
Deterministic Reduction of Integer Nonsingular Linear System
Solving to Matrix Multiplication

Stavros Birmpilis

Cheriton School of Computer Science

University of Waterloo

sbirmpil@uwaterloo.ca

George Labahn

Cheriton School of Computer Science

University of Waterloo

glabahn@uwaterloo.ca

Arne Storjohann

Cheriton School of Computer Science

University of Waterloo

astorjoh@uwaterloo.ca

ABSTRACT
We present a deterministic reduction to matrix multiplication for

the problem of linear system solving: given as input a nonsingular

A ∈ Zn×n and b ∈ Zn×1
, computeA−1b. We give an algorithm that

computes the minimal integer e such that all denominators of the

entries in 2
eA−1

are relatively prime to 2. Then, for a b that has

entries with bitlength O(n) times as large as the bitlength of en-

tries inA, we give an algorithm to produce the 2-adic expansion of

2
eA−1b up to a precision high enough such that A−1b over Q can

be recovered using rational number reconstruction. Both e and the
2-adic expansion can be computed in O(MM(n, logn + log | |A| |) ×
(logn)(logn+loglog | |A| |)) bit operations. Here, | |A| | = maxi j |Ai j |

andMM(n,d) is the cost to multiply together, modulo 2
d
, two n×n

integer matrices. Our approach is based on the previously known

reductions of linear system solving to matrix multiplication which

use randomization to find an integer lifting modulus X that is rel-

atively prime to detA. Here, we derandomize by first computing a

permutation P , a unit upper triangular M , and a diagonal S with

det S a power of two, and such that U := APMS−1
is an integer

matrix with 2 ⊥ detU . This allows our modulus X to be chosen a

power of 2.

ACM Reference Format:
Stavros Birmpilis, George Labahn, and Arne Storjohann. 2019. Determin-

istic Reduction of Integer Nonsingular Linear System Solving to Matrix

Multiplication. In 2019 Int’l Symposium on Symbolic & Algebraic Computa-
tion (ISSAC’19), July 15–18, 2019, Beijing, China. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
Let A ∈ Zn×n be nonsingular. We are interested in the determin-

istic reduction to matrix multiplication for the problem of ratio-

nal system solving, that is, computing A−1b ∈ Qn×1
for a given

b ∈ Zn×1
. Previously known algorithms [5, 6], which have a run-

ning time within the cost reported here, require randomization to

find an integer modulus X that is relatively prime to detA.
In this paper we give an algorithm that computes the minimal

integer e such that all denominators of the entries in 2
eA−1

are

relatively prime to 2. In this case, for an integer vector b having

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’19, July 15–18, 2019, Beijing, China
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6084-5/19/07. . . $15.00

https://doi.org/10.1145/XXXXXX.XXXXXX

entries with bitlength O(n) times as large as the bitlength of en-

tries in A, our algorithm also produces the 2-adic expansion of

2
eA−1b up to a precision high enough that A−1b over Q can be

recovered using rational number reconstruction. Both e and the

2-adic expansion can be computed in O(MM(n, logn + log | |A| |) ×
(logn)(logn+loglog | |A| |)) bit operations where | |A| | = maxi j |Ai j |

andMM(n,d) is the cost to multiply together, modulo 2
d
, two n×n

integer matrices. Our cost analysis makes the following regularity

assumptions on MM(n,d): super-quadricity in n (H2≤n
MM), super-

linearity in d (H1≤d
MM), and at most quadratic in d (Hd≤2

MM). Under

these assumptions, our cost analysis is valid for any MM that sat-

isfies MM(n,d) ∈ Ω(n2d) andMM(n,d) ∈ O(n3d2).

Our approach to derandomize integer linear solving is based on

ideas for polynomial matrices [3]. Corresponding toA there exists

a 2-decomposition: a tuple (P ,H) of matrices where P is a permu-

tation, H is a Hermite form with powers of 2 on the diagonal, and

the matrix U := APH−1
is nonsingular with odd determinant. For

example

AP[
27 99 92

32 116 −124

195 −121 −8

]
=

U[
27 18 −19

32 21 −37

195 −79 −127

] H[
1 1 12

4 4

16

]
. (1)

Unlike the case whenworkingwith polynomial entries, in the inte-

ger setting, we do not have good a priori bounds on the magnitude

of entries inU := APH−1
.

In this paper we introduce the notion of a 2-massager. This is
a tuple of matrices (P , S,M) such that P is a permutation, S is in

Smith form with powers of 2 on the diagonal, andM is unit upper

triangular with offdiagonal entries in each column of magnitude

strictly less than the corresponding diagonal entry of S . In addi-

tion, the matrixAPMS−1
is nonsingular with odd determinant and

satisfies | |APMS−1 | | ≤ n | |A| |. For example, for the matrix in (1) we

have

AP[
27 99 92

32 116 −124

195 −121 −8

] M[
1 3 5

1 15

1

] S−1[
1

1/4

1/16

]
=

APMS−1[
27 45 107

32 53 111

195 116 −53

]
.

The remainder of this paper is organised as follows. Cost esti-

mates for basic matrix operations are given in the next section.

Section 3 shows how to use a sparse inverse expansion [5] to com-

puteA−1b in the special case when 2 ⊥ detA. Section 4 shows how
the derandomization approach for polynomial matrices [3] can be

adapted to the integer case in order to compute a 2-decomposition

of A. Section 5 defines the 2-massager and present a duality be-

tween 2-massagers and 2-decompositions. This section also gives

an overview of our algorithm to compute a 2-massager. The sub-

routines to compute a 2-massager, along with a complexity analy-

sis, are given in Sections 6–10. Finally, Section 11 gives the deter-

ministic algorithm for linear system solving.

Cost model
We assume that integers are stored using their binary represen-

tation. Thus, for any power of two X , we can deduce the X -adic

representation of a positive integer without any computation. The

algorithms we propose in this paper are designed to not require

any radix conversions.

