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ABSTRACT 

We present a new fast algorithm for the 
calculation of a Pad&Hermite form for a vector 
of power series. When the vector of power series 
is normal, the algorithm is shown to calculate a 
Pad&Hermite form of type (no, . . , nk) in 
O(k+$ + . . . + nl)) operations. This com- 
plexity is the same as that of other fast algo- 
rithms for computing Pad&Hermite approxi- 
mants. However, unlike other algorithms, the 
new algorithm also succeeds in the non-normal 
case, usually with only a moderate increase in 
cost. 

1. Introduction 

Given a formal power series 

A(z) = ga;zi (1.1) 
i-0 

with coefficients from a field F, a Pade approximant of 
type (m,n) for A(z) is a pair of polynomials (U(z),V(z)) of 
degrees at most m and n, respectively, satisfying 

A(z)V(z) = U(z) + O(Z~+~+~). 

We can think of (1.2) as 
(1.2) 

A(z) = $f$ 
Z 

so in a sense a Pade approximant is a realization of the 
formal power series as a rational expression U(z)/V(z), at 
least to a specific set of terms. 

The notion of a Pad&Hermite approximation is 
somewhat similar. First, following Pad& Ill] in his classic 
thesis, we wish to select k+l polynomials so that for y(z) 
as the given power series we have 

Pdz)y(z)k + . + Pk-,(z)y(z) = Pk(z) + O(Z~+~), (1.4) 

where N is the sum of the degrees, {ni}, of the 
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polynomials {pi(Z)}. For example, when k = 2, then (1.4) 

can be thought of as 

P&y(z)” + PJz).y(z) - Pdz) = o (1.5) 

that is, 

Y(Z) = 
-Pi(z) + VP@)’ + kPdz).Pz(z) 

2.&(z) (1.6) 

which is also a representation of y(z) as a rational expres- 
sion. We could also equally well consider 

Pdz)+ + . . . + PkJz)y(z) = Pk(Z) + O(z N+k), (1.7) 

in which case we wish to realize y(z) as a power series 
solution of a linear differential equation, again up to at 
least a specific number of terms. Generalizing further, 
consider 

Pdz)Adz) + . . . + Ak(z)Pk(z) - O(zN+“), (1.8) 

where the A&) are any desired set of functions of the 
given formal power series of y(z) (it is usually true that we 
can further assume that A;(O) # 0 for at least one value 
j). In this last example, the polynomials 
(PO(z), . . . , Pk(z)) define a Pad&Hermite approximant of 
type (no, . . . , nk) for the given system of power series 
(Ao(z), . . , Adz)). 

Pad&Hermite approximants were introduced by 
Della Dora and Dicrescenzo 14) as a generalization of the 
quadratic approximants of Shafer (131 and the D-Log 
approximants of Baker [l]. Both of these concepts, in 
turn, began with ideas that originated from the thesis of 
Pad& and some previous work of Hermite [7]. 

In addition to introducing the concept of Padk- 
Hermite approximants, DeHa Dora and Dicrescenzo also 
defined the notion of a Pad&Hermite table. This is a gen- 
eralization of the normal definition of the extended Pade 
table (c.f., Gragg [ 51). Relationships between neighboring 
entries in the table were then discovered that provided an 
algorithm to calculate such approximants. Other relation- 
ships in the Pad&Hermite table, and subsequently an 
alternate algorithm to calculate these approximants, were 
also discovered by Paszkowski [12]. 

The resulting algorithms, however, cannot be 
applied to arbitrary power series. The algorithms of both 
Della Dora et al and Paszkowski require that the vector of 
power series be normal (c.f., Paszkowski [12]). Related to 

95 



the concept of a Pad&Hermite approximation is a linear 
system of equations having a generalized Sylvester matrix 
as its coefficients. The normality condition requires that 
the coefficient matrix, along with a specific set of subma- 
trices, be nonsingular. The normality requirement is a 
strong one. For example, the constant terms of all the 
A(Z)% need be nonzero for the system to satisfy the nor- 
mality condition. 

