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Abstract

In this paper we give formulas for performing row reduction of a matrix of Ore
polynomials in a fraction-free way. The reductions can be used for finding the rank
and left nullspace of such matrices. When specialized to matrices of skew polyno-
mials our reduction can be used for computing a weak Popov form of such matrices
and for computing a GCRD and an LCLM of skew polynomials or matrices of skew
polynomials. The algorithm is suitable for computation in exact arithmetic domains
where the growth of coefficients in intermediate computations is a concern. This co-
efficient growth is controlled by using fraction-free methods. The known factor can
be predicted and removed efficiently.

1 Introduction

Ore rings provide a general setting for describing linear differential, recurrence,
difference and q-difference operators. Formally these are given by IK [Z;σ, δ]
with IK a field of coefficients, Z an indeterminate, σ an injective homomor-
phism, δ a derivation and with the multiplication rule Za = σ(a)Z + δ(a) for
all a ∈ IK . In this paper we are interested in matrices of Ore polynomials and
look at the problem of transforming such matrices into “simpler” ones using
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only certain row operations. Examples of such transformations include con-
version to special forms, such as row-reduced, Popov or weak Popov normal
forms. In our case we are primarily interested in transformations which allow
for easy determination of rank and left nullspaces.

For a given m× s matrix F(Z) ∈ IK [Z;σ, δ]m×s we are interested in applying
two types of elementary row operations. The first type includes

(a) interchange two rows;
(b) multiply a row by a nonzero element in IK [Z;σ, δ] on the left;
(c) add a polynomial left multiple of one row to another.

In the second type of elementary row operations we include (a), (b) and (c)
but require that the row multiplier in (b) comes from IK . The second set of
row operations is useful, for example, when computing a Greatest Common
Right Divisor (GCRD) or a Least Common Left Multiple (LCLM) of Ore
polynomials.

Formally, in the first instance we can view a sequence of elementary row op-
erations as a matrix U(Z) ∈ IK [Z;σ, δ]m×m with the result of these row op-
erations given by T(Z) = U(Z) F(Z) ∈ IK [Z;σ, δ]m×s. In the second case,
U(Z) would have the additional property that there exists a left inverse
V(Z) ∈ IK [Z;σ, δ]m×m such that V(Z) U(Z) = Im. In the commutative case,
such a transformation matrix is called unimodular [Kailath, 1980].

In many cases it is possible to transform via row operations a matrix of Ore
polynomials into one whose rank is completely determined by the rank of its
leading or trailing coefficient. In the commutative case, this can be done via
an algorithm of Beckermann and Labahn [1997] while in the noncommutative
case of skew polynomials (i.e. where δ = 0) this can be done using either
the EG-elimination method of Abramov [1999] or the algorithm of Abramov
and Bronstein [2001]. In the commutative case, examples of applications for
such transformations include matrix polynomial division, inversion of matrix
polynomials, finding matrix GCDs of two matrix polynomials and finding all
solutions to various rational approximation problems. For the skew polynomial
case, it was shown by Abramov and Bronstein [2001] that such transformations
can be used to find polynomial and rational solutions of linear functional
systems.

The algorithm given by Abramov and Bronstein [2001] improves on the EG-
elimination method of Abramov [1999] and extends a method of Beckermann
and Labahn [1997] to the noncommutative case. While these algorithms have
good arithmetic complexity, coefficient growth may occur and can only be
controlled through coefficient GCD computations. Without such GCD com-
putations the coefficient growth can be exponential. Examples of such growth
can be found in Section 8.
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In this paper we consider the problem of determining the rank and left nullspace
of a matrix of Ore polynomials for problems where coefficient growth is an is-
sue. Our aim is to give a fraction-free algorithm for finding these quantities
when working over the domain ID [Z;σ, δ] with ID an integral domain, and
σ(ID ) ⊂ ID , δ(ID ) ⊂ ID . Examples of such domains include ID = IF [n] for
some field IF with Z the shift operator and ID = IF [x] and where Z is the
differential operator. By fraction-free we mean that we can work entirely in
the domain ID [Z;σ, δ] but that coefficient growth is controlled without any
need for costly coefficient GCD computations. In addition we want to ensure
that all intermediate results can be bounded in size which allows for a precise
analysis of the growth of coefficients of our computation.

Our results extend the algorithm of Beckermann and Labahn [2000] in the
commutative case and Beckermann et al. [2002] in the case of matrices of
skew polynomials. This extension has considerable technical challenges. For
example, unlike the skew and commutative polynomial case, the rank is no
longer necessarily determined by the rank of the leading or trailing coefficient
matrix. As a result, a different termination criterion is required for matrices
of Ore polynomials. We also show how to obtain a row-reduced basis of the
left nullspace of matrices of Ore polynomials.

In the common special case of matrices of skew polynomials, we can say more.
Our methods can be used to give a fraction-free algorithm to compute a weak
Popov form for such matrices with negligible additional computations, which
is an improvement over the row-reduced form obtained in our previous al-
gorithm [Beckermann et al., 2002]. In addition, the methods can be used to
compute, in a fraction-free way, a GCRD and an LCLM of skew polynomials or
matrices of skew polynomials. Finally, we show how the quantities produced
during such a GCRD computation relate to the subresultants of two skew
polynomials [Li, 1996, 1998], the classical tools used for fraction-free GCRD
computations. Therefore, we can view our algorithm as a generalization of
the subresultant algorithm. Although previous algorithms (e.g. Abramov and
Bronstein [2001]) may be faster in some cases, our algorithms have polynomial
time and space complexities in the worst case. In particular, when coefficient
growth is significant our algorithm is faster. As our methods for skew polyno-
mials require the coefficients be reversed, we restrict our attention to the case
where σ is an automorphism when dealing with matrices of skew polynomials.

The remainder of this paper is organized as follows. In Section 2 we discuss
classical concepts such as rank and left nullspace of matrices of Ore polyno-
mials and extend some well known facts from matrix polynomial theory to
matrix Ore domains. In Section 3 we give a brief overview of our approach. In
Section 4 we define order bases, the principal tool used for our reduction while
in Section 5 we place these bases into a linear algebra setting. A fraction-free
recursion formula for computing order bases is given in Section 6 followed by a
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discussion of the termination criterion along with the complexity of the algo-
rithm in the following section. Section 8 gives some examples where coefficient
growth is an important issue. We also compare the requirements for our al-
gorithm and that of Abramov and Bronstein in these cases. Matrices of skew
polynomials are handled in Section 9 where we show that our algorithm can be
used to find a weak Popov form of such matrices. In this section we also show
how the algorithm can be used to compute a GCRD and LCLM of two skew
polynomials and relate order bases to subresultants in the special case of 2×1
matrices of skew polynomials. The paper ends with a conclusion along with a
discussion of directions for future work. Finally, we include an appendix which
gives a number of technical facts about matrices of Ore polynomials that are
necessary for our results.

Notation. We shall adapt the following conventions for the remainder of this
paper. We assume that F(Z) ∈ ID [Z;σ, δ]m×s. Let N = deg F(Z), and write

F(Z) =
N∑
j=0

F (j)Zj, with F (j) ∈ IDm×s.

We denote the elements of F(Z) by F(Z)k,`, and the elements of F (j) by F
(j)
k,` .

The jth row of F(Z) is denoted F(Z)j,∗. If J ⊂ {1, . . . ,m}, the submatrix
formed by the rows indexed by the elements of J is denoted F(Z)J,∗. For a

scalar polynomial, however, we will write f(Z) as f(Z) =
∑N
j=0 fjZ

j. For any
vector of integers (also called multi-index) ~ω = (ω1, . . . , ωp), we denote by
|~ω| =

∑p
i=1 ωi. We also denote by Z~ω the matrix of Ore polynomials having

Zωi on the diagonal and 0 everywhere else. A matrix of Ore polynomials
F(Z) is said to have row degree ~ν = row-deg F(Z) (and column degree ~µ =
col-deg F(Z), respectively) if the ith row has degree νi (and the jth column
has degree µj). The vector ~ei denotes the vector having 1 in component i and
0 elsewhere and ~e = (1, . . . , 1).

2 Row-reduced Matrices of Ore polynomials

In this section we will generalize some classical notions such as rank, uni-
modular matrices, and the transformation to row-reduced matrices (see for
instance Kailath [1980]) to the case of Ore matrix polynomials. For the sake
of completeness, generalizations of other well known classical properties for
matrix polynomials such as the invariance of the rank under row operations,
the predictable degree property and minimal indices are included in the ap-
pendix.
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With ~ν = row-deg F(Z) and N = maxj νj = deg F(Z), we may write

ZN~e−~ν F(Z) = LZN + lower degree terms,

where the matrix L(F(Z)) := L ∈ IKm×s is called the leading coefficient matrix
of F(Z). In analogy with the case of ordinary matrix polynomials F(Z) is row-
reduced if rankL = m.

Definition 2.1 (Rank, Unimodular)

(a) For F(Z) ∈ IK [Z;σ, δ]m×s, the quantity rank F(Z) is defined to be the max-
imum number of IK [Z;σ, δ]-linearly independent rows of F(Z).