One of our goals is to design our algorithms so that they behave

well under a very general cost model. To this end we will give cost

estimates using a function

MM(n,d) : (R≥0,R≥0) → R≥0

that for any nonnegative integers n′ ≤ n and d ′ ≤ d bounds

the number of bit operations required to multiply modulo 2
d ′

two

square matrices over Z/(2d
′

) of dimension n′. Here, Z/(2d) :=

{0, 1, . . . , 2d − 1} is the ring of integers modulo 2
d
. A lower bound

isMM(n,d) ∈ Ω(n2d) and, using an obvious block decomposition,

we have MM(cn,d) ∈ O(MM(n,d)) for any positive constant c .
In this paper we assume that MM satisfies the following regu-

larity assumptions:

H1≤d
MM : kMM(n,d/k) ≤ MM(n,d) for all 1 ≤ k ≤ d

H2≤n
MM : k2 MM(n/k,d) ≤ MM(n,d) for all 1 ≤ k ≤ n

Hd≤2

MM : MM(n,kd) ≤ k2 MM(n,d) for all 1 ≤ k

The first two of these assumptions allow us to simplify the cost

estimates of algorithms that recurse on the precision d and dimen-

sion n, respectively. Many of the cost estimates derived in susbse-

quent sections are of the form MM(n,d) for a d that satisfies d ∈

O(log(n | |A| |)) where A is the input matrix to the overall problem.

The third assumption givesMM(n,d) ∈ O(MM(n, log(n | |A| |))).

2 PRELIMINARIES
For an integer a and precision d ∈ Z≥0 we denote by Rem(a, 2d)

and Quo(a, 2d) the unique integers such that a = Rem(a, 2d) +

Quo(a, 2d) 2
d
with Rem(a, 2d) ∈ Z/(2d).When the first argument

of Rem or Quo is a matrix, the intention is to apply the function

elementwise to the entries.

In order to compute the product of two matricesA and B over Z

(rather than modulo some power of 2) we can multiply Rem(A, 2d)

and Rem(B, 2d) over Z/(2d) for large enoughd and then reduce en-

tries in the result in the usual symmetric range {−2
d−1+1,−2

d−1+

2, . . . , 2d−1}.

Lemma 1. Let A,B ∈ Zn×n . Then the product AB ∈ Zn×n can be
computed in time O(MM(n,d)) for any d that satisfies n | |A| | | |B | | ≤
2
d−1 − 1.

In some of our algorithms we will need to compute AB for an

A ∈ Zn×n and a B ∈ Zn×m where the bitlength of entries in B
are approximately p times the bitlength of entries in A. The next
lemma shows how to do this efficiently if the dimension × preci-

sion compromisem × p ∈ O(n) holds.

Lemma 2. Let A ∈ Zn×n and X ∈ Z>0 be a power of 2 such that
logX ∈ O(log(n | |A| |)). If B ∈ Z/(Xp)n×m with mp ∈ O(n), then
Rem(AB,Xp) can be computed in time O(MM(n, log(n | |A| |))).

Proof. Let B have X -adic expansion B = B0 +B1X + · · · and set

B′ =
[
B0 B1 · · · Bp−1

]
∈ Zn×mp .

Let A(1) ∈ Zn×n
≥0

be the matrix obtained from A by replacing all

negative entries with zero, and let A(2) = A(1) − A ∈ Zn×n
≥0

. Then

A = A(1) − A(2)
where both A(1)

and A(2)
are over Z≥0. Let d be

minimal such that n | |A| |X ≤ 2
d−1 − 1. Then by Lemma 1 we can

compute the products

A(i)B′ =
[
A(i)B0 A(i)B1 · · · A(i)Bp−1

]
∈ Z

n×mp
≥0

for i = 1, 2 within the target complexity. Now compute A(i)B =∑p−1

i=0
X iA(i)Bi for i = 1, 2. These sums can be computed in time

O(nmpd) ∈ O(n2d) since augmenting

∑k
j=0

X jA(i)Bj for some k <

p−1 by addingXk+1A(i)Bk+1
to it only needs to work on the lead-

ing O(d) bits. Return Rem(A(1)B −A(2)B,Xp). □

Wewill make use of some well known algorithms which reduce

computations to matrix multiplication. We summarize what we

need here. The first two results are needed only for matrices over

Z/(2). The cost of the triangular matrix inversion algorithm [1]

follows the recurrence I (n) ≤ 2I (n/2) +O(MM(n/2, 1)). Assuming

H2≤n
MM gives the following.

Lemma 3. If A ∈ Z/(2)n×n is unit upper triangular, then its in-
verse can be computed in time O(MM(n, 1)).

For the next result we can use the LQUP-decomposition [4]. For

anm × n matrix withm ≤ n, the algorithm recurses onm and has

complexity followingT (m) ≤ 2T (m/2)+I (m)+O((n/m)MM(m, 1)).
AssumingH2≤n

MM gives the following whenm = n.

Lemma 4. Given A ∈ Z/(2)n×n , the rank r of A together with a
nonsingularU ∈ Z/(2)n×n and an n × n permutation matrix P such
that UAP has its first r columns those of In and its last n − r rows
zero can be computed in time O(MM(n, 1) logn).

AmatrixA ∈ Z/(2d)n×n is unimodular if its determinant is odd.

In this case the inverse of A, denoted by A−1
, is the unique matrix

from Z/(2d)n×n such that Rem(A−1A, 2d) = In . Algebraic Newton

iteration [2, Algorithm 9.3] gives the following, assumingH1≤d
MM .

Lemma 5. Let A ∈ Z/(2d)n×n be unimodular. If Rem(A−1, 2) is
known, then Rem(A−1, 2d) can be computed in time O(MM(n,d)).

