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ABSTRACT
We present a Las Vegas randomized algorithm to compute the

Smith normal form of a nonsingular integer matrix. For an A ∈
Zn×n , the algorithm requires O(n3(logn + log | |A| |)2(logn)2) bit
operations using standard integer and matrix arithmetic, where

| |A| | = maxi j |Ai j | denotes the largest entry in absolute value. Fast

integer and matrix multiplication can also be used, establishing

that the Smith form can be computed in about the same number

of bit operations as required to multiply two matrices of the same

dimension and size of entries as the input matrix.
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1 INTRODUCTION
Any nonsingular matrix A ∈ Zn×n is unimodularly equivalent to a

unique diagonal matrix S = diag(s1, s2, . . . , sn ) in Smith form. Here

the diagonal entries, the invariant factors of A, are positive with
s1 | s2 | · · · | sn , and unimodularly equivalent means there exist

unimodular (with determinant ±1) matricesU ,V ∈ Zn×n such that

UAV = S .
A natural goal for many computations on integer matrices is to

design algorithms that have about the same cost as multiplying to-

gether two matrices of the same dimension and size of entries as the

inputmatrix. Ifω is a valid exponent formatrixmultiplication— two

n × n matrices can be multiplied in O(nω ) operations from the do-

main of entries — then the target complexity is (nω log | |A| |)1+o(1)

bit operations, where | |A| | = maxi j |Ai j | denotes the largest entry
in absolute value, and the exponent 1 + o(1) indicates some miss-

ing logn and loglog | |A| | factors. For randomized algorithms, in

addition to stating the running time, we will indicate the type. A

Monte Carlo type algorithm is allowed to return an incorrect result

with probability at most 1/2. A Las Vegas type algorithm is allowed

to report failure with probability at most 1/2, and if failure is not

reported the output is certified to be correct.
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The previously fastest algorithm for Smith form is due to Kaltofen

and Villard [9]. They give a Las Vegas algorithm for computing

the characteristic polynomial in time (n3.2
log | |A| |)1+o(1) assuming

ω = 3, and in time (n2.695594
log | |A| |)1+o(1) assuming the currently

best known upper bound ω ≤ 2.3728639 for ω [5] and the best

known bound for rectangular matrix multiplication [6]. Using their

characteristic polynomial algorithm together with ideas of Gies-

brecht [7], they obtain a Monte Carlo algorithm for Smith formwith

the same running time. In this paper we give a Las Vegas algorithm

for Smith form in time (nω log | |A| |)1+o(1).
A Las Vegas algorithmwith the target complexity was previously

known for the determinant [12]. Like that algorithm, we utilize a

“dimension × precision ≤ invariant” compromise. By Hadamard’s

bound, | detA| = s1s2 · · · sn ≤ ∆n where ∆ = n1/2 | |A| |. Thus, the
number of invariant factors with bitlength between (1/2i ) ×n log∆
and (1/2i−1) × n log∆ is bounded by 2

i
. The determinant algo-

rithm [12] embeds A into a matrix

C :=


A
Bt I
...

. . .
B0 I

 ∈ Z
O (n)×O (n),

where t = O(logn) and the blocks Bi ∈ Z
O (2i )×n

are chosen ran-

domly, and then returns | detA| = (detH0)(detH1) · · · (detHt+1),

where

H =


Ht+1 ∗ · · · ∗

Ht · · · ∗
. . .

...
H0

 .
is the (row) Hermite form of A. With high probability, the part

of the determinant captured by Hi+1, which has about twice the

dimension as Hi , can be computed at a precision about half that

required to compute detHi . We remark that the diagonal blocks H∗
are not computed explicitly, and the offdiagonal blocks ∗ of H are

avoided entirely.

To obtain the Smith form and not just the determinant, and to

facilitate certification of the output, we take here a more structured

approach and compute a Smith massager for A. This is a tuple of
n × n integer matrices (U ,M,T , S) such that

B :=

[
A

In

] [
In
U In

] [
In M

T

] [
In

S−1

]
∈ Z2n×2n

(1)

is integral, with T unit upper triangular and S nonsingular and

in Smith form. The algorithm succeeds if we compute a maximal
Smith massager, meaning that S is the Smith form of A. Since (1)
implies (detB)(det S) = detA, we can conclude from the uniqueness

https://doi.org/10.1145/3326229.3326263
https://doi.org/10.1145/3326229.3326263


ISSAC ’20, July 20–23, 2020, Kalamata, Greece Stavros Birmpilis, George Labahn, and Arne Storjohann

of the Smith form that the massager is maximal if and only if B is

unimodular.

Our algorithm for computing the Smith form has three phases.

Phase 1 uses a Monte Carlo approach [4, Theorem 2.1] to compute

the largest invariant factor sn of A. Phase 2 iteratively computes a

Smith massager of A, together with the massaged matrix B in (1),

which will be maximal with probability at least 1/2. Phase 3 uses a

known algorithm [10] to assay if B is unimodular.

Phase 2 is the main part of our algorithm. It uses O(logn) itera-
tions to build a Smith massager that extracts more and more invari-

ant factors fromA. The algorithm begins by initializing (U ,M,T , S)
to be the trivial Smith massager, with U ,M ∈ 0

n×n
and T = S = In .