In this paper, we present an algorithm to calculate 
a PadCHermite approximant of a given type. This algo- 
rithm can be applied to any vector of power series; no 
requirement of normality is needed. A new type of 
rational approximant, the weak Pad&Hermite approxi- 
mant, introduced in this paper, is central to the success of 
this procedure. These are a type of multidimensional 
rational approximant that can be transformed, if so 
desired, into a set, of simultaneous Pad6 approximants 
(cf., de Bruin[Z]) f or the given set of power series. Also 
introduced in this paper is the concept of a normal point 
in the Pad&Hermite table. The calculation of the desired 
approximant is obtained by iterating from one normal 
point to the next along a piecewise linear path in the 
PadbHermite table. When k - 1 Pad&Hermite approxi- 
mants reduce to Pad6 approximants, and the algorithm 
becomes that of Cabay and Choi [3] and the scalar algo- 
rithm of Labahn and Cabay [9]. When k - 1, and the 
input power series are polynomials, our iteration scheme 
has close ties with the Extended Euclidean Algorithm. 
Indeed, by reversing the order of the coefficients of the 
input polynomials and traveling along a specific path our 
algorithm reduces to the EEA for these polynomials. 

A cost analysis is also provided, showing that the 
algorithm generally reduces the cost by one order of mag- 
nitude to other methods that succeed in the non-normal 
case. In the normal case, the algorithm is of the same 
complexity as the algorithms of Della Dora et al and 
Paszkowski. In the normal case, however, the iteration 
scheme can be modified to give an alternate algorithm. 
The resulting scheme is then more efficient than existing 
methods. A brief sketch of such an algorithm is also 
included. 

2. Basic Definitions 

For a given integer k 2 0, let 

A&) - f$;,; 2 , i =O, . . . I k, 
i-0 

(2.1) 

be a set of k+l formal power series with coefficients ai,j 
coming from a field F. Then, for a vector of non-negative 
integers (n,,nl, . ,nk), we have 

Definition 2.1 (Della Dora and Dicrescenzo [4]): The vec- 
tor of polynomials (Pdz), . . ,Pk(z)) is defined to be a 
Pad6Hermite form (PHFo) of type (no, . . ,nk) for 
the vector of power series (Ao(z), . ,Ak(z)) if 

I) a(P;(z)) 5 n;, for i = 0, , k, 

II) ,$&(z)P;(z) = zno+ +nk+kd-qz), (2.2) 
i=O 

where R(z) is a power series, and 
III) the P;(z) are not all identically 0. 

I 

R(z) is called the residual of type (no, . . . ,nk) for 
the vector of power series. When k = 1, and A,(z) = -1, 
Definition 2.1 corresponds to the definition of a Pad6 form 
for the power series A(z)==Adz) (cf., Gragg [5]). When 
k = 1, &(z) - A’(z) and A,(z) - A(z), we obtain the 
D-Log approximant of Baker [l]. When k - 2, 
r&(z) = ll’(z), A,(z) = A(z), and Adz) = 1, we obtain the 
quadratic approximation of Shafer [13], 

We extend Definition 2.1 to allow ni to take on the 
value -1, but where at least, one nj must still be nonnega- 
tive. When ni = -1, we define P;(z) = 0. This is 
equiva1en.t to A(z) being absent, i.e., we are determining 
a PHFo for k, rather than for k+l, power series. Thus, 
for example, solving 

A2(z)P(z) + Q(z) = O(Z~+~+‘), (24 

where P(z) and Q( z are to have degrees at most, m and n, ) 
respectively, is the same as determining Shafer’s quadratic 
approximation of type (m,-l,n). 

When A(O) - 0, 0 5 i< k, we can remove the larg- 
est factor, zB from all the power series. Any PHFo of type 
(no, * . . , nk) for (z-@Adz), . . . , zWBAh(z)) is then also a 
PHFo of the same type for (a~), * * * , Ak(z)). Thus, for 
algorithmic purposes we may assume that A(O) + 0 for at 
least, one 1. By renumbering if necessary, we will hen- 
ceforth assume that, aO,o = AdO) z 0. In this case, we will 
also set 

A(z) = Adz), B(z) - (A,(z), - * . , A(z)). (2.4) 

We view B(z) as a 1Xk matrix of power series. Note that, 
using (2.4), equation (2.2) can be written in a matrix for- 
mat a.9 

A(z)*P(z) + B(a).&(z) - ztlo+ “’ +“‘+‘d?(z), (2.5) 

where p(z) - PO(z), and Q(z) - [s(z), . . . , P~(z)]~. 

