[0,0,x^8+1,x^4+1,0], \
[0,0,x^4+1,1,0]])

print(f"Input matrix F:\n{F}\n")

K0 = F.minimal_kernel_basis()
print(f"Minimal kernel basis with shift s=0\n{K0}")
piv = [pi+1 for pi in K0.leading_positions()]
print(f"Its pivot indices are {piv}\n")

s = F.row_degrees()
K = F.minimal_kernel_basis(shifts=s)
print(f"Minimal kernel basis K with shift s=rdeg(F)\n{K}")
piv_s = [pi+1 for pi in K.leading_positions(shifts=s)]
print(f"Its s-pivot indices are {piv_s}\n")

F1 = F[:,:2] ; tau = 18
A = F1.minimal_approximant_basis(tau,shifts=s)
print(f"Approximant basis of first 2 columns at order {tau}:\n{A}")
set I at Line 14 of Algorithm 1:
I = [i for i in range(5) if A[i,:].row_degrees(shifts=s)[0] < tau]
--> gives 3 indices I == [1,3,4] so we have the whole kernel basis
since here we do know rank(F[:,:2]) = 2 hence kernel rank 5-2==3
print(f"--> indices of rows in kernel: {[i+1 for i in I]}\n")
K1 = A[I,:]; t = K1.row_degrees(shifts=s)

F2 = K1 * F[:,2:]
print(f"Residual matrix F2 for second call:\n{F2}")
K2 = F2[:,0].minimal_kernel_basis(shifts=t)

print(f"Kernel basis K1' of first column of F2:\n{K2}\n")

print(f"Test K1' * F2 == 0 --> {K2*F2 == 0}, so in fact K2 = K1'")

print(f"Verify K2*K1 is the above s-weak Popov matrix K --> {K2*K1 == K}")

REFERENCES
[1] B. Beckermann. 1992. A reliable method for computing M-Padé approximants

on arbitrary staircases. J. Comput. Appl. Math. 40, 1 (1992), 19–42. https://doi.

org/10.1016/0377-0427(92)90039-Z

[2] B. Beckermann and G. Labahn. 1994. A Uniform Approach for the Fast Computa-

tion of Matrix-Type Padé Approximants. SIAM J. Matrix Anal. Appl. 15, 3 (July

1994), 804–823. https://doi.org/10.1137/S0895479892230031

[3] B. Beckermann, G. Labahn, and G. Villard. 1999. Shifted Normal Forms of Poly-

nomial Matrices. In Proceedings ISSAC 1999. ACM, 189–196. https://doi.org/10.

1145/309831.309929

[4] B. Beckermann, G. Labahn, and G. Villard. 2006. Normal forms for general

polynomial matrices. J. Symbolic Comput. 41, 6 (2006), 708–737. https://doi.org/

10.1016/j.jsc.2006.02.001

https://doi.org/10.1016/0377-0427(92)90039-Z
https://doi.org/10.1016/0377-0427(92)90039-Z
https://doi.org/10.1137/S0895479892230031
https://doi.org/10.1145/309831.309929
https://doi.org/10.1145/309831.309929
https://doi.org/10.1016/j.jsc.2006.02.001
https://doi.org/10.1016/j.jsc.2006.02.001

[5] H. Y. Cheung, T. C. Kwok, and L. C. Lau. 2013. Fast Matrix Rank Algorithms and

Applications. J. ACM 60, 5, Article 31 (2013). https://doi.org/10.1145/2528404

[6] J.-G. Dumas, C. Pernet, and Z. Sultan. 2017. Fast computation of the rank profile

matrix and the generalized Bruhat decomposition. J. Symbolic Comput. 83 (2017),

187–210. https://doi.org/10.1016/j.jsc.2016.11.011

[7] G. D. Forney, Jr. 1975. Minimal Bases of Rational Vector Spaces, with Applications

to Multivariable Linear Systems. SIAM Journal on Control 13, 3 (1975), 493–520.

https://doi.org/10.1137/0313029

[8] K. O. Geddes, S. R. Czapor, and G. Labahn. 1992. Algorithms for computer algebra.

Kluwer, Boston.

