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A Las Vegas randomized algorithm is given to compute the Hermite normal form of a nonsingular integer

matrix 𝐴 of dimension 𝑛. The algorithm uses quadratic integer multiplication and cubic matrix multiplication

and has running time bounded by 𝑂 (𝑛3 (log𝑛 + log | |𝐴| |)2 (log𝑛)2) bit operations, where | |𝐴| | = max𝑖 𝑗 |𝐴𝑖 𝑗 |
denotes the largest entry of 𝐴 in absolute value. A variant of the algorithm that uses pseudo-linear integer

multiplication is given that has running time (𝑛3
log | |𝐴| |)1+𝑜 (1)

bit operations, where the exponent “ + 𝑜 (1)”
captures additional factors 𝑐1 (log𝑛)𝑐2 (loglog | |𝐴| |)𝑐3

for positive real constants 𝑐1, 𝑐2, 𝑐3.

CCS Concepts: • Theory of computation → Design and analysis of algorithms; • Computing method-
ologies → Linear algebra algorithms.

Additional KeyWords and Phrases: Hermite normal form, Howell normal form, Smith massager, integer matrix

1 INTRODUCTION
Corresponding to any nonsingular integer matrix𝐴 ∈ Z𝑛×𝑛 , there is a unimodular matrix𝑈 ∈ Z𝑛×𝑛
such that

𝐻 = 𝑈𝐴 =


ℎ1 ℎ12 · · · ℎ1𝑛

ℎ2 · · · ℎ2𝑛

. . .
...

ℎ𝑛


has all entries nonnegative, and off-diagonal entries ℎ∗𝑗 strictly smaller than the diagonal entry

ℎ 𝑗 in the same column. 𝐻 is the (integer) Hermite normal form of 𝐴. The form is unique with

its existence dating back to Hermite [1851]. The rows of 𝐻 give a canonical basis for the lattice

generated by the Z-linear combinations of the rows of 𝐴. In addition to being upper triangular

and canonical, an important property of the basis given by the Hermite form is that it requires

only 𝑂 (𝑛2 (log𝑛 + log | |𝐴| |)) bits to represent, compared to 𝑂 (𝑛2
log | |𝐴| |) to write down the input

matrix.

Applications of the Hermite form are well known including, for example, solving systems of

linear diophantine equations [Chou and Collins 1982], integer programming [Schrijver 1998], and

determining rational invariants and rewriting rules of scaling invariants [Hubert and Labahn 2013],

to name just a few.

Algorithms for computing Hermite normal forms for integer matrices were initially based on

triangularizing the input matrix using variations of Gaussian elimination that used the extended

Euclidean algorithm to eliminate entries below the diagonal. However, suchmethods can be prone to

exponential expression swell, that is, the problem of rapid growth of intermediate integer operands.

The first provably polynomial time algorithm was given by Kannan and Bachem [1979], with

Chou and Collins [1982] improving this to a running time of (𝑛6
log | |𝐴| |)1+𝑜 (1)

bit operations.

Domich et al. [1987], Iliopoulos [1989] and Hafner and McCurley [1989] later improved these to

(𝑛4
log | |𝐴| |)1+𝑜 (1)

. Further improvements came from Storjohann and Labahn [1996] and Storjohann

[2000], with worst case time complexity bounded by (𝑛𝜔+1
log | |𝐴| |)1+𝑜 (1)

bit operations, where

𝜔 is the exponent of matrix multiplication. The standard algorithm for matrix multiplication has
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𝜔 = 3, while the current best known asymptotic upper bound for 𝜔 by Alman and Williams [2021]

allows 𝜔 < 2.37286.

Recently, a number of approaches have focused on heuristic methods to achieve faster computa-

tion, for example [Micciancio and Warinschi 2001; Pernet and Stein 2010; Pauderis and Storjohann

2013; Liu and Pan 2019] with the last citation having a complexity of (𝑛𝜔 log | |𝐴| |)1+𝑜 (1)
in the case

of random input matrices. However, these algorithms require strong assumptions, for example,

that there be only a small number of non-trivial (≠ 1) late diagonal entries of the Hermite form,

something common with random matrices.

In this paper, we give a new randomized algorithm for computing the Hermite normal form

of a nonsingular integer matrix 𝐴 ∈ Z𝑛×𝑛 . Assuming the use of standard (quadratic) integer mul-

tiplication and standard (cubic) matrix multiplication, the algorithm has a worst case running

time bounded by 𝑂 (𝑛3 (log𝑛 + log | |𝐴| |)2 (log𝑛)2) bit operations. If we use a subcubic matrix mul-

tiplication algorithm, for example Strassen’s algorithm, then the cost is 𝑂 (𝑛3 (log𝑛 + log | |𝐴| |)2).
We also give a variant of our algorithm that has a complexity of (𝑛3

log | |𝐴| |)1+𝑜 (1)
bit operations,

assuming fast (pseudo-linear) integer multiplication. In all cases, our Hermite form algorithms are

probabilistic of type Las Vegas. That is, the algorithm can report Fail with probability at most 1/2

but otherwise returns an answer that is certified to be correct. The three key ideas that we use are

minimal matrix denominators, Smith massagers and duality of row Hermite and column Howell

forms.

We remark that one can also define the Hermite form for a matrix of univariate polynomials

with coefficients from a field. In this case, the definition requires that the diagonal elements are

monic, while the off-diagonal entries have lower degree than the diagonal entry in the same column.

The algorithms mentioned in the third paragraph of this section all have corresponding versions

which work for the polynomial Hermite form, and have a complexity similar to the integer based

algorithms, but with degree taking the place of bitlength and counting field operations instead of

bit operations. However, there are new, very efficient algorithms which work in the polynomial

case but which have no counterpart in the integer case. In particular we mention the recent fast

algorithm of Labahn et al. [2017]. This algorithm is deterministic and computes the (polynomial)

Hermite form with a complexity of (𝑛𝜔 ⌈𝑠⌉)1+𝑜 (1)
field operations, with 𝑠 being the minimum of the

average of the degrees of the columns of 𝐴 and that of its rows. Unfortunately, some of the tools

used in that algorithm do not have counterparts in the case of integer matrices. In particular, for

polynomial matrices one has notions such as degree shifts Beckermann et al. [1999], order bases

Beckermann and Labahn [1994]; Zhou and Labahn [2012], column bases Zhou and Labahn [2013]

and minimal nullspace bases Zhou et al. [2012] along with algorithms for their fast computation.

For example, the fast Hermite algorithm of Labahn et al. [2017] works by directly triangularizing

the input matrix, but is able to exploit the aforementioned tools, that are particular to polynomial

matrices, in order keep degrees of intermediate polynomials controlled while at the same time

maintaining a good complexity.

The rest of this paper is organized as follows. Section 2 gives an overview of our approach.

Sections 3 and 4 introduce the mathematical and computational tools we use, including mini-

mal denominators, Smith massagers, compact representations of both Hermite forms and Smith

massagers, and some basic subroutines. Section 5 then gives an algorithm for determining the

diagonal elements of the Hermite form. Section 6 describes the column Howell form of a matrix

over Z/(𝑠) for positive modulus 𝑠 , while Section 7 relates the column Howell form to the inverse

of the Hermite form. Section 8 then shows how we compute the Hermite form from a Howell

form corresponding to the inverse of the Hermite form, with Section 9 detailing our modification

of Howell’s algorithm to compute a transformation matrix to produce the required Howell form.
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Section 10 gives an algorithm to compute a type of scaled matrix vector product which is essential

to obtaining the running time bound of our algorithm. Section 11 uses the results of the previous

section to obtain our main result: a Las Vegas algorithm for the Hermite form with expected running

time 𝑂 (𝑛3 (log𝑛 + log | |𝐴| |))2 (log𝑛)2) bit operations assuming standard integer and matrix multi-

plication. Section 12 gives a variant of the algorithm that has running time (𝑛3
log | |𝐴| |)1+𝑜 (1)

bit

operations assuming fast (pseudo-linear) integer multiplication. The final section gives a conclusion

along with some topics for future research.

Cost model
The number of bits in the binary representation of an integer 𝑎 is given by

lg𝑎 =

{
1 if 𝑎 = 0

1 + ⌊log
2
|𝑎 |⌋ if 𝑎 > 0

Using standard integer arithmetic, 𝑎 and 𝑏 can be multiplied in 𝑂 ((lg𝑎) (lg𝑏)) bit operations, and
we can express 𝑎 = 𝑞𝑏 + 𝑟 , with 0 ≤ |𝑟 | < |𝑏 |, in 𝑂 ((lg𝑎/𝑏) (lg𝑏)) bit operations. This complexity

model was popularized by Collins [1968] and is sometimes called “naive bit complexity” (see, for

example, Bach and Shallit [1996]).

For an integer vector 𝑣 , it will be convenient to define the bitlength of 𝑣 to mean the bitlength of

the largest entry of 𝑣 in absolute value.

2 OUR APPROACH
In this section, we give a high level description of our approach for computing the Hermite form

𝐻 ∈ Z𝑛×𝑛 of a nonsingular input matrix 𝐴 ∈ Z𝑛×𝑛 . As previously mentioned, there is a unimodular

matrix 𝑈 ∈ Z𝑛×𝑛 such that 𝐻 = 𝑈𝐴. Multiplying both sides of this equation on the right by 𝐴−1

gives

𝐻𝐴−1 = 𝑈 . (1)

The basis of our approach is to recast the problem of computing 𝐻 , a unimodular row triangular-

ization of 𝐴, into that of finding a minimal left denominator of 𝐴−1
. It follows from the uniqueness

of the Hermite form that 𝐻 can be defined to be the matrix (in Hermite form) that clears the

denominators of 𝐴−1
under premultiplication and has minimal determinant (i.e., det𝐻 = | det𝐴|,

since det𝑈 = ±1).

To avoid working with fractions, define 𝐴∗ = 𝑠𝐴−1
, where 𝑠 ∈ Z>0 is minimal such that 𝑠𝐴−1

is

integral. Then 𝐻𝐴−1 ∈ Z𝑛×𝑛 holds if and only if

𝐻𝐴∗ = 0𝑛×𝑛 mod 𝑠 .

Unfortunately, 𝐴∗
requires Ω(𝑛3 (log𝑛 + log | |𝐴| |)) bits to write down in the worst case, and by

working with 𝐴∗
explicitly we do not know how to achieve our target complexity. However, this

approach allows us to bring the Smith form of 𝐴 into play and reduce the space requirements.

Let 𝑆 = diag(𝑠1, . . . , 𝑠𝑛 =: 𝑠) be the Smith form of 𝐴, and let𝑉 ,𝑊 ∈ Z𝑛×𝑛 be unimodular matrices

satisfying 𝐴𝑉 =𝑊𝑆 . Then,

𝐴∗ ≡𝑅 𝑉𝑆∗

where 𝑆∗ = 𝑠𝑆−1 ∈ Z𝑛×𝑛 and ≡𝑅 denotes right equivalence by unimodular matrices over Z. Such
an equivalence also holds modulo 𝑠 for a matrix 𝑀 = cmod(𝑉 , 𝑆). Here, cmod denotes working

modulo columns: column 𝑗 of 𝑀 is equal to column 𝑗 of 𝑉 reduced modulo 𝑠 𝑗 , 1 ≤ 𝑗 ≤ 𝑛. The

matrix𝑀 is called a reduced Smith massager of 𝐴. The fact that

𝐴∗ ≡𝑅 𝑀𝑆∗ mod 𝑠 (2)
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then implies that 𝐴−1
and𝑀𝑆−1

have the same minimal left denominator in Hermite form, namely,

for any 𝐻 ∈ Z𝑛×𝑛 , we have 𝐻𝐴∗ = 0𝑛×𝑛 mod 𝑠 if and only if

𝐻𝑀𝑆∗ = 0𝑛×𝑛 mod 𝑠 .

This allows us to look for a minimal left denominator in Hermite form for a matrix with total

size controlled by the Smith form 𝑆 : the space required to store𝑀 is 𝑂 (𝑛2 (log𝑛 + log | |𝐴| |)) bits.
Moreover, there is an existing algorithm that can compute both 𝑆 and𝑀 quickly.

The special form of the matrix 𝑀𝑆−1
and the uniqueness of Hermite forms has a number of

advantages for efficient computation. First, by using an algorithm of Pauderis and Storjohann

[2013], we can find a minimal triangular denominator for 𝑀𝑆−1
, expressed as a product of 𝑛

minimal Hermite denominators. While this does not produce the Hermite form 𝐻 of 𝐴, the product

of the diagonals of these 𝑛 triangular matrices gives the diagonal entries of 𝐻 . We show that the

overall cost of obtaining the diagonal entries of 𝐻 from𝑀 and 𝑆 is 𝑂 (𝑛(log det 𝑆)2) bit operations.
This allows us to overcome one of the biggest issues in designing a fast algorithm for the Hermite

form in the worst case, that is, we now know the bitlength of each of the columns of 𝐻 .

Notice that finding 𝐻−1
is equivalent to finding the Hermite form, since 𝐻 is triangular. Indeed,

let 𝐻 𝑗 be equal to 𝐼𝑛 except with column 𝑗 equal to that of 𝐻 , 1 ≤ 𝑗 ≤ 𝑛. Then, since both 𝐻 and

𝐻−1
are upper triangular, there is a simple iterative scheme to go from 𝐻−1

to 𝐻 shown in Figure 1.

We remark that in the first line of the 𝑗-loop in Figure 1, the principal leading ( 𝑗 − 1) × ( 𝑗 − 1)
submatrix of 𝐻 will be 𝐼 𝑗−1, and column 𝑗 of 𝐻 will have the form

− 1

ℎ 𝑗



ℎ1𝑗

...

ℎ 𝑗−1, 𝑗

−1


,

from which 𝐻 𝑗 is easily recovered.

𝐻 := 𝐻−1

for 𝑗 = 1 to 𝑛 do
Recover 𝐻 𝑗 from column 𝑗 of 𝐻

𝐻 := 𝐻 𝑗𝐻

od
return 𝐻𝑛𝐻𝑛−1 · · ·𝐻1

Fig. 1. Hermite form 𝐻 from 𝐻−1

However, we can do better. The same process can work without having 𝐻−1
exactly. Since there

exists a unimodular matrix𝑈 such that 𝑈𝐴 = 𝐻 , then by letting 𝐻 ∗ = 𝑠𝐻 −1
, we can write this as

the dual problem

𝐴∗𝑈 ∗ = 𝐻 ∗

with 𝑈 ∗
unimodular. Since 𝐻 ∗

is an upper triangular integer matrix, we later show that we can

replace 𝐻 ∗
by any upper triangular matrix having the same diagonal entries and which is right

equivalent to 𝐻 ∗
modulo 𝑠 . The natural form for such a matrix is the column Howell form𝑇 , a type

of column reduced echelon matrix over the residue class ring Z/(𝑠).
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This implies that we can construct the Hermite form from any column Howell form 𝑇 that is

right equivalent to 𝐻 ∗
over Z/(𝑠). This allows us to replace 𝐻−1

by 𝑇 in the procedure shown in

Figure 1, and to work modulo 𝑠 , and thus avoid explicit fractions.