3 SPECIAL SYSTEM SOLVING
Let A ∈ Zn×n . This section shows how to compute A−1B mod 2

d

for a given B ∈ Zn×m and precision d ∈ Z>0. Suppose X is a

power of 2 that satisfies logX ∈ Θ(log(n | |A| |)). Then A−1
mod 2

d

is explictily given by its X -adic expansion

A−1 ≡ A0 +A1X +A2X
2 + · · · +A

p−1

p−1
mod Xp , (2)

where p ∈ Θ(d/logX). Instead, we rely on an algorithm [5] that

combines linear and quadratic lifting to compute a sparse inverse

expansion for A−1
: a straight line formula that computes A−1

mod

X 2
k+1−1

for a given k ∈ Z≥0. For example, for k = 2 we have

A−1 ≡ (A0(I + R0X) +M0X
2)(I + R1X

3) +M1X
6

mod X 2
2+1−1.

Compared to the explicit expansion (2) which requiresp coefficient

matrices A∗ over Z/(X), the strait line formula encodes A−1
mod

2
d
using only 2(k + 1) + 1 ∈ Θ(logp) integer matrices A0,R∗,M∗

that have entries bounded in bitlength by O(logX). Once the for-

mula has been computed, the system solutionA−1B mod 2
d
can be

computed by premultiplying B by these 2(k +1)+1 matrices in the

correct order.

DoublePlusOneLift(A,n,k)

Input: A ∈ Zn×n with 2 ⊥ detA and k ∈ Z>0.

Output: A0,R0, . . . ,Rk−1
,M0, . . . ,Mk−1

∈ Zn×n such that the

following straight line formula computes

Rem(A−1,X 2
k+1−1),

where X = 2
⌈log

2
(max(10

4,3.61n2 | |A | |))⌉
.

Note: | |A0 | | < X , | |M∗ | | < X and | |R∗ | | < 0.6001n | |A| |.

E, F := 0n×n , In
p := 2

k+1 − 1

X := 2
⌈log

2
(max(10

4,3.61n2 | |A | |))⌉

for i = k − 1 down to 0 do
E := Rem(E + (X 2

i+1−1)2MiF ,X
p)

F := Rem(F + X 2
i+1−1RiF ,X

p)

od
E := Rem(E +A0F ,X

p)

return E

Figure 1: Problem DoublePlusOneLift

The following result is derived in [5, Section 3].

Lemma 6. Assuming k ∈ O(logn), Problem DoublePlusOneLift
in Figure 1 can be solved in time O(MM(n, log(n | |A| |)) logn).

SpecialSolve(A,B,d,n,m)

Input: A ∈ Zn×n with 2 ⊥ detA, B ∈ Zn×m and d ∈ Z>0.

Output: Rem(A−1B, 2d).

Figure 2: Problem SpecialSolve

Corollary 7. If the dimension × precision invariant m × d ∈

O(n log(n | |A| |)) holds, then Problem SpecialSolve in Figure 2 can
be solved in time O(MM(n, log(n | |A| |)) logn).

Proof. Let k ∈ Z≥0 be minimal such that (2k+1 −1) log
2
X ≥ d ,

X the smallest power of 2 such that X ≥ max(10000, 3.61n2 | |A| |).
Then k ∈ O(log(d/logX)). Call DoublePlusOneLift(A,n,k) to

compute the straight line formula for A−1
mod X 2

k+1−1
.

Next, use the straight line formula shown in Figure 1 but with

the first line replaced by “E, F := 0n×m ,B.” The algorithm will

then return Rem(A−1B,X 2
k+1−1). The cost of applying the straight

line formula is determined by the matrix multiplications inside the

loop. By Lemma 2, the scheme runs in timeO(MM(n, log(n | |A| |)k).
Finally, the assumption md ∈ O(n log(n | |A| |)) implies that k ∈

O(log(n/m)), which is O(logn). □

4 2-DECOMPOSITIONS
Two matrices over Z/(2d) of equal dimensions are said to be left
equivalent or row equivalent if one can be obtained from the other

by premultiplying by a unimodular matrix. The unimodular matrix

represents a set of row operations converting one matrix into the

other. Corresponding to every A ∈ Z/(2d)n×n there is a permuta-

tion matrix P such that Rem(AP ,d) is left equivalent to a matrix

2
e1 ∗ · · · ∗ ∗ · · · ∗

2
e2 · · · ∗ ∗ · · · ∗
. . .

...
... · · · ∗

2
er ∗ · · · ∗

∈ Z/(2d)n×n (3)

that is in triangular Smith form: e1 ≤ e2 ≤ · · · ≤ er and all entries

in row i are divisible by 2
ei
, 1 ≤ i ≤ r . The ei are unique.

The above discussion is for a matrix A over Z/(2d). Now let

A ∈ Zn×n be a nonsingular integer matrix. Then the 2-Smith form
ofA is the matrix diag(2e1 , 2e2 , . . . , 2en)with 2

ei
the largest power

of twowhich divides the i’th invariant factor of the Smith form ofA
over Z, 1 ≤ i ≤ n. Since 2

en
divides detA, and | detA| ≤ nn/2 | |A| |n ,

the 2-Smith form ofA over Z can be recovered by computing a tri-

angular Smith form of Rem(A,Xn+1) over Z/(Xn+1), where X is

the smallest power of two such that X ≥ n1/2 | |A| |. For the remain-

der of this section we will refer to the exponent of the modulusXp

as the “precision” p.
In [3]

1
one finds an algorithm to compute a permutation matrix

P such that Rem(AP ,Xn+1) is left equivalent (over Z/(Xn+1)) to a

triangular Smith form H . As mentioned previously, the precision

n + 1 is large enough to ensure that H will be as in (3) with r = n.
The matrix U := APH−1

is integral with 2 ⊥ detA. We refer to

the pair of matrices (P ,H) as a 2-decomposition of A and note that

A = UHP−1
.