(b) A matrix U(Z) ∈ IK [Z;σ, δ]m×m is unimodular if there exists a V(Z) ∈
IK [Z;σ, δ]m×m such that V(Z) U(Z) = U(Z) V(Z) = Im.

2

We remark that our definition of rank is different from (and perhaps simpler
than) that of Cohn [1971] or Abramov and Bronstein [2001] who considers
the rank of the module of rows of F(Z) (or the rank of the matrix over the
skew-field IK (Z;σ, δ) of left fractions). This definition is more convenient for
our purposes. We show in the appendix that these quantities are in fact the
same.

For the main result of this section we will show that any matrix of Ore poly-
nomials can be transformed to one whose nonzero rows form a row-reduced
matrix by means of elementary row operations of the second type given in the
introduction.

Theorem 2.2 For any F(Z) ∈ IK [Z;σ, δ]m×s there exists a unimodular ma-
trix U(Z) ∈ IK [Z;σ, δ]m×m, with T(Z) = U(Z) F(Z) having r ≤ min{m, s}
nonzero rows, row-deg T(Z) ≤ row-deg F(Z), and where the submatrix con-
sisting of the r nonzero rows of T(Z) are row-reduced.

Moreover, the unimodular multiplier satisfies the degree bound

row-deg U(Z) ≤ ~ν + (|~µ| − |~ν| −min
j
{µj})~e,

where ~µ := max(~0, row-deg F(Z)) and ~ν := max(~0, row-deg T(Z)).

Proof: We will give a constructive proof of this theorem. Starting with
U(Z) = Im and T(Z) = F(Z), we construct a sequence of unimodular matri-
ces U(Z) and T(Z) = U(Z) F(Z), with row-deg U(Z) ≤ ~ν − ~µ+ (|~µ| − |~ν|)~e,
~ν = max(~0, row-deg T(Z)), and the final T(Z) having the desired additional
properties. In one step of this procedure, we will update one row of the previ-
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ously computed U(Z),T(Z) (and hence one component of ~ν), and obtain the
new quantities U(Z)new,T(Z)new with ~νnew = max(~0, row-deg T(Z)new).

Denote by J the set of indices of zero rows of T(Z), and L = L(T(Z)). If the
matrix formed by the nontrivial rows of T(Z) is not yet row-reduced, then we
can find a ~v ∈ IK 1×m with ~v 6= ~0, ~vL = 0, and vj = 0 for j ∈ J . Choose an
index k with vk 6= 0 (the index of the updated row) and

νk = max{νj : vj 6= 0},

and define Q(Z) ∈ IK [Z;σ, δ]1×m by Q(Z)1,j = σνk−t(vj)Z
νk−νj if vj 6= 0, and

Q(Z)1,j = 0 otherwise, where t = deg T(Z). Then

T(Z)newk,∗ := Q(Z) T(Z)

=
∑
vj 6=0

σνk−t(vj)Z
νk−νjT

(νj)
j,∗ Z

νj + lower degree terms

=
m∑
j=1

σνk−t(vj)σ
νk−νj(T

(νj)
j,∗ )Zνk + lower degree terms

= σνk−t(vL)Zνk + lower degree terms.

Hence deg T(Z)newk,∗ ≤ νk − 1, showing that row-deg T(Z)new ≤ row-deg T(Z).
Notice that U(Z)new = V(Z) U(Z), where V(Z) is obtained from Im by
replacing its kth row by Q(Z). Since Q(Z)1,k ∈ IK \ {0} by construction,
we may consider W(Z) obtained from Im by replacing its (k, j) entry by
−(Q(Z)1,k)

−1Q(Z)1,j for j 6= k, and by (Q(Z)1,k)
−1 for j = k. The reader

may easily verify that W(Z) V(Z) = V(Z) W(Z) = Im. Thus, as with U(Z),
U(Z)new is also unimodular. Making use of the degree bounds for U(Z), we
also get that deg(Q(Z) U(Z)) ≤ νk − µk + |~µ| − |~ν|. Hence the degree bounds
for U(Z)new are obtained by observing that

row-deg U(Z)new ≤ ~ν − ~µ+ (|~µ| − |~ν|)~e ≤ ~νnew − ~µ+ (|~µ| − |~νnew|)~e.

Finally, we notice that, in each step of the algorithm, we either produce a new
zero row in T(Z), or else decrease |~ν|, the sum of the row degrees of nontrivial
rows of T(Z), by at least one. Hence the procedure terminates, which implies
that the nonzero rows of T(Z) are row-reduced.

Remark 2.3 The algorithm given in the proof of Theorem 2.2 closely follows
the one in Beckermann and Labahn [1997], Eqn. (12), for ordinary matrix
polynomials, and is similar to that of Abramov and Bronstein [2001] in case of
skew polynomials. However, we prefer to perform our computations with skew
polynomials instead of Laurent skew polynomials (e.g. when Z is the differen-
tiation operator). The degree bounds given in Theorem 2.2 for the multiplier
matrix U(Z) appear to be new.
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Remark 2.4 In the case of commutative polynomials there is an example
in [Beckermann et al., 2001, Example 5.6] of a F(Z) which is unimodular
(and hence T(Z) = I), has row degree N~e and where its multiplier satisfies
row-deg U(Z) = (m − 1)N~e. Hence the worst case estimate of Theorem 2.2
for the degree of U(Z) is sharp.

In Theorem A.2 of the appendix we will prove that the quantity r of Theo-
rem 2.2 in fact equals the rank of F(Z). In addition, this theorem will also
show that the matrix U(Z) of Theorem 2.2 gives some important properties
about a basis for the left nullspace of F(Z) given by

NF(Z) = {Q(Z) ∈ IK [Z;σ, δ]1×m : Q(Z) F(Z) = 0}.

Furthermore, various other properties are included in the appendix. In partic-
ular we prove in Lemma A.3 that the rank does not change after performing
elementary row operations of the first or second kind.

3 Overview

Theorem 2.2 shows that one way to compute a row-reduced form is to repeat-
edly eliminate unwanted high-order coefficients, until the leading coefficient
matrix has the appropriate rank. Instead of eliminating high-order coefficients,
our approach is to eliminate low-order coefficients. In the case of skew poly-
nomials a suitable substitution (see Section 9) can be made to reverse the
coefficients to eliminate high-order coefficients. By performing elimination un-
til the trailing coefficient has a certain rank (or in triangular form), we can
reverse the coefficients to obtain a row-reduced form (or a weak Popov form).

We introduce the notion of order and order bases for the elimination of low-
order coefficients. Roughly, the order of an Ore polynomial is the smallest
power of Z with a nonzero coefficient; an order basis is a basis of the module
of all left polynomial combinations of the rows of F(Z) such that the combi-
nations have a certain number of low-order coefficients being zero. One can,
in fact, view an order basis as a rank-preserving transformation which results
in an Ore matrix with a particular order. If the basis element corresponds
to a left polynomial combination which is identically zero, then it is also an
element in the left nullspace of F(Z). If we obtain the appropriate number
of left polynomial combinations which are identically zero, we get a basis for
the left nullspace of F(Z) because the elements in an order basis are linearly
independent.

From degree bounds on the elements in the order basis, we obtain linear sys-
tems of equations for the unknown coefficients in an order basis. By studying
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the linear systems we obtain results on uniqueness as well as a bound on the
sizes of the coefficients in the solutions. The coefficient matrices (called striped
Krylov matrices) of these linear systems have a striped structure, so that each
stripe consists of the coefficients of Zk multiplied by a row of F(Z) for some k.
One may apply any technique for solving systems of linear equations to obtain
an order basis. However, the structure inherent in striped Krylov matrices of
the linear systems are not exploited.

Our algorithm exploits the structure by performing elimination on only one
row for each stripe. The recursion formulas given in Section 6 are equiva-
lent to performing fraction-free Gaussian elimination [Bareiss, 1968] on the
striped Krylov matrix to incrementally eliminate the columns. By performing
elimination on the matrix of Ore polynomials directly, our algorithm controls
coefficient growth without having to perform elimination on the much larger
Krylov matrix. The relationship with fraction-free Gaussian elimination is
also used to show that our algorithm can be considered a generalization of the
subresultant algorithm (cf. Section 9.4).

4 Order Basis

In this section we introduce the notion of order and order bases for a given
matrix of Ore polynomials F(Z). These are the primary tools which will be
used for our algorithm. Informally, we are interested in taking left linear com-
binations of rows of our input matrix F(Z) in order to eliminate low order
terms, with the elimination differing for various columns. Formally such an
elimination is captured using the concept of order.

Definition 4.1 (Order) Let P(Z) ∈ IK [Z;σ, δ]1×m be a vector of Ore poly-
nomials and ~ω a multi-index. Then P(Z) is said to have order ~ω if

P(Z) F(Z) = R(Z)Z~ω (1)

with R(Z) ∈ IK [Z;σ, δ]1×s. The matrix R(Z) in (1) is called a residual. 2

We are interested in all possible row operations which eliminate lower order
terms of F(Z). Using our formalism, this corresponds to finding all left linear
combinations (over IK [Z;σ, δ]) of elements of a given order. This in turn is
captured in the definition of an order basis, which gives a basis of the module
of all vectors of Ore polynomials having a particular order.