Example 1. Let

𝐴 =


−13 10 −20 27

27 30 15 30

0 15 15 6

− 21 0 −15 9

 .

[Birmpilis et al. 2020, Algorithm SmithMassager] gives the Smith form 𝑆 = diag(𝑠1, 𝑠2, 𝑠3, 𝑠4 =: 𝑠) =
diag(1, 3, 15, 105 =: 𝑠) and a Smith massager𝑀 for 𝐴 as

𝑀 :=


0 2 0 55

0 0 7 32

0 2 2 41

0 2 10 10

 .

Let 𝑆∗ = 𝑠𝑆−1. By computing a minimal denominator of 𝑀 that is expressed as the product of four
upper triangular matrices, we determine the diagonal elements of 𝐻 to be ℎ1, ℎ2, ℎ3, ℎ4 = 1, 15, 15, 21.
A Howell form of𝑀𝑆∗ ∈ Z/(𝑠)𝑛×𝑛 with the appropriate diagonal elements of 𝐻 ∗ is then given by

𝑇 =


105 70 70 45

7 0 100

7 101

5

 =


𝑠
ℎ1

70 70 45

𝑠
ℎ2

7 100

𝑠
ℎ3

101

𝑠
ℎ4

 .

Section 7 shows that column 𝑗 of (𝐻 𝑗−1 · · ·𝐻1)𝑇 is congruent modulo 𝑠 to

− 𝑠

ℎ 𝑗



ℎ1𝑗

...

ℎ 𝑗−1, 𝑗

−1


mod 𝑠,
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from which 𝐻 𝑗 is easily recovered. Using 𝑇 instead of 𝐻−1 in the procedure of Figure 1 and working
modulo 105 then gives

𝑗 = 1 : 𝐻1 =


1

1

1

1

 and 𝐻1𝑇 = 𝑇

𝑗 = 2 : 𝐻2 =


1 5

15

1

1

 and 𝐻2𝐻1𝑇 =


70 20

0 30

7 101

5


𝑗 = 3 : 𝐻3 =


1 5

1 0

15

1

 and 𝐻3𝐻2𝐻1𝑇 =


0

30

45

5


𝑗 = 4 : 𝐻4 =


1 0

1 15

1 12

21

 and 𝐻4𝐻3𝐻2𝐻1𝑇 = 04×4

with the Hermite basis given by

𝐻4𝐻3𝐻2𝐻1 =


1 5 5 0

15 0 15

15 12

21

 .
Unfortunately, as mentioned previously for 𝐴∗

, the size of a Howell form 𝑇 can be Ω(𝑛3 (log𝑛 +
log | |𝐴| |)) bits in the worst case, and by working with 𝑇 directly we do not know how to achieve

our target complexity. Instead, we compute a matrix 𝑈̃ satisfying

𝑇 = 𝑀𝑆∗𝑈̃ mod 𝑠, (3)

where 𝑆∗ = 𝑠𝑆−1
. Furthermore, in the same way that we could assume that𝑀 was column reduced

modulo 𝑆 , we may assume that 𝑈̃ is row reduced modulo 𝑆 . The number of bits required to represent

all three matrices on the right hand side of (3) is then 𝑂 (𝑛2 (log𝑛 + log | |𝐴| |)).
The matrix 𝑈̃ can be found by a simple modification of Howell’s original algorithm for determin-

ing his normal form. In order to then find column 𝑗 of 𝐻 𝑗−1𝐻 𝑗−2 · · ·𝐻1𝑇 , we need to determine

(𝑣1, . . . , 𝑣𝑛) = (−ℎ1𝑗 , . . . ,−ℎ 𝑗−1, 𝑗 , 1, 0, . . . , 0)
satisfying the equation

𝑠

ℎ 𝑗

𝑣︷ ︸︸ ︷
𝑣1

...

𝑣𝑛

 ≡

𝑀̃︷                     ︸︸                     ︷
𝑚11 · · · 𝑚1𝑛

...
. . .

...

𝑚𝑛1 · · · 𝑚𝑛𝑛



𝑆∗︷               ︸︸               ︷
𝑠
𝑠1

. . .
𝑠
𝑠𝑛


𝑢︷  ︸︸  ︷
𝑢1

...

𝑢𝑛

 mod𝑠,

where 𝑀̃ = cmod(𝐻 𝑗−1𝐻 𝑗−2 · · ·𝐻1𝑀, 𝑆), and 𝑢 is column 𝑗 of 𝑈̃ . To compute this matrix vector

product with the intermediate scaling matrix 𝑆∗, we take advantage of the fact that 𝑀̃ and 𝑢 are

column and row reduced modulo 𝑆 , respectively. We also exploit the fact that we have precomputed
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the diagonal entries of the Hermite form, and thus know the scaling factor 𝑠/ℎ 𝑗 . This allows us to

achieve a cost estimate for computing column 𝑗 that depends on log | |𝑣 | | ≤ logℎ 𝑗 instead of log 𝑠 .

Ultimately, our algorithm computes the Hermite form in a column by column basis, with the

computation for column 𝑗 requiring

𝑂 (𝑛2 (log𝑛 + log | |𝐴| |) (logℎ 𝑗 + log𝑛 + log | |𝐴| |))
bit operations. Adding over all iterations 1 ≤ 𝑗 ≤ 𝑛 then gives the total cost of our algorithm.

3 MATHEMATICAL PRELIMINARIES
In this section, we discuss some basic mathematical building blocks used in our Hermite form

algorithm. These include minimal denominators of rational matrices, Smith massagers of 𝐴, and

data structures for the compact representation of Hermite forms and Smith massagers.

3.1 Minimal denominators
Definition 2. A (left) denominator of a matrix 𝐵 ∈ Q𝑛×𝑚 is a matrix 𝐻 ∈ Z𝑛×𝑛 whose rows are

in the lattice
{𝑣 ∈ Z1×𝑛 | 𝑣𝐵 ∈ Z1×𝑚}. (4)

𝐻 is a minimal denominator if the rows of 𝐻 are a basis for (4). The minimal Hermite denominator

is the unique minimal denominator that is in Hermite form.

For example, a minimal denominator of a zero matrix with 𝑛 rows is 𝐼𝑛 , while a minimal de-

nominator of 𝐴−1
is 𝐴 itself. The minimal Hermite denominator of 𝐴−1

is 𝐻 , the Hermite form

of 𝐴. Similarly, if 𝐴−1
and 𝐵−1

are right equivalent then they have the same minimal Hermite

denominator.

Example 3. The minimal Hermite denominator of

1

16


1

4

4

8

 ∈ Q4×1

is

𝐻 =


4 0 1 1

1 1 1

2 1

2

 ∈ Z4×4.

This shows that a rational matrix with 𝑛 rows but with fewer than 𝑛 columns can encode a nontrivial
𝑛 × 𝑛 Hermite form.

The next two lemmas follow from the fact that a minimal denominator is a basis for the lattice

shown in (4).

Lemma 4. Any two minimal denominators for a 𝐵 ∈ Q𝑛×𝑚 are left equivalent over Z.

Lemma 5. The determinant of a minimal denominator for a 𝐵 ∈ Q𝑛×𝑚 divides the determinant of
any other denominator of 𝐵.

Important for our work is that minimal denominators can be computed in parts as shown by the

following lemma.

Lemma 6. Decompose 𝐵 ∈ Q𝑛×𝑚 arbitrarily as 𝐵 =
[
𝐵1 𝐵2

]
. If 𝐻1 is a minimal denominator

of 𝐵1, and 𝐻2 is a minimal denominator of 𝐻1𝐵2, then 𝐻2𝐻1 is a minimal denominator of 𝐵.
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Proof. It is evident that 𝐻2𝐻1 is a denominator of 𝐵, and hence, we only need to show that it is

minimal. If it is not a minimal denominator, then there exist matrices 𝐻,𝑊 ∈ Z𝑛×𝑛 such that 𝐻 is a

minimal denominator, 𝐻2𝐻1 =𝑊𝐻 and𝑊 is not unimodular.

However, since 𝐻2 =𝑊𝐻𝐻−1

1
is a minimal denominator of 𝐻1𝐵2, then𝑊𝐻 must be a minimal

denominator of 𝐵2. This is a contradiction since 𝐻 is a denominator of 𝐵2 and𝑊 is not unimodular.

□

Finally, recall that any rational number can be written as an integer and a proper fraction. For

example,

9622976468279041913

21341

= 450914974381661 + 14512

21341

, (5)

where 450914974381661 is the quotient and 14512 is the remainder of the numerator with respect

to the denominator. We see that, for any rational matrix 𝐵, if 𝑠 is a positive integer such that 𝑠𝐵

is integral, then the proper fraction Rem(𝑠𝐵, 𝑠)/𝑠 and 𝐵 have the same denominators. Here, Rem

denotes the positive remainder. Thus, instead of working with the rational matrix 𝐵, we can work

with the matrix Rem(𝑠𝐵, 𝑠) over Z/(𝑠) = {0, 1, . . . , 𝑠 − 1}.

Lemma 7. For 𝐵 ∈ Q𝑛×𝑚 and any 𝑠 ∈ Z>0 such that 𝑠𝐵 is integral, we have: {𝑣 ∈ Z1×𝑛 | 𝑣𝐵 ∈
Z1×𝑚} = {𝑣 ∈ Z1×𝑛 | 𝑣 (𝑠𝐵) ≡ 01×𝑚 mod 𝑠}.

Remark 8. If 𝑈 ∈ Z/(𝑠)𝑚×𝑚 satisfies det𝑈 ⊥ 𝑠 , then 𝐻 is a (minimal) denominator of 𝐵 if and
only if 𝐻 is a (minimal) denominator of 𝐵𝑈 . Here, ⊥ denotes two integers being relatively prime.

3.2 Smith massagers
Important for our work is the notion of a Smith massager of 𝐴.

Definition 9 ([Birmpilis et al. 2023, Definition 1]). Let 𝐴 ∈ Z𝑛×𝑛 be a nonsingular integer
matrix with Smith form 𝑆 . A matrix𝑀 ∈ Z𝑛×𝑛 is a Smith massager for 𝐴 if

(i) it satisfies that

𝐴𝑀 ≡ 0 cmod 𝑆, 𝑎𝑛𝑑 (6)

(ii) there exists a matrix 𝑊̂ ∈ Z𝑛×𝑛 such that

𝑊̂𝑀 ≡ 𝐼𝑛 cmod 𝑆. (7)

It follows directly from Definition 9 that if𝑀 is a Smith massager for 𝐴, then cmod(𝑀, 𝑆) is also
a Smith massager for 𝐴. If𝑀 = cmod(𝑀, 𝑆), then𝑀 is called a reduced Smith massager. Compared

to 𝐴−1
, a reduced Smith massager𝑀 requires only 𝑂 (𝑛2 (log𝑛 + log | |𝐴| |)) space to store.

The key feature of a Smith massager that we exploit in this paper is the following.

Lemma 10. Let 𝐴 ∈ Z𝑛×𝑛 be nonsingular with Smith form 𝐴. Any Smith massager𝑀 ∈ Z𝑛×𝑛 for 𝐴
has the property that𝑀𝑆−1 has minimal denominator 𝐴.

The lemma follows directly from Definition 2 combined with [Birmpilis et al. 2023, Theorem 4]

which shows that the lattices {𝑣 ∈ Z1×𝑛 | 𝑣𝐴−1 ∈ Z1×𝑛} and {𝑣 ∈ Z1×𝑛 | 𝑣𝑀𝑆−1 ∈ Z1×𝑛} are
identical. Instead of working with the rational matrix𝑀𝑆−1

, we can avoid fractions using Lemma 7,

which shows that, for any 𝑠 that is a positive multiple of the largest invariant factor of𝐴, the lattices

{𝑣 ∈ Z1×𝑛 | 𝑣𝑀𝑆−1 ∈ Z1×𝑛} and {𝑣 ∈ Z1×𝑛 | 𝑣𝑀 (𝑠𝑆−1) mod 𝑠} are identical. In particular, this

implies that 𝑠𝐴−1 ≡𝑅 𝑀 (𝑠𝑆−1) mod 𝑠 .



A Cubic Algorithm for Computing the Hermite Normal Form of a Nonsingular Integer Matrix 9

Example 11. The input matrix

𝐴 =


−8 3 −1 0

0 1 1 −1

4 −2 −1 −1

4 −1 0 0

 ∈ Z4×4

has Smith form 𝑆 = diag(1, 1, 1, 16 =: 𝑠) and

𝑠𝐴−1 =


2 1 −1 9

8 4 −4 20

−8 4 −4 −12

0 −8 −8 8

 .
A reduced Smith massager for 𝐴 is given by

𝑀 =


1

4

4

8

 ∈ Z4×4.

The Hermite form of 𝐴 is thus the Hermite denominator of the last column of 𝑀 divided by 𝑠 . This
form is given in Example 3.

Remark 12. We say that a Smith form diagonal entry is trivial if it is equal to 1. It is easy to see
that the number of nonzero columns in a reduced Smith massager for 𝐴 is equal to the number of
nontrivial invariant factors of 𝐴.

3.3 Compact representations
In the naive cost model, the integers 0 and 1 both require one bit to store in their binary representa-

tion. For example, the total number of bits required to store a nonsingular Hermite form 𝐻 ∈ Z𝑛×𝑛
as a dense 𝑛 × 𝑛 matrix is 𝑂 (𝑛2 + 𝑛 log det𝐻 ) bits, even if log det𝐻 ≪ 𝑛.

We can save space and simplify the derivation of running time estimates by adopting a data

structure that avoids explicitly storing integers that are known a priori to be zero, and by avoiding

integer multiplications where one of the operands is known a priori to be equal to one. For example,

we can avoid storing trivial column of𝐻 (corresponding to diagonal entry ℎ𝑖 = 1) or trivial columns

of reduced Smith massagers (where 𝑠𝑖 = 1).

In the proof of the following lemma, recall that we define the bitlength of a vector to be the

bitlength of the largest entry in absolute value, as opposed to the sum of the bitlengths of the

entries.

Lemma 13. Let 𝐻 ∈ Z𝑛×𝑛 be in Hermite form. Then 𝐻 can be represented using 𝑂 (𝑛 log det𝐻 ) bits
by storing the submatrix comprised of its nontrivial columns, together with the list of the indices of the
nontrivial columns.

Proof. Entries in column 𝑖 of 𝐻 have magnitude bounded by the diagonal entry ℎ𝑖 of column 𝑖 .

The sum of the bitlengths of the nontrivial columns of 𝐻 is bounded by

𝑛∑︁
𝑖=1

ℎ𝑖≠1

lgℎ𝑖 ≤
𝑛∑︁
𝑖=1

ℎ𝑖≠1

(1 + logℎ𝑖 ) ≤
𝑛∑︁
𝑖=1

ℎ𝑖≠1

(2 logℎ𝑖 ) = 2 log det𝐻.