Workingwith precisionn+1 to compute (P ,H) in one fell swoop

is too expensive. Instead, the authors in [3] use the observation,

summarized in the next lemma, that many of the initial invariant

factors can be recovered using a considerably lower precision. For

any 0 ≤ k ≤ n we can partition the invariant factors in the 2-Smith

form of A as follows:

diag(

first k︷ ︸︸ ︷
2
e1 , 2e2 , . . . , 2ek ,

next ⌈(n − k)/2⌉︷ ︸︸ ︷
2
ek+1 , 2ek+2 , . . . , 2e∗ ,

last ⌊(n − k)/2⌋︷ ︸︸ ︷
2
e∗ , 2e∗ , . . . , 2en)

Lemma 8. Let A ∈ Zn×n be nonsingular and 0 ≤ k < n. If X ∈

Z satisfies X ≥ n1/2 | |A| | then the 2-Smith form of A has at most
⌊(n − k)/2⌋ invariant factors ≥ X 2n/(n−k).

An application of Lemma 8 with k = 0 states that a precision 2

is sufficient to compute a permutation P such that Rem(AP ,X 2) is

1
The algorithms were developed for matrices over K[x] but the approach carries over
directly to integer matrices.

left equivalent to a triangular Smith form as in (3) with r ≥ ⌈n/2⌉.

Next, the algorithm works at precision ⌈2n/(n − r)⌉ to recover at

least ⌈(n − r)/2⌉ ≥ n/4 of the remaining n − r invariant factors.

At each step, the algorithm exploits a natural dimension × preci-

sion invariant: the number of remaining invariant factors times the

precision is Θ(n).
At the beginning of an iteration, the algorithm has already com-

puted a permutation P1 such that for the previous working preci-

sion p, the matrix Rem(AP1,X
p) is left equivalent (over Z/(Xp))

to a triangular Smith form as in (3). (At the beginning of the first

iteration r = 0.) Let

H1 =

[
E1

In−r

]
be the matrix in (3) but with last n − r columns replaced by those

of In . We refer to the pair of matrices (P1,H1) as an index (0, r) 2-
decomposition of A: the matrix B := AP1H

−1

1
will be integral with

first r columns having full rank modulo 2. If r = n we are done so

assume that r < n. Next the algorithm updates the precision top :=

⌈2n/(n−r)⌉ and computes a permutation P2 = diag(Ir , ∗) such that
Rem(BP2,X

p) is left equivalent to a triangular Smith form having

the shape
Ir V2 ∗

E2 ∗

 .
By Lemma 8, the column dimension m of E2 satisfies m ≥ ⌈(n −

r)/2⌉. Set

H2 =

Ir V2

E2

In−r−m

 .
We call the pair (P2,H2) an index (r ,m) 2-decomposition of B. Be-
cause of the structure of the matrices, we have (P1H

−1

1
)(P2H

−1

2
) =

(P1P2)(H2H1)
−1
. Then P1P2 is a permutation with Rem(AP1P2,X

p)

being left equivalent to a triangular Smith form that has first r +m
columns equal to those of

H2H1 =

E1 V2

E2

In−r−m

 .
Since each iteration computes at least half of the remaining in-

variant factors of the 2-Smith form, the number of iterations is

bounded byO(logn). The following theorem captures the approach

of [3] described above to compute a 2-decomposition.

Theorem 9. Let A ∈ Zn×n be nonsingular, 0 ≤ r ≤ n, and 0 ≤

m ≤ n − r . If (P1,H1) is an index (0, r) 2-decomposition for A, and
(P2,H2) is an index (r ,m) 2-decomposition for B := AP1H

−1

1
, then

(P1P2,H2H1) is an index (0, r +m) 2-decomposition for A.

To avoid expression swell, the Hi computed at each step can be

transformed into Hermite canonical form: offdiagonal entries are

reduced modulo the diagonal entry in the same column. The Hi
are then unique up to the choice of the permutations Pi . In the

polynomial setting, the inverseH−1
of a matrixH in Hermite form

will be a proper matrix fraction, ensuring that U := AH−1
will

have degree bounded by the degree of A. However, over the inte-
gers,H−1

may not be proper, frustrating attempts to obtain a good

bound for the bitlength of entries in U . We end this section with

an example of a class of ill-conditioned Hermite forms.

Example 10. For n = 2, 3, 4, . . . consider the family of Hermite
forms H ∈ Zn×n that are Toeplitz, with diagonal entry 2 and offdi-
agonal entries alternating between 1 and 0. For example, for n = 6,

H =

2 1 0 1 0 1

2 1 0 1 0

2 1 0 1

2 1 0

2 1

2

 ∈ Z6×6.

Offdiagonal entries in the first row of H−1 satisfy

H−1

1, j =

−1/4 if j = 2

1/8 if j = 3

(−1/2)H−1

1, j−1
+ H−1

1, j−2
if j ≥ 4

The closed form for this recurrence shows that log |H−1

1, j | ∈ Θ(j). For
n ≥ 500 the largest entry in (detH)H−1 has bitlength ≈ 1.35n com-
pared to detH which has bitlength n.

5 2-MASSAGERS
Rather than computing a 2-decomposition for our input matrix, we

introduce the notion of a 2-massager.

Definition 11. Let A ∈ Zn×n be nonsingular. A 2-massager for
A is a triple of matrices (P , S,M) from Zn×n such that:

• P is a permutation.
• S = diag(s1, . . . , sn) is the 2-Smith form of A.
• M is unit upper triangular.
• APMS−1 is integral with 2 ⊥ detAPMS−1.

(P , S,M) is a reduced 2-massager if entries in column i ofM are from
Z/(si), 1 ≤ i ≤ n.

There is a one to one correspondence between 2-massagers and

2-decompositions. Note that it follows from the uniqueness of the

2-Smith form S of A that the triangular Smith form H from any

2-decomposition of A will have the same diagonal entries as S .

Theorem 12. Duality between 2-decompositions and -massagers:

• If (P ,H) is a 2-decomposition of A,
then (P , S, (S−1H)−1) is a 2-massager for A.