[9] P. Giorgi, C.-P. Jeannerod, and G. Villard. 2003. On the complexity of polynomial

matrix computations. In Proceedings ISSAC 2003. ACM, 135–142. https://doi.org/

10.1145/860854.860889

[10] S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. 2012. Triangular 𝑥-basis

decompositions and derandomization of linear algebra algorithms over 𝐾 [𝑥]. J.
Symbolic Comput. 47, 4 (2012), 422–453. https://doi.org/10.1016/j.jsc.2011.09.006

[11] C. Hermite. 1851. Sur l’introduction des variables continues dans la théorie des

nombres. Journal für die reine und angewandte Mathematik 41 (1851), 191–216.

https://doi.org/10.1515/crll.1851.41.191

[12] S. G. Hyun, V. Neiger, and É. Schost. 2019. Implementations of efficient uni-

variate polynomialmatrix algorithms and application to bivariate resultants. In

Proceedings ISSAC 2019. ACM, 235–242.

[13] S. G. Hyun, V. Neiger, and É. Schost. 2021. Algorithms for Linearly Recurrent

Sequences of Truncated Polynomials. In Proceedings ISSAC 2021. ACM, 201–208.

https://doi.org/10.1145/3452143.3465533

[14] C.-P. Jeannerod. 2006. LSP matrix decomposition revisited. Research report

2006-28. Inria – LIP – Ens de Lyon. http://www.ens-lyon.fr/LIP/Pub/Rapports/

RR/RR2006/RR2006-28.pdf

[15] C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. 2017. Computing minimal

interpolation bases. J. Symbolic Comput. 83 (2017), 272–314. https://doi.org/10.

1016/j.jsc.2016.11.015

[16] C.-P. Jeannerod, V. Neiger, and G. Villard. 2020. Fast computation of approximant

bases in canonical form. J. Symbolic Comput. 98 (2020), 192–224. https://doi.org/

10.1016/j.jsc.2019.07.011

[17] C.-P. Jeannerod, C. Pernet, and A. Storjohann. 2013. Rank-profile revealing

Gaussian elimination and the CUP matrix decomposition. J. Symbolic Comput.

56 (2013), 46–68. https://doi.org/10.1016/j.jsc.2013.04.004

[18] T. Kailath. 1980. Linear Systems. Prentice-Hall.

[19] G. Labahn, V. Neiger, and W. Zhou. 2017. Fast, deterministic computation of the

Hermite normal form and determinant of a polynomial matrix. J. Complexity

42C (2017), 44–71.

[20] D. Lucas, V. Neiger, C. Pernet, D. S. Roche, and J. Rosenkilde. 2021. Verification

protocols with sub-linear communication for polynomial matrix operations. J.

Symbolic Comput. 105 (2021), 165–198. https://doi.org/10.1016/j.jsc.2020.06.006

[21] C. C. MacDuffee. 1933. The Theory of Matrices. Springer-Verlag Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-99234-6

[22] T. Mulders and A. Storjohann. 2003. On lattice reduction for polynomial matrices.

J. Symbolic Comput. 35, 4 (2003), 377–401. https://doi.org/10.1016/S0747-7171(02)

00139-6

[23] V. Neiger. 2016. Bases of relations in one or several variables: fast algorithms and

applications. Ph. D. Dissertation. École Normale Supérieure de Lyon. https:

//tel.archives-ouvertes.fr/tel-01431413

[24] V. Neiger. 2016. Fast computation of shifted Popov forms of polynomial matrices

via systems of modular polynomial equations. In Proceedings ISSAC 2016. ACM,

365–372. https://doi.org/10.1145/2930889.2930936

[25] V. Neiger and C. Pernet. 2021. Deterministic computation of the characteristic

polynomial in the time of matrix multiplication. J. Complexity 67 (2021), 101572.

https://doi.org/10.1016/j.jco.2021.101572

[26] V. Neiger, J. Rosenkilde, and G. Solomatov. 2018. Computing Popov and Hermite

Forms of Rectangular Polynomial Matrices. In Proceedings ISSAC 2018. ACM,

295–302. https://doi.org/10.1145/3208976.3208988

[27] V. Neiger and T. X. Vu. 2017. Computing canonical bases of modules of univariate

relations. In Proceedings ISSAC 2017. ACM, 357–364. https://doi.org/10.1145/

3087604.3087656

[28] M. Newman. 1972. Integral Matrices. Academic Press.

[29] A. Storjohann. 2000. Algorithms for Matrix Canonical Forms. Ph. D. Dissertation.

Swiss Federal Institute of Technology – ETH.

[30] A. Storjohann. 2006. Notes on computing minimal approximant bases. In

Challenges in Symbolic Computation Software (Dagstuhl Seminar Proceedings).

http://drops.dagstuhl.de/opus/volltexte/2006/776

[31] A. Storjohann and T. Mulders. 1998. Fast Algorithms for Linear AlgebraModulo N.