□

A statement similar to Lemma 13 also holds for reduced Smith massagers.
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Lemma 14. Let𝑀 ∈ Z𝑛×𝑛 satisfy𝑀 = cmod(𝑀, 𝑆) where 𝑆 ∈ Z𝑛×𝑛 is a nonsingular Smith form.
Then𝑀 can be represented using 𝑂 (𝑛 log det 𝑆) bits by storing only the nontrivial columns.

4 COMPUTATIONAL PRELIMINARIES
In this section we define some computational tasks which will be used later in the paper, and derive

upper bounds on their complexity. We also summarize in Subsection 4.1 two results which we need

from the literature.

We consider first the computation of the remainder modulo 𝑌 of the product of two integers.

Here, 𝑏 ∈ Z/(𝑌 ) implicitly means 𝑏 ∈ [0, 𝑌 ).

Lemma 15. Let𝑎 ∈ Z and𝑏 ∈ Z/(𝑌 ). If lg𝑎 ≤ 𝐷 , thenRem(𝑎𝑏,𝑌 ) can be computed in𝑂 (𝐷 (log𝑌 ))
bit operations.

Proof. There exists a constant 𝑐1 such that the multiplication 𝑎𝑏 over Z has cost bounded

by 𝑐1 (lg𝑎) (lg𝑏). There exists a second constant 𝑐2 such that Rem(𝑎𝑏,𝑌 ) has cost bounded by

𝑐2 (lg𝑎𝑏/𝑌 ) (lg𝑌 ). Using |𝑏 | < 𝑌 shows that both of these cost bounds are bounded by 𝑐 (lg𝑎) (lg𝑌 )
where 𝑐 = max(𝑐1, 𝑐2). Using lg𝑎 ≤ 𝐷 and 𝑌 > 1 we have 𝑐 (lg𝑎) (lg𝑌 ) ≤ 𝑐𝐷 (1 + log𝑌 ) ≤
𝑐𝐷 (2 log𝑌 ) ∈ 𝑂 (𝐷 (log𝑌 )). □

The following lemma extends Lemma 15 by replacing the first operand 𝑎 with a matrix, and the

second operand 𝑏 with a vector.

Lemma 16. Let 𝐴 ∈ Z𝑛×𝑘 and 𝑏 ∈ Z/(𝑌 )𝑘×1. If the sum of the bitlengths of the columns of 𝐴 is
bounded by 𝐷 , then Rem(𝐴𝑏,𝑌 ) can be computed in 𝑂 (𝑛𝐷 (log𝑌 )) bit operations.

Proof. Decompose 𝐴 into columns as 𝐴 =
[
®𝑎1 · · · ®𝑎𝑘

]
∈ Z𝑛×𝑘 , and let 𝑑𝑖 be the bitlength

of ®𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑘 . Then,
∑𝑘

𝑖 𝑑𝑖 ≤ 𝐷 . Let 𝑏𝑖 be entry 𝑖 of 𝑏. Then,

Rem(𝐴𝑏,𝑌 ) = Rem

(
𝑘∑︁
𝑖=1

Rem( ®𝑎𝑖𝑏𝑖 , 𝑌 ), 𝑌
)
.

By Lemma 15, there is a constant 𝑐 such that computing Rem( ®𝑎𝑖𝑏𝑖 , 𝑌 ) ∈ Z/(𝑌 )𝑛×1
has cost

bounded by 𝑐𝑛𝑑𝑖 (log𝑌 ). Computing all Rem( ®𝑎𝑖𝑏𝑖 , 𝑌 ) then has cost bounded by

∑𝑘
𝑖=1

𝑐𝑛𝑑𝑖 (log𝑌 ) ∈
𝑂 (𝑛𝐷 (log𝑌 )). Accumulating the sum modulo 𝑌 is within this cost. □

The following result follows by accumulating the multiplication cost over the rows of 𝐴.

Corollary 17. Let 𝐴 ∈ Z𝑛×𝑘 and 𝑏 ∈ Z/(𝑌 )𝑘×1. If the sum of the bitlengths of the rows of 𝐴 are
bounded by 𝐷 , then Rem(𝐴𝑏,𝑌 ) can be computed in 𝑂 (𝑘𝐷 (log𝑌 )) bit operations.

We now apply Lemma 16 to obtain the following result.

Lemma 18. Given as input
(i) a nonsingular Smith form 𝑆 = diag(𝑠1, . . . , 𝑠𝑛) ∈ Z𝑛×𝑛 ,
(ii) a matrix𝑀 ∈ Z𝑛×𝑛 such that𝑀 = cmod(𝑀, 𝑆), and
(iii) a nonsingular Hermite form 𝐻 ∈ Z𝑛×𝑛 ,

we can compute cmod(𝐻𝑀, 𝑆) in 𝑂 (𝑛(log det 𝑆) (log det𝐻 )) bit operations.

Proof. Let 𝑀̄ = cmod(𝐻𝑀, 𝑆). If det 𝑆 = 1, then 𝑀̄ is the zero matrix and there is nothing

to compute. Similarly, if det𝐻 = 1, then 𝑀̄ = 𝑀 . Assume therefore that det 𝑆, det𝐻 > 1. Note

that 𝑀̄ = cmod(𝑀 + (𝐻 − 𝐼 )𝑀, 𝑆). We can thus compute 𝑀̄ in two steps, by first computing

𝐵 := cmod((𝐻 − 𝐼 )𝑀, 𝑆) and then returning 𝑀̄ := cmod(𝑀 + 𝐵, 𝑆).
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The second step, which adds together two matrices that are column reduced modulo 𝑆 , can be

done in linear time, that is, in 𝑂 (𝑛(log det 𝑆)) bit operations. It remains to bound the cost of the

first step. By Lemma 13, the sum of the bitlengths of the nonzero columns of 𝐻 − 𝐼 are bounded by

2 log det𝐻 . Computing 𝐵 can be done by premultiplying each nontrivial column of𝑀 by (𝐻 − 𝐼 ),
working modulo the corresponding diagonal entry in 𝑆 . By Lemma 16, there exists a constant 𝑐

such that the total cost is

𝑛∑︁
𝑖=1

𝑠𝑖≠1

𝑐𝑛(log det𝐻 ) (log 𝑠 𝑗 ) ∈ 𝑂 (𝑛(log det 𝑆) (log det𝐻 ))

bit operations. □

The following corollary is obtained by replacing the use of Lemma 16 with Corollary 17 in the

proof of Lemma 18.

Corollary 19. Given the same input as in Lemma 18, we can compute cmod(𝐻𝑇𝑀, 𝑆) in
𝑂 (𝑛(log det 𝑆) (log det𝐻 )) bit operations.

4.1 Computing Hermite denominators and Smith massagers
We will make use of the following algorithms for computing the Hermite denominator of a rational

column vector and fast computation of Smith forms and massagers.

Theorem 20 (Pauderis and Storjohann [2013, Theorem 2]). There exists an algorithm hcol(𝑤,𝑑)
that takes as input a vector𝑤 ∈ Z/(𝑑)𝑛×1, and returns as output the Hermite denominator 𝐻 of𝑤𝑑−1.
The cost of the algorithm is 𝑂 (𝑛(log𝑑)2) bit operations. The Hermite form 𝐻 will satisfy (det𝐻 ) | 𝑑 .

Theorem 21 (Birmpilis et al. [2020, 2023]). There exists a Las Vegas algorithm SmithMassager(𝐴)
that takes as input a nonsingular𝐴 ∈ Z𝑛×𝑛 , and returns as output a tuple (𝑀, 𝑆, 𝑝) ∈ (Z𝑛×𝑛,Z𝑛×𝑛,Z>2)
with

(i) 𝑆 the Smith form of 𝐴,
(ii) 𝑀 is a reduced Smith massager of 𝐴, and
(iii) 𝑝 is prime with 𝑝 ⊥ det 𝑆 and log𝑝 ∈ Θ(log𝑛 + loglog | |𝐴| |).

The algorithm has cost 𝑂 (𝑛3 (log𝑛 + log | |𝐴| |)2 (log𝑛)2) bit operations, using standard integer and
matrix multiplication

We remark that the prime 𝑝 in part (iii) of the output specification of Theorem 21 is needed by

the subroutine developed in Section 10.

5 DIAGONAL ENTRIES OF THE HERMITE FORM
In this section, we give an algorithm for determining the diagonal entries of the Hermite form of

a nonsingular 𝐴 ∈ Z𝑛×𝑛 . Let the Smith form of 𝐴 be 𝑆 , and suppose𝑀 is a Smith massager for 𝐴.

The algorithm is based on Lemma 10, which states that the Hermite denominator of𝑀𝑆−1
is the

same as that of 𝐴−1
.
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HermiteDiagonals(𝐴,𝑀, 𝑆)
Input:

(i) A nonsingular 𝐴 ∈ Z𝑛×𝑛 .
(ii) The Smith form 𝑆 = diag(𝑠1, . . . , 𝑠𝑛) of 𝐴.
(iii) A reduced Smith massager𝑀 for 𝐴.

Output:
The diagonal entries ℎ1, . . . , ℎ𝑛 of the Hermite form of 𝐴.

Fig. 2. Problem HermiteDiagonals

Theorem 22. Problem HermiteDiagonals can be solved in 𝑂 (𝑛(log det 𝑆)2) bit operations.

Proof. Define 𝑠0 := 1, and let 0 ≤ 𝑘 ≤ 𝑛 be such that 𝑠𝑖 = 1 for all 𝑖 ≤ 𝑘 . Then, since the

first 𝑘 columns of 𝑀𝑆−1
are zero, they have minimal denominator 𝐼𝑛 , and so can be ignored. By

Lemma 6, the following loop will compute matrices 𝐻̂𝑘+1, 𝐻̂𝑘+2, . . . , 𝐻̂𝑛 in Hermite form such that

𝐻̂𝑛𝐻̂𝑛−1 · · · 𝐻̂𝑘+1 is a minimal denominator of𝑀𝑆−1
.

for 𝑖 = 𝑘 + 1 to 𝑛 do
𝐻̂𝑖 := hcol(Column(𝑀, 𝑖), 𝑠𝑖 )
𝑀 := cmod(𝐻̂𝑖𝑀, 𝑆)

od

By Theorem 20, the cost of the call to hcol in iteration 𝑖 is bounded by 𝑐𝑛(log 𝑠𝑖 )2
for some

constant 𝑐 . The total cost of all calls to hcol is therefore 𝑂 (𝑛(log 𝑆)2). By Lemma 16, the cost

of updating 𝑀 during iteration 𝑖 is bounded by 𝑐𝑛(log det 𝐻̂𝑖 ) (log det 𝑆) bit operations for some

constant 𝑐 . Since det 𝐻̂𝑖 | 𝑠𝑖 , this is bounded by 𝑐𝑛(log 𝑠𝑖 ) (log det 𝑆). The total cost of all updates of
𝑀 is then also 𝑂 (𝑛(log det 𝑆)2).
While the product 𝐻̂𝑛𝐻̂𝑛−1 · · · 𝐻̂𝑘+1 is a minimal denominator of𝑀𝑆−1

that is upper triangular,

it might not be in Hermite form because the off-diagonal entries might not be reduced. However

the diagonal entries of 𝐻̂𝑛𝐻̂𝑛−1 · · · 𝐻̂𝑘+1 will be the same as those of 𝐻 . Taking advantage of our

compact representation for the 𝐻̂∗, the total cost of computing the diagonal entries of 𝐻 is then

bounded by 𝑂 (𝑛(log det 𝑆)2). □

6 COLUMN HOWELL FORMS
Working with matrix denominators, as discussed in Subsection 3.1, naturally implies doing linear

algebra in the residue class ring R := Z/(𝑠) for a given modulus 𝑠 ∈ Z>0 (c.f. Lemma 7). In this

section, we investigate a type of column echelon form for matrices in such a residue ring.

For a matrix 𝐵 ∈ R𝑛×𝑛 , we denote by

Span(𝐵) = {𝐵𝑣 ∈ R𝑛×1 | 𝑣 ∈ R𝑛×1}

the set of all R-linear combinations of the columns of 𝐵. By Span𝑘 (𝐵) we denote the subset of
Span(𝐵) consisting of all column vectors that have the last 𝑘 entries zero.

A column Howell form of 𝐵, first introduced by Howell [1986], is a matrix 𝑇 ∈ R𝑛×𝑛 that is right

equivalent to 𝐵 over R and that satisfies the Howell property: for all 0 ≤ 𝑘 ≤ 𝑛, Span𝑘 (𝐵) = Span(𝑇𝑘 )
where 𝑇𝑘 is the submatrix of 𝑇 comprised of those columns that have the last 𝑘 entries zero.



A Cubic Algorithm for Computing the Hermite Normal Form of a Nonsingular Integer Matrix 13

Example 23. Consider the matrix

𝐵 =


1

4

4

8

 ∈ Z/(16)4×4 .

The span of the columns of 𝐵 which have the last entry zero (in this example the first three zero
columns) contains only the zero vector. But multiplying the last column of 𝐵 by 2 yields the nonzero
column 

2

8

8

 ,
with last entry zero, and so 𝐵 does not satisfy the Howell property. In this case the column triangular-
ization of 𝐵 given by

𝑇 =


4 2 1

8 4

8 4

8

 =


1

4

4

8




1 1

1 13

1 1

4 0 6 11

 = 𝐵𝑈 (8)

with𝑈 unimodular does satisfy the Howell property.

The Howell form is a natural generalization of the notion of the column echelon form over a

field. Variations include alternate locations for the zero columns and/or including some additional

normalization conditions. For our purposes, in order to simplify the subsequent presentation, we

say that a matrix 𝑇 is in Howell form if 𝑇 satisfies the Howell property and is upper triangular

with the diagonal entries being positive and divisors of the modulus 𝑠 . The diagonal entries of the

zero columns modulo 𝑠 are replaced with 𝑠 in order to be positive. Uniqueness of the form can be

achieved by stipulating that off-diagonal entries are reduced modulo the diagonal entry in the same

row, as per Howell [1986, Theorem 2], but we do not require this. We will however use the fact

that the diagonal entries of a Howell form are unique.

Example 24. Consider the matrix 𝐵 ∈ Z/(16)4×𝑛 from Example 23. A Howell form of 𝐵 is obtained
from the matrix 𝑇 in (8) by swapping the first two columns and adding the pivot 16 in the second
column: 

4 0 2 1

16 8 4

8 4

8

 .
Another Howell form of 𝐵 is 

4 0 6 11

16 8 12

8 12

8

 .
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7 SOLVING IN THE DUAL: HERMITE VIA HOWELL
Throughout this section, let

𝐻 =


ℎ1 ℎ12 · · · ℎ1𝑛

ℎ2 · · · ℎ2𝑛

. . .
...

ℎ𝑛


∈ Z𝑛×𝑛

be the Hermite form of 𝐴 ∈ Z𝑛×𝑛 . For 1 ≤ 𝑗 ≤ 𝑛, define

𝐻 𝑗 =



1 ℎ1, 𝑗

. . .
...