Definition 4.2 (Order Basis) Let F(Z) ∈ IK [Z;σ, δ]m×s, and ~ω be a multi-
index. A matrix of Ore polynomials M(Z) ∈ IK [Z;σ, δ]m×m is said to be an
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order basis of order ~ω and column degree ~µ if there exists a multi-index ~µ =
(µ1, ..., µm) such that

(a) every row of M(Z) has order ~ω,
(b) for every P(Z) ∈ IK [Z;σ, δ]1×m of order ~ω there exists a Q(Z) ∈ IK [Z;σ, δ]1×m

such that
P(Z) = Q(Z) M(Z),

(c) there exists a nonzero d ∈ IK such that

M(Z) = dZ~µ + L(Z)

where deg L(Z)k,` ≤ µ` − 1.

If in addition M(Z) is row-reduced, with row-deg M(Z) = ~µ, then we refer to
M(Z) as a reduced order basis. 2

Part (a) of Definition 4.2 states that every row of an order basis eliminates
rows of F(Z) up to a certain order while part (b) implies that the rows describe
all eliminates of the order. The intuition of part (c) is that µi gives the number
of times row i has been used as a pivot row in a row elimination process. A
reduced order basis has added degree constraints, which can be thought of as
fixing the pivots.

By the Predictable Degree Property for matrices of Ore polynomials shown
in Lemma A.1(a) of the appendix we can show that an order basis will be a
reduced order basis if and only if row-deg M(Z) ≤ ~µ, and we have the added
degree constraint in part (b) that, for all j = 1, ...,m,

deg Q(Z)1,j ≤ deg P(Z)− µj. (2)

Example 4.3 Let ID = ZZ [x], σ(a(x)) = a(x), and δ(a(x)) = d
dx
a(x) for all

a(x) ∈ ID and

F(Z) =

2Z2 + 2xZ + x2 Z2 − Z + 2

xZ + 2 3xZ + 1

 . (3)

Then an order basis for F(Z) of order (1, 1) and degree (1, 1) is given by

M(Z) =

(x2 − 4)Z − 2x 4x

0 (x2 − 4)Z

 .
Note that M(Z) is a reduced order basis. 2

We remark that the definition of order basis given in Beckermann et al. [2002]
is slightly more restrictive than our definition of reduced order basis given
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here. We use the more general definition in order to gain more flexibility with
our pivoting.

A key theorem for proving the correctness of the fraction-free algorithm deals
with the uniqueness of order bases. The proof in Beckermann et al. [2002] is
not applicable for the new definition of order bases and so we give a new proof
here for this result.

Theorem 4.4 Let M(Z) be an order basis of order ~ω and degree ~µ.

(a) There exists only the trivial row vector P(Z) = ~0 with column degree ≤ ~µ−~e
and order ≥ ~ω.

(b) For any k, a row vector with column degree ≤ ~µ− ~e+ ~ek and order ≥ ~ω is
unique up to multiplication with an element from IK .

(c) An order basis of a particular order and degree is unique up to multiplication
by constants from IK .

Proof: We only need to show part (a) as (b) and (c) follow directly from
(a). Suppose that P(Z) 6= ~0 has order ~ω and column degree ~µ− ~e. By Defini-
tion 4.2(b), there exists Q(Z) ∈ IK [Z;σ, δ]1×m such that P(Z) = Q(Z) M(Z).
Let j be an index such that deg Q(Z)1,j is maximum. Since P(Z) 6= ~0, it
follows that deg Q(Z)1,j ≥ 0. Now,

deg P(Z)1,j = deg

(
m∑
k=1

Q(Z)1,k M(Z)k,j

)
.

Note that if k 6= j, then

deg Q(Z)1,k M(Z)k,j = deg Q(Z)1,k + deg M(Z)k,j
≤ deg Q(Z)1,j + deg M(Z)k,j
≤ deg Q(Z)1,j + µj − 1.

Also,
deg Q(Z)1,j M(Z)j,j = deg Q(Z)1,j + µj,

so that
deg P(Z)1,j = deg Q(Z)1,j + µj ≥ µj.

This contradicts the assumption that deg P(Z)1,j ≤ µj − 1.

In the commutative case there are a number of characterizations of order bases.
For example in Beckermann and Labahn [1997] order bases are characterized
by properties on its determinant.

Example 4.5 Let a(Z), b(Z) ∈ ID [Z;σ, 0] with degrees da, db, respectively,
with da ≥ db. Set t = da − db, γ :=

∏t
i=0 σ

i(b0) and solve

γ a(Z) = q(Z) b(Z) + r(Z)Zt+1 (4)
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with deg q(Z) = t and deg r(Z) < db. Equation (4) corresponds to solving the
linear system of equations

γ [a0, . . . , at] = [q0, . . . , qt]



b0 σ(b1) · · · σt(bt)

σ(b0)
...

. . .
...

σt(b0)


, (5)

an equation similar to that encountered in performing right pseudo-division of
skew polynomials. Setting

M(Z) =

 γ −q(Z)

0 γZt+1


we see that

M(Z)

 a(Z)

b(Z)

 =

 r(Z)

w(Z)

 Zt+1

where w(Z) = γ σt+1(b(Z)) = γ
∑db
i=0 σ

t+1(bi)Z
i. Properties (a) and (c) of

Definition 4.2 are trivially satisfied by M(Z). Property (b) follows from the
linear equations given in the next section. 2

5 Determinantal Representations

Assume now that the entries of F(Z) come from ID [Z;σ, δ]. We are interested
in constructing an algorithm for recursively computing order bases M(Z) ∈
IKm×m[Z;σ, δ] for increasing orders, where IK = QID , the quotient field of ID .
In order to predict the size of these objects and predict common factors, we
derive in this section a determinantal representation together with a particular
choice of the constant d arising in Definition 4.2(c).

Because the order condition in Definition 4.1 is on the right, we observe that
if

F(Z) =
∑
j

F (j)Zj, P(Z) =
∑
k

P (k)Zk,

then we have
P(Z) F(Z) =

∑
j

S(j)Zj (6)

with the unknowns P (k) obtained by constructing a system of linear equations
by setting the undesired coefficients of S(j) equal to zero.

11



Let us examine the underlying system of linear equations. Notice first that for
any A(Z) ∈ IK [Z;σ, δ] we may write

ck(Z A(Z)) = σ(ck−1(A(Z))) + δ(ck(A(Z))) (7)

where ck denotes the kth coefficient of a polynomial (with c−1 = 0). We may
write (7) in terms of linear algebra. Denote by C = (cu,v)u,v=0,1,... the lower
triangular infinite matrix of operators defined by cu,u = δ, cu+1,u = σ and 0
otherwise, and by Cµ (µ ≥ 0) its principal submatrix of order µ. Furthermore,
for each A(Z) ∈ IK [Z;σ, δ] and nonnegative integer µ we associate vectors of
coefficients

A(µ) = [c0(A(Z)), . . . , cµ−1(A(Z))]T = [A(0), . . . , A(µ−1)]T , (8)

A = [c0(A(Z)), c1(A(Z)), . . .]T = [A(0), A(1), . . . ]T . (9)

Note that we begin our row and column enumeration at 0. We can interpret
(7) in terms of matrices by

Cµ A(µ) = [c0(Z A(Z)), . . . , cµ−1(Z A(Z))]T .

Comparing with (6), we know that P(Z) has order ~ω if and only if for each
` = 1, ..., s, j = 0, ..., ω` − 1 we have

m∑
k=1

cj(P(Z)1,k F(Z)k,`) = 0.

If we wish to find solutions P(Z) such that deg P(Z)1,k ≤ νk for some multi-
index ~ν, then we obtain a system of linear equations of the form

(P
(0)
1,1 , ..., P

(ν1)
1,1 , ..., P

(0)
1,m, ..., P

(νm)
1,m )K(~ν + ~e, ~ω) = 0, (10)

where the coefficient matrix has the form

K(~ν + ~e, ~ω) = (Kk,`(νk + 1, ω`))
`=1,...,s
k=1,...,m,

and Kk,`(νk + 1, ω`)
T may be written asF

(ω`)
k,` Cω` F

(ω`)
k,` · · · Cνk

ω`
F

(ω`)
k,`

 . (11)

Thus, the matrix K(~ν + ~e, ~ω)T is in the form of a striped Krylov matrix
[Beckermann and Labahn, 2000], except that by stepping from one column to
the next we not only multiply with a lower shift matrix but also apply the
functions σ and δ. Thus, in contrast to Beckermann and Labahn [2000], here
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we obtain a striped Krylov matrix with a matrix C having operator-valued
elements.

Example 5.1 Let F(Z) be as in Example 4.3 with Z a differential operator.
Then we have

K((3, 3), (3, 3)) =



x2 2x 2 2 −1 1

2x x2 + 2 2x 0 2 −1

2 4x x2 + 4 0 0 2

2 x 0 1 3x 0

0 3 x 0 4 3x

0 0 4 0 0 7


.