Central to our approach for efficiently calculating 
PHFo’s is a second type of generalization of a Pad6 form. 

Definition 2.2. Let ao,o # 0 and let U(z) and V(z) be 
matrix polynomials of size 1Xk and kXk, respectively. 
The pair (U(z),V(z)) is a weak PadbHermite form 
(WPHFo) for (A(z),B(z)) of type (no, . . . , nk), where 
ni>OforO<i<k,if 

I) a(V(z)) 5 no and a(,iV(z)) 5 n;, where 8~~1 
denotes degree of the j th row, 

II) A(z)U(z) + B(z).V(z) = zno+ “’ +“b+l+I’(z), (2.6) 
where W(z) is a 1Xk matrix of power series, and 

III) the columns of V(z) are linearly independent,. 
n 

The matrix polynomials U(z), V(z), and W(z) will be 
called the weak Pad&Hermite numerator, denominator, 
and residual (all of type (no, . . . , nb)), respectively. 
When the constant term, V(O), of the weak Pad&Hermite 
denominator is a nonsingular matrix, then we say that 
(U(z),V(z)) is a weak Pad&Hermite fraction 
(WPHFr). 
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Whenk- 1, Definition 2.2 is the scalar definition 
of a Padk form (c.f., Gragg 151) while a WPHFr is 
equivalent to a scalar Pade’ fraction. A WPHFr can be 
interpreted as providing a a set of simultaneous Pade 
approximants for the quotient power series &(z)/&(z) 
(cf., de Bruin[2]). Indeed, since V(0) is nonsingular, the 
inverse of the matrix polynomial V(z) can be determined 
as a matrix power series. Thus, we obtain 

B( z)/Ao(z) = -U( z)v(z)-‘. (2.7) 

Since 

U(z)~V(z)-’ = v(z).udi(v(z))/det(v(z)), (2.8) 

equations (2.7) and (2.8) give a simultaneous rational 
approximation for each power series 

Ai(z) ~ N(z) 
A&) 

-, i = 1, . . , k. 
D(z) 

(2.9) 

It is not difficult to see that Ni(.z) has at most degree 
N - n; and that D(z) has at most degree N-n, where 
IV = no + . . . + nk. Hence, the polynomials 
(D(z), N,(z), . . . > Nk(z)) form a set of simultaneous 
Pade approximants power series 
A1(z)/Ao(z), . , A&)/G;) ofth:ype (no, . . . , nk). 
This can also be represented as a solution to the German 
polynomial approximation problem of type (no, . . , nk) 
for the power series (A,,(Z), . . . , A&)) or as directed 
vector Pad6 approximants for the vector of power series 
udz), . . . I Ah(z)) in the unit coordinate directions (c.f., 
Graves-Morris(G]). 

For ease of discussion, we use the following nota- 
tion. For any polynomial 

P(z) - po + p1z + . . . + pnzn, (2.10) 

we write P (i.e.. the same svmbol but without the z vari- 
\ I 

able) to mean the n+l by 1 vector 

p - [PO, ’ * * , PJ. 

Let ,&. , ,+ be the matrix 

(2.11) 

ao,o ak.0 

I I 

ak.0 

a.0 I 
. . 

I* . 

I I . 
ao,x . ~O,LT&, ak,h . ak,X--trk 

where 

, (2.12) 

X=n,+ .” + nk + k - 1. (2.13) 

‘(no, I “k) denotes a generalized Sylvester matrix of type 

(no, . . , nk) for the vector (A,,(z), . . . , Ah(z)). By equat- 
ing coefficients of zp for 0 5 p 5 X, equation (2.2) can be 
written as 

S(“, ,9sk) = 0; (2.14) 

whereas equation (2.6) can be written as 

u 

s& ,?ak) 
Vl 
. - 0. (2.15) 

h 

In (2.15)~ S’cno,. ,nk) is the matrix obtained by deleting 

the last (k - 1) rows from S’f, 
0 

,nk) and Vi(Z) represents 

the i-th row of V(z). Equation (2.15) accounts for the 
naming convention used, since it shows that a WPHFo is 
the same as a PHFo, except for a weaking of the linear 
system that defines it. Equations (2.14) and (2.15) imply 

Theorem 2.3 (Existence of PHFo’s and WPBFo’s): Let 
(A(z),B(z)) be as in (2.4). For any vector of integers 
(no, . ’ . , nk), where ni 1 -1 for alI i and ni > 0 for at 
least one i, there exists 

1) a Pm0 of type (nc, ’ ’ . I nk) for (A(z),B(Z)). 
2) a WPHFo of type (n,+l, e * . , nk+l) for (A(z),B(z)). 

n 

From Theorem 2.3, it follows that there are many 
possible choices for a PHFo or a WPHFo of a given type. 
As in the case of Pade approximants, it is desirable to 
have PHFo’s and WPHFo’s that are unique, at least up to 
a multiplicative constant. 