1 ℎ 𝑗−1, 𝑗

ℎ 𝑗
1

. . .
1


∈ Z𝑛×𝑛

to be the 𝑛 × 𝑛 matrix with column 𝑗 equal to that of 𝐻 and the remaining columns those of 𝐼𝑛 .

Computing 𝐻 is thus equivalent to computing 𝐻1, . . . , 𝐻𝑛 . In addition, it is useful to note that the

first 𝑗 columns of 𝐻 𝑗 · · ·𝐻1 are those of 𝐻 , while the last 𝑛 − 𝑗 columns are those of 𝐼𝑛 .

In this section, we establish a duality between𝐻 and any Howell form𝑇 of 𝑠𝐴−1
over Z/(𝑠), with

𝑠 a positive integer such that 𝑠𝐴−1
is integral. In particular, we show that column 𝑗 of (𝐻 𝑗−1 · · ·𝐻1)𝑇

is congruent modulo 𝑠 to

− 𝑠

ℎ 𝑗



ℎ1𝑗

...

ℎ 𝑗−1, 𝑗

−1


mod 𝑠 .

This property points out the following algorithm for computing 𝐻 :

for 𝑗 = 1 to 𝑛 do
Recover 𝐻 𝑗 from column 𝑗 of 𝑇

𝑇 := Rem(𝐻 𝑗𝑇, 𝑠)
od

We first show that any nonsingular upper triangular matrix over Z corresponds to a Howell

form over Z/(𝑠).

Lemma 25. Let 𝑇 ∈ Z𝑛×𝑛 be nonsingular and upper triangular. If 𝑠 ∈ Z>0 is such that 𝑠𝑇 −1 is
integral, then 𝑠𝑇 −1 satisfies the Howell property over Z/(𝑠).

Proof. To establish the Howell property, we need to show that, for 0 ≤ 𝑘 ≤ 𝑛, Span𝑘 (𝑠𝑇 −1) is
equal to the span of the columns of 𝑠𝑇 −1

that have the last 𝑛 − 𝑘 entries zero. To this end, fix 𝑘 and

decompose 𝑇 as

𝑇 =

[
𝑇1 𝑇

𝑇2

]
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where 𝑇2 ∈ Z𝑘×𝑘 and the dimensions of 𝑇1 and 𝑇 are implied. Then,

𝑠𝑇 −1 =

[
𝑠𝑇 −1

1
−𝑠𝑇 −1

1
𝑇𝑇 −1

2

𝑠𝑇 −1

2

]
∈ Z𝑛×𝑛,

and it will suffice to show that

Span𝑘 (𝑠𝑇 −1) ⊆ Span

( [
𝑠𝑇 −1

1

𝑇2

] )
.

This is equivalent to saying that for any vector 𝑣 ∈ Z𝑛×1
such that

𝑠𝑇 −1𝑣 =

[
𝑣

𝑣

]
mod 𝑠,

for some 𝑣 ∈ Z(𝑛−𝑘 )×1
, there exists another vector 𝑢 ∈ Z(𝑛−𝑘 )×1

such that 𝑠𝑇 −1

1
𝑢 = 𝑣 . Now,

𝑠𝑇 −1𝑣 =

[
𝑠𝑇 −1

1
−𝑠𝑇 −1

1
𝑇𝑇 −1

2

𝑠𝑇 −1

2

] [
𝑣1

𝑣2

]
=

[
𝑠𝑇 −1

1
𝑣1 − 𝑠𝑇 −1

1
𝑇𝑇 −1

2
𝑣2

𝑠𝑇 −1

2
𝑣2

]
(9)

=

[
𝑣

𝑣

]
mod 𝑠 . (10)

From the lower block of (9) and (10), it follows that there exist a vector 𝑣 ′
2
∈ Z𝑘×1

such that

𝑠𝑇 −1

2
𝑣2 = 𝑠𝑣 ′

2
⇔ 𝑣2 = 𝑇2𝑣

′
2
.

Moreover, from the upper block of (9) and (10), we have that

𝑣 = 𝑠𝑇 −1

1
𝑣1 − 𝑠𝑇 −1

1
𝑇𝑇 −1

2
𝑣2

= 𝑠𝑇 −1

1
𝑣1 − 𝑠𝑇 −1

1
𝑇𝑣 ′

2

= 𝑠𝑇 −1

1
(𝑣1 −𝑇𝑣 ′

2
),

which proves the claim. □

Corollary 26. If 𝐻 is the Hermite form of 𝐴, then 𝑠𝐻−1 is a Howell form of 𝑠𝐴−1 over Z/(𝑠).

Proof. The result follows since 𝑠𝐻 −1 ≡𝑅 𝑠𝐴−1
, 𝑠𝐻 −1

is upper triangular, the diagonal entries of

𝑠𝐻 −1
are positive divisors 𝑠/ℎ1, 𝑠/ℎ2, . . . , 𝑠/ℎ𝑛 of 𝑠 and, from Lemma 25, 𝑠𝐻 −1

satisfies the Howell

property. □

Corollary 27. The diagonal entries of any any Howell form of 𝑠𝐴−1 over Z/(𝑠) are equal to
𝑠/ℎ1, . . . , 𝑠/ℎ𝑛 .

Proof. This follows from Corollary 26 and the fact that the diagonal entries of a Howell form of

𝑠𝐴−1
are unique. □

Lemma 28. Let𝑇 be a Howell form of 𝑠𝐴−1 over Z/(𝑠). Then, 𝐻 𝑗 · · ·𝐻1 is a denominator of the first
𝑗 columns of (1/𝑠)𝑇 , for 1 ≤ 𝑗 ≤ 𝑛.

Proof. Since 𝑇 is right equivalent to 𝑠𝐴−1
over Z/(𝑠), and 𝐻 is a denominator of 𝐴−1

, we have

that 𝐻 is a denominator of (1/𝑠)𝑇 . The claim in the lemma now follows from the fact that 𝑇 is

upper triangular. In particular, premultiplying an upper triangular matrix by 𝐻𝑘 for 𝑘 > 𝑗 does not
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change the first 𝑗 columns. Let 𝑇1... 𝑗 denote the submatrix of 𝑇 comprised of the first 𝑗 columns.

Then ,

𝐻𝑇1.. 𝑗 = (𝐻𝑛 · · ·𝐻 𝑗+1) (𝐻 𝑗 · · ·𝐻1)𝑇1.. 𝑗 (11)

= (𝐻 𝑗 · · ·𝐻1)𝑇1.. 𝑗 . (12)

Since the left hand side of (11) is zero modulo 𝑠 , so is the right hand side of (12). □

Theorem 29. Let 𝑇 be a Howell form of 𝑠𝐴−1 over Z/(𝑠). Then, 𝐻 𝑗 · · ·𝐻1 is the minimal Hermite
denominator of the first 𝑗 columns of (1/𝑠)𝑇 , for 1 ≤ 𝑗 ≤ 𝑛.

Proof. Recall that we let 𝑇1... 𝑗 denote the first 𝑗 columns of 𝑇 . We will use induction. For 𝑗 = 1,

the claim of the theorem follows from Corollary 27 and Lemma 28, since the first diagonal entry of

𝑇 is 𝑠/ℎ1 and 𝐻1 is a denominator of (1/𝑠)𝑇1.

Now, assume that the claim is true for 𝑗 − 1, for some 𝑗 > 1, that is, assume that 𝐻 𝑗−1 · · ·𝐻1 is

the minimal Hermite denominator of (1/𝑠)𝑇1... 𝑗−1. Then, let 𝑣 be column 𝑗 of (𝐻 𝑗−1 · · ·𝐻1)𝑇 . We

first show that 𝑣 has the shape

𝑣 =



∗
...

∗
𝑠/ℎ 𝑗


∈ Z/(𝑠)𝑛×1. (13)

To see this, note that premultiplying 𝑇 by 𝐻 𝑗−1 · · ·𝐻1 only affects the first 𝑗 − 1 rows, so the last

𝑛 − 𝑗 + 1 entries of 𝑣 are the same as those of column 𝑗 of 𝑇 . By Lemma 27, entry 𝑗 of 𝑣 is equal to

𝑠/ℎ 𝑗 .

Next, by Lemma 6, a minimal denominator of (1/𝑠)𝑇1... 𝑗 is given by 𝐻 𝑗𝐻 𝑗−1 · · ·𝐻1, where 𝐻 𝑗

is the minimal Hermite denominator of (1/𝑠)𝑣 . By Lemma 28, 𝐻 𝑗𝐻 𝑗−1 · · ·𝐻1 is a denominator of

(1/𝑠)𝑇1... 𝑗 , so we must have that det𝐻 𝑗 is a divisor of det𝐻 𝑗 = ℎ 𝑗 . But since entry 𝑗 of (1/𝑠)𝑣 is
1/ℎ 𝑗 , the diagonal entry 𝑗 of 𝐻 𝑗 must equal ℎ 𝑗 , which means that the remaining columns of 𝐻 𝑗

have diagonal entry 1. Because of the shape of 𝐻 𝑗 , and the fact that it is in Hermite form, we have

that 𝐻 𝑗𝐻 𝑗−1 · · ·𝐻1 is also in Hermite form. The uniqueness of the Hermite form then implies that

𝐻 𝑗 = 𝐻 𝑗 . □

Corollary 30. For 1 ≤ 𝑗 ≤ 𝑛, column 𝑗 of (𝐻 𝑗−1 · · ·𝐻1)𝑇 is equal to

− 𝑠

ℎ 𝑗



ℎ1𝑗

...

ℎ 𝑗−1, 𝑗

−1


mod 𝑠 . (14)

Proof. Column 𝑗 of (𝐻 𝑗−1 · · ·𝐻1)𝑇 is the vector 𝑣 ∈ Z/(𝑠)𝑛×1
in (13), from the proof of Theo-

rem 29, where it was established that entry 𝑗 of 𝑣 is 𝑠/ℎ 𝑗 , the last 𝑛 − 𝑗 entries of 𝑣 are zero, and 𝐻 𝑗

is the minimal Hermite denominator of (1/𝑠)𝑣 . The only such vector 𝑣 is the one shown in (14),

namely, column 𝑗 of 𝑠𝐻 −1

𝑗 . □

The following example illustrates the approach of Corollary 30 for computing the Hermite form

over Z by first computing a Howell form in the space Z/(𝑠).
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Example 31. The input matrix

𝐴 =


−8 3 −1 0

0 1 1 −1

4 −2 −1 −1

4 −1 0 0

 ∈ Z4×4

has Smith form 𝑆 = diag(1, 1, 1, 16 =: 𝑠) and

𝑠𝐴−1 =


2 1 −1 9

8 4 −4 20

−8 4 −4 −12

0 −8 −8 8

 .
We now work over Z/(𝑠). A Howell form of 𝑠𝐴−1 over Z/(𝑠) is given by

𝑇 =


4 0 6 11

16 8 12

8 12

8

 =


𝑠
4

0 6 11

𝑠
1

8 12

𝑠
2

12

𝑠
2

 =


𝑠
ℎ1

0 6 11

𝑠
ℎ2

8 12

𝑠
ℎ3

12

𝑠
ℎ4

 .
The diagonal elements of 𝐻 are thus ℎ1, ℎ2, ℎ3, ℎ4 = 4, 1, 2, 2. Using Corollary 30 gives the following:

𝑗 = 1 : 𝐻1 =


4

1

1

1

 and 𝐻1𝑇 =


0 8 12

16 8 12

8 12

8


𝑗 = 2 : 𝐻2 =


1 0

1

1

1

 and 𝐻2𝐻1𝑇 = 𝐻1𝑇

𝑗 = 3 : 𝐻3 =


1 1

1 1

2

1

 and 𝐻3𝐻2𝐻1𝑇 =


8

8

8

8


𝑗 = 4 : 𝐻4 =


1 1

1 1

1 1

2

 and 𝐻4𝐻3𝐻2𝐻1𝑇 = 04×4

The Hermite denominator of (1/𝑠)𝑇 is thus

𝐻4𝐻3𝐻2𝐻1 =


4 0 1 1

1 1 1

2 1

2

 .
8 COMPUTING A HERMITE FORM FROM A HOWELL FORM
For 𝐴 ∈ Z𝑛×𝑛 nonsingular with Smith form 𝑆 , let 𝑠 = 𝑠𝑛 be the largest invariant factor of 𝑆 , and let

𝑆∗ = 𝑠𝑆−1
and 𝐴∗ = 𝑠𝐴−1

. A problem with using the approach of Example 31 to compute 𝐻 , is that

the size of 𝐴∗
and its Howell form 𝑇 over Z/(𝑠) can be Ω(𝑛2

log 𝑠) bits.
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In this section, we show how we can avoid computing the Howell form 𝑇 explicitly, and instead

work with matrices𝑀,𝑈 ∈ Z𝑛×𝑛 such that

𝑇 = 𝑀𝑆∗𝑈 mod 𝑠 .

We start first with 𝑀𝑆∗, where 𝑀 is a reduced Smith massager for 𝐴, which we know is right

equivalent to 𝐴∗
over Z/(𝑠) but has total size only 𝑂 (𝑛 log det 𝑆) bits, as per Lemma 14. We then

compute a transformation matrix𝑈 such that 𝑇 = 𝑀𝑆∗𝑈 mod 𝑠 .

Lemma 32. Let 𝑈 ∈ Z/(𝑠)𝑛×𝑛 be such that 𝑇 = 𝑀𝑆∗𝑈 is a Howell form of 𝑀𝑆∗ over Z/(𝑠). Then
𝑇 = 𝑀𝑆∗ rmod(𝑈 , 𝑆).

Thus, we may assume without loss of generality that𝑈 = rmod(𝑈 , 𝑆). So, while the overall size
of 𝑇 itself can be large, the transformation matrix𝑈 to generate 𝑇 can be assumed to be small, that

is, just like 𝑀 , it can be represented using 𝑂 (𝑛 log det 𝑆) bits. The following example illustrates

how a Howell form 𝑇 can be represented implicitly as the product𝑀𝑆∗𝑈 .

Example 33. The input matrix

𝐴 =



2 −1

2 −1

2

. . .

. . . −1

2


∈ Z𝑛×𝑛

has Smith form diag(1, . . . , 1, 2𝑛 =: 𝑠) and

𝐴∗
:= 𝑠𝐴−1 =



2
𝑛−1

2
𝑛−2

2
𝑛−3 · · · 1

2
𝑛−1

2
𝑛−2 · · · 2

1

2
𝑛−1 · · · 2

2

. . .
...

2
𝑛−1


.

By Lemma 25, 𝐴∗ is in Howell form over Z/(𝑠). The sum of the bitlengths of entries in 𝐴∗ is clearly
Θ(𝑛3).

However, a reduced Smith massager for 𝐴 is given by the 𝑛 × 𝑛 matrix

𝑀 =



1

2
1

2
2

...

2
𝑛−1


.

Let 𝑆∗ := 𝑠𝑆−1. A matrix𝑈 such that 𝐴∗ = 𝑀𝑆∗𝑈 is given by

𝑈 =

 2
𝑛−1

2
𝑛−2

2
𝑛−3 · · · 2

1
1


.
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The sum of the bitlengths of all entries in𝑀 and𝑈 is only𝑂 (𝑛2). Restricting𝑀 and𝑈 to their nonzero
columns and rows, respectively, and restricting 𝑆∗ to its only nonzero entry, gives

𝐴∗ = 𝑀𝑆∗𝑈 =



1

2
1

2
2

...