2

Example 5.2 In the case of matrices of skew polynomials, the ν×ω submatrix
Kk,`(ν, ω) is simply

σ0(F
(0)
k,` ) σ0(F

(1)
k,` ) σ0(F

(2)
k,` ) · · · · · · σ0(F

(ω−1)
k,` )

0 σ1(F
(0)
k,` ) σ1(F

(1)
k,` ) · · · · · · σ1(F

(ω−2)
k,` )

...
. . . . . . . . .

...

0 · · · 0 σν−1(F
(0)
k,` ) · · · σν−1(F

(ω−ν)
k,` )


.

Thus with F(Z) as in (3) but with σ(a(x)) = a(x+ 1) and δ = 0 we have

K((3, 3), (3, 3)) =



x2 2x 2 2 −1 1

0 (x+ 1)2 2(x+ 1) 0 2 −1

0 0 (x+ 2)2 0 0 2

2 x 0 1 3x 0

0 2 x+ 1 0 1 3(x+ 1)

0 0 2 0 0 1


.

2

According to (10), it follows from Theorem 4.4 that if there exists an order
basis M(Z) of order ~ω and degree ~µ then K(~µ, ~ω) has full row rank, and more
precisely

k = 1, ...,m : rank K(~µ, ~ω) = rank K(~µ+ ~ek, ~ω) = |~µ|. (12)
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Suppose more generally that ~µ and ~ω are multi-indices verifying (12). We
call a multigradient d = d(~µ, ~ω) any constant ±1 times the determinant of a
regular submatrix K∗(~µ, ~ω) of maximal order of K(~µ, ~ω), and a Mahler system
corresponding to (~µ, ~ω) a matrix of Ore polynomial M(Z) with rows having
order ~ω and degree structure

M(z) = d · Z~µ + lower order column degrees.

In order to show that such a system exists, we state explicitly the linear
system of equations needed to compute the unknown coefficients of the kth
row of M(Z): denote by bk(~µ, ~ω) the row added while passing from K(~µ, ~ω)
to K(~µ + ~ek, ~ω). Then, by (10), the vector of coefficients is a solution of the
(overdetermined) system

x ·K(~µ, ~ω) = d · bk(~µ, ~ω)

which by (12) is equivalent to the system

x ·K∗(~µ, ~ω) = d · bk∗(~µ, ~ω), (13)

where in bk∗(~µ, ~ω) and in K∗(~µ+~ek, ~ω) we keep the same columns as in K∗(~µ, ~ω).
Notice that by Cramer’s rule, (13) leads to a solution with coefficients in ID .
Moreover, we may formally write down a determinantal representation of the
elements of a determinantal order basis, namely

M(Z)k,` = ± det
[
K∗(~µ+ ~ek, ~ω) E`,µ`−1+δ`,k(Z)

]
(14)

with
E`,ν(Z) = [0, . . . , 0|1, Z, . . . , Zν |0, . . . , 0]T , (15)

the nonzero entries in E`,ν(Z) occurring in the `th stripe. In addition, we have
that

R(Z)k,` Z
~ω =

∑
j

M(Z)k,jF(Z)j,` = ± det
[
K∗(~µ+ ~ek, ~ω) E`,~µ+~ek(Z)

]
, (16)

where

E~ν(Z) = [F(Z)1,`, . . . , Z
ν1−1F(Z)1,`| . . . . . . |F(Z)m,`, . . . , Z

νm−1F(Z)m,`]
T .

In both (14) and (16) the matrices have commutative entries in all but the
last column. It is understood that the determinant in both cases is expanded
along this column.

Finally we mention that, by the uniqueness result of Theorem 4.4, any order
basis of degree ~µ and order ~ω coincides up to multiplication with some element
in IK with an Mahler system associated to (~µ, ~ω), which therefore itself is an
order basis of the same degree and order. By a particular pivoting technique
we get a reduced order basis by computing Mahler systems.
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6 Fraction-free Recursion Formulas for Order Bases

In this section we show how to recursively compute order bases in a fraction-
free way. This can also be thought of as constructing a sequence of eliminations
of lower order terms of F(Z). In terms of linear algebra, the recursion can
be viewed as a type of fraction-free Gaussian elimination which takes into
consideration the special structure of the coefficient matrix of the linear system
associated to the “elimination of lower order terms” problem.

For an order basis M(Z) of order ~ω and degree ~µ having a Mahler system
normalization, we look at the first terms of the residuals. If they are all equal
to zero then we have an order basis of a higher order. Otherwise, we give a
recursive formula for building an order basis of higher order and degree. How-
ever, a priori this new order basis has coefficients from IK = QID , the quotient
field of ID , since we divide through some factors. In our case, however, the
new system will be a Mahler system according to the existence and unique-
ness results established by the determinantal representations, and hence we
will keep objects with coefficients in ID .

In the following theorem we give a recurrence relation which closely follows
the case of skew polynomials [Beckermann et al., 2002] and the commutative
case [Beckermann and Labahn, 2000, Theorem 6.1(c)]. The resulting order
bases have properties similar to those cited by Beckermann and Labahn [2000,
Theorems 7.2 and 7.3].

Theorem 6.1 Let M(Z) be an order basis of order ~ω and degree ~µ, and λ ∈
{1, ..., s}. Denote by rj = cωλ((M(Z) F(Z))j,λ), the (j, λ) entry of the first

term of the residual of M(Z). Finally, set ~̃ω := ~ω + ~eλ.

(a) If r1 = ... = rm = 0 then M̃(Z) := M(Z) is an order basis of degree
~ν := ~µ and order ~̃ω.

(b) Otherwise, let π be an index such that rπ 6= 0. Then an order basis M̃(Z)
of degree ~ν := ~µ + ~eπ and order ~̃ω with coefficients in ID is obtained via
the formulas

pπ M̃(Z)`,k = rπ M(Z)`,k − r` M(Z)π,k (17)

for `, k = 1, 2, ...,m, ` 6= π, and

σ(pπ) M̃(Z)π,k = (rπ Z − δ(rπ)) M(Z)π,k −
∑
` 6=π

σ(p`) M̃(Z)`,k (18)

for k = 1, 2, ...,m, where pj = cµj+δπ,j−1(M(Z)π,j).

(c) If in addition M(z) is a Mahler system with respect to (~µ, ~ω), then M̃(Z)
is also a Mahler system with respect to (~ν, ~̃ω). In particular, M̃(Z) has
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coefficients in ID .

Proof: Part (a) is clear from the fact that the rows of M(Z) have order ~̃ω
when r1 = . . . = rm = 0.

For part (b) notice first that rows M̃(Z)`,∗ for ` 6= π have order ~̃ω by construc-
tion, as required in Definition 4.2(a). In addition row (rπ Z − δ(rπ)) M(Z)π,∗
also has order ~̃ω since (rπ Z−δ(rπ))(rπ) = rπσ(rπ)Z. By construction therefore
row M̃(Z)π,∗ has order ~̃ω.

The verification of the new degree constraints of Definition 4.2(c) (with ~µ being
replaced by ~ν) for the matrix M̃(Z) is straightforward and is the same as in the
commutative case [Beckermann and Labahn, 2000, Theorem 7.2]. In addition,
notice that pπ is the leading coefficient of M(Z)`,`, so the leading coefficient

of M̃(Z)`,` equals rπ for all ` by construction. However it still remains to show
that we obtain a new order basis with coefficients in ID .

We now focus on the properties of Definition 4.2(b). If P(Z) ∈ IK [Z;σ, δ]1×m

has order ~̃ω then it has order ~ω and so there exists a Q(Z) ∈ IK [Z;σ, δ]1×m

such that

P(Z) =
m∑
j=1

Q(Z)1,j M(Z)j,∗.

Applying the first set of row operations in (17) to rows ` 6= π results in

P(Z) =
∑
j 6=π

Q̂(Z)1,j M̃(Z)j,∗ + Q̂(Z)1,π M(Z)π,∗ (19)

where

Q̂(Z)1,j = Q(Z)1,j

pπ
rπ

for all j 6= π and Q̂(Z)1,π =
m∑
i=1

Q(Z)1,i

ri
rπ
. (20)

Since P(Z) and all the M̃(Z)j,∗ terms have order ~̃ω, this must also be the

case for Q̂(Z)1,π M(Z)π,∗. Let ρ be the degree of Q̂(Z) and write Q̂(Z)1,π =∑ρ
k=0 Q̂

(k)
1,π(rπ Z − δ(rπ))k. Since (rπ Z − δ(rπ))rπ = rπσ(rπ)Z, we see that

Q̂
(0)
1,π rπ = 0. Therefore, by assumption on π we have that Q̂

(0)
1,π = 0. Writing

Q̂(Z)1,π = Q̄(Z)1,π (rπ Z − δ(rπ)) gives

P(Z) =
∑
j 6=π

Q̂(Z)1,j M̃(Z)j,∗ + Q̄(Z)1,π (rπ Z − δ(rπ)) M(Z)π,∗. (21)

Completing the row operations which normalize the degrees of M̃(Z) in (18)
gives a Q̃(Z) with P(Z) = Q̃(Z) M̃(Z). Consequently, the property of Defi-
nition 4.2(b) holds.
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Finally, in order to establish part (c) we know already from Section 5 and
the existence of order bases of a specified degree and order that both (~µ, ~ω)
and (~ν, ~̃ω) satisfy (12). By the uniqueness result of Theorem 4.4 we only need
to show that the “leading coefficient” d̃ of M̃(Z) in Definition 4.2(c) is a
multigradient of (~ν, ~̃ω), the latter implying that M̃(Z) is a Mahler system and
in particular has coefficients from ID .