At the start of iteration i = 0, 1, 2, . . . we assume that the current

Smith massager is such that B in (1) has the same Smith form as

A but with the largest 2
i − 1 = 2

0 + 2
1 + · · · + 2

i−1
invariant fac-

tors replaced by 1. The goal at iteration i is then to compute and

extract the next largest 2
i
invariant factors. For example, at itera-

tions i = 0, 1 and 2, the largest 1, 2 and 4 invariant factors of the

current B are equal to (sn ), (sn−1, sn−2) and (sn−3, sn−4, sn−5, sn−6),

respectively. Section 3 shows how to recover the largest 2
i
invariant

factors of B with high probability by computing a projection B−1 J
for a randomly chosen J with column dimension O(2i ). We exploit

the fact that if s is a multiple of the largest invariant factor of B,
then the smallest 2

i
invariant factors of sB−1

correspond to the

largest 2
i
invariant factors of B. In sections 4 and 5 we show how to

compute a Smith massager that will extract the largest 2
i
invariant

factors from B, while in section 6 we show how to combine the

partial Smith massagers obtained at each iteration.

Cost model
Cost estimates are given using a function M(d) that bounds the
number of bit operations required to multiply two integers bounded

in magnitude by 2
d
. We use B(d) to bound the cost of integer gcd-

related computations such as the extended euclidean algorithm. We

can always take B(d) = O(M(d) logd). If M(d) ∈ Ω(d1+ϵ ) for some

ϵ > 0 then B(d) ∈ O(M(d)).
As usual, we assume thatM is superlinear and subquadratic. We

also assume that M(ab) ∈ O(M(a)M(b)) for a,b ≥ 1. We assume

that ω > 2, and to simplify cost estimates we make the assumption

that M(d) ∈ O(dω−1). This assumption simply stipulates that if

fast matrix multiplication techniques are used, then fast integer

multiplication techniques should also be used. The assumptions

stated in this paragraph apply also to B.

2 COMPUTATIONAL TOOLS
A key step during the iterations of Phase 2 of our Smith form

algorithm is to compute a projection B−1 J for a partially mas-

saged matrix B and a randomly chosen J . More specifically, we

will have an s ∈ Z>0 such that sB−1
is integral, and what we need

is Rem(sB−1 J , s), that is, the matrix sB−1 J with entries reduced

modulo s . In this section we show how to compute Rem(sB−1 J , s)
within the target complexity by reducing to a deterministic variant

of high-order lifting [10, Section 3] for linear system solving.

There are two issues that arise that prevent a direct application

of fast linear system solving. First, the massaged matrix B may have

some entries with large bitlength, adversely affecting the cost. In

Section 2.1 we recall a partial linearization technique that can be

used to obtain a matrix with smoothed entries that can be used in

lieu of B. Second, entries in sB−1 J may have bitlength much larger

than the bitlength of s . In section 2.2 we develop a deterministic

variant of integrality certification that allows Rem(sB−1 J , s) to be

computed more directly, without computing sB−1 J first.

2.1 Partial linearization
The number of bits in the binary representation of a positive integer

a is ⌊log
2
a⌋ + 1. Any integer a thus satisfies |a | ≤ 2

length(a) − 1

where

length(a) :=

{
1 if a = 0

⌊log
2
|a |⌋ + 1 otherwise

.

Forv an integer vector ormatrixwe define length(v) := length(| |v | |).
The cost of high-order lifting [10, Section 3] is sensitive to

length(A). This is an issue because some of the intermediate ma-

trices that we will need to give as input to the high-order lifting

algorithm will likely have some rows of large length, even though

the average row length is well bounded. In some cases, for an n × n
input matrix A, length(A) could be about n times as large as the

average row length. For the purposes of giving a concrete example,

and not considering such an extreme case, consider the input matrix

A =


7 4 9 10

1 1 3 7

58538 43609 77404 7995

72526300 20544909 66620465 80378234

 .
The lengths of the rows of A are [4, 3, 17, 27]. Thus length(A) = 27.

But the average length is bounded by d := ⌈(4 + 3 + 17 + 27)/4⌉ =

13.With some adjustment, the partial linearization technique [8,

Section 6] developed for polynomial matrices can be applied in the

integer setting. Assuming integers are represented in binary, the

technique allows to produce from A without computation a new

matrix

Ā =



7 4 9 10 0 0 0

1 1 3 7 0 0 0

1194 2649 3676 7995 −8192 0 0

2524 7565 3121 6522 0 −8192 0

7 5 9 0 1 0 0

661 2507 8132 1619 0 1 −8192

1 0 0 1 0 0 1


that satisfies | |Ā| | ≤ 2

d
and can be used in lieu of A. The next

theorem summarizes the special case of partial linearization that

we require.

Theorem 1. Let A ∈ Zn×n have average row length bounded by
d ∈ Z≥0. If the (2d )-adic expansions of entries of A are available, we
can construct without computation from A a new matrix Ā ∈ Zn̄×n̄

such that n̄ < 2n, | |Ā| | ≤ 2
d , det Ā = detA, and, if A is nonsingular,

with the principal n × n submatrix of Ā−1 equal to A−1.

2.2 Integrality certification
Any rational number can be written as an integer and a proper

fraction. For example,

9622976468279041913

21341

= 450914974381661 +
14512

21341

,
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where 450914974381661 is the quotient and 14512 is the remainder

of the numerator with respect to the denominator. A similar con-

struction replaces the quotient with a truncated p-adic expansion of

the fraction, where p should be relatively prime to the denominator.

For example,

9622976468279041913

21341

= 9035820194880943821−
10453

21341

×2
64. (2)

In our case, we only require the remainder and not the quotient.

Multiplying (2) by 21341 shows that

14512 = −10453 × 2
64

mod 21341.

The same idea works for integer matrices. Suppose we are given

a nonsingular integer matrixA ∈ Zn×n , a B ∈ Zn×m and an s ∈ Z>0.