With X defined by (2.13), let 2’~~~. .,nk) be the 

(x+2) X (X+2) matrix whose first x+1 rows come from 
Sbw . . nk) and with last row given by 

b0,X+1, . . , ao,X-no+l, . . . , ak.X+l, . . , ak.X-ek+l] .(2.16) 

In addition, set 

dfno, .nk) - deVcn w ,nk)). 

When ni = 0 for all i, we define u!(~~, ,nk) - 0. 

(2.17) 

It is not hard to show that the nonsingularity of 
the generalized Sylvester matrix (2.16) results in PHFo’s 
that are unique up to multiplication by a nonzero scalar 
and in WPHFo’s that are unique up to multiplication on 
the right by nonsingular kxk matrices. What is surpris- 
ing, however, is that the existence and uniqueness of a 
PHFo and a WPBFo satisfying certain extra constraints 
give both necessary and sufficient conditions for the non- 
singularity of these matrices. Indeed, we have 

Theorem 2.4. 

(720, . . , 
Let (A(z),B(z)) be as in (2.4) and let 

nk), n; 2 -1, be a vector of integers. Then 
d(nw ,nk) + 0 if and only if 

1) a PHFo (P(z),Q(z)) of type (no, . . . , nk) is unique up 
to multiplication by a nonzero constant. In addition, the 
leading term, R(O), of the residual in condition II of PHFo 
is nonzero. 

2) there exists a WPHFr of type (n,+l, . . . ,nk+l) for 
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(R(z),B(z)) unique up to multiplication on the right by a 
nonsingular kXk matrix. 

n 

Theorem 2.4 is central to the results in this paper. 

3. Pad&Hermite Residual Sequences 

Corresponding to a similar notion introduced for 
the usual Pad6 approximants, a vector of power series 
P&), . a . > Adz)) is said to be normal (c.f., 
Paszkowski[lP]) if dcncu.. ,Bk~ # 0 for all n;. (Della Dora 

and Dicrescenzo [4] use the term perfect to describe this 
property). In the non-normal case, individual points 
(no, * * 1 , nk) having the property that dbo, ,nk) # 0 

will be called nonsingular points of the vector of power 
series. 

Given a vector of power series (2.1) and a vector of 
integers (n,, . . . ,nk), a corresponding PHF’o can be deter- 
mined by solving (2.14) using Gaussian elimination, say. 
This has the advantage that there need be no restriction 
on the input vector of power series. A similar remark 
may be made about the calculation of WpHFo’s via the 
solution to the system (2.15). However, neither of these 
calculations take into account the special structure of the 
coefficient matrices of the systems. The goal of this sec- 
tion is to describe a recurrence relation that will lead to 
an efficient algorithm for both the determination of a 
PHF’o or a WPHFo of any type. The resulting algorithm 
will take advantage of the special structure of the coeffi- 
cient matrix of the systems (2.14) and (2.15), and at the 
same time it will not, require any restrictions on the input. 
In particular, the assumption of normality will not be 
required. 

Given a vector of power series (2.1), along with a 
vector (no, * . . , nk) of nonnegative integers, permute the 
components so that 

NO) # 0, . , A(O) # 0, Aj(0) = 0, for j > / (3.3) 

and 

no> ... >nl, and nl+l< ... <nk. (3.4) 

Also, let 

no+ 1, if nt 2 no, 
M- 

{ m4nl, nk) f 2, otherwise. (3.5) 

and 
(np . . I I nk(‘)) = (no-M, nl-M, . . . , Q-M) (3.6) 

Along the line in (k+l)-space from (no(‘), . . . , nk(‘)) to 
(no, . ‘. , nk) define a sequence of points 

(Q), . . . , nko))t (np), . , nk”l)a . . 
(3.7) 

by letting (no(‘), . . . , nk(‘)) be the i-th nonsingular point 
along this line. 