• If (P , S,M) is a 2-massager for A,
then (P , SM−1) is a 2-decomposition of A.

Proof. Since H is in triangular Smith form, S−1H will be unit

upper triangular and integral. It suffices to note that APH−1 =

AP(SS−1H)−1 = AP(S−1H)−1S−1
. □

Suppose (P , S,M) is a 2-massager for A. Since APMS−1
is in-

tegral, column i of APM must be congruent to zero modulo si ,
1 ≤ i ≤ n. This gives the following.

Lemma 13. If (P , S,M) is a 2-massager for A, then a reduced 2-
massager for A can be obtained by reducing offdiagonal entries in
column i ofM by si , 1 ≤ i ≤ n.

Our algorithm to compute a 2-massager for A will proceed in a

similar manner to the algorithm for 2-decomposition sketched in

the previous section. In order to simplify the discussion it will be

useful to introduce the following definition.

Definition 14. LetB ∈ Zn×n be nonsingular with first r columns
full rank modulo 2. An index (r ,m) 2-massager for B is a triple of
matrices (P , S,M) from Zn×n such that

• P = diag(Ir , ∗) is a permutation.
• S = diag(Ir , sr , . . . , sr+m , In−r−m) with principal (r +m) ×

(r +m) submatrix equal to that of the 2-Smith form of B.
• M is unit upper triangular with first r and last n − r − m
columns those of In .

• BPMS−1 is integral with first r +m columns having full rank
modulo 2.

(P , S,M) is a reduced index (r ,m) 2-massager if entries in column i
ofM are from Z/(si), r ≤ i ≤ m.

Suppose we have already computed an index (0, r) 2-massager

(P1, S1,M1) for A. At the start of the first iteration r = 0 and

we have the trivial index (0, 0) 2-massager (In , In , In). Then B :=

AP1M1S
−1

1
will be integral with first r columns of full rank modulo

2. If r = nwe are done so assume r < n. Our goal now is to compute

an index (r ,m) 2-massager for B. By Lemma 8 we can guarantee

to achievem ≥ ⌈(n − r)/2⌉ by working modulo Xp
where X is the

smallest power of two ≥ n1/2 | |A| | and p = ⌈2n/(n − r)⌉. Compute

an index (r ,m) 2-decomposition (P2,H2) for B. Let

H2 :=

Ir V2

E2

I

 .
Let S2 be the diagonal matrix with same diagonal entries as H2.

Define D2 by writing S2 = diag(Ir ,D2, In−r−m), that is, D2 is the

diagonal matrix with same diagonals as E2. As a corollary of Theo-

rem 12, (P2, S2,M2)will be an index (r ,m) 2-massager for B, where

M2 := (S−1

2
H2)

−1 =

Ir −V2(D

−1

2
E2)

−1

(D−1

2
E2)

−1

In−r−m

 . (4)

Then A(P1M1S
−1

1
)(P2M2S

−1

2
) = BP2M2S

−1

2
will be integral with

first m + r columns having full rank modulo 2. By exploiting the

duality of Theorem 12 we can combine (P1, S1,M1) and (P2, S2,M2)

to obtain an index (0, r + m) 2-massager. Define D1 by writing

S1 = diag(D1, In−r−m), that is, D1 is comprised of the first r en-

tries of the 2-Smith form of A. By duality, (P1, S1M
−1

1
) is an index

(0, r) 2-decomposition of A. Let P = P1P2 and S = S1S2. By The-

orem 9 (P ,H2S1M
−1

1
) is then an index (0, r +m) 2-decomposition

of A. Using duality in the opposite direction shows that an index

(0, r+m) 2-massager forA is given by (P , S, (S−1H2S1M
−1

1
)−1). Note

that (S−1H2S1M
−1

1
)−1 = (S−1

1
S−1

2
H2S1M

−1

1
)−1 = M1S

−1

1
M2S1. We

then obtain the following result.

Theorem 15. Let A ∈ Zn×n be nonsingular, 0 ≤ r ≤ n, and
0 ≤ m ≤ n−r . If (P1, S1,M1) is an index (0, r) 2-massager forA, and
(P2, S2,M2) is an index (r ,m) 2-massager for B := AP1M1S

−1

1
, then

(P1P2, S1S2,M1S
−1

1
M2S1) is an index (0, r +m) 2-massager for A.

If we write

M1 =

[
F1

In−r

]
(5)

and

M2 =

Ir W2

F2

In−r−m

 , (6)

then by Theorem 15 an index (0, r +m) 2-massager for A is given

by (P , S,M) where

M = M1S
−1

1
M2S1 =

F1 F1D

−1

1
W2

F2

In−r−m

 . (7)

6 TRIANGULAR SMITH FORM
In this section we give an algorithm for computing a triangular

Smith form of a matrix A over Z/(d).

TriangularSmithForm(A,n,d)

Input: A ∈ Z/(2d)n×n for d ∈ Z>0.

Output: U , P such that U ∈ Z/(2d)n×n is unimodular, P is an

n × n permutation matrix, and Rem(UAP ,d) is in trian-

gular Smith form over Z/(2d).

Figure 3: Problem TriangularSmithForm

Theorem 16. Problem TriangularSmithForm in Figure 3 can be
solved in time O(MM(n,d)(logn + logd)).

Proof. We describe a divide and conquer algorithm that re-

curses on the precision parameterd and has running time bounded

by the recurrence

T (d) ≤

[
T (⌈d/2⌉) +T (⌊d/2⌋) +O(MM(n,d)) if d > 1

MM(n, 1) logn if d = 1.

AssumingH1≤d
MM we have the solutionT (d) ∈ O(dMM(n, 1) logn+

MM(n,d) logd), which simplifies to the target complexity since

dMM(n, 1) ≤ MM(n,d) using H1≤d
MM .

For the base case d = 1 use Lemma 4. Assume now that d > 1.