Then integrality certification [12, Section 11] can test if sA−1B is

integral, and, if so, return the matrix Rem(sA−1B, s). High-order lift-
ing is used to achieve a cost that is sensitive to length(s)+ length(B),
rather than length(sA−1B). The algorithm in [12] is randomized.

Here we show how to solve the integrality certification problem de-

terministically using some recently developed techniques, provided

that detA ⊥ 2.

Our approach is to first use double-plus-one lifting [10, Section 3]

to compute a high-order residue R ∈ Zn×n such

A−1 = D +A−1R × 2
h

(3)

for some h such that

2
h > 2snn/2 | |A| |n−1 | |B | |. (4)

The matrix D, which will satisfy | |D | | ≤ (0.6)2h [10, Theorem 5],

is not needed and not computed explicitly. If the dimension ×

precision compromise

m × (log s + log | |B | |) ∈ O(n(logn + log | |A| |)) (5)

holds, then by [10, Theorem 8] such an R can be computed in time

O(nω M(logn + log | |A| |) logn). (6)

Now multiply equation (3) on the right by sB to see that

sA−1B = sDB +A−1(sRB) × 2
h . (7)

The next step is to use deterministic linear solving [1, Section 3] to

compute Rem(A−1(sRB), 2ℓ) for some ℓ such that

2
ℓ > 2n | |A| |(0.6sn | |B | |). (8)

Assuming (5), this can also be done in time (6) [1, Corollary 7].

Adjusting slightly the argument of the proof of [12, Theorem 46]

to account for the fact that D in (3) satisfies | |D | | ≤ (0.6)2h in-

stead of | |D | | ≤ 2
h
, it can be shown, for the choices of h and ℓ

in (4) and (8), respectively, that if C is set to be the matrix equal

to Rem(A−1(sRB), 2ℓ) but with entries reduced in the symmetric

range modulo 2
ℓ
, then C = sA−1RB (and hence sA−1RB is integral)

if and only if | |C | | < 0.6sn | |B | |. Considering (7), it then follows that

Rem(C × 2
h, s) is equal to Rem(sA−1B, s).

We will need to apply integrality certification with an input

matrix A that has skewed row lengths. To maintain a good com-

plexity, we can work with the partial linearization Ā ∈ Zn̄×n̄ of

Theorem 1. Compute a high-order residue R̄ for Ā. Let B̄ ∈ Zn̄×m

be equal to B but augmented with n̄ − n zero rows. Then the first n

rows of Rem(Ā−1(sR̄B̄), 2ℓ) comprise an integrality certificate for

sA−1B. The running time is as in (6) but with log | |A| | replaced by

the average of the lengths of the rows. This gives the following.

Theorem 2. Let A ∈ Zn×n satisfying detA ⊥ 2, s ∈ Z>0, and
B ∈ Z/(s)n×m be given. There exists an algorithm that will test
if sA−1B is integral, and, if so, return the matrix Rem(sA−1B, s). If
m × log s ∈ O(n(d + logn)), where d is the average of the lengths of
the rows of A, then the cost is O(nω M(d + logn) logn).

3 LARGEST INVARIANT FACTORS
In this section we show how the largest r invariant factors of a non-
singular matrix A ∈ Zn×n can be recovered with high probability

by randomly sampling r +O(log r ) vectors from the columns space

ofA−1
. The method assumes we know an s ∈ Z>0 that is a multiple

of the largest invariant factor sn of A.
LetU ,V ∈ Zn×n be unimodularwith S = UAV = diag(s1, . . . , sn )

the Smith form of A. Then the reverse Smith form of sA−1 ∈ Zn×n

is equal to sS−1 = diag(s/s1, . . . , s/sn ). By reverse Smith form we

simply mean that the order of both the rows and the columns is

reversed. The smallest invariant factor is thus located in the last

row and column. Since the largest invariant factor s/s1 of the Smith

form of sA−1
is a divisor of s , the Smith form of sA−1

can be com-

puted modulo s over Z/(s). For convenience, should a diagonal

entry in the Smith form over Z/(s) vanish modulo s , we replace it
with s . For example, the reverse Smith form of diag(1, 2, 8, 16, 16)

over Z/(16) is equal to diag(16, 16, 8, 2, 1).

To recover only the largest r invariant factors of A, the idea is
to choose J ∈ Z/(s)n×r uniformly at random and hope that the

submatrix comprised of the last r rows of the reverse Smith form

of sA−1 J ∈ Z/(s)n×r is equal to S1 = diag(s/sn−r+1, . . . , s/sn ). To
ensure a high probability of success, we adjust the recipe slightly

by augmenting J with a small number of additional columns k . The
main result of this section is:

Theorem 3. Let A ∈ Zn×n be nonsingular with Smith form S =

diag(s1, . . . , sn ). Let s ∈ Z>0 be a multiple of sn . If J ∈ Z/(s)n×(r+k )

is chosen uniformly at random for r ≥ 1 and k ≥ 2, then, with proba-
bility at least 1− 1

2
k−1

, the trailing r ×r submatrix of the reverse Smith
form of sA−1 J over Z/(s) is equal to S1 = diag(s/sn−r+1, . . . , s/sn ).

Before we prove Theorem 3, we establish a property of J ∈

Z/(s)n×(r+k ) that is sufficient to ensure success. In the following

lemma, recall thatU ,V ∈ Zn×n are unimodular matrices such that

S = UAV , and thus sA−1 = VsS−1U .

Lemma 4. If the r × (r + k) submatrix comprised of the last r rows
of U J ∈ Zn×(r+k ) is right equivalent to

[
0r×k Ir

]
over Z/(s),

then the trailing r × r submatrix of the reverse Smith form of sA−1 J
over Z/(s) is equal to S1 = diag(s/sn−r+1, . . . , s/sn ).