Corresponding to the sequence (3.7), we introduce 
( mo(‘) . . . , I m& (m,(2) ) , . . . mk(2)) . . . (3.8) 

where 
,p, =n 6) if nf) 2 -1 I (3.9) 

and -1 otherwise. 

For i - 1, 2,(?., let (P”)(Z),&(‘)(Z)) be a PHFo of 
type (n@ . . . mk’) for (A(z),B(z)). Thus, according to 
Theorem 2’.4, thkre exists a power series R@)(z) such that 

A(z)p(‘)(z) + B(z)Q(‘)(z) = NJ+ W)(z) (3.10) 

where kf(‘) = rn$) + . . + rnk) and K(‘)(O) z 0. This 
PHFo is made unique by insisting that R(‘)(O) - 1 (c.f. 
Theorem 2.4). 

Definition 3.1 The sequence 

{R(“)(z)} , i- 1, 2, . . ~ (3.11) 

with R(‘)(O) = 1 is called the Pad&Hermite residual 
sequence for the vector of power series (A(z),B(z)). The 
sequence 

{(P”‘(Z),Q”‘(Z))}, i - 1, 2, . ) (3.12) 

is called the Pad&Hermite cofactor sequence. 
n 

Similarly, for i = 1, 2, . . . . let (U(‘)(z),vl’)(z)) be a 
WPHFr of type (mf)+l . . mk(i)+l) for (A(z)B(z)). 7 I 
Then, there exists a 1Xk matrix of power series h’)(z) 
such that 

A(z)U(')(z) + B(z)+'@)(z) = z~~)+~ +%+)(z) (3.13) 

where det(@)(O 
Y 

# 0. This WPHFr is made unique by 
insisting that V@ (0) = 1 (c.f. Theorem 2.4). 

Definition 3.2. The sequence 

{w+)(z)}, i = 1, 2, . . ) (3.14) 

is called the weak Pad&Hermite residual sequence for 
the vector of power series (A(z),B(z)). The corresponding 
sequence 

{(U”)(Z),v”‘(Z))}, i = 1, 2, . . ) (3.15) 

with fl)(O) - I is called the corresponding weak Pad& 
Hermite cofactor sequence. 

n 

The algorithm described in Section 4 for construct- 
ing a PHFo of type (no, - . * , nk) for (A(z),B(z)) involves 
the computation of all terms in the Pad&Hermite and 
weak Pad&Hermite cofactor sequences up to the point 
(no1 . . , nk). Theorem 3.3 below gives a relationship 
of the (i+l)-st terms of the sequences with the i-th terms, 
providing an effective mechanism for computing the 
sequences. 

For each integer i, let 

A:) = -1 - n ci) if I n p’ < -1 (3.16) 

and 0 otherwise. The following theorem represents main 
result of this section. Its proof depends heavily on the 
easy recognition of nonsingular points given in Theorem 
2.4. 

Theorem 3.3: The cofactor Pad&Hermite sequence along 
with the associated weak Pad&Hermite cofactor sequence 
f,r (A(z),B(z)) satisfy 
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where (P’(z),Q’(z)) is the PHFo for (R@)(z),W(‘)(.z)) of type 
. rn’k) which represents the nonsingular point 

;;bo;,.;;-;-ap), . , ~-l-At)) and (U’(z),V(z)) is its 
associated WPHFr. 

n 

Theorem 3.3 reduces the problem of determining a 
PHFo (or a corresponding WPKFo) to two smaller prob- 
lems: determine a PHFo and an associated WPHFr up to 
a nonsingular point (n$), * . . ,nk(i)), and then determine a 

g?; ,;-,!qi), . . . a 
VHFr) of 

, .s;-l-At)). 
type 

The overhead cost of 
each step of this iteration scheme is the cost of determin- 
ing the residual power series, along with the cost of com- 
bining the solutions, (i.e., the cost of multiplying out equa- 
tion (3.17)). Th’ is overhead cost is generally an order of 
magnitude less than the cost of simply solving the linear 
systems (2.14) or (2.15). 