Denote by d the corresponding “leading coefficient” of M(Z). In the case
discussed in part (a), we do not increase the rank by going from K(~µ, ~ω) to
K(~ν, ~̃ω) since we just add one column and keep full row rank. Hence d = d̃
being a multigradient with respect to (~µ, ~ω) is also a multigradient with respect
to (~ν, ~̃ω). In the final case described in part (b) we have d̃ = rπ. Using formula
(16) for the residual of the πth row of M(Z) we learn that rπ coincides (up to a
sign) with the determinant of a submatrix of order |~ν| of K(~ν, ~̃ω). Since rπ 6= 0
by construction, it follows that d̃ = rπ is a new multigradient, as required for
the conclusion.

Corollary 6.2 If M(Z) is a reduced order basis then the order basis M̃(Z)
computed by (17) and (18) in Theorem 6.1 is also a reduced order basis of
degree ~ν, provided that the pivot π is chosen such that

µπ = min
j
{µj : rj 6= 0}. (22)

Proof: It is straightforward to check that row-deg M̃(Z) = ~ν. Hence, by
Lemma A.1(a), it is sufficient to show that col-deg Q̃(Z) ≤ deg(P(Z))~e − ~ν,
with P(Z) = Q̃(Z) M̃(Z) as in the proof of Theorem 6.1.

We see in (20) that deg Q̂(Z)1,j ≤ deg P(Z)−µj = deg P(Z)−νj for all j 6= π

while deg Q̂(Z)1,π ≤ deg P(Z)− µπ because of the minimality of µπ. In (21),

deg Q̄(Z)1,π ≤ deg P(Z) − (µπ + 1) = deg P(Z) − νπ. Completing the row

operations which normalize the degrees of M̃(Z) in (18) gives a Q̃(Z) with
P(Z) = Q̃(Z) M̃(Z) having the correct degree bounds.

Example 6.3 Let F(Z) be defined as in Example 5.1. Starting from M(Z) =
Im as an order basis of order (0, 0) and degree (0, 0), we can compute an order
basis M1(Z) of order (1, 0) and degree (1, 0) by choosing π = 1. Then r1 = x2

and r2 = 2, so that

M1(Z) =

x2Z − 2x 0

−2 x2


by (17) and (18).

In the next step, we note that r1 = −4x and r2 = x2 − 4. Choosing π = 2
allows us to compute an order basis of order (1, 1) and degree (1, 1). Noting
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that the previous pivot x2 is a common factor, (17) and (18) gives the order
basis M(Z) found in Example 4.3. 2

7 The FFreduce Algorithm

Theorem 6.1 gives a computational procedure that results in the FFreduce
algorithm given in Table 1, where the superscript [k] denotes the value of a
variable at iteration k. In this section we consider the termination criterion
for this algorithm and discuss its complexity.

Theorem 7.1 (Termination of Algorithm FFreduce)
Let r = rank F(Z). The final residual R(Z) has rank r and m− r zero rows.
Moreover, if J ⊂ {1, . . . ,m} is the set of row indices corresponding to the zero
rows of R(Z), then the rows M(Z)j,∗ for j ∈ J form a row-reduced basis of
the left nullspace NF(Z) of F(Z).

Proof: Recall that the last computed Mahler system M(Z) results from
iteration k = sκ, κ = mN + 1, and has order κ~e and degree ~µ.

The statement rank F(Z) = rank R(Z) follows from Lemma A.3 since R(Z)Zκ

is obtained from F(Z) by applying row operations of the first type.

In order to show that R(Z) has m − r zero rows, let W(Z) be as in Theo-
rem A.2, with ~α = row-deg W(Z). Recall from Theorem A.2 that W(Z) is
row-reduced, and that ~α ≤ (m− 1) ·N~e. Since the rows of W(Z) have order
κ~e, there exists Q(Z) ∈ IK [Z;σ, δ](m−r)×m such that W(Z) = Q(Z) M(Z).
By construction, M(Z) is a reduced order basis, and therefore row-reduced,
with row degree ~µ. Lemma A.1(c) then implies that there is some permutation
p : {1, . . . ,m − r} 7→ {1, . . . ,m}, with αj ≥ µp(j) for j = 1, ...,m − r. Hence,
for j = 1, ...,m− r,

deg R(Z)p(j),∗=−κ+ deg(R(Z)p(j),∗Z
κ~e) = −κ+ deg(M(Z)p(j),∗F(Z))

≤−κ+N + deg(M(Z)p(j),∗) = −κ+N + µp(j)

≤−κ+N + αj ≤ −κ+mN = −1,

showing that these m− r rows R(Z)p(j),∗ are indeed zero rows.

It remains to show the part on the rows M(Z)j,∗ for j ∈ J . Clearly, with M(Z),
also the submatrix M(Z)J,∗ is row-reduced. Any P(Z) ∈ NF(Z) has order κ~e,

so there exists Q(Z) ∈ IK [Z;σ, δ]1×m such that P(Z) = Q(Z) M(Z). Thus,

Q(Z) R(Z)Zκ = Q(Z) M(Z) F(Z) = P(Z) F(Z) = 0.
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Table 1
The FFreduce Algorithm

Algorithm FFreduce

Input: Matrix of Ore polynomials F ∈ ID [Z;σ, δ]m×s.

Output: Mahler system M ∈ ID [Z;σ, δ]m×m,

Residual R ∈ ID [Z;σ, δ]m×s with rank F nonzero rows,

Degree ~µ, order ~ω.

Initialization: M[0] ← Im, R[0] ← F, d[0] ← 1, ~µ[0] ← ~0, ~ω[0] ← ~0,

N ← deg(F(Z)), ρ← 0, k ← 0

While k < (mN + 1)s do

ρ[k] ← ρ, ρ← 0

For λ = 1, .., s do

Calculate for ` = 1, ..,m: first term of residuals r` ← R[k](0)`,λ

Define set Λ = {` ∈ {1, ..,m} : r` 6= 0}.

If Λ = {} then M[k+1] ←M[k], R[k+1] ← R[k], d[k+1] ← d[k], ~µ[k+1] ← ~µ[k]

else

Choose pivot π[k] ← min{` ∈ Λ : µ[k]
` = minj{µ[k]

j : j ∈ Λ}}.

Calculate for ` = 1, ..,m, ` 6= π[k]: p` ← c
µ

[k]
`
−1

(M[k]

π[k],`
).

Increase order for ` = 1, ..,m, ` 6= π[k]:

M[k+1]
`,∗ ← 1

d[k] [rπ[k] M[k]
`,∗ − r` M[k]

π[k],∗]

R[k+1]
`,∗ ← 1

d[k] [rπ[k] R[k]
`,∗ − r` R[k]

π[k],∗ ]

Increase order and adjust degree constraints for row π[k]:

M[k+1]

π[k],∗ ←
1

σ(d[k])
[(rπ[k] Z − δ(rπ[k])) M[k]

π[k],∗ −
∑

` 6=π[k] σ(p`) M[k+1]
`,∗ ]

R[k+1]

π[k],∗ ←
1

σ(d[k])
[(rπ[k] Z − δ(rπ[k])) R[k]

π[k],∗ −
∑

` 6=π[k] σ(p`) R[k+1]
`,∗ ]

Update multigradient, degree and ρ:

d[k+1] ← rπ[k] , ~µ[k+1] ← ~µ[k] + ~eπ[k] , ρ← ρ+ 1

end if

Adjust residual in column λ: for ` = 1, ...,m

R[k+1]
`,λ ← R[k+1]

`,λ /Z (formally)

~ω[k+1] ← ~ω[k] + ~eλ, k ← k + 1

end for

end while

M←M[k], R← R[k], ~µ← ~µ[k], ~ω ← ~ω[k]
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The relation r = rank R(Z) implies that the nonzero rows of R(Z) are
QID [Z;σ, δ]-linearly independent, and hence Q(Z)1,j = 0 for j 6∈ J . Conse-
quently, the rows of M(Z)J,∗ form a basis ofNF(Z), as claimed in Theorem 7.1.

In what follows we denote by cycle the set of iterations k = κs, κs+ 1, ..., (κ+
1)s−1 in algorithm FFreduce for some integer κ (that is, the execution of the
inner loop).

Let us comment on possible improvements of our termination criterion. In all
examples given in the remainder of this section, we choose as ID the set of
polynomials in x with rational coefficients, with Z = d

dx
, and thus σ(a(x)) =

a(x), δ(a(x)) = d
dx
a(x).