Proof. Decompose sS−1 = diag(S2, S1) where S1 is as in the

statement of the theorem, and S2 = diag(s/s1, . . . , s/sn−r ).
We work entirely over Z/(s). By assumption, we have that

U J ≡R

[
U1 U2

Ir

]
(9)

forU1 ∈ Z/(s)
(n−r )×k

andU2 ∈ Z/(s)
(n−r )×r

. Since all entries in S2

are divisible by the largest invariant factor s/sn−r+1 of S1, it will
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be sufficient to show that

sA−1 J ≡

[
S2U1

S1

]
.

We have

sA−1 J = V (sS−1)U J (10)

≡L (sS−1)U J (11)

≡R (sS−1)

[
U1 U2

Ir

]
(12)

=

[
S2U1 S2U2

S1

]
≡L

[
S2U1

S1

]
(13)

Here, (10) follows from S = UAV , (11) because V is unimodular,

and (12) from (9). To obtain (13), we can use a unimodular left

transformation to zero out the block S2U2 since its entries are all

multiples of the diagonal entries in S1. □

We need two additional technical lemmas before proving the

main theorem.

Lemma 5. If k ≥ 1, t ≥ 0 and 0 < x ≤ 1/2, then
∏k+t

i=k
(
1 − x i

)
≥

1 − 2xk + xk+t .

Proof. We will use induction on t . For t = 0 the inequality is

trivially true. We assume that

∏k+t
i=k

(
1 − x i

)
≥ 1 − 2xk + xk+t for

fixed t , and we need to show the same for t ← t + 1.

k+t+1∏
i=k

(
1 − x i

)
= (1 − xk+t+1)

k+t∏
i=k

(
1 − x i

)
≥ (1 − xk+t+1)(1 − 2xk + xk+t )

= 1 − 2xk + xk+t − xk+t+1 + 2x2k+t+1 − x2(k+t )+1

= 1 − 2xk + xk+t+1

(
1 +

1

x
− 2 + 2xk − xk+t

)
≥ 1 − 2xk + xk+t+1

In the last step we used that x ≤ 1/2. □

Lemma 6. If k ≥ 2, then ζ (k + 1) − 1 < 2
−k , where ζ denotes the

Riemann zeta function.

Proof. The lemma inequality is equivalent to:

ζ (k + 1) − 1 < 2
−k ⇔

∞∑
n=2

1

nk+1

< 2
−k ⇔

∞∑
n=2

(
2

n

)k+1

< 2.

Since the left-hand side of the last inequality is a decreasing function

on k , it suffices to show the claim for k = 2, i.e., ζ (3) − 1 < 1

4
. □

Proof (of Theorem 3). We start by defining the following event.

FRp : For a prime p that divides s , the last r rows of the random

matrix J ∈ (Z/(s))n×(r+k ) have full row rank over Z/(p).

If the last i rows of J over Z/(p) are linearly independent, then they

span a vector space containing pi rows. The probability that an

additional row avoids that space is (1 − pi/pr+k ), and thus

Pr[FRp ] =
r+k∏
j=k+1

(
1 −

1

p j

)
.

The above result has already been shown and extensively used in

the literature [2, 3]. Furthermore, by applying Lemma 5, we obtain

Pr[¬FRp ] ≤ 2

1

pk+1

. (14)

Next, we define the event described by Lemma 4.

FRU : For a matrixU ∈ Zn×n , the last r rows of the random matrix

U J ∈ (Z/(s))n×(r+k ) are right equivalent to
[

0r×k Ir
]

over Z/(s).

A matrix J is right equivalent to
[

0r×k Ir
]
over Z/(s) if and

only if it has full row rank over Z/(p) for all primes p that divide s .
Therefore,

Pr[¬FRIn ] ≤
∑
p |s

p prime

Pr[¬FRp ] (15)

≤ 2

∞∑
p=2

1

pk+1

(16)

= 2(ζ (k + 1) − 1) < 2
1−k . (17)

We applied the union bound in (15), equation (14) in (16), and

Lemma 6 in (17).

Finally, multiplying matrices from Z/(s)n×(r+k ) with a unimod-

ular matrix U ∈ Zn×n is an isomorphism back to (Z/(s))n×(r+k ),
which implies that Pr[FRIn ] = Pr[FRU ]. So, according to Lemma 4,

the probability described in Theorem 3 must be at least Pr[FRU ] =
Pr[FRIn ] > 1 − 1

2
k−1

. □

4 PROJECTION BASIS
Let A ∈ Zn×n be nonsingular. In Section 3 we showed that the

projection A−1 J , for a well chosen integer matrix J , can reveal the

largest r invariant factors of A. In this section we show how these

invariant factors can be extracted from A to produce a matrix B
that has the same Smith form as A but with the r largest invariant
factors replaced by trivial ones.

For any J ∈ Zn×r , the set

Proj(A, J ) := {v ∈ Z1×n | vA−1 J ∈ Z1×r }

forms an integer lattice. A basis of Proj(A, J ) is a matrix H ∈ Zn×n

such that the set of all integer linear combinations of rows of H is

equal to Proj(A, J ). Bases of Proj(A, J ) are unique up to left equiv-

alence. For example, a basis of Proj(A, 0n×∗) is In , while a basis of
Proj(A, In ) is given by A itself.

Lemma 7. Let A ∈ Zn×n be nonsingular and J ∈ Zn×r . If H is a
basis of Proj(A, J ), then AH−1 is integral.