2
𝑛−1


[

1

] [
2
𝑛−1

2
𝑛−2

2
𝑛−3 · · · 2

1
1

]
mod 𝑠 .

Instead of working with an explicit Howell form 𝑇 of 𝐴∗
, we work with the right hand side of

the equation 𝑇 = 𝑀𝑆∗𝑈 . At iteration 𝑗 , we then compute column 𝑗 of −(ℎ 𝑗/𝑠)Rem(𝑀𝑆∗𝑈 , 𝑠) ∈
Z/(ℎ 𝑗 )𝑛×1

which gives the off-diagonal entries in column 𝑗 of 𝐻 . Finally, to update 𝑇 at iteration 𝑗

we simply update𝑀 := cmod(𝐻 𝑗𝑀, 𝑆).

Example 34. The input matrix

𝐴 =


−8 3 −1 0

0 1 1 −1

4 −2 −1 −1

4 −1 0 0

 ∈ Z4×4

has Smith form 𝑆 = diag(1, 1, 1, 16 =: 𝑠). Since in this example 𝐴 has only one nontrivial invariant
factor, a reduced Smith massager𝑀 for 𝐴 and transformation matrix𝑈 such that𝑀𝑆∗𝑈 is in Howell
form will have one nonzero column and row respectively. Restrict 𝑀 to its last column, 𝑈 to its last
row, set 𝑆 = diag(16) and 𝑆∗ = diag(1). Then

𝑇 = 𝑀𝑆∗𝑈 =


1

4

4

8


[

1

] [
4 0 6 11

]
.

Suppose we have precomputed the diagonal entries ℎ1, ℎ2, ℎ3, ℎ4 = 4, 1, 2, 2 of the Hermite denominator
of𝑀𝑆−1. Applying the approach of Corollary 30 gives the following:

𝑗 = 1 : −ℎ1

𝑠
Column(𝑀𝑆∗𝑈 , 1) =


−1

 𝑀 := cmod(𝐻1𝑀, 𝑆) =


4

4

4

8


𝑗 = 2 : −ℎ2

𝑠
Column(𝑀𝑆∗𝑈 , 2) =


0

−1

 𝑀 := cmod(𝐻2𝑀, 𝑆) =


4

4

4

8


𝑗 = 3 : −ℎ3

𝑠
Column(𝑀𝑆∗𝑈 , 3) =


1

1

−1

 𝑀 := cmod(𝐻2𝑀, 𝑆) =


8

8

8

8


𝑗 = 4 : −ℎ4

𝑠
Column(𝑀𝑆∗𝑈 , 4) =


1

1

1

−1

 𝑀 := cmod(𝐻3𝑀, 𝑆) =


0

0

0

0

 .
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The Hermite basis of 𝐴 is thus given by

𝐻4𝐻3𝐻2𝐻1 =


4 0 1 1

1 1 1

2 1

2

 .
HermiteViaHowell(𝐴,𝑀, 𝑆,𝑈 , [ℎ1, . . . , ℎ𝑛], 𝑝)
Input:

(i) A nonsingular 𝐴 ∈ Z𝑛×𝑛 .
(ii) The Smith form 𝑆 = diag(𝑠1, . . . , 𝑠𝑛) of 𝐴.

Let 𝑠 := 𝑠𝑛 and 𝑆∗ := 𝑠𝑆−1
.

(iii) A reduced Smith massager𝑀 for 𝐴.

(iv) A𝑈 ∈ Z𝑛×𝑛 such that Rem(𝑀𝑆∗𝑈 , 𝑠) is in Howell form over Z/(𝑠) and𝑈 = rmod(𝑈 , 𝑆).
(v) The diagonal entries ℎ1, . . . , ℎ𝑛 of the Hermite form of 𝐴.

(vi) A prime 𝑝 that satisfies 𝑝 ⊥ 𝑠 and log𝑝 ∈ 𝑂 (loglog 𝑆).
Output:

The Hermite form 𝐻 of 𝐴.

Fig. 3. Problem HermiteViaHowell

Theorem 35. Problem HermiteViaHowell can be solved in

𝑂 (𝑛(log det 𝑆)2 + 𝑛2 (log det 𝑆) (loglog det 𝑆))
bit operations.

Proof. By Corollary 30, we can compute 𝐻1, . . . , 𝐻𝑛 iteratively as follows:

for 𝑗 = 1 to 𝑛 do
# If ℎ 𝑗 = 1 then set 𝐻 𝑗 := 𝐼𝑛 and go to next loop iteration.

1. # Let 𝑢 ∈ Z/(𝑠)1×𝑛
be column 𝑗 of𝑈 .

𝑣 := −(ℎ 𝑗/𝑠)Rem(𝑀𝑆∗𝑢, 𝑠)
2. # Construct 𝐻 𝑗 from 𝑣 and ℎ 𝑗 .

𝑀 := cmod(𝐻 𝑗𝑀, 𝑠)
od

For the construction of 𝐻 𝑗 in Step 2, the off-diagonal entries in column 𝑗 are given by the first

𝑗 − 1 entries of 𝑣 , and ℎ 𝑗 is given as input. The proof of Theorem 22 shows that the total cost of the

updates to𝑀 in Step 2 is bounded by 𝑂 (𝑛(log det 𝑆)2) bit operations.
In Section 10 we develop an algorithm ScaledMatVecProd that will compute 𝑣 in Step 1 during

iteration 𝑗 with the call

𝑣 := ScaledMatVecProd(𝑀, 𝑆,𝑢, ℎ 𝑗 , 𝑝).
The ScaledMatVecProd algorithm exploits the properties 𝑀 = cmod(𝑀, 𝑆), 𝑢 = rmod(𝑢, 𝑠), the
product𝑀𝑆∗𝑢 is only required modulo 𝑠 , and that Rem(𝑀𝑆∗𝑢, 𝑠) has a known factor 𝑠/ℎ 𝑗 . We show

later in Theorem 39, that ScaledMatVecProd has cost

𝑂 (𝑛(log det 𝑆) (logℎ 𝑗 + loglog det 𝑆) + (log det 𝑆)2) (15)
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bit operations. Since

∏𝑛
𝑖=1

ℎ 𝑗 = det 𝑆 , the sum of (15) over over all ℎ 𝑗 with 𝑗 > 1 is bounded by the

cost stated in the theorem. □

9 COMPUTING THE MULTIPLIER FOR A HOWELL FORM
In this section, we work over the residue class ring R = Z/(𝑠) for a given modulus 𝑠 ∈ Z>0. Howell

[1986] gives an algorithm to compute a Howell form 𝑇 of a 𝐵 ∈ R𝑛×𝑛 . Here we adapt Howell’s
approach to our context. In particular, instead of 𝑇 , we focus on the invertible transformation

matrix 𝑈 ∈ R𝑛×𝑛 such that 𝑇 = 𝐵𝑈 . Furthermore, we know positive divisors ℎ1, . . . , ℎ𝑛 of 𝑠 such

that the diagonal entries of the Howell form are 𝑡1, . . . , 𝑡𝑛 , with 𝑡𝑖 = 𝑠/ℎ𝑖 .
Howell’s algorithm begins by augmenting the input matrix with 𝑛 initial zero columns: to this

end, let 𝐵 :=
[

0𝑛×𝑛 𝐵
]
∈ R𝑛×2𝑛

. Our goal now is to find a matrix 𝑈 ∈ R2𝑛×2𝑛
such that 𝐵𝑈 is a

Howell form of 𝐵, as defined before Example 24. Once 𝑈 has been found, we can take 𝑈 to be the

trailing principal 𝑛 × 𝑛 submatrix of𝑈 . Then 𝐵𝑈 will be a Howell form of 𝐵.

Howell’s algorithm proceeds in 𝑛 iterations, for 𝑖 = 0, 1, . . . , 𝑛 − 1. We initialize𝑈 = 𝐼2𝑛 . At the

start of iteration 𝑖 = 0 we thus have 𝐵𝑈 = 𝐵. By the time we reach the start of iteration 𝑖 , the matrix

𝑈 has been updated so that

𝐵𝑈 =



∗ · · · ∗ ∗ ∗ · · · ∗
...

...
...

...
...

𝑡𝑛−𝑖𝑎1 · · · 𝑡𝑛−𝑖𝑎𝑛−1 𝑡𝑛−𝑖𝑎𝑛 ∗ · · · ∗
𝑡𝑛−𝑖+1 · · · ∗

. . .
...

𝑡𝑛


. (16)

Note that we do not compute the complete partial triangularization 𝐵𝑈 in (16). We will see that we

only need the elements 𝑎1, . . . , 𝑎𝑛 ∈ Z/(ℎ𝑛−𝑖 ) shown in (16). Since we are working modulo 𝑠 and

ℎ𝑛−𝑖 = 𝑠/𝑡𝑛−𝑖 , the integers 𝑎1, . . . , 𝑎𝑛 can be considered to be elements of Z/(ℎ𝑛−𝑖 ). Iteration 𝑖 now
applies the following two-part unimodular column transformation. Howell [1986] points out that

there exist integers 𝑐1, . . . , 𝑐𝑛−1, 𝑐𝑛 ∈ Z/(ℎ𝑛−𝑖 ), with 𝑐𝑛 relatively prime to 𝑠 , satisfying

𝑐1𝑎1 + · · · + 𝑐𝑛−1𝑎𝑛−1 + 𝑐𝑛𝑎𝑛 = 1 mod ℎ𝑛−𝑖 .

Postmultipying the matrix on the right of (16) by the matrix

𝐶𝑖 =



𝐼𝑛−𝑖
1 𝑐1

. . .
...

1 𝑐𝑛−1

𝑐𝑛
𝐼𝑖


(17)

gives 

∗ · · · ∗ ∗ ∗ · · · ∗
...

...
...

...
...

𝑡𝑛−𝑖𝑎1 · · · 𝑡𝑛−𝑖𝑎𝑛−1 𝑡𝑛−𝑖 ∗ · · · ∗
𝑡𝑛−𝑖+1 · · · ∗

. . .
...

𝑡𝑛


. (18)
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Thus, we can use 𝑡𝑛−𝑖 to zero out the nonzero entries to the left of 𝑡𝑛−𝑖 This step also fills in a new

column which is to be used in the subsequent iterations. If we were to postmultiply the matrix

in (18) by

𝑊𝑖 :=



𝐼𝑛−𝑖−1

1

1

. . .

1

ℎ𝑛−𝑖 −𝑎1 · · · −𝑎𝑛−1 1

𝐼𝑖


(19)

then we would obtain



∗ ∗ · · · ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...

∗ ∗ · · · ∗ ∗ ∗ · · · ∗
𝑡𝑛−𝑖 ∗ · · · ∗

𝑡𝑛−𝑖+1 · · · ∗
. . .

...

𝑡𝑛


.

Note that we can do these triangularizations implicitly as we only really need the 𝑎∗. The final
computational part, at step 𝑖 , is to update𝑈 := 𝑈𝐶𝑖𝑊𝑖 .

At iteration 𝑖 , the Howell transform algorithm thus has three steps:

(1) Compute the entries

[
𝑎1 · · · 𝑎𝑛

]
∈ Z/(ℎ𝑛−𝑖 )1×𝑛

of (16).

(2) Compute the matrices 𝐶𝑖 and𝑊𝑖 .

(3) Update𝑈 := 𝑈𝐶𝑖𝑊𝑖 .

Note that if ℎ𝑛−𝑖 = 1 then iteration 𝑖 can be skipped since 𝐶𝑖 and𝑊𝑖 will be the identity matrices.

For Step (2) we can appeal to the following result.

Lemma 36. Given integers ℎ𝑛−𝑖 ∈ Z>0 and 𝑎1, . . . , 𝑎𝑛 ∈ Z/(ℎ𝑛−𝑖 ), we can compute the off-
diagonal nonzero entries of matrices 𝐶𝑖 ,𝑊𝑖 ∈ Z2𝑛×2𝑛 as seen in (17) and (19), respectively, in time
𝑂 (𝑛(logℎ𝑛−𝑖 )2).

Proof. Storjohann and Mulders [1998, Lemma 2] show that the 𝑐1, . . . , 𝑐𝑛−1 can be computed in

the allotted time, with 𝑐𝑛 just an extra gcd operation over Z/(ℎ𝑛−𝑖 ). Computing the entries of𝑊𝑖

just involves negating the 𝑎𝑖 . □

For the analysis of Steps (1) and (3), we consider the special case of an input matrix 𝐵 = 𝑀𝑆∗ as
specified in Figure 4.
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SpecialHowellTransform(𝐴,𝑀, 𝑆, [ℎ1, . . . , ℎ𝑛], 𝑝)
Input:

(i) A nonsingular 𝐴 ∈ Z𝑛×𝑛 .
(i) The Smith form 𝑆 = diag(𝑠1, . . . , 𝑠𝑛) of 𝐴.

Let 𝑠 := 𝑠𝑛 and 𝑆∗ := 𝑠𝑆−1
.

(ii) A reduced Smith massager𝑀 for 𝐴.

(iii) The diagonal entries ℎ1, . . . , ℎ𝑛 of the Hermite form of 𝐴.

(iv) A prime 𝑝 that satisfies 𝑝 ⊥ 𝑠 and log𝑝 ∈ Θ(loglog 𝑠).
Output:

A matrix𝑈 = rmod(𝑈 , 𝑆) ∈ Z𝑛×𝑛 such that𝑀𝑆∗𝑈 is a Howell form of𝑀𝑆∗ over Z/(𝑠).

Fig. 4. Problem SpecialHowellTransform

Theorem 37. Problem SpecialHowellTransform can be solved in in

𝑂 (𝑛(log det 𝑆)2 + 𝑛2 (log det 𝑆) (loglog det 𝑆))
bit operations.

Proof. We adapt Howell’s algorithm described at the start of this section to compute an 𝑛 × 2𝑛

matrix 𝑈 such 𝑀𝑆∗𝑈 =
[

0𝑛×𝑛 𝑇
]
, with 𝑇 a Howell form of 𝑀𝑆∗ over Z/(𝑠). Our output 𝑈 is

thus the submatrix comprised of the last 𝑛 columns of 𝑈 . Because of the presence of the scaling

matrix 𝑆∗, we can keep the rows of𝑈 reduced modulo the corresponding diagonal entries in 𝑆 . In

other words, we maintain𝑈 = rmod(𝑈 , 𝑆) throughout the algorithm.

Initialize𝑈 =
[

0𝑛×𝑛 𝐼𝑛
]
. We perform 𝑛 iterations for 𝑖 = 0, 1, . . . , 𝑛−1. At the start of iteration

𝑖 the matrix 𝑀𝑆∗𝑈 has exactly the shape shown in (16). Like before, iteration 𝑖 consists of three

steps:

(1) Compute the entries

[
𝑎1 · · · 𝑎𝑛

]
∈ Z/(ℎ𝑛−𝑖 )1×𝑛

of (16).