Remark 7.2 The above proof was based on the estimate αj ≤ (m − 1)N for
the left minimal indices of the left nullspace NF(Z), which for general matrix
polynomials is quite pessimistic, but can be attained, as shown in [Beckermann
et al., 2001, Example 5.6] for ordinary matrix polynomials. For applications
where a lower bound γ is available for |~ν|, the sum of the row degrees of the
nontrivial rows of the row-reduced counterpart of F(Z) (compare with The-
orem 2.2), it would be sufficient to compute Mahler systems up to the final
order (mN + 1− γ)~e, since then we get from Theorem 2.2 and Theorem A.2
the improved estimate αj ≤ (m− 1)N − γ.

Remark 7.3 In contrast to the special case of skew polynomials (compare with
[Beckermann et al., 2002, Lemma 5.2]), the pivots π[k] in one cycle are not
necessarily distinct. In case s > m, there might be even up to s nontrivial steps
in one cycle of the algorithm. Thus |~µ[k]| may be as large as k (all iterations
are nontrivial). As an example, consider

F(Z) = [1, x+ Z],

leading to π[0] = π[1] = 1.

Remark 7.4 In the special case of skew polynomials (δ = 0), the rank of any
matrix polynomial F(Z) (over Q[Z;σ, δ]) is bounded below by the rank of its
trailing coefficient F(0) (over Q). This property is no longer true for general
Ore domains, as it becomes clear from the example

F(Z) =

 1 x

Z 1 + xZ

 .
Here the rank of F(0) is 2, whereas the second row of F(Z) equals Z times the
first row of F(Z), and hence rank F(Z) = 1.

Remark 7.5 If in the cycle starting at k = κs there are only distinct pivots,
following [Beckermann et al., 2002, Lemma 5.1] we may still prove that the
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rank of R[κs](0) coincides with the number of pivots used in this cycle. How-
ever, in contrast to [Beckermann et al., 2002, Lemma 5.2], it is no longer true
in general that the number of pivots (or distinct pivots) in a cycle is increasing.
Indeed, for the example

F(Z) =

 1− xZ 0

0 1− εxZ


we have in the first cycle π[0] = 1, π[1] = 2, giving rise to

R[2](Z)Z =

−xZ2 0

0 (1− ε)xZ − εxZ2

 .
Then k = 2 is a trivial iteration, and there is either one (for ε 6= 1) or no
pivot (for ε = 1) in the second cycle. Moreover, if ε is a positive integer, then
we have 2 pivots in all further cycles up to the εth one. Thus, the trailing
coefficients of the residuals after a cycle do not remain nonsingular.

For the above reasons, we believe that it is quite unlikely that there exists an
early termination criterion for FFreduce in Ore domains such as (26) below
based on the number of pivots in one cycle which insures that one has found
rank F(Z). The situation is different for the special case of skew polynomials
discussed in Beckermann et al. [2002] which will be further studied in the next
section.

Let us now examine bounds on the sizes of the intermediate results in the
FFreduce algorithm, leading to a bound on the complexity of the algorithm.
For our analysis, we assume that the coefficient domain ID satisfies

size(a+ b) = O(max(size(a), size(b)))

size(a b) = O(size(a) + size(b))

cost(a+ b) = O(max(size(a), size(b)))

cost(a b) = O(size(a) size(b)),

where the function “size” measures the total storage required for its arguments
and the function “cost” estimates the number of bit operations required to
perform the indicated arithmetic. These assumptions are justified for large
operands where, for example, the cost of addition is negligible in comparison
to the cost of multiplication.

In a first step, let us examine the size of the coefficients and the complexity
of one iteration of algorithm FFreduce.

Lemma 7.6 Let N = deg F(Z), and let K be a bound on the size of the
coefficients appearing in F(Z)j,∗, Z F(Z)j,∗, . . . , Z

µj F(Z)j,∗ for j = 1, . . . ,m,
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where ~µ = ~µ[k]. Then the size of the coefficients in M[k] and R[k] is bounded by
O(|~µ|K). Moreover, the cost at iteration k is bounded by O((msN |~µ|2 + (m+
s)|~µ|3)K2).

Proof: Equations (14) and (16) show that both the Mahler system and the
residual can be represented as determinants of a square matrix of order |~µ|. The
coefficients in this matrix are coefficients of F(Z)k,∗, Z F(Z)k,∗, . . . , Z

µk F(Z)k,∗.
Hence the well-known Hadamard inequality gives the above bound for the size
of the coefficients.

In order to obtain the cost, we have to take into account essentially only the
multiplication of each row of (M[k],R[k]) by two scalars and the multiplication
of the pivot row by at most m+ 1 scalars. It remains to count the number of
coefficients, and to take into account that each multiplication with a coefficient
has a cost bounded by O(|~µ|2K2).

By slightly generalizing [Beckermann and Labahn, 2000, Theorem 6.2], we
deduce the following complexity bound (compare also with [Beckermann et al.,
2002, Theorem 5.5]).

Corollary 7.7 Let N = deg F(Z), and let K be a bound on the size of the
coefficients appearing in F(Z)j,∗, Z F(Z)j,∗, . . . , Z

µj F(Z)j,∗ for j = 1, . . . ,m,

where ~µ = ~µ[k] of iteration k of FFreduce. Then the total cost for comput-
ing M[k] and R[k] by algorithm FFreduce is bounded by O((msN |~µ|3 + (m +
s)|~µ|4)K2).

In the general Ore case, we obtain for FFreduce a worst case bit complexity of
O((m+s)m4s4N4K2), whereas in the case of skew polynomials we may obtain
the slightly sharper worst case bound O((m+ s)m4 min(m, s)4N4K2).

Proof: The first part of the Corollary is an immediate consequence of Lemma
7.6 and of the fact that the number of iterations in the FFreduce algorithm
in which any reduction is done equals |~µ|. In order to show the second part,
we use the bound |~µ| ≤ |~ω| with the final order vector ~ω = (mN + 1)~e, and
|~ω| = s(mN + 1). In case of skew polynomials, pivots are distinct, and hence
their number in a cycle is bounded by min(m, s) (in fact by the rank of F(Z)),
leading to the bound |~µ| ≤ min(m, s)(mN + 1).

Remark 7.8 The complexity model proposed before Lemma 7.6 is reasonable
not only for ID = ZZ , but also for ID = IK [x] as long as we measure the
size of elements only in terms of x-degrees and ignore growth of coefficients.
However, the latter simplification is no longer acceptable for domains such as
ID = ZZ [x], and we have to adapt our complexity analysis.

For a ∈ ZZ [x], let degx(a) denote the degree of a with respect to x, and ‖a‖ be
the maximal absolute value of the integer coefficients of a. A good measure for
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size for a nonzero a ∈ ZZ [x] seems to be

size(a) = O((1 + degx(a))(1 + log ‖a‖)),

since it reflects worst case memory requirements. In addition the two rules

cost(a+ b) = O(max(size(a), size(b)))

cost(a b) = O(size(a) size(b)).

continue to hold. However, it is easy to construct polynomials where the rules
for size(a+ b) and size(ab) given before Lemma 7.6 are no longer true because
of cross products between degrees and the bit lengths of the coefficients. The
essential ingredient in the proof of Lemma 7.6 (and thus of Corollary 7.7) was
to predict the size of a coefficient c[k] ∈ ZZ [x] in M[k] or in R[k], by means of
its determinant representation in terms of a matrix of order |~µ[k]| containing
suitable coefficients of ZjF(Z) for suitable j. Here we propose to estimate
separately the x-degree and the norm of c[k]. In our three examples below the
applications σ, δ : ZZ [x] 7→ ZZ [x] will not increase the degree, and thus one
easily checks that

degx c
[k] ≤ |~µ[k]|Kdeg,

with Kdeg being the maximal degree of a coefficient occurring in F(Z). Define
also Kbit to be the logarithm of the largest norm of a coefficient occurring in
F(Z). We will show below that the logarithm of the norm of an entry of the
above-mentioned matrix is bounded for our three examples by

Kbit + (max
`
µ

[k]
` ) f(Kdeg) (23)

for a suitable function f depending only on σ, δ, and hence

size(c[k]) = O((1 + |~µ[k]|Kdeg)(1 + |~µ[k]|Kbit + |~µ[k]| (max
`
µ

[k]
` ) f(Kdeg)))

or
size(c[k]) = O(KdegKbit|~µ[k]|2 +Kdegf(Kdeg)|~µ[k]|3),

in contrast to size(c[k]) = O(K|~µ[k]|) derived in Lemma 7.6. As a consequence,
we may directly generalize both Lemma 7.6 and Corollary 7.7, but now higher
powers will be involved. Notice that a tighter estimate could be obtained if we
specify the size and cost of the sums and products in two components (degx(a)
and ‖a‖) separately [Li, 2003].

Let us first consider the skew-symmetric case σ(a(x)) = a(αx), δ(a) = 0,
for an integer α 6= 0. Since for the norm of the coefficients of Zkxj we
get log(||σk(xj)||) = j k log(|α|), we observe that (23) holds with f(Kdeg) =
Kdeg log(|α|).