Proof. Since the rows of A belong to Proj(A, J ), there exists a
B ∈ Zn×n such that A = BH , hence AH−1 = B is integral. □

The next two lemmas follow directly from the definition of

Proj(A, J ).

Lemma 8. If s ∈ Z>0 is such that sA−1 J is integral, and P =
Rem(sA−1 J , s), then

Proj(A, J ) = Proj(sI , P) = {v ∈ Z1×n | Rem(vP, s) = 0}.

Lemma 9. Let U ∈ Zn×n be unimodular. Then H is a basis of
Proj(AU −1, J ) if and only if HU is a basis of Proj(A, J ).
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Our final lemma will be used in the next section to design an al-

gorithm for computing a Smith massager which extracts the largest

r invariant factors of a matrix.

Lemma 10. Let A ∈ Zn×n be nonsingular with Smith form S =

diag(S2, S1), where S1 ∈ Z
r×r and S2 ∈ Z

(n−r )×(n−r ), and J ∈ Zn×r .
If there exists a unimodular matrix U such that H = diag(In−r , S1)

is a basis of Proj(AU −1, J ), then the Smith form of AU −1H−1 is
diag(Ir , S2).

5 MAXIMAL INDEX SMITH MASSAGER
In this section we combine all the results from the previous sections

to present a randomized algorithm for the Problem IndexMassager
shown in Figure 1. We begin with the following definition.

Definition 11 (Index-(m, r ) Smith massager). Let B ∈ Z2n×2n

be nonsingular with the shape

B =

[
A ∗

In−m
∗ ∗

]
.

Form, r ∈ Z≥0 such thatm + r ≤ n, an index-(m, r ) Smith massager

for B is a tuple (U ,M,T , S) ∈ (Zr×n,Zn×r ,Zr×r ,Zr×r ) such that the
matrix

C := B


In

I
U Ir

Im



In M

I
T

Im



In

I
S−1

Im

 (18)

is integral, with S nonsingular and in Smith form, and T unit upper
triangular. We say that (U ,M,T , S) is maximal for B if S is comprised
of the r largest invariant factors of the Smith form of B.

Notice that whenm = 0 the matrix B is equal to diag(A, In ). When,

in addition, r = n, an index-(m, r ) Smith massager for diag(A, In )
corresponds to a Smith massager for A as defined in the introduc-

tion.

IndexMassager(B,n,m, r , s, ϵ)

Input: B, n,m and r are as in Definition 11. In addition, s ∈ Z>0

and ϵ is such that 0 < ϵ < 1.

Output: An index-(m, r ) Smithmassager (U ,M,T , S) forBwith

T = Ir , entries in U and M reduced modulo s , and Sr r a
divisor of s .

Note: If s is a positive integer multiple of the largest invariant

factor of B, and the last n rows and columns of B−1
are

integral, then a maximal index-(m, r ) Smith massager for

B is returned with probability at least 1 − ϵ .

Figure 1: Problem IndexMassager

In the design of the algorithm we are assuming that s is a multi-

ple of the largest invariant factor of B and that the last n rows and

columns of B−1
are integral. If, during the course of the algorithm,

we detect that either of these conditions is not satisfied then we sim-

ply return the trivial index-(m, r ) Smithmassager (0r×n, 0n×r , Ir , Ir )
in order to satisfy the output requirements of the problem.

As shown in Section 4, we can “massage” away a block of the

largest invariant factors of B by computing a basis of Proj(B, J ) for
a well chosen

J :=

[
J1
J2

]
∈ Z(n+n)×r .

Note that under the assumption that the last n columns of B−1
are

integral, the basis Proj(B, J ) will remain invariant of the choice of

entries in the block J2 ∈ Z
n×r

. For this reason, we set J2 to be the

zero matrix. Entries in J1 are chosen independently and uniformly

at random from Z/(s).
Next, we use the algorithm supporting Theorem 2 to check if

sB−1 J is integral, and, if so, compute the projection

P := Rem(sB−1 J , s) =

[
P1

P2

]
∈ Z/(s)(n+n)×r .

Under the assumption that the last n rows of B−1
are integral, we

expect P2 to be the n × r zero matrix. If sB−1 J is determined not to

be integral, or P2 is not the zero matrix, then we abort and return

the trivial index-(m, r ) massager for B.
At this point, by Lemma 8, we have reduced the problem of

computing a basis of Proj(B, J ) to that of computing a basis of

Proj(sI , P). A basis of Proj(sI , P) can be computed as follows. First,

using the Smith form algorithm from [11, Section 7], compute

matrices U ∈ Zr×n and V ∈ Zr×r , such that detV ⊥ s and

D := Rem(−UP1V , s) is congruent to the reverse Smith form of

P1 ∈ Z
n×r

over Z/(s). Then, we have the relations

−UP1V = D mod s and P1V = MD mod s,

for some integer matrixM ∈ Zn×r . We can put those two together

and obtain 
In

I
−U Ir

Im



P1

I
I
I

 V =

MD
I
D
I

 mod s .

Next, we apply a unimodular left transformation to zero out the

blockMD, and we take right equivalence to omit V .
In −M

I
Ir

Im



In

I
−U Ir

Im



P1

I
I
I

 ≡R

I
I
D
I

 mod s (19)

Finally, define S := sD−1
, which will be in regular Smith form,

and notice that S is a basis of Proj(S, Ir ) = Proj(sI ,D), which cor-

responds to the non-zero part of the matrix in the right-hand side

of (19). Therefore,
In

I
S

Im



In −M

I
Ir

Im



In

I
−U Ir

Im

 (20)

must be a basis of Proj(sI , P) according to Lemma 9, since the two

matrices containing M and U are unimodular. Postmultiplying B
by the inverse of this basis results in an integer matrix according

to Lemma 7. That is,

C := B


In

I
U Ir

Im



In M

I
Ir

Im



In

I
S−1

Im

 .
Therefore, matrices (U ,M, Ir , S) form an index-(m, r ) Smith mas-

sager in accordance with Definition 11.
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Theorem 12. If r × log s ∈ O(n(d + logn)), where d is the av-
erage of the lengths of the rows of B, and ϵ = 1

8r , then Problem
IndexMassager can be solved in time O(nω B(d + logn) logn).