Then set d1 = ⌈d/2⌉ and d2 = ⌊d/2⌋ and recursively compute

U1, P1 := TriangularSmithForm(Rem(A, 2d1),n,d1).

Let r be the number of nonzero rows of Rem(U1AP1, 2
d1) and let S

be the r × r diagonal matrix with Sii = Rem(U1AP1, 2
d1)ii , 1 ≤ i ≤

r . Then [
S−1

In−r

]
Rem(U1AP1, 2

d)

is an integral matrix. We can thus split Rem(U1AP1, 2
d) into two

parts using Rem and Quo. Let[
T T ′

]
=

[
S

In−r

]
Rem

([
S−1

In−r

]
Rem(U1AP1, 2

d), 2d1

)
and[
B B′

]
=

[
S

In−r

]
Quo

([
S−1

In−r

]
Rem(U1AP1, 2

d), 2d1

)
.

Then

Rem(U1AP1, 2
d) =

[
T T ′

]
+

[
B B′

]
2
d1 .

where T is r × r and B is n × r . Note that by construction both[
S−1

In−r

] [
T T ′

]

and [
S−1

In−r

] [
B B′

]
will be integral.

Let V = Rem((S−1T)−1, 2d1). Since the diagonal entries of S are

powers of 2 of degree at most d1 − 1, the matrix 2
d1S−1

will be

integral and, moreover, Rem(2d1S−1, 2) = 0r×r . The matrix

U ′
1
=

[
Ir

In−r

]
−

[
2
d1BVS−1

]
thus satisfies Rem(U ′

1
, 2) = In and hence is unimodular.

Next we show that

Rem(U ′
1
U1AP1, 2

d) =

[
T ∗

C2
d1

]
for an (n − r) × (n − r) matrix C . Considering the structure of U ′

1
,

it suffices to note, on the one hand, that[
2
d1BVS−1

] [
T T ′

]
≡

[
2
d1B(VS−1T) 2

d1BV (S−1T ′)
]

(mod 2
d)

≡
[

2
d1B(Ir + ∗2

d1) 2
d1BV ∗

]
(mod 2

d)

≡
[
B2

d1 ∗2
d1

]
(mod 2

d)

where the ∗ are integral matrices. On the other hand we have that[
2
d1BVS−1

] [
B B′

]
2
d1

≡
[
BV 2

d1

] [
S−1

I

] [
B B′

]
2
d1 (mod 2

d)

≡
[
BV 2

d1

] [
∗ ∗

]
2
d1 (mod 2

d)

≡ 0n×n (mod 2
d)

We can then compute

U2, P2 := TriangularSmithForm(C,n − r ,d2)

and return

U , P = Rem

([
Ir

U2

]
U ′

1
U1, 2

d
)
, P1

[
Ir

P2

]
.

It remains to bound the cost of the nonrecursive work. Other than

some multiplications of matrices bounded in dimension by n and

precision d , the only other computation is that of the inverse V .

Lemmas 3 and 5 show thatV can be computed in timeO(MM(n,d)).
□

7 APPLYING AN INDEX MASSAGER
In this section we show how to apply a reduced index massager to

an input matrix A in order to produce the massaged matrix U :=

APMS−1
that has 2 ⊥ detU . In the next lemma, by length k of

a nonzero finite X -adic expansion a0 + a1X + · · · we mean the

maximal k ∈ Z≥1 such that ak−1
is non-zero.

Lemma 17. Let (P , S,M) be a reduced index (r ,m) 2-massager for
a nonsingular A ∈ Zn×n . If X = 2

d is the smallest power of 2 such
that X ≥ n1/2 | |A| |, then the sum of the lengths of the X -adic expan-
sions of the columns ofM is bounded by 2n.

ApplyMassager(A,n, P , S,M, r)

Input: Nonsingular A ∈ Zn×n and a reduced index (r ,m) 2-

massager (P , S,M) for A.
Output: APMS−1

Figure 4: Problem ApplyMassager

Proof. It will suffice to prove the result for r = 0 andm = n. Let
S = diag(2e1 , 2e2 , . . . , 2en) be the 2-Smith form of A. Since det S |

detA, Hadamard’s bound gives

∑n
i=1

ei ≤ nd . Since the maximal

magnitude entry in column i of M is 2
ei
, the length of the X -adic

expansion of column i is equal to ⌊ei/d + 1⌋, 1 ≤ i ≤ n. Finally,
note that

∑n
i=1

⌊ei/d + 1⌋ ≤ 2n using

∑n
i=1

ei/d ≤ n. □

Theorem 18. Problem ApplyMassager in Figure 4 can be solved
in time O(MM(n, log(n | |A| |))).

Proof. Let C be the matrix obtained fromM by replacing each

column ofM with the n × ⌊ei/d + 1⌋ matrix comprised of the coef-

ficients of the X -adic expansion of the column. By Lemma 17 the

number of columns of C will be bounded by 2n. We now proceed

similarly as in the proof of Lemma 2 to recoverAPM in the allotted

time. As in Lemma 2, write A = A(1) −A(2)
where A(i)

is over Z≥0,

i = 1, 2. Compute A(i)PC and recover A(i)PM for i = 1, 2. Finally,

compute APMS−1
as (A(1)PM −A(2)PM)S−1

. □

8 COMPUTING AN INDEX MASSAGER
In this section we show how to use the algorithms SpecialSolve
and TriangularSmithForm to compute an index (r ,m) 2-massager

for an input matrix B ∈ Zn×n . The algorithm assume that B is

the matrix obtained by applying an index (0, r) 2-massager to the

original input matrix A to the overall problem.

IndexMassager(B,n, r ,p,X)

Input: Nonsingular B ∈ Zn×n , r ∈ Z with 0 ≤ r < n, p ∈ Z≥1,

andX the smallest power of 2 such thatX ≥ n1/2 | |A| | for
a nonsingular matrix A ∈ Zn×n .