In Proceedings Algorithms — ESA’ 98. Springer, 139–150. https://doi.org/10.1007/3-

540-68530-8_12

[32] A. Storjohann and G. Villard. 2005. Computing the Rank and a Small Nullspace

Basis of a Polynomial Matrix. In Proceedings ISSAC 2005. ACM, 309–316. https:

//doi.org/10.1145/1073884.1073927

[33] A. Storjohann and S. Yang. 2015. A RelaxedAlgorithm for OnlineMatrix Inversion.

In Proceedings ISSAC 2015. ACM, 339–346. https://doi.org/10.1145/2755996.

2756672

[34] M. Van Barel and A. Bultheel. 1992. A general module theoretic framework for

vector M-Padé and matrix rational interpolation. Numer. Algorithms 3 (1992),

451–462. https://doi.org/10.1007/BF02141952

[35] W. Zhou. 2012. Fast Order Basis and Kernel Basis Computation and Related Problems.

Ph. D. Dissertation. University of Waterloo.

[36] W. Zhou and G. Labahn. 2012. Efficient Algorithms for Order Basis Computation.

J. Symbolic Comput. 47, 7 (2012), 793–819. https://doi.org/10.1016/j.jsc.2011.12.

009

[37] W. Zhou and G. Labahn. 2013. Computing Column Bases of Polynomial Matri-

ces. In Proceedings ISSAC 2013. ACM, 379–386. https://doi.org/10.1145/2465506.

2465947

[38] W. Zhou and G. Labahn. 2014. Unimodular Completion of Polynomial Matrices. In

Proceedings ISSAC 2014. ACM, 413–420. https://doi.org/10.1145/2608628.2608640

[39] W. Zhou, G. Labahn, and A. Storjohann. 2012. Computing Minimal Nullspace

Bases. In Proceedings ISSAC 2012. ACM, 366–373. https://doi.org/10.1145/2442829.

2442881

https://doi.org/10.1145/2528404
https://doi.org/10.1016/j.jsc.2016.11.011
https://doi.org/10.1137/0313029
https://doi.org/10.1145/860854.860889
https://doi.org/10.1145/860854.860889
https://doi.org/10.1016/j.jsc.2011.09.006
https://doi.org/10.1515/crll.1851.41.191
https://doi.org/10.1145/3452143.3465533
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2006/RR2006-28.pdf
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2006/RR2006-28.pdf
https://doi.org/10.1016/j.jsc.2016.11.015
https://doi.org/10.1016/j.jsc.2016.11.015
https://doi.org/10.1016/j.jsc.2019.07.011
https://doi.org/10.1016/j.jsc.2019.07.011
https://doi.org/10.1016/j.jsc.2013.04.004
https://doi.org/10.1016/j.jsc.2020.06.006
https://doi.org/10.1007/978-3-642-99234-6
https://doi.org/10.1016/S0747-7171(02)00139-6
https://doi.org/10.1016/S0747-7171(02)00139-6
https://tel.archives-ouvertes.fr/tel-01431413
https://tel.archives-ouvertes.fr/tel-01431413
https://doi.org/10.1145/2930889.2930936
https://doi.org/10.1016/j.jco.2021.101572
https://doi.org/10.1145/3208976.3208988
https://doi.org/10.1145/3087604.3087656
https://doi.org/10.1145/3087604.3087656
http://drops.dagstuhl.de/opus/volltexte/2006/776
https://doi.org/10.1007/3-540-68530-8_12
https://doi.org/10.1007/3-540-68530-8_12
https://doi.org/10.1145/1073884.1073927
https://doi.org/10.1145/1073884.1073927
https://doi.org/10.1145/2755996.2756672
https://doi.org/10.1145/2755996.2756672
https://doi.org/10.1007/BF02141952
https://doi.org/10.1016/j.jsc.2011.12.009
https://doi.org/10.1016/j.jsc.2011.12.009
https://doi.org/10.1145/2465506.2465947
https://doi.org/10.1145/2465506.2465947
https://doi.org/10.1145/2608628.2608640
https://doi.org/10.1145/2442829.2442881
https://doi.org/10.1145/2442829.2442881

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Kernel, row space, modules of relations
	2.3 Shifted degrees, leading matrix
	2.4 Pivot and rank profiles
	2.5 Reduced forms, predictable degree
	2.6 Weak Popov forms, predictable pivot
	2.7 Example

	3 Rank and degree properties related to kernel bases
	4 Computing the rank profile and a kernel basis
	4.1 Algorithm
	4.2 Proof of correctness
	4.3 Proof of complexity

	5 Finding the column rank profile and linearly independent rows
	5.1 Algorithm
	5.2 Proof of correctness
	5.3 Proof of complexity

	6 Topics for further research
	References