More generally, for the skew-symmetric case σ(a(x)) = a(αx + β), δ(a) = 0
with integers α 6= 0 and β, we have log(||σk(xj)||) ≤ j k log(2 max(|α|, |β|)).
Thus here (23) holds with f(Kdeg) = Kdeg log(2 max(|α|, |β|)).
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We finally consider the differential case in which σ is the identity and δ(a) =
d
dx
a for all a ∈ ZZ [x]. Then σ does not increase the norm, and ||δ(a)|| ≤

degx(a) ||a||, implying that (23) holds with f(Kdeg) = log(Kdeg).

8 Comparisons and Examples

In this section we give some examples which allow us to make some simple
comparisons with the algorithm in Abramov and Bronstein [2001]. We make
no claims that our algorithm performs better than theirs in general. Indeed
for examples where coefficient growth does not enter into the problem, the
algorithm of Abramov and Bronstein is typically faster than the one presented
in this paper. However, there are instances where the growth of coefficients
does become a significant factor and in such cases the near linear growth of
our algorithm does allow us to solve larger problems.

The Abramov-Bronstein algorithm uses the constructive approach outlined in
Theorem 2.2. It also incorporates a number of additional improvements, for
example making use of a basis of elements from the nullspace of the lead-
ing or trailing coefficients (rather than just a single element) in order to re-
duce the number of iterations [Abramov and Bronstein, 2002]. We also note
that since the row-reduced form is not unique, the results computed by the
Abramov-Bronstein algorithm are typically different from the ones obtained
by FFreduce.

It is possible, as suggested in Abramov and Bronstein [2001], to compute
the basis for the nullspace by using fraction-free Gaussian elimination on the
leading or trailing coefficient matrix, see Bareiss [1968]. This also results in a
fraction-free algorithm for row-reducing a matrix of skew polynomials. How-
ever it is not the case that this guarantees a reasonable growth of coefficient
size. For example, one step of such a method could result in an increased size
of coefficients by a factor of r + 1 where r is the rank of the actual trailing
or leading coefficient matrix. This occurs because the nullspace obtained by
Bareiss’s method could be as large as r times the original input size. Even
removing the contents of the nullspace elements afterwards will not guarantee
good coefficient growth as our examples below illustrate.

The implementation of the Abramov-Bronstein algorithm used for our com-
parisons is that programmed in Maple given in the routine LinearFunction-
alSystems[MatrixTriangularization]. This implementation finds a basis for the
nullspace by working over a field and then clearing denominators. Notice that
this approach is mathematically equivalent to using fraction-free Gaussian
elimination and then removing the contents from individual basis elements.
Note that the contents are only removed from the basis elements used to per-
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form the elimination. The contents in the intermediate results are not removed,
so that exponential growth may still occur. This implementation performs ad-
ditional optimizations when the trailing coefficient has a zero row or a zero
column. This reduces the number of iterations required to obtain the final
result. Our fraction-free algorithm can be adopted to perform such shifts as
well. In our comparison, such optimizations are performed in the Abramov-
Bronstein algorithm but not in the fraction-free one. Finally, we have done a
slight modification to ensure that it works in the case when the rank is not
full.

We have run several examples, including those of [Abramov and Bronstein,
2002], in which the dimensions of the matrices, as well as the degree, are
varied. For the measure of size we have used the sum of Maple’s length of all
the coefficients over Q[n], namely the coefficients of the residuals for the AB
algorithm and the coefficients of both the Mahler system and the residuals for
FFreduce.

For examples in which coefficient growth is not significant, the Abramov-
Bronstein algorithm is in general faster, sometimes by more than a factor of
1000. For these examples, the cost of GCD computations required for removing
the content (or for clearing fractions) was negligible.

In contrast, consider the matrix

F(Z) =

 ∑N
i=0 piZ

i ∑N−1
i=0 piZ

i∑N
i=0 pi+N+1Z

i ∑N−1
i=0 pi+N+1Z

i

 (24)

where pi is the (i+1)-th prime and where we are working over the commutative
polynomial domain Z[Z]. The storage and running time requirements for this
matrix using the two algorithms is given in Figure 1. In particular we see
that the growth in the Abramov-Bronstein algorithm is exponential (varying
between 48 for N = 5 and 58685030 for N = 300) while that of FFreduce is
essentially linear for this case (varying between 97 and 880154). This of course
impacts the timings of the two algorithms for this example.

Similarly such growth is also possible in the noncommutative case of skew
polynomials. For example, one can construct matrices similar to that of (24)
but using a noncommutative Z and get comparable behaviour. This is the
case with

F(Z) =


q0,N(Z) q0,N−1(Z) q0,N−2(Z)

q2N+2,N(Z) q2N+2,N−1(Z) q4N+4,N−2(Z)

q4N+4,N(Z) q4N+4,N−1(Z) q2N+2,N−2(Z)

 (25)
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Fig. 1. Plots for timings and size for FFreduce and the AB algorithm on the matrices
defined in (24).

where qj,k(Z) =
∑k
i=0(p2i+j+1n+p2i+j+2)Zi and Z is the forward shift operator

acting on n. The experimental results are shown in Table 2.

Finally, in Table 3 we show experimental results on larger matrices, in this case
of skew polynomials which are generated by applying random transformations
to the final result in reverse.

9 Applications for Skew Polynomials

In this section we show how the FFreduce algorithm can be used to solve a
number of different problems in the special case when the input is a matrix
of skew polynomials. Of course when σ is the identity then this also gives
fraction-free algorithms for ordinary matrix polynomials. We note again that
σ is assumed to be an automorphism on QID .

In the case of skew polynomials [Beckermann et al., 2002], the termination
criterion

ρ[κs] + the number of zero rows in R[κs](Z) = m (26)
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AB FFreduce

d Time (sec) Size Time (sec) Size

2 0.123 654 0.101 1488

3 0.125 2606 0.239 4589

4 0.287 7920 0.455 8621

5 0.691 27972 0.900 17267

6 1.582 84523 1.867 27208

7 4.656 265003 2.717 44369

8 19.342 714330 6.334 62900

9 331.509 1948947 20.334 92194

10 1943.193 4770766 148.652 122964

11 5821.765 12177824 516.682 169323

12 10144.400 27971967 631.781 213626

13 ? ? 1528.602 280124

14 ? ? 1660.289 340995

15 ? ? 2403.154 432665

Table 2
Timings and storage for the AB algorithm and FFreduce on input matrices (25).
An entry of ? means that no result was obtained within the time limit of 3 hours.

AB FFreduce

m, s Time (sec) Size Time (sec) Size

2 32.609 365188 1.600 26295

3 542.440 2004249 145.799 430330

4 1996.640 1343010 546.931 950614

5 ? ? 1480.871 1830960

6 ? ? 2837.691 1959785

7 8955.809 25525731 3851.930 2353846

8 ? ? 5132.750 2732281

Table 3
Timings and storage for the AB algorithm and FFreduce on input matrices gener-
ated by random transformations. An entry of ? means that no result was obtained
within the time limit of 4 hours.
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allows us to prove [Beckermann et al., 2002, Theorem 5.3] that

rank R[κs](0) = rank R[κs](Z)) = rank F(Z), (27)

the rank of the trailing coefficient matrix R[κs](0) being defined over the quo-
tient field QID . Moreover [Beckermann et al., 2002, Lemma 5.2],

the pivots π[k] for κs− s ≤ k < κs are distinct, (28)

and hence [Beckermann et al., 2002, Lemma 5.1 and Lemma 5.2]

ρ[κs] = rank R[κs](0) = rank R[κs−s](0). (29)

It is also shown implicitly in the proof of [Beckermann et al., 2002, Theo-
rem 5.4] that κ ≤ m(N + 1) which has to be compared with the number of
cycles, mN + 1, required by FFreduce. Thus the new termination property
(26) essentially does not increase the complexity of algorithm FFreduce, but
for many examples may improve the run time.

9.1 Full Rank Decomposition and Solutions of Linear Functional Systems

When F(Z) represents a system of linear recurrence equations, one can show
that an equivalent system with a leading (or trailing) coefficient with full row
rank allows one to obtain bounds on the degrees of the numerator and the
denominator of all rational solutions. This has been used by Abramov and
Bronstein [2001] to compute rational solutions of linear functional systems.

In [Beckermann et al., 2002] it is shown that the output of FFreduce applied to
F(Z) ∈ ID [Z;σ, 0]m×s can be used to construct T(Z−1) ∈ ID [Z−1;σ−1, 0]m×m

and implicitly S(Z) ∈ QID [Z;σ, 0]m×m such that

T(Z−1) F(Z) = W(Z) ∈ ID [Z;σ, 0]m×s, S(Z)T(Z−1) = Im,

with the number of nonzero rows of W(Z) coinciding with the rank of the
trailing coefficient W(0), and hence with the rank of W(Z). The existence of
a left inverse S(Z) shows that the reduction process is invertible in the algebra
of Laurent skew polynomials, moreover, we obtain a full rank decomposition
F(Z) = S(Z)W(Z) in QID [Z;σ, 0].