Proof. The correctness of the algorithm follows directly from

the preceding discussion. The proposed massager fits the descrip-

tion of Definition 11. We achieve the probabilistic result, for ϵ = 1

8r ,

by exploiting Theorem 3. Instead of working with the projection

sB−1 J ∈ Z2n×r
, we augment J with k := log

2
r + 4 columns. After

the Smith form computation, we keep only the last r rows ofU , the

last r columns of M , and the r largest invariant factors of S . This
massager will be maximal with probability at least 1− 1

2
k−1
= 1− 1

8r .

Finally, regarding the running time, the algorithm consists of

only two computational parts. The first is to test if sB−1 J is integral,
and, if so, compute P . By Theorem 2 this can be done in time

O(nω M(d + logn) logn). The second is the reverse Smith form

computation: by [11, Corollary 7.17] which can be done in time

O(nω B(d + logn) logn), after simplifying the cost estimate using

our assumptions on B. □

5.1 Reduced index Smith massager
In this subsection, we introduce the notion of the reduced Smith

massager, which keeps the overall size of the matrices well bounded.

Denote by U rmod S the matrix obtained from U by reducing

entries in row i modulo Sii , 1 ≤ i ≤ r . Similarly, we denote by

M cmod S the matrix obtained fromM by reducing entries in col-

umn j modulo Sj j , 1 ≤ j ≤ r .

Definition 13 (Reduced index-(m, r ) Smith massager). Let
(U ,M,T , S) be an index-(m, r ) Smith massager for B ∈ Z2n×2n as in
Definition 11. We say that (U ,M,T , S) is reduced if U = U rmod S ,
M = M cmod S and T = ((T − Ir ) cmod S) + Ir

Lemma 14. Suppose (U ,M,T , S) is an index-(m, r ) Smith massager
for B ∈ Z2n×2n as in Definition 11. Let U ′ = U rmod S and M ′ =
M cmod S . LetT ′ be the matrix obtained from −U ′M ′ cmod S except
with diagonal entry T ′ii reset to 1 when Sii = 1, 1 ≤ i ≤ r . Then
(U ,M ′,T , S) and (U ,M,T ′, S) are index-(m, r ) massagers for B, and
(U ′,M ′,T ′, S) is a reduced index-(m, r ) Smith massager for B.

Proof. Without loss of generality, in order to simplify the pre-

sentation, we consider the case of an index-(0,m) Smith massager.

By multiplying together the first three matrices in (21) we obtain

B =


A AM

I
Ir

U (T +UM)



In

I
Ir

S−1

 .
Note that the property that AMS−1

is integral is equivalent to

AM cmod S being the zero matrix. But then A(M cmod S) cmod S
is also the zero matrix. This shows that (U ,M ′,T , S) is an index

massager. A similar argument shows that (U ,M,T ′, S) is an index

massager. By the definition of T ′,

(T ′ + (U rmod S)(M cmod S)) cmod S

is also the zero matrix. Since T is unit upper triangular and also

(T +UM) cmod S is the zero matrix, we have that −UM cmod S is

unit upper triangular, except that the i’th diagonal entry will be

zero for Sii = 1. Using the property that S11 | S22 | · · · | Smm it

follows that T ′ is also unit upper triangular. □

6 MAXIMAL SMITH MASSAGER
In this section we develop a randomized algorithm for computing a

Smith massager for a nonsingularA ∈ Zn×n . In section 6.1 we show

how to combine an index-(0,m) and index-(m, r ) Smith massager to

obtain an index-(0,m + r ) Smith massager. The algorithm is given

in Section 6.2 with proof of correctness and running time given in

Sections 6.3 and 6.4, respectively.

6.1 Combining index massagers
We show how an index-(0,n) Smith massager for diag(A, In ) can be

computed in a block iterative fashion. Suppose we have an index-

(0,m) Smith massager (U ,M,T , S) for diag(A, In ). Then

B :=


A
I
Ir

Im



In

I
Ir

U Im



In M

I
Ir

T



In

I
Ir

S−1

 (21)

is integral. Let (U ′,M ′,T ′, S ′) be an index-(m, r ) Smith massager

for B. Then

C := B


In

I
U ′ Ir

Im



In M ′

I
T ′

Im



In

I
S ′−1

Im

 (22)

is integral. A direct computation shows that the product of the first

trio of matrices post-multiplying diag(A, In ) in (21) with the second

trio of matrices post-multiplying B in (22) is equal to
In

I
U ′ Ir
U Im



In M ′ M

I
T ′ −U ′M

T



In

I
S ′−1

S−1

 . (23)

Thus, the result of post-multiplying diag(A, In ) by the combined

trio in (23) is integral. The next result follows as a result of the

above discussion and as a corollary of Lemma 14.