(2) Compute the matrices 𝐶𝑖 and𝑊𝑖 .

(3) Update𝑈 := rmod(𝑈𝐶𝑖 , 𝑆) and then𝑈 := rmod(𝑈𝑊𝑖 , 𝑆).
At iteration 𝑖 , the computation of Step 1 aligns with the specification of the ScaledMatVecProd

subroutine that is later developed in Section 10. In particular, the output of

ScaledMatVecProd(𝑀 ′, 𝑆,𝑢′, ℎ𝑛−𝑖 , 𝑝),
where

• 𝑀 ′
is the transpose of the submatrix of 𝑈 containing columns from (𝑛 − 𝑖 + 1) to (2𝑛 − 𝑖),

and

• 𝑢′
is the transpose of row 𝑛 − 𝑖 of𝑀 ,

contains exactly the 𝑎𝑖 ’s we want. The cost of this call to ScaledMatVecProd is

𝑂 (𝑛(log det 𝑆) (logℎ𝑛− 𝑗 + loglog det 𝑆) + (log det 𝑆)2) (20)

bit operations (Theorem 39).

By Lemma 36, the cost of Step 2 is

𝑂 (𝑛(logℎ𝑛−𝑖 )2) (21)

bit operations.

Finally, the two multiplications in Step 3, namely, rmod(𝑈𝐶𝑖 , 𝑆) and rmod((𝑈𝐶𝑖 )𝑊𝑖 , 𝑆), are
covered by Corollary 19 and Lemma 18, respectively, and have cost bounded by

𝑂 (𝑛(log det 𝑆) (logℎ𝑛−𝑖 )) (22)
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bit operations.

Summing (20), (21) and (22) over all iterations 𝑖 with ℎ𝑛−𝑖 > 1 gives the cost bound stated in the

theorem. □

Example 38. Let

𝐴 =


−13 10 −20 27

27 30 15 30

0 15 15 6

− 21 0 −15 9

 ,
with Smith form 𝑆 = diag(1, 3, 15, 105) and reduced Smith massager

𝑀 =


0 2 0 55

0 0 7 32

0 2 2 41

0 2 10 10


be given. We are also given the diagonal entries ℎ1, ℎ2, ℎ3, ℎ4 = 1, 15, 15, 21 of the Hermite form of 𝐴.
Let 𝑆∗ = 𝑠𝑆−1 with 𝑠 = 105. We illustrate the method used in the proof of Theorem 37 to compute
a matrix 𝑈 such that 𝑇 = 𝑀𝑆∗𝑈 is in Howell form over Z/(𝑠). Note that we know that 𝑇 will have
diagonal entries 𝑡1, 𝑡2, 𝑡3, 𝑡4 = 105, 7, 7, 5, that is, 𝑡𝑖 = 𝑠/ℎ𝑖 .
Initialize𝑈 =

[
0𝑛×𝑛 𝐼𝑛

]
. At the start of iteration 𝑗 = 0 we have

𝑀𝑆∗𝑈 =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0𝑡4 14𝑡4 14𝑡4 2𝑡4

 ,
with [𝑎1, 𝑎2, 𝑎3, 𝑎4] = [0, 14, 14, 2]. Working over Z/(21), we solve the system

𝑐10 + 𝑐214 + 𝑐314 + 𝑐42 = 1 mod 21,

to obtain 𝑐 = [𝑐1, 𝑐2, 𝑐3, 𝑐4] = [0, 2, 2, 4]. Thus, 𝐶0 and𝑊0 are

1

1

1

1

1 0

1 2

1 2

4


and



1

1

1

1

1

1

1

21 0 −14 −14 1


,

respectively. After updating𝑈 = rmod(𝑈𝐶0𝑊0, 𝑆) we have

𝑈 =


0 0 0 0 0

0 0 0 2 2

12 0 2 3 2

84 0 49 49 4

 .
Now we move on to iteration 𝑗 = 1. We have

𝑀𝑆∗𝑈 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

6𝑡3 0𝑡3 6𝑡3 13𝑡3 ∗
𝑡4


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with [𝑎1, 𝑎2, 𝑎3, 𝑎4] = [6, 0, 6, 13]. Working over Z/(15), we solve the system

𝑐16 + 𝑐20 + 𝑐36 + 𝑐413 = 1 mod 15

to obtain 𝑐 = [𝑐1, 𝑐2, 𝑐3, 𝑐4] = [−1, 0,−1, 1]. Thus, 𝐶1 and𝑊1 are

1

1

1

1 −1

1 0

1 −1

1

1


and



1

1

1

1

1

1

15 −6 0 −6 1

1


respectively. After updating𝑈 = rmod(𝑈𝐶1𝑊1, 𝑆) we have

𝑈 =


0 0 0 0 0 0

0 0 0 0 2 2

0 3 0 8 4 2

0 63 0 28 21 4

 .
Now we move on to iteration 𝑗 = 2. We have

𝑀𝑆∗𝑈 =


∗ ∗ ∗ ∗ ∗ ∗
0 9𝑡2 0𝑡2 4𝑡2 ∗ ∗

𝑡3 ∗
𝑡4


with [𝑎1, 𝑎2, 𝑎3, 𝑎4] = [0, 9, 0, 4]. Working over Z/(15) we solve the equation

𝑐10 + 𝑐29 + 𝑐30 + 𝑐44 = 1 mod 15

to obtain [𝑐1, 𝑐2, 𝑐3, 𝑐4] = [0, 1, 0,−2]. Thus, 𝐶2 and𝑊2 are

1

1

1 0

1 1

1 0

−2

1

1


and



1

1

1

1

1

15 0 −9 0 1

1

1


respectively. After updating𝑈 = rmod(𝑈𝐶2𝑊2, 𝑆) we have

𝑈 =


0 0 0 0 0 0 0

0 0 0 0 0 2 2

0 0 0 0 2 4 2

0 0 0 0 7 21 4

 .
Since 𝑡1 = 105 implies 𝐶3 =𝑊3 = 𝐼2𝑛 , we can stop. If we let𝑈 be the submatrix of 𝑈 comprised of the
last 𝑛 columns, then𝑀𝑆∗𝑈 will be in Howell form.
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10 SCALED MATRIX VECTOR PRODUCT
In order to obtain our softly cubic complexity, we need to show that the key step in our special

Howell triangulation algorithm (Figure 4) and in deducing the Hermite from Howell form (Figure 3)

can be computed efficiently. We do this by giving an algorithm for the scaled matrix×vector product
problem shown in Figure 5.

ScaledMatVecProd(𝑀, 𝑆,𝑢, ℎ, 𝑝)
Input:

(i) A nonsingular Smith form 𝑆 = diag(𝑠1, . . . , 𝑠𝑛) ∈ Z𝑛×𝑛 .
Note: Let 𝑠 := 𝑠𝑛 and 𝑆∗ := 𝑠𝑆−1

.

(ii) 𝑀 ∈ Z𝑛×𝑛 such that𝑀 = cmod(𝑀, 𝑆).
(iii) 𝑢 ∈ Z𝑛×1

such that 𝑢 = rmod(𝑢, 𝑆).
(iv) A divisor ℎ ∈ Z≥1 of 𝑠 such that (𝑠/ℎ)−1𝑀𝑆∗𝑢 is over Z.
(v) An odd prime 𝑝 such that 𝑝 ⊥ 𝑠 and log𝑝 ∈ Θ(loglog det 𝑆).

Output:
𝑣 = (𝑣𝑖 )1≤𝑖≤𝑛 ∈ Z/(ℎ)𝑛×1

such that

𝑠

ℎ

𝑣︷ ︸︸ ︷
𝑣1

...

𝑣𝑛

 ≡

𝑀︷                     ︸︸                     ︷
𝑚11 · · · 𝑚1𝑛

...
. . .

...

𝑚𝑛1 · · · 𝑚𝑛𝑛



𝑆∗︷               ︸︸               ︷
𝑠
𝑠1

. . .
𝑠
𝑠𝑛


𝑢︷  ︸︸  ︷
𝑢1

...

𝑢𝑛

 mod𝑠 .

Fig. 5. Problem ScaledMatVecProd

From Lemma 14, we know that the sum of the bitlengths of the nontrivial columns of𝑀 is bounded

by 𝑂 (log det 𝑆). Since 𝑆∗𝑢 has entries reduced modulo 𝑠 , Lemma 16 shows that the matrix×vector
product Rem(𝑀 (𝑆∗𝑢), 𝑠) can be computed in

𝑂 (𝑛(log det 𝑆) (log 𝑠)) (23)

bit operations. Dividing Rem(𝑀 (𝑆∗𝑢), 𝑆) by 𝑠/ℎ gives the output vector 𝑣 .

However, the cost estimate in (23) is too high for our purposes. Ideally, we would like to replace

the log 𝑠 factor in (23) with logℎ. Instead, we are able to obtain the following slightly weaker result.

Theorem 39. Problem ScaledMatVecProd(𝑀, 𝑆,𝑢, ℎ, 𝑝) can be solved in

𝑂 (𝑛(log det 𝑆) (logℎ + loglog det 𝑆) + (log det 𝑆)2) (24)

bit operations.

In order to simplify the presentation of the algorithm, let

𝑚 :=
[
𝑚1 · · · 𝑚𝑛

]
denote a row of𝑀 . Our goal then is to compute a scalar 𝑣 ∈ Z such that

𝑠

ℎ
𝑣 ≡

𝐴︷                                                    ︸︸                                                    ︷[
𝑚1 · · · 𝑚𝑛

] 
𝑠
𝑠1

. . .
𝑠
𝑠𝑛



𝑢1

...

𝑢𝑛

 mod𝑠 . (25)
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Afterwards, we simply replace the row vector𝑚 in (25) with the matrix𝑀 .

We begin with a high level description of the algorithm. The right hand side of (25), if computed

over Z without taking mod𝑠 , is given by

𝐴 =

𝑛∑︁
𝑖=1

𝑠

𝑠𝑖
𝑚𝑖𝑢𝑖 . (26)

An a priori magnitude bound is 𝐴 ∈ 𝑂 (𝑠2
log det 𝑆). The formulation in (26) highlights — since we

only require an integer congruent to 𝐴 mod 𝑠 — that the products𝑚𝑖𝑢𝑖 can be computed modulo

𝑠𝑖 since they are scaled by 𝑠/𝑠𝑖 . In Subsection 10.1, we show how to replace the scalar products

𝑚𝑖𝑢𝑖 with dot products that give an integer congruent to𝑚𝑖𝑢𝑖 modulo 𝑠𝑖 . This leads to a formula

𝐷 ≡ 𝐴 mod 𝑠 but with magnitude bound 𝐷 ∈ 𝑂 (𝑠ℎ(log det 𝑆)2). Then in Subsection 10.2, we show

how to exploit the fact that (𝑠/ℎ) is a divisor of 𝐷 , that is, (ℎ/𝑠)𝐷 ∈ 𝑂 (ℎ2 (log det 𝑆)2).

10.1 Precision reduction via partial linearization
Let 𝑋 ∈ Z>1 be a positive radix and, for a nonnegative integer 𝑘 , define

®𝑋 (𝑘 )
:=


𝑋 0

𝑋 1

...

𝑋𝑘−1


∈ Z𝑘×1 .

For 1 ≤ 𝑖 ≤ 𝑛, we let ®𝑚𝑖 ∈ Z1×𝑘𝑖
≥0

be the unique vector of coefficients of the 𝑋 -adic expansion of𝑚𝑖 ,

that is, | | ®𝑚𝑖 | | < 𝑋 and𝑚𝑖 = ®𝑚𝑖 · ®𝑋 (𝑘𝑖 )
, where

𝑘𝑖 :=

⌈
log 𝑠𝑖

log𝑋

⌉
.

We can then rewrite the formula for 𝐴 in (26) as

𝐴 =

𝑛∑︁
𝑖=1

𝑠

𝑠𝑖
®𝑚𝑖
®𝑋 (𝑘𝑖 )𝑢𝑖

=

®𝑚︷                  ︸︸                  ︷[
®𝑚1 · · · ®𝑚𝑛

] 
𝑠
𝑠1

𝐼𝑘1

. . .
𝑠
𝑠𝑛
𝐼𝑘𝑛



𝑢1

®𝑋 (𝑘1 )

...

𝑢𝑛 ®𝑋 (𝑘𝑛 )

 . (27)

Example 40. Let𝑚 = [9, 7926], 𝑢 = [1012, 8057]𝑡 and 𝑋 = 10. Then, 𝐴 =𝑚𝑢 can be computed as

𝐴 =

[ ®𝑚1, ®𝑚2]︷                    ︸︸                    ︷[
9 6 2 9 7

]
[𝑢1

®𝑋 (1) , 𝑢2
®𝑋 (4) ]𝑡︷          ︸︸          ︷

1012

8057

80570

805700

8057000


= 63868890.

For the components of ®𝑚, we will often separately consider cases 𝑘𝑖 = 1 and 𝑘𝑖 > 1. Note that, in

the latter case, 𝑘𝑖 > 1 implies (log 𝑠𝑖 )/(log𝑋 ) > 1, and hence we have the upper bound

𝑘𝑖 =

⌈
log 𝑠𝑖

log𝑋

⌉
≤ 1 + log 𝑠𝑖

log𝑋
≤ 2 log 𝑠𝑖

log𝑋
. (28)
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Lemma 41. The sum of the bitlengths of the entries of ®𝑚 is bounded by 𝑂 (log det 𝑆).

Proof. If 𝑘𝑖 = 1 then ®𝑚𝑖 consists of a single entry bounded in magnitude by 𝑠𝑖 > 1. The sum of

the bitlengths of all such entries of ®𝑚 is bounded by

𝑛∑︁
𝑖=1

𝑘𝑖=1

lg 𝑠𝑖 ≤
𝑛∑︁
𝑖=1

𝑘𝑖=1

(1 + log 𝑠𝑖 ) ≤
𝑛∑︁
𝑖=1

𝑘𝑖=1

(2 log 𝑠𝑖 ) ≤ 2 log det 𝑆.

If 𝑘𝑖 > 1 then ®𝑚𝑖 contains 𝑘𝑖 entries with magnitude bounded by 𝑋 , and thus the sum of the

bitlength of entries in ®𝑚𝑖 is bounded by

𝑘𝑖 lg𝑋 ≤
(

2 log 𝑠𝑖

log𝑋

)
(1 + log𝑋 ) ≤

(
2 log 𝑠𝑖

log𝑋

)
(2 log𝑋 ) ≤ 4(log 𝑠𝑖 ), (29)

with the first inequality coming from bound (28). The sum of the right hand side of (29) over all 𝑖

with 𝑘𝑖 > 1 is thus also 𝑂 (log det 𝑆). □

Now we return to the reformulation of 𝐴 shown in (27). Since we only require 𝐴 mod 𝑠 , we can

preemptively reduce the column vector in (27) by defining ®𝑢𝑖 := Rem(𝑢𝑖 ®𝑋 (𝑘𝑖 ) , 𝑠𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛.