In this context we should mention that an exact arithmetic method involving
coefficient GCD computations for the computation of T(Z−1) F(Z) = W(Z)
with W(Z) as above has already been given in Abramov and Bronstein [2001].
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9.2 Row-reduced Form and Weak Popov Form

The FFreduce algorithm as described above has been used to eliminate low-
order coefficients, such that the rank of the trailing coefficient matrix is the
same as the rank of the original matrix of skew polynomials. In the case of
matrices of commutative polynomials, we can reverse the coefficients so that
the high-order coefficients are eliminated [Beckermann and Labahn, 2000].
This allows us to obtain a row-reduced form of the input matrix polynomial.

In this section we show that a similar technique can be used to obtain a row-
reduced form for a matrix of skew polynomials. Furthermore, we note that the
FFreduce algorithm essentially performs fraction-free Gaussian elimination
on the striped Krylov matrix. If we collect the rows used as pivots during
the last cycle, we obtain a trailing coefficient that is triangular up to row
permutations. As a result, reversing the coefficients gives a weak Popov form.
One may reverse the coefficients in the input, invoke the FFreduce algorithm,
and reverse the coefficients in the output to obtain the final results. Instead,
we will modify the recursion formulas to directly eliminate the high-order
coefficients.

Given F(Z) ∈ ID [Z;σ, 0]m×s we can compute U(Z) and T(Z) such that the
nonzero rows of T(Z) = U(Z) F(Z) form a row-reduced matrix. Since we wish
to eliminate high-order coefficients, we perform the substitution Ẑ = Z−1,
σ̂ = σ−1 and perform the reduction over ID [Ẑ; σ̂, 0]. We further assume that
σ−1 does not introduce fractions, so that σ−1(a) ∈ ID for all a ∈ ID . We
write F̂(Ẑ) := F(Ẑ−1) ẐN , and let M̂[k](Ẑ), R̂[k](Ẑ), ~µ[k], and ~ω[k] be the
intermediate results obtained from the FFreduce algorithm with the input
F̂(Ẑ). If we define

U[k](Z) = Zµk M̂[k](Ẑ), T[k](Z) = Zµk R̂[k](Ẑ) Ẑωk−N ~e, (30)

then U[k](Z) F(Z) = T[k](Z). In this case simple algebra shows that the re-
cursion formulas for U[k](Z) obtained from (17) and (18) become

σµ
[k]
` (pπ[k]) U[k+1](Z)`,∗ = σµ

[k]
` (rπ[k]) U[k](Z)`,∗− σ

µ
[k]
` (r`)Z

µ
[k]
`
−µ[k]

π[k] U[k](Z)π[k],∗
(31)

for ` 6= π[k] and

σ
µ

[k]

π[k]
+2

(pπ[k]) U[k+1](Z)π[k],∗

= σ
µ

[k]

π[k]
+1

(rπ[k]) U[k](Z)π[k],∗ −
∑
` 6=π[k]

σ
µ

[k]

π[k]
+2

(p`)Z
µ

[k]

π[k]
−µ[k]

`
+1

U[k+1](Z)`,∗,

(32)
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where

r` = σ−µ
[k]
` (c

N+µ
[k]
`
−bk/sc(T

[k](Z)`,(k mod m)+1)),

p` = σ
−µ[k]

π[k] (c
µ

[k]

π[k]
−µ[k]

`
−δ

π[k],`
+1

(U[k](Z)π[k],`)).

Since µ
[k]

π[k] ≤ µ
[k]
` whenever r` 6= 0, and that p` = 0 whenever µ

[k]

π[k] <

µ
[k]
` − 1 by the definition of a reduced order basis, it follows that U[k+1](Z) ∈

ID [Z;σ, 0]m×m. Moreover, [U[k+1](Z),T[k+1](Z)] is obtained from [U[k](Z),T[k](Z)]
by elementary row operations of the second type, so if U[k](Z) is unimodular
then U[k+1](Z) is also unimodular.

Theorem 9.1 Let M̂[k](Ẑ), R̂[k](Ẑ), ~µ[k], and ~ω[k] = κ · ~e be the final output
obtained from the FFreduce algorithm with the input F̂(Ẑ). Then

(a) U[k](Z) ∈ ID [Z;σ, 0]m×m and T[k](Z) ∈ ID [Z;σ, 0]m×s;
(b) U[k](Z) is unimodular;
(c) U[k](Z) F(Z) = T[k](Z);
(d) the nonzero rows of T[k](Z) form a row-reduced matrix.

Proof: Parts (a), (b), and (c) have already been shown above. By (27),
we see that rank R̂[k](0) = rank F̂(Ẑ) = rank R̂[k](Ẑ), which is also the
number of nonzero rows in R̂[k](Ẑ). Therefore, the nonzero rows of R̂[k](Ẑ)
form a matrix with trailing coefficient of full row rank. It is easy to see that
row-deg T[k](Z) = µk + (N − κ) · ~e and that

T[k](Z)i,∗ = σµ
[k]
i (R̂[k](0)i,∗)Z

µ
[k]
i +N−κ + lower degree terms.

Therefore, L(T[k](Z)) = σdeg T[k](Z)−N+κ(R̂(0)). Since σ is an automorphism
on QID , it follows that rank L(T[k](Z)) = rank R̂[k](0), and hence the nonzero
rows of T[k](Z) form a row-reduced matrix.

In fact, the FFreduce algorithm can be modified to obtain U(Z) and T(Z)
such that T(Z) is in weak Popov form [Mulders and Storjohann, 2003] (also
known as quasi-Popov form [Beckermann et al., 2001]). The weak Popov form
is defined as follows.

Definition 9.2 (Weak Popov Form) A matrix of skew polynomials F(Z)
is said to be in weak Popov Form if the leading coefficient of the submatrix
formed from the nonzero rows of F(Z) is in upper echelon form (up to row
permutation). 2

Formally, if ~ω = κ·~e is the order obtained at the end of the FFreduce algorithm,
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we form the matrices U(Z) and T(Z) by

[U(Z)i,j,T(Z)i,j] =

[U[k](Z)i,j,T
[k](Z)i,j] if π[k] = i for some κs− s ≤ k < κs,

[U[κs](Z)i,j,T
[κs](Z)i,j] otherwise;

We note that U(Z) and T(Z) are well-defined because the pivots π[k] are
distinct for κs − s ≤ k < κs by (28). We now show that T(Z) is in weak
Popov form.

Theorem 9.3 Let ~ω = κ·~e be the order obtained from the FFreduce algorithm
with the input F̂(Ẑ). Then

(a) U(Z) ∈ ID [Z;σ, 0]m×m and T(Z) ∈ ID [Z;σ, 0]m×s;
(b) U(Z) is unimodular;
(c) U(Z) F(Z) = T(Z);
(d) T(Z) is in weak Popov form.

Proof: Part (a) is clear, and (b) follows from the fact that U(Z) can be
obtained from U[κs−s](Z) by applying elementary row operations of the second
type on each row until it has been chosen as a pivot. Moreover, we have that
for all k and `, U[k](Z)`,∗F(Z) = T[k](Z)`,∗ and hence (c) is true.

Let H [k] be the coefficient of Ẑ(κ−1)·~e of M̂[k](Ẑ) F̂(Ẑ) for κs − s ≤ k ≤ κs.
Since M̂[k](Ẑ) is an order basis, it follows that the first k − (κs− s) columns

of H [k] are zero. If π[k] = i, then we have H
[k]
i,k−(κs−s)+1 6= 0. Furthermore, if

i 6= π[k] for any κs − s ≤ k < κs , H
[κs]
i,∗ must be zero. Therefore, if we form

the matrix H by

Hi,j =

H
[k]
i,j if π[k] = i for some κs− s ≤ k < κs

H
[κs]
i,j otherwise,

(33)

then the nonzero rows of H form a matrix in upper echelon form (up to a
permutation of rows). By reversing the coefficients of T(Z) we see that

T(Z)i,∗ = σµ
[κs−s]
i (Hi,∗)Z

µ
[κs−s]
i +N−κ + lower degree terms.

Thus, L(T(Z)) = σdeg T(Z)−N+κ(H). Since σ is an automorphism on QID it
follows that the nonzero rows of L(T(Z)) is in upper echelon form and hence
T(Z) is in weak Popov form.

Recall from Theorem A.2 that the multipliers of Theorem 9.1 and of Theo-
rem 9.3 both provide a basis of the left nullspace of F(Z).
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9.3 Computing GCRD and LCLM of Matrices of Skew Polynomials

Using the preceding algorithm for row reduction allows us to compute a great-
est common right divisor (GCRD) and a least common left multiple (LCLM)
of matrices of skew polynomials in the same way it is done in the case of
matrices of polynomials [Beckermann and Labahn, 2000, Kailath, 1980]. Let
A(Z) ∈ ID [Z;σ, 0]m1×s and B(Z) ∈ ID [Z;σ, 0]m2×s, such that the matrix

F(Z) =

A(Z)