Output: P , S,M,m such that (P , S,M) is an index (r ,m) 2-

massager for B, withm maximal such that invariant fac-

tor r +m of the 2-Smith form of A is < Xp
. The matrix

M will satisfyM = Rem(M,Xp).

Condition: B = AP1M1S1

−1
where (P1,M1, S1) is a reduced

index (0, r) 2-massager for A.

Figure 5: Problem IndexMassager

Theorem 19. If p = ⌈2n/(n − r)⌉, then Problem IndexMassager
in Figure 5 can be solved in time

O(MM(n, log(n | |A| |)) log(n log | |A| |)).

Proof. We describe a 7 step algorithm.

Step 1: LetQ be the permutation P from the LQUP-decomposition

of Rem(B, 2)T . Then Q is such that QB can be written in a block

decomposition as

QB =

[
B11 B12

B21 B22

]
,

where B11 ∈ Zr×r is nonsingular modulo 2.

Cost 1: O(MM(n, 1) logn).

Step 2: Compute[
C1

C2

]
= Rem

([
B11

B21 In−r

]−1
[
B12

B22

]
,Xp

)
using the algorithm supporting Corollary 7. We now have the par-

tial triangularization

Rem

([
B11

B21 In−r

]−1
[
B11 B12

B21 B22

]
,Xp

)
=

[
Ir C1

C2

]
(8)

of QB over Z/(Xp).

Cost 2: O(MM(n, log(n | |A| |)) logn), by Corollary 7

Step 3: Compute

U ′, P ′ := TriangularSmithForm(C2,n − r ,p log
2
X)

using the algorithm supporting Theorem 16. Set P := diag(Ir , P
′).

Cost 3: By Theorem 16,

O(

T1︷ ︸︸ ︷
MM(n − r ,p lgX)

T2︷ ︸︸ ︷
(log(n − r) + log(p logX))).

First note that

T1 = MM
(

n

n/(n − r)
, ⌈2n/(n − r)⌉ logX

)
∈ O((n/(n − r))2 MM

(
n

n/(n − r)
, logX

)
∈ O(MM(n, logX))

usingHd≤2

MM andH2≤n
MM in succession. Next, the loga-

rithmic factorT2 is simplified using log(n−r) ≤ logn
and log(p lgX) ∈ O(log(n log | |A| |)).

Step 4: We can now complete the triangularization of (8):

Rem

([
Ir

U ′

] [
Ir C1

C2

]
P ,Xp

)
=

Ir V ∗

E ∗

 .
Here, E is an m × m triangular Smith form and V is the first m
columns of C1P

′
. Let D be the m × m diagonal matrix with the

same diagonal entries as E, and set S := diag(Ir ,D, In−r−m).

Cost 4: O(MM(n − r ,p logX)).

It remains to compute M . By Lemma 13 we may compute M
modulo Xp

. As shown in (4), we can take

M = Rem

©«

Ir −V (D−1E)−1

(D−1E)−1

In−r−m

 ,Xpª®¬ .
We will compute thisM in the final three steps.

Step 5: First compute T := Rem((D−1E)−1,Xp).

Cost 5: O(MM(n − r ,p logX)), by Lemmas 3 and 5.

Step 6: Instead of computing the product Rem(−VT ,Xp)wewill

proceed as follows. Let B′
12

be the firstm columns of B12P
′
. Com-

pute the product Rem(B′
12
T ,Xp).

Cost 6: O(MM(n, log(n | |A| |))), by Lemma 2.

Step 7: Compute Rem(VT ,Xp) = Rem(B−1

11
(B′

12
T),Xp) using the

algorithm supporting Corollary 7.

Cost 7: Same as the cost of step 2. □

9 COMBINING INDEX MASSAGERS
In this section we show how to combine an index (0, r) and index

(r ,m) 2-massager to obtain an index (0,m) 2-massager.

CombineMassagers(P1, S1,M1,n, r , P2, S2,M2,m,X)

Input: A reduced index (0, r) 2-Smithmassager (P1, S1,M1) for

a nonsingular A ∈ Zn×n , an index (r ,m) 2-Smith mas-

sager (P2, S2,M2) for Ā := AP1M1S
−1

1
, and X the smallest

power of 2 such that X ≥ n1/2 | |A| |.
Output: (P , S,M, r +m), with (P , S,M) a reduced index (0, r +

m) 2-massager for A.
Condition: M2 = Rem(M2,X

p) with p = ⌈2n/(n − r)⌉.

Figure 6: Problem CombineMassagers

Theorem 20. Problem CombineMassagers in Fig. 6 can be solved
in time O(MM(n, log(n | |A| |))).

Proof. WriteM1 andM2 using a block decomposition as shown

in (5) and (6). By Theorem 15, the only computation required to

produce (P , S,M) is to compute F1D
−1

1
W2 as shown in (7), where

F1 ∈ Zr×r and V := D−1

1
W2 ∈ Zr×m . By Lemma 13, it will suffice

to compute Rem(F1V ,X
p). For simplicity, and without loss of gen-

erality, we will assume that r = n so that F1 has dimension n × n
and V has dimension n ×m.

Let F1 = C0 +C1X +C2X
2 + · · · andV = V0 +V1X +V2X

2 + · · ·

be the X -adic expansions of F1 and V , respectively. Our approach

is to compute the integer matrix product

[
C0 C1 · · · Cp−1

]
V0 V1 · · · Vp−1

V0 · · · Vp−2

. . .
...

V0

,

from which F1V modulo Xp
is easily recovered. To perform the

multiplication efficiently we must take into account that the coef-

ficients Ci ∈ Z/(X)n×n may have many zero columns. For 0 ≤ i ≤
p − 1, let ki ∈ Z≥0 be minimal such that Ci =

[
0 C ′

i
]
with ki

the column dimension ofC ′
i . By Lemma 17, the column dimension

c of
[
C ′

0
C ′

1
· · · C ′

p−1

]
satisfies c ≤ 2n.