Then

𝐷 :=

𝑛∑︁
𝑖=1

𝑠

𝑠𝑖
®𝑚𝑖 ®𝑢𝑖 (30)

is congruent to 𝐴 mod 𝑠 .

Example 42. Let 𝑚 = [9, 7926], 𝑢 = [1012, 8057]𝑡 and 𝑋 = 10 be as in Example 40 and set
𝑠 = 10000. Then,

𝐷 =

®𝑚︷                    ︸︸                    ︷[
9 6 2 9 7

]
®𝑢︷     ︸︸     ︷

1012

8057

570

5700

7000


= 158890

is congruent modulo 𝑠 to 𝐴 =𝑚𝑢.

Our first lemma derives a bound on the magnitude of 𝐷 .

Lemma 43. Let 𝐷 be defined as in (30). Then 𝐷 < 2𝑠𝑋 log det 𝑆 .

Proof. From (30), we see that

𝐷 =
[

®𝑚1 · · · ®𝑚𝑛

] 
(𝑠/𝑠1) ®𝑢1

...

(𝑠/𝑠𝑛) ®𝑢𝑛


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is a dot product of length

∑𝑛
𝑖=1

𝑘𝑖 , where the row vector has entries from [0, 𝑋 ), and the column

vector has entries from [0, 𝑠). This implies 𝐷 < 𝑠𝑋
∑𝑛

𝑖=1
𝑘𝑖 . We can then bound this by

𝐷 < 𝑠𝑋

𝑛∑︁
𝑖=1

𝑘𝑖

= 𝑠𝑋

𝑛∑︁
𝑖=1

⌈log 𝑠𝑖/log𝑋 ⌉

≤ 𝑠𝑋

𝑛∑︁
𝑖=1

𝑠𝑖≠1

(1 + log 𝑠𝑖 )

≤ 𝑠𝑋

𝑛∑︁
𝑖=1

𝑠𝑖≠1

(2 log 𝑠𝑖 )

≤ 2𝑠𝑋 log det 𝑆.

□

Our next lemma bounds the cost of computing vector ®𝑢𝑖 . Note that the lemma holds independently

of the choice of 𝑋 (e.g., 𝑋 = 2 is valid).

Lemma 44. The vectors ®𝑢𝑖 , for 1 ≤ 𝑖 ≤ 𝑛, can be computed in 𝑂 ((log det 𝑆)2) bit operations.

Proof. First consider the cost for a fixed 𝑖 . If 𝑘𝑖 = 0, then ®𝑢𝑖 ∈ Z0×1
, and there is no computation

needed. Similarly, if 𝑘𝑖 = 1, then ®𝑢𝑖 =
[
𝑢𝑖

]
. This leaves us with the case 𝑘𝑖 > 1. Let

𝑎1

𝑎2

...

𝑎𝑘𝑖


:= ®𝑢𝑖 =


Rem(𝑢𝑖𝑋 0, 𝑠𝑖 )
Rem(𝑢𝑖𝑋 1, 𝑠𝑖 )

...

Rem(𝑢𝑖𝑋𝑘𝑖−1, 𝑠𝑖 )


be our target vector. We can compute the 𝑎𝑖 using a Horner scheme by:

𝑎1 := 𝑢𝑖
for 𝑘 = 2 to 𝑘𝑖 do

𝑎𝑘 := Rem(𝑎𝑘−1𝑋, 𝑠𝑖 )
od

By Lemma 15, there exists a constant 𝑐 such that the cost of one iteration of the loop is bounded

by 𝑐 (log𝑋 ) (log 𝑠𝑖 ). Since the loop iterates 𝑘𝑖 − 1 < 𝑘𝑖 times, the total cost to compute ®𝑢𝑖 is
𝑐𝑘𝑖 (log𝑋 ) (log 𝑠𝑖 ). The total cost to compute all ®𝑢𝑖 is then

𝑛∑︁
𝑖=1

𝑘𝑖>1

𝑐𝑘𝑖 (log𝑋 ) (log 𝑠𝑖 ) ≤ 𝑐

𝑛∑︁
𝑖=1

𝑘𝑖>1

(
2 log 𝑠𝑖

log𝑋

)
(log𝑋 ) (log 𝑠𝑖 )

≤ 2𝑐

𝑛∑︁
𝑖=1

𝑘𝑖>1

(log 𝑠𝑖 )2

≤ 2𝑐 (log det 𝑆)2,

where the first inequality comes from (28). □
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10.2 Precision reduction via modular computation
As shown in the proof of Lemma 43, we have

𝐷 =
[

®𝑚1 · · · ®𝑚𝑛

] 
(𝑠/𝑠1) ®𝑢1

...

(𝑠/𝑠𝑛) ®𝑢𝑛

 . (31)

In order to reduce the precision of computing this dot product, we can exploit the fact that 𝐷 has a

known divisor 𝑠/ℎ, that is, (ℎ/𝑠)𝐷 ∈ Z. Multiplying (31) by (ℎ/𝑠) gives

(ℎ/𝑠)𝐷 = ℎ
[

®𝑚1 · · · ®𝑚𝑛

] 
(1/𝑠1) ®𝑢1

...

(1/𝑠𝑛) ®𝑢𝑛

 . (32)

Lemma 43 gives 𝐷 < 2𝑠𝑋 log det 𝑆 and hence (ℎ/𝑠)𝐷 < 2ℎ𝑋 log det 𝑆 . The idea now is to choose a

modulus 𝑌 ∈ Z>0 that is relatively prime to 𝑠 and satisfies 𝑌 ≥ 2ℎ𝑋 log det 𝑆 . Then, (ℎ/𝑠)𝐷 < 𝑌 .

Since any integer 𝑎 that satisfies 0 ≤ 𝑎 < 𝑌 gives Rem(𝑎,𝑌 ) = 𝑎, we can compute (ℎ/𝑠)𝐷 by

working modulo 𝑌 . To this end, let ®𝑤𝑖 = Rem((1/𝑠𝑖 ) ®𝑢𝑖 , 𝑌 ) for 1 ≤ 𝑖 ≤ 𝑛. Then,

(ℎ/𝑠)𝐷 = Rem

©­­­­«
ℎ

[
®𝑚1 ®𝑚2 · · · ®𝑚𝑛

] 
®𝑤1

®𝑤2

...

®𝑤𝑛


, 𝑌

ª®®®®¬
. (33)

In order to obtain a good complexity for computing the ®𝑤𝑖 vectors from the ®𝑢𝑖 vectors, the moduli

𝑋 and 𝑌 need to be well chosen.

Lemma 45. If 𝑋 ∈ Z>0 is the smallest power of 2 such that 𝑋 > 2ℎ log det 𝑆 , and 𝑌 ∈ Z>0 is the
smallest power of 𝑝 such that 𝑌 > 𝑋 2, then

(i) 𝑌 > 2ℎ𝑋 log det 𝑆 ,
(ii) log𝑌 ∈ 𝑂 (log𝑋 ), and
(iii) the vectors ®𝑤𝑖 for 1 ≤ 𝑖 ≤ 𝑛 can be computed from the vectors ®𝑢𝑖 in time 𝑂 ((log det 𝑆)2).

Proof. Part (i) follows by substituting 𝑋 > 2ℎ log det 𝑆 for one of the factors of 𝑋 in the

inequality 𝑌 > 𝑋 2
. Part (ii) follows from the choice of 𝑌 as the smallest power of 𝑝 , where

log𝑝 ∈ 𝑂 (loglog det 𝑆) as per the problem specification.

For part (iii), we first precompute 𝑠𝑖 := Rem(1/𝑠𝑖 , 𝑌 ) for all 1 ≤ 𝑖 ≤ 𝑛. Note that 𝑠𝑖 can

be computed by using the extended euclidean algorithm with input (𝑠𝑖 , 𝑌 ). Thus, there exists a
constant 𝑐 such that 𝑠𝑖 can be computed in time 𝑐 (lg 𝑠𝑖 ) (lg𝑌 ). The total cost of computing all the 𝑠𝑖
is then bounded by

𝑛∑︁
𝑖=1

𝑠𝑖≠1

𝑐 (lg 𝑠𝑖 ) (lg𝑌 ) ≤ 𝑐

𝑛∑︁
𝑖=1

𝑠𝑖≠1

(1 + log 𝑠𝑖 ) (1 + log𝑌 ))

≤ 𝑐

𝑛∑︁
𝑖=1

𝑠𝑖≠1

(2 log 𝑠𝑖 ) (2 log𝑌 )

∈ 𝑂 ((log det 𝑆) (log𝑌 )) . (34)

The bound (34) is within our target cost since log𝑌 ∈ 𝑂 (logℎ + loglog det 𝑆), which is bounded by

𝑂 (log det 𝑆) using the fact that ℎ | det 𝑆 .
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Since 𝑠𝑖 < 𝑌 and | | ®𝑢𝑖 | | < 𝑠𝑖 , it follows from Lemma 15 that there exists a constant 𝑐′ such that

the cost of computing ®𝑤𝑖 := Rem(𝑠𝑖 ®𝑢𝑖 , 𝑌 ) ∈ Z𝑘𝑖×1
is bounded by 𝑐′𝑘𝑖 (log 𝑠𝑖 ) (log𝑌 ). To bound the

cost of computing all the ®𝑤𝑖 we consider separately the case 𝑘𝑖 = 1 and 𝑘𝑖 > 1. For the case 𝑘𝑖 = 1

we obtain a total cost of

𝑛∑︁
𝑖=1

𝑘𝑖=1

𝑐′ (log 𝑠𝑖 ) (log𝑌 ) ∈ 𝑂 ((log det 𝑆) (log𝑌 )),

which we have already seen to be within our cost bound. For the case 𝑘𝑖 > 1 we obtain a total cost

of

𝑛∑︁
𝑖=1

𝑘𝑖>1

𝑐′𝑘𝑖 (log 𝑠𝑖 ) (log𝑌 ) ≤ 𝑐′
𝑛∑︁
𝑖=1

𝑘𝑖>1

(
(2 log 𝑠𝑖

log𝑋

)
(log 𝑠𝑖 ) (log𝑌 ) (28)

≤
(

2𝑐′ log𝑌

log𝑋

) 𝑛∑︁
𝑖=1

𝑘𝑖>1

(log 𝑠𝑖 )2

≤ 𝑂 ((log det 𝑆)2).

The last inequality uses the fact that log𝑌 ∈ 𝑂 (log𝑋 ). □

10.3 Proof of Theorem 39
We first choose dual moduli 𝑋 and 𝑌 as specified in Lemma 45. Construct the partial linearization

®𝑀 =


®𝑚11 · · · ®𝑚1𝑛

...
. . .

...

®𝑚𝑛1 · · · ®𝑚𝑛𝑛

 ∈ Z𝑛×(𝑘1+···+𝑘𝑛 )

by replacing column 𝑖 of𝑀 with the 𝑛×𝑘𝑖 matrix containing the coefficients of its𝑋 -adic expansion,

for 1 ≤ 𝑖 ≤ 𝑛. Since 𝑋 is a power of 2, the construction of ®𝑀 can be done in time linear in the size

of𝑀 , thus in 𝑂 (𝑛 log det 𝑆) bit operations.
By Lemmas 44 and 45, we can compute in 𝑂 ((log det 𝑆)2) time a vector

®𝑤 =


®𝑤1

...

®𝑤𝑛

 ∈ Z/(𝑌 ) (𝑘1+···+𝑘𝑛 )×1
(35)

such that our target vector 𝑣 is then given by 𝑣 = Rem(Rem(ℎ ®𝑀 ®𝑤,𝑌 ), ℎ). We can thus compute 𝑣

in three steps:

(1) 𝑎 := Rem( ®𝑀 ®𝑤,𝑌 )
(2) 𝑏 := Rem(ℎ𝑎,𝑌 )
(3) 𝑣 := Rem(𝑏, ℎ)

By Lemmas 41 and 16, Step 1 can be done in 𝑂 (𝑛(log det 𝑆) (log𝑌 )) bit operations. By Lemma 15,

Step 2 has cost 𝑂 (𝑛(logℎ) (log𝑌 )) which, since ℎ | det 𝑆 , is bounded by 𝑂 (𝑛(log det 𝑆) (log𝑌 )).
Similarly, Step 3 computes 𝑛 division with remainder operations involving the divisor ℎ and a

dividend bounded in magnitude by𝑌 , a step which also has cost𝑂 (𝑛(logℎ) (log𝑌 )). This shows that
once ®𝑤 is precomputed, computing the target vector 𝑣 can be done in time 𝑂 (𝑛(log det 𝑆) (log𝑌 )).
Finally, by the definition of 𝑌 we have that log𝑌 ∈ 𝑂 (logℎ + loglog det 𝑆).
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Remark 46. For clarity, Subsections 10.1 and 10.2 have explained how to construct the vector ®𝑤
in (35) in two steps: (a) first construct the vectors ®𝑢𝑖 ∈ Z/(𝑠𝑖 )𝑘𝑖×1, 1 ≤ 𝑖 ≤ 𝑛, as in Lemma 44; (b) then
use Lemma 45 to construct the ®𝑤𝑖 ∈ Z/(𝑌 )𝑘𝑖×1 from ®𝑢𝑖 . An issue with producing ®𝑢 explicitly is that
it may require Ω((log det 𝑆)2) bits to represent. For this reason, each of the 𝑘1 + · · · + 𝑘𝑛 entries of ®𝑢
should be produced one by one and then used to produce the corresponding entry of ®𝑤 , thus avoiding
the need to store ®𝑢 explicitly. With this adjustment, the intermediate space requirement of the algorithm
remains bounded by 𝑂 (𝑛 log det 𝑆) bits.

11 THE HERMITE FORM ALGORITHM
At this point, we have developed all of the components for our algorithm that computes the Hermite

form 𝐻 of a nonsingular integer matrix 𝐴.

Before we proceed with our main result, we note that all the algorithms that have been given in

Sections 5-10 work with a reduced Smith massager𝑀 and a Smith form 𝑆 , and their cost estimates

depend on the dimension 𝑛 and log det 𝑆 . For the Hermite form algorithm, we would like to bound

the cost in terms of 𝑛 and log ∥𝐴∥. Since 𝑆 will be the Smith form of 𝐴, by Hadamard’s bound, we

have that

log det 𝑆 = log | det𝐴| ≤ 𝑛 log

(
𝑛1/2∥𝐴∥

)
. (36)

Using (36), the cost estimate 𝑂 (𝑛(log det 𝑆)2) from Theorem 22, directly translates to

𝑂 (𝑛3 (log𝑛 + log ∥𝐴∥)2). (37)

Similarly, in a slightly less trivial way, the cost estimate

𝑂 (𝑛(log det 𝑆)2 + 𝑛2 (log det 𝑆) (loglog det 𝑆))
from Theorems 37 and 35 is also bounded by (37). The first part is the same as before, and for the

second part

𝑂 (𝑛2 (log det 𝑆) (loglog det 𝑆)) ⊆ 𝑂 (𝑛3 (log(𝑛∥𝐴∥))(log(𝑛 log(𝑛∥𝐴∥))))
⊆ 𝑂 (𝑛3 (log(𝑛∥𝐴∥))(log𝑛 + log log(𝑛∥𝐴∥)))
⊆ 𝑂 (𝑛3 (log𝑛 + log ∥𝐴∥)2),

since 𝑂 (log𝑛 + log log(𝑛∥𝐴∥)) ⊆ 𝑂 (log𝑛 + log ∥𝐴∥).
The following theorem is the main result of the article.