Theorem 15. Let (U ,M,T , S) be a reduced index-(0,m) Smith
massager for diag(A, In ), and let (U ′,M ′,T ′, S ′) be a reduced index-
(m, r ) Smith massager for the matrix B in (21). If S ′r r is a divisor of
S11, then a reduced index-(0,m + r ) Smith massager for diag(A, In )
is given by (U ′′,M ′′,T ′′, S ′′) where

U ′′ =

[
U ′

U

]
, M ′′ =

[
M ′ M

]
, S ′′ =

[
S ′

S

]
,

and

T ′′ =

[
T ′ −U ′M cmod S

T

]
.

6.2 Maximal Smith massager algorithm
Algorithm SmithMassager(A) is shown in Figure 2. For conve-

nience, assume for the moment that n is equal to one less than

a power of two. Phase 2 of the algorithm initializes B := diag(A, In )
and (U ,M,T , S) ∈ (Z0×n,Zn×0,Z0×0,Z0×0) to be the trivial index-

(0, 0) Smith massager, and then uses log
2
(n + 1) applications of

Theorem 15 to update (U ,M,T , S) to be an index-(0,n) Smith mas-

sager for diag(A, In ). The technique of Lemma 14 is used to keep
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the intermediate index massagers reduced. At the beginning of iter-

ation i of the for-loop, (U ,M,T , S) is a reduced index-(0,m) Smith

massager wherem = 2
i−1 − 1. Iteration i then updates (U ,M,T , S)

to be a reduced index-(0,m + r ) Smith massager where r = 2
i−1

.

At the end of phase 2, the algorithm has computed a Smith

massager (U ,M,T , S) for A. It remains only to assay if (U ,M,T , S)
is maximal. This is done by checking that the massaged matrix B is

unimodular.

SmithMassager(A)
Input: Nonsingular A ∈ Zn×n with detA ⊥ 2.

Output: A reduced maximal Smith massager for A or FAIL.
Note: FAIL will be returned with probability less than 1/2.

(1) [Compute largest invariant factor of A]
s := the largest invariant factor sn of A
# s may be a proper divisor of sn with probability ≤ 1/4.

(2) [Compute an index-(0,n) Smith massager for diag(A, In )]
(U ,M,T , S) ∈ (Z0×n,Zn×0,Z0×0,Z0×0)

B := diag(A, In )
for i = 1 to ⌈log

2
(n + 1)⌉ do

m := 2
i−1 − 1

r := min(2i−1,n −m)
if i > 1 then s := S11

(a) [Compute an index-(m, r ) massager of B and reduce]

(U ′,M ′, I , S ′) := IndexMassager(B,m, r , s, 2−(i+2))

U ′,M ′ := U ′ rmod S ′,M ′ cmod S ′

T ′ := −U ′M ′ cmod S ′, 0 diagonal entries replaced by 1

(b) [Augment massager and reduce]

U ,M, S :=

[
U ′

U

]
,
[
M ′ M

]
,

[
S ′

S

]
T :=

[
T ′ −U ′M cmod S

T

]
(c) [Apply massager]

B :=

[
A AMS−1

I
U (T +UM)S−1

]
(3) [Certify that (U ,M,T , S) is maximal]

if | detB | = 1 then
return (U ,M,T , S)

else
return FAIL

Figure 2: Algorithm SmithMassager

6.3 Correctness
We begin with two lemmas regarding properties of the massaged

matrix B in phase 2(c) of the algorithm. Lemma 16 is a corollary of

Lemma 10.

Lemma 16. If (U ,M,T , S) is a maximal index-(0,m) Smith mas-
sager for diag(A, In ) with Smith form diag(In, S

′, S), then the Smith
form of the massaged matrix B ∈ Z2n×2n as in (21) is diag(In, Im, S

′).

Lemma 17. If (U ,M,T , S) is a maximal index-(0,m) Smith mas-
sager for diag(A, In ) and B ∈ Z2n×2n the massaged matrix as in (21),
then the last n rows and columns of B−1 are integral.

Proof. Notice that the augmenting operation of Theorem 15 can

also be reversed to separate a Smith massager. Wewill use induction

onm. The base case, form = 0, holds vacuously. Next, assume that

the statement of the lemma holds for a maximal index-(0,m) Smith

massager (U ,M,T , S). This means that: (1) the largest invariant

factor of the massaged matrix B is sn−m according to Lemma 16,

and: (2) the last n rows of B−1
are integral according to the induc-

tion hypothesis. Now, let (U ′,M ′,T ′, S ′) be a maximal index-(m, 1)
Smith massager for B. The product of the trio of matrices defined by

(U ,M,T , S) and the product defined by (U ′,M ′,T ′, S ′) correspond
to a trio of matrices defined by a maximal index-(0,m + 1) Smith

massager. The inverse of the massaged matrix C will be
In

I
sn−m

Im



In −M ′

I
1

Im




In
I

−U ′ 1

Im

 B−1.

We see that the largest invariant factor of the product of the last

three matrices is still sn−m . In addition, the row of the product that

is multiplied with sn−m , is the only one from the last n rows of

B−1
to which elements from the non-integral part of B−1

are added.

Of course, multiplying with the matrix’s largest invariant factor

ensures that the last n rows of C−1
remain integral.

Finally, the last n columns are necessarily integral since they are

the product of integral parts. □

Theorem 18. Algorithm SmithMassager shown in Figure 2 is
correct. The algorithm returns FAIL with probability less than 1/2.

Proof. The correctness of the algorithm is certified by the uni-

modularity check in phase 3. Regarding the probability of success,

we define the following events.

• E0: The largest invariant factor s computed in phase 1 is not

correct.

• Ei : At iteration i = 1, . . . , ⌈log
2
(n + 1)⌉ of phase 2, massager

(U ,M,T , S) is not maximal.