Compute the n × c times c ×mp integer matrix product

[
C ′

0
C ′

1
· · · C ′

p−1

]

V
(k0)

0
V
(k0)

1
· · · V

(k0)

p−1

V
(k1)

0
· · · V

(k1)

p−2

. . .
...

V
(kp−1)

0

, (9)

where V
(k)
i is the k ×m submatrix of Vi comprised of the last k

rows. Since c andmp areO(n), the matrix multiplication in (9) has

cost O(MM(n, log(n | |A| |))). Let the result of the multiplication be

[E0 E1 · · · Ep−1] ∈ Zn×mp

Then F1D
−1

1
W2 can be recovered by compute the sum

∑p−1

i=0
X iEi

as described in the proof of Lemma 2. □

10 COMPUTING A MASSAGER
In this section we show how to use the algorithms presented in the

previous three sections to compute an index massager.

Massager(A,n)

Input: Nonsingular A ∈ Zn×n .
Output: (P , S,M), a reduced 2-massager for A.

X := the smallest power of 2 such that X ≥ n1/2 | |A| |
P , S,M, r := In , In , In , 0
while r < n do

B := ApplyMassager(A,n, P , S,M, r)
p := ⌈2n/(n − r)⌉
P ′, S ′,M ′,m := IndexMassager(B,n, r ,p,X)

P , S,M, r := CombineMassager(P , S,M,n, r , P ′, S ′,M ′,m,X)

od
return (P , S,M)

Figure 7: Algorithm Massager

Theorem 21. Algorithm Massager in Figure 7 is correct. The run-
ning time is O(MM(n, log(n | |A| |)) log(n log | |A| |) logn).

Proof. Correctness of the algorithm follows from the input and

output specifications of the subroutines presented in Sections 7–9.

By Lemma 8, the number of loop iterations is bounded by log
2
n

with the cost of each loop iteration being dominated by the call to

IndexMassager. The running time estimate is obtained by multi-

plying the cost estimate of Theorem 19 by logn. □

11 SYSTEM SOLVING
Suppose a/b ∈ Q is a signed fraction with a ∈ Z, b ∈ Z>0, a ⊥ b
and b ⊥ 2. Then rational number reconstruction [2] can be use to

reconstruct a/b from its image Rem(a/b, 2d) for large enough d .
More precisely, given upper bounds N and D such that |a | ≤ N
and b ≤ D, then

RatRecon(Rem(a/b, 2d), 2d ,N ,D)

will reconstruct a/b for any d that satisfies 2
d ≥ 2ND. If the first

argument to RatRecon is a vector then the intent is to apply ratio-

nal reconstruction elementwise to the entries.

Our algorithm for system solving is based on the following ob-

servation. If (P ,M, S) is a 2-massager forA andU := APMS−1
, then

2
eA−1 = PM(2eS−1)U −1

, where e = log
2
Snn .

Theorem 22. Algorithm Solve in Figure 8 is correct. If log | |b | | ∈
O(n log(n | |A| |)) the running time is

O(MM(n, log(n | |A| |)) log(n log | |A| |) logn).

Solve(A,b,n)

Input: Nonsingular A ∈ Zn×n and b ∈ Zn×1
.

Output: x , e ∈ Zn×1,Z≥0 such that e is minimal such that all

denominators of the entries in 2
eA−1

are relatively prime

to 2, and x = Rem(2eA−1b, 2d) where d is as defined in

step 3.

Note: 2
eA−1b = RatRecon(x , 2d ,N ,D).

1. (P , S,M) := Massager(A,n)
e := log

2
Snn

2. U := ApplyMassager(A,n, P , S,M,n)

3. N := ⌊nn/2 | |A| |n−1 | |b | |⌋

D := ⌊nn/2 | |A| |n/2
e ⌋

d := ⌈log(2ND)⌉
y := SpecialSolve(U ,b,d,n, 1)

4. x := Rem(PM(2eS−1)y, 2d)
return x , e

Figure 8: Algorithm Solve

Proof. The correctness of the algorithm follows from the in-

put and output specifications of Massager, ApplyMassager and

SpecialSolve. Using Hadamard’s bound and Cramer’s rule, the

denominators and numerators of entries of 2
eA−1b are bounded

by D and N as computed in the algorithm. This shows that the

note added to the algorithm header also holds.

Now consider the running time. By Theorems 21, 18 and 7, the

cost of steps 1, 2 and 3, respectively, are within the target cost.

Finally, consider step 4. Let z = 2
eS−1y. The computation ofMz

is very similar, in terms of structure and magnitudes of entries in

theM and z, to the operation of combining a reduced index (0,n−1)

2-Smith massager with an index (n − 1, 1) 2-Smith massager. By

following the same strategy as in the proof of Theorem 20, step 4

can be done in time O(MM(n, log(n | |A| |))). □

Acknowledgments
The authors are grateful to the referees for their careful reading,

helpful comments, and suggestions for improving the exposition.

REFERENCES
[1] J. Bunch and J. Hopcroft. Triangular factorization and inversion by fast matrix

multiplication. Mathematics of Computation, 28:231–236, 1974.
[2] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Univer-

sity Press, 3rd edition, 2013.

[3] S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. Triangular x -basis decompo-

sitions and derandomization of linear algebra algorithms over K[x]. Journal of
Symbolic Computation, 47(4), 2012. Festschrift for the 60th Birthday of Joachim

von zur Gathen.

[4] O. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decom-

position algorithm and applications. Journal of Algorithms, 3:45–56, 1982.
[5] C. Pauderis and A. Storjohann. Deterministic unimodularity certification. In

J. van der Hoeven and M. van Hoeij, editors, Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’12, pages 281–288. ACM Press, New York, 2012.

[6] A. Storjohann. The shifted number system for fast linear algebra on integermatri-

ces. Journal of Complexity, 21(4):609–650, 2005. Festschrift for the 70th Birthday

of Arnold Schönhage.