Theorem 47. There exists a Las Vegas randomized algorithm that computes the Hermite form
𝐻 ∈ Z𝑛×𝑛 of a nonsingular integer matrix 𝐴 ∈ Z𝑛×𝑛 . The algorithm uses standard integer and matrix
multiplication and has cost 𝑂 (𝑛3 (log𝑛 + log | |𝐴| |)2 (log𝑛)2) bit operations.

Proof. The algorithm proceeds in four steps.

(1) 𝑀, 𝑆, 𝑝 := SmithMassager(𝐴)
(2) ℎ1, . . . , ℎ𝑛 := HermiteDiagonals(𝐴,𝑀, 𝑆)
(3) 𝑈 := SpecialHowellTransform(𝐴,𝑀, 𝑆, [ℎ1, . . . , ℎ𝑛], 𝑝)
(4) 𝐻 := HermiteViaHowell(𝐴,𝑀, 𝑆,𝑈 , [ℎ1, . . . , ℎ𝑛], 𝑝)
Step 1 uses the Las Vegas algorithm of Birmpilis et al. [2020, 2023], restated in Theorem 21, to

compute the Smith form 𝑆 and a reduced Smith massager𝑀 of𝐴. The cost is as stated in the current

theorem. Note that computing𝑀 and 𝑆 is the only randomized component of the Hermite form

algorithm. The Smith massager algorithm also returns a prime 𝑝 such that 𝑝 ⊥ det 𝑆 . The prime is

used in the ScaledMatVecProd procedure in the algorithms used in Steps 3 and 4.
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Step 2 exploits the fact that𝑀 is maintained column modulo 𝑆 and computes the diagonal entries

of 𝐻 . By Theorem 22 and Hadamard’s bound this is done with

𝑂 (𝑛3 (log𝑛 + log ∥𝐴∥)2) (38)

bit operations.

Step 3 computes a matrix𝑈 ∈ Z𝑛×𝑛 such that𝑇 = 𝑀𝑆∗𝑈 is right equivalent modulo 𝑠 to a Howell

form of 𝑀𝑆∗ (1/𝑠), where 𝑠 is the largest invariant factor in 𝑆 and 𝑆∗ = 𝑠𝑆−1
. By Theorem 37 and

Hadamard’s bound, the time complexity of Step 3 simplifies to (38).

Finally, Step 4 computes the Hermite denominator𝐻 of𝑇 (1/𝑠). By Theorem 35, the cost of Step 4

is also (38).

To see correctness, note that by Definition 9 the Hermite denominator of𝑀𝑆−1 = 𝑀𝑆∗ (1/𝑠) is
the Hermite form of 𝐴. Since𝑇 is right equivalent to𝑀𝑆∗ over Z/(𝑠),𝑇 (1/𝑠) has the same Hermite

denominator as 𝑀𝑆∗ (1/𝑠) (cf. Remark 8). The matrix 𝐻 computed in Step 4 is thus the Hermite

form of 𝐴. □

12 USING FAST INTEGER MULTIPLICATION
Our Hermite form algorithm is designed to have a softly cubic complexity in the parameter 𝑛 in

an environment that assumes standard integer multiplication: the cost of multiplying together

two integers of bitlength 𝑑 is 𝑂 (𝑑2) bit operations. If we are in an environment where integer

multiplication has cost 𝑂 (𝑑1+𝜖 ) bit operations for some 0 < 𝜖 ≤ 1, we can give a variation of our

Hermite form algorithm that establishes the following result.

Theorem 48. There exists a Las Vegas randomized algorithm that computes the Hermite form
𝐻 ∈ Z𝑛×𝑛 of a nonsingular integer matrix 𝐴 ∈ Z𝑛×𝑛 using 𝑂 (𝑛3+𝜖 (log | |𝐴| |)1+𝜖 ) bit operations.

Before proving the theorem, we give three lemmas. Let 𝑆 = diag(𝑠1, . . . , 𝑠𝑛) be a nonsingular
Smith form, and let𝑀 ∈ Z𝑛×𝑛 satisfy𝑀 = cmod(𝑀, 𝑆). Also, let 𝑠 := 𝑠𝑛 and 𝑆∗ := 𝑠𝑆−1

.

Consider the update step𝑀 := cmod(𝐻 𝑗𝑀, 𝑆) required in the proof of Theorem 35. The dominant

cost is to compute the outer product of column 𝑗 of 𝐻 𝑗 with row 𝑗 of 𝑀 , keeping this column

reduced modulo 𝑆 . Our first lemma shows that this can be done efficiently. We also use the lemma

in the transpose situation to bound the cost of the update𝑈 := rmod(𝑈𝑊𝑖 , 𝑆) required in the proof

of Theorem 37.

Lemma 49. Given a 𝑢 ∈ Z/(𝑠)𝑛×1, together with an𝑚 ∈ Z1×𝑛 such that𝑚 = cmod(𝑚, 𝑆), we can
compute cmod(𝑢𝑚, 𝑆) in 𝑂 (𝑛(log det 𝑆)1+𝜖 ) bit operations.

Proof. Let𝑚 =
[
𝑚1 · · · 𝑚𝑛

]
∈ Z1×𝑛

. Then

cmod(𝑢𝑚, 𝑆) =
[
𝑢1 · · · 𝑢𝑛

]
,

where 𝑢𝑖 = Rem(𝑢𝑚𝑖 , 𝑠𝑖 ) ∈ Z/(𝑠𝑖 )𝑛×1
, 1 ≤ 𝑖 ≤ 𝑛. Note that if 𝑠𝑖 = 1 then 𝑢𝑖 is necessarily the zero

vector. The 𝑢∗ that are not necessarily zero can be computed using the following loop:

𝑢 := 𝑢

𝑢𝑛 := Rem(𝑢𝑚𝑛, 𝑠𝑛)
for 𝑖 from 𝑛 − 1 downto 1 do

if 𝑠𝑖 = 1 then break fi
𝑢 := Rem(𝑢, 𝑠𝑖 )
𝑢𝑖 := Rem(𝑢𝑚𝑖 , 𝑠𝑖 )

od
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The cost of computing𝑢𝑛 is bounded by𝑂 (𝑛(log 𝑠)1+𝜖 ) bit operations. Since the operands at loop iter-
ation 𝑖 have bitlength bounded by lg 𝑠𝑖+1, the cost at iteration 𝑖 is𝑂 (𝑛(lg 𝑠𝑖+1)1+𝜖 ) bit operations. The
total cost of the loop is thus𝑂 (𝑛∑𝑛

𝑖=2,𝑠𝑖≠1
(lg 𝑠𝑖 )1+𝜖 ). Using the fact that ∑𝑖=2,𝑠𝑖≠1

lg 𝑠𝑖 ∈ 𝑂 (log det 𝑆),
the total cost to compute the 𝑢∗ is as stated in the lemma. □

Furthermore, consider the update step 𝑈 := rmod(𝑈𝐶𝑖 , 𝑆) in the proof of Theorem 37. Since

𝐶𝑖 has at most one nontrivial column, the dominant cost is to compute a matrix×vector product,
keeping this row reduced modulo 𝑆 . The following corollary, applied to the transpose situation,

shows that this can be done efficiently. The proof is analogous to the proof of Lemma 49.

Corollary 50. Given a 𝑢 ∈ Z/(𝑠)1×𝑛 , together with an𝑀 ∈ Z𝑛×𝑛 such that𝑀 = cmod(𝑀, 𝑆), we
can compute cmod(𝑢𝑀, 𝑆) in 𝑂 (𝑛(log det 𝑆)1+𝜖 ) bit operations.

The following result will be used in place of ScaledMatVecProd.

Lemma 51 (Storjohann [2015, Lemma 4.11]). Given an 𝑀 ∈ Z𝑛×𝑛 such that 𝑀 = cmod(𝑀, 𝑆),
together with a 𝑈 ∈ Z𝑛×𝑛 such that 𝑈 = rmod(𝑈 , 𝑆), then any individual row or column of
Rem(𝑀𝑆∗𝑈 , 𝑠) can be computed using 𝑂 (𝑛(log det 𝑆)1+𝜖 ) bit operations.

We now prove Theorem 48.

Proof. (Of Theorem 48). We begin by (i) computing the Smith form 𝑆 and a reduced Smith

massager𝑀 of 𝐴, then (ii) compute an integer matrix𝑈 such that𝑀 (𝑠𝑛𝑆−1)𝑈 is right equivalent

to a Howell form of 𝑠𝐴−1
over Z/(𝑠), and finally (iii) compute 𝐻 as the Hermite denominator of

𝑀𝑆−1𝑈 .

Birmpilis et al. [2023, Theorem 19] establish that phase (i) can be done within the time stated in

Theorem 48.

For phase (ii), we adapt the algorithm, with 𝑛 iterations and three steps per iteration, given in

the proof of Theorem 37. In Step 1, use Lemma 51 to compute the required 𝑛 entries[
𝑡𝑛−𝑖𝑎1 · · · 𝑡𝑛−𝑖𝑎𝑛−1 𝑡𝑛−𝑖𝑎𝑛

]
∈ Z/(𝑠)1×𝑛 . (39)

Since we are not given 𝑡𝑛−𝑖 = 𝑠/ℎ𝑛−𝑖 as input, we compute it now as the gcd of entries of the 𝑛

elements in (39) at a cost of

𝑂 (𝑛(log 𝑠)1+𝜖 ) (40)

bit operations. In Step 2, the update matrices 𝐶𝑖 and𝑊𝑖 can be computed in the time (40) using

an analog of Lemma 36. In Step 3, the update 𝑈 := rmod(𝑈𝐶𝑖𝑊𝑖 , 𝑆) is done in time (40) using

Lemmas 50 and 49. Since there are 𝑛 iterations, and lg 𝑠 ≤ lg det 𝑆 ∈ 𝑂 (𝑛(log𝑛 + log | |𝐴| |)), the
overall cost of phase (ii) is as stated in the theorem.

Similar to phase (ii), the overall cost bound for phase (iii) follows by adapting the two-step

algorithm in the proof of Theorem 35 by using Lemma 51 for Step 1, and Lemma 49 for Step 2. □

Finally, if we assume we are using a pseudo-linear algorithm for integer multiplication, such as

the 𝑂 (𝑑 log𝑑) algorithm of Harvey and van der Hoeven [2021], we obtain the following corollary.

Corollary 52. There exists a Las Vegas randomized algorithm that computes the Hermite form
𝐻 ∈ Z𝑛×𝑛 of a nonsingular integer matrix 𝐴 ∈ Z𝑛×𝑛 using (𝑛3

log | |𝐴| |)1+𝑜 (1) bit operations. This cost
estimate assumes the use of a pseudo-linear algorithm for integer multiplication.
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13 CONCLUSION AND TOPICS FOR FUTURE RESEARCH
We have given a Las Vegas randomized algorithm to compute the Hermite form 𝐻 ∈ Z𝑛×𝑛 of a

nonsingular matrix 𝐴 ∈ Z𝑛×𝑛 . The algorithm has worst-case expected running time

𝑂 (𝑛3 (log𝑛 + log | |𝐴| |)2 (log𝑛)2) (41)

bit operations using standard integer and matrix multiplication.

The core tool used is the Smith massager which helps control the size of intermediate results.

The (log𝑛)2
factor in (41) is due to the first step of the algorithm, which computes a Smith form

𝑆 and Smith massager 𝑀 of 𝐴. This first step is accomplished using the Las Vegas algorithm of

Birmpilis et al. [2023, Theorem 19] which allows the use of fast matrix multiplication, and shows

that 𝑆 and𝑀 can be computed using an expected number of 𝑂 (𝑛𝜔 (log𝑛 + log | |𝐴| |)2 (log𝑛)2) bit
operations assuming standard integer multiplication. Computing 𝑀 is also the only part of the

Hermite form algorithm that requires randomization.

Once𝑀 is precomputed, the algorithm in this paper computes𝐻 deterministically using a further

𝑂 (𝑛3 (log𝑛 + log | |𝐴| |)2) bit operations. The intermediate space requirement of the algorithm to

compute 𝐻 from𝑀 is bounded by 𝑂 (𝑛2 (log𝑛 + log | |𝐴| |)) bits, which is the same as that required

to write down 𝐻 in the worst case.

We have also given a variant of our Hermite form algorithm that has a worst case expected

running time (𝑛3
log | |𝐴| |)1+𝑜 (1)

bit operations, assuming the use of a pseudo-linear algorithm for

integer multiplication.

Our Hermite form algorithms extend to the case of an input matrix 𝐴 ∈ Z𝑚×𝑛
of full column

rank 𝑛 and𝑚 > 𝑛. Up to a row permutation, and up to adding at most 𝑛 − 1 zero rows, we may

assume without loss of generality that

𝐴 =


𝐴1

𝐴2

...

𝐴𝑘


∈ Z𝑘𝑛×𝑛,

where each 𝐴∗ is 𝑛 × 𝑛, 𝐴1 ∈ Z𝑛×𝑛 is nonsingular, and 𝑘 = ⌈𝑛/𝑚⌉. Initialize 𝐻1 := 𝐴1. Compute, in

succession for 𝑖 = 2, 3, . . . , 𝑘 , the leading principal 𝑛 × 𝑛 submatrix 𝐻𝑖 of the Hermite form of the

nonsingular matrix [
𝐻𝑖−1

𝐴𝑖 𝐼𝑛

]
∈ Z2𝑛×2𝑛 . (42)

Then 𝐻𝑘 ∈ Z𝑛×𝑛 is the leading principal 𝑛 × 𝑛 submatrix of the Hermite form of 𝐴. Birmpilis et al.

[2023, Theorem 27 and Remark 34] show that computing the Hermite form of (42) reduces to that of

computing the Hermite form of a matrix of dimension bounded by 4𝑛 that has entries with bitlength

𝑂 (log𝑛 + log | |𝐴| |). Computing the Hermite form of an 𝐴 ∈ Z𝑚×𝑛
of rank 𝑛 can thus be done in a

Las Vegas fashion using an expected number of 𝑂 (𝑚𝑛2 (log𝑛 + log | |𝐴| |)2 (log𝑛)2) bit operations
using standard integer and matrix arithmetic, or an expected number of 𝑂 (𝑚𝑛2

log | |𝐴| |)1+𝑜 (1)
bit

operations using pseudo-linear integer multiplication.

In terms of future directions, a natural goal is to find an algorithm to compute the Hermite form

of a nonsingular integer matrices that has cost (𝑛𝜔 log | |𝐴| |)1+𝑜 (1)
bit operations. In addition, we

would like to find a deterministic algorithm for the Hermite form problem with the same complexity.
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