In the special case when k - 1, a WPHFr is the 
same as a Pad6 fraction. In this case equation (3.13) is 
the same as 

A&)di)(z) + A,(z)++)(z) = z~(~)+~(~)+~+V+)(~) (3.18) 

;;~~j+\LJ$;)z)~)\;” is a Pad6 fraction of type 

w’;‘(z) = ,“ikv’(z) (3.19) 

with k(O) = 6e # 0, then by the uniqueness of the cofac- 
tor sequences it is easy to show that 

p+l)(,) s &--‘v’;)(z), Q@+l)(z) = &j;‘v”)(~), (3.20) 

and 

R@+‘fz) = &j;‘.$‘@). (3.21) 

Traveling from one nonsingular point to the next can then 
be shown to be power series division of one residual into 
the next. 

When k = 1, the Extended Euclidean algorithm for 
computing polynomial GCD’s is closely related to Pad6 
approximation (c.f., McEliece and Shearer [lo] or Cabay 
and Choi [3]). When, in addition, the input power series 
A&) and A,(z) are polynomials of degree m and n, respec- 
tively, then reversing the coefficients in equation (3.18) 
gives 

A*&)P’(‘)(z) -t A’,(z)Q’(‘)(z) = R’(‘)(z). (3.22) 

Here A’dz) = A~z-~).z”‘, . . . etc.. Equation (3.22) is 
similar. to th: type of equation found in the EEA applied 
to (A &),A r(z)). In fact, when we are calculating the 
Pad6 approximant of type (n,m), R’(‘)(z) is the i-th term 
of the remainder sequence calculated in the EEA while 
{P”“‘(z),Q *“‘(z)} is the i-th term of the corresponding 
cofactor sequence calculated in the EEA. Indeed, this is 
the primary reason for the naming convention of Defini- 
tions 3.1 and 3.2. 

4. The Algorithm: 

From the recurrence relation given in Theorem 3.3 
we construct an algorithm, PADEHERMITE, which can 
be summarized as follows. 

Algorithm PADELHERMITE: 

Input: A vector of power series 
udz), . . . , A&)) = (A(z),B(z)) and a vector of 
nonnegative integers (nQ . . , nk). 
output: A Pad&Hermite form of type 
(720, . . . , nk) for (A(z)B(z)). 

Step#l: Find the first nonsingular point along the 
(noI * - * , nk) off-diagonal in (k+I )-space. If this 
point is at (nd’), . . , @) , then return the 
unique PHFo of this type, along with the 
corresponding unique WPHFr associated with this 
form. This 
INITIALJ’ADE%R&& 

in a subroutine, 

Step#2: Determine the residuals of both the PHFo 
and the WPHFr at the present nonsingular point. 

Step#3: Using INITIAL.PADE_HERMITE, deter- 
mine the first nonsingular point for the residuals 
along the line specified by Theorem 3.3. 

Step#4: Combine the results (using Theorem 3.3) 
to obtain a PHFo and WPHFr at the next non- 
singular point. 

Step#5: Either terminate if successful, or iterate 
back to step #2. 

n 

The complexity of PADEHERMITE can be sum- 
marized by 

Theorem 4.1. The algorithm PADEJIERMITE requires 

O((k+l)‘(nt + . . + n;)) + O((k+1)35*~) (4.1) 

multiplications in F, where 

s = maz(.sO, si, . . . ), and 7 = maz(n,, . , nk). (4.2) 

In particular, the algorithm requires 

O((k+l)l(n,2 + . . + 72;)) 

multiplications in the normal case. 

(4.3) 

When n, = . . . = nk = n, the complexity of 
PADEHERMITE in the normal case is O((lc+1)‘.n2). If 
iV = (k+l).n is the size of the associated Sylvester 
matrix, then this says that the system (2.14) can be solved 
using O((k+l).N2) operations. This agrees with the 
results of Kailath et al[8] under the same normality 
assumptions. In the nonnormal case, however, their algo- 
rithm breaks down and so a method such as Gaussian 
elimination, with a cost of O((k+l)%e) operations is 
required. With the use of PADEJ-IERMITE however, 
even the existence of only one nonsingular point along the 
offdiagonal results in significant speedup. For example, if 
the point (n/Z, . , n/2) is the only nonsingular point 
on the main offdiagonal, then the cost of determining a 
PHFo of type (n, . . , n) is reduced by an approxinlal,e 
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factor of 4 (since we are solving two systems, each having 
a cost of O((k+1)2(n/2)s) operations). 
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