In other words, in order to prove the theorem, it is enough to show

that Pr[E ⌈log
2
(n+1)⌉ ] < 1/2. From the specification of phase 1, the

routine IndexMassager, and Lemma 17, we obtain that

Pr[E0] ≤
1

4

and Pr[Ei |¬Ei−1] ≤ 2
−(i+2).

Furthermore,

Pr[Ei ] = Pr[Ei |¬Ei−1] Pr[¬Ei−1] + Pr[Ei |Ei−1] Pr[Ei−1]

≤ Pr[Ei |¬Ei−1] · 1 + 1 · Pr[Ei−1]

≤ 2
−(i+2) + Pr[Ei−1].

So, the probability that the Algorithm SmithMassager returns FAIL
is bounded by

Pr[E ⌈log
2
(n+1)⌉ ] ≤

⌈log
2
(n+1)⌉∑
i=1

2
−(i+2) + Pr[E0] <

∞∑
i=1

1

2
i+2
+

1

4

=
1

2

.

□
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6.4 Complexity
We begin by bounding the cost of phases 2(b) and 2(c). Lemma 19

presents a subroutine that computes matrix B in phase 2(c), and

Lemma 20 a subroutine that realizes the construction of Theorem 15

in phase 2(b).

Lemma 19. There exists a procedure that takes a reduced index-
(0,m) Smith massager (U ,M,T , S) for diag(A, In ), and returns a ma-
trix B as in (21). The running time of the procedure isO(nω M(logn+
log | |A| |).

Proof. It is enough to prove the claim form = n. We have that

B =

[
A AMS−1

U (T +UM)S−1

]
.

The cost-dominating operation is the productUM ∈ Zn×n .
Recall that (det S) | (detA), and that the entries in row i of matrix

U and in column i of matrixM are reduced modulo Sii . Thus, for
an X := 2

h ≥ ⌈n1/2 | |A| |⌉, the matricesU andM can be written as

their X -adic expansions (of length n),

U = U0 + · · · +Un−1X
n−1

and M = M0 + · · · +Mn−1X
n−1,

with Ui and Mi reduced modulo X . This gives the following ex-

pression for their product:UM =
∑n−1

i , j=0
UiMjX

i+j
. Of course, it is

impossible to perform n2
matrix multiplications within our target

complexity. Instead, we observe that since the rows or columns of

both matrices are reduced modulo the invariant factors of A, then
the higher-order coefficients of the expansion must be sparser.

According to [1, Lemma 17], if we remove the top zero rows of

eachUi ∈ Z/(X )
n×n

to obtain a Ūi ∈ Z/(X )
∗×n

, then the matrix

Ū :=


Ū0

...

Ūn−1


has at most 2n rows. The same holds for the number of columns of

the matrix

M̄ :=
[
M̄0 · · · M̄n−1

]
,

where each M̄i ∈ Z/(X )
n×∗

is produced by removing the leading

zero columns from each component of the X -adic expansion ofM .

We can multiply Ū and M̄ in O(nω M(logn + log | |A| |) and obtain

the (at most) 2n × 2n matrix
Ū0M̄0 · · · Ū0M̄n−1

...
. . .

...

Ūn−1M̄0 · · · Ūn−1M̄n−1

 . (24)

The above matrix contains the result of all the UiMj products,

as they are equal to Ūi M̄j along with some additional zero rows

and columns. Finally, after multiplying each Ūi M̄j with X i+j
, we

computeUM by adding all the products together, while taking into

account their additional zero rows and columns. □

Lemma 20. The reduced index-(0,m + r ) massager of Theorem 15
can be computed in time O(nω M(logn + log | |A| |)).

Proof. The only nontrivial computation of Theorem 15 is the

productU ′M ∈ Zr×m , and the required complexity can be achieved

by following the same technique as in Lemma 19. □

Theorem 21. The running time of the Algorithm SmithMassager
shown in Figure 2 is O(nω B(logn + log | |A| |) (logn)2).

Proof. Phase 1 can be done in timeO(nω B(logn+log | |A| |) logn)
using the Monte Carlo approach of [4, Theorem 2.1] combined

with fast linear system solving [1, Corollary 7] and rational num-

ber reconstruction. Phase 2 consists of O(logn) iterations of the
IndexMassager algorithm. SincematrixU is always reduced rmod S ,
the average of the lengths of the rows of U , and consequently of B,
isO(logn + log | |A| |). Hence, phase 2 requires timeO(nω B(logn +
log | |A| |)(logn)2). Finally, according to [10, Section 4], the unimod-

ularity check in phase 3 can be performed in time O(nω M(logn +
log | |A| |) logn) . □

7 AN ALGORITHM FOR SMITH FORM
Given a nonsingular input matrix A ∈ Zn×n , we first compute [1]

the 2-Smith form Seven = diag(2e1 , . . . , 2en ) of A, where 2
ei

is

the largest power of 2 that divides the i-th invariant factor of A,
together with Aodd such that detAodd ⊥ 2, | |Aodd | | ≤ n | |A| |, and
AoddSeven ≡R A. Then, we compute the Smith form Sodd of Aodd
with Algorithm SmithMassager and return SoddSeven.

We remark that the algorithms in [1] were analysed under a more

restrictive cost model than the one used in this paper. Replacing

the subroutine in [1, Section 6] with the integer analogue of the

algorithm supporting [12, Theorem 7] allows Aodd and Seven to be

computed in O(nω M(logn + log | |A| |) (logn)2) bit operations.

Theorem 22. There exists a Las Vegas probabilistic algorithm
that computes the Smith form of a nonsingular A ∈ Zn×n using
O(nω B(logn + log | |A| |) (logn)2) bit operations.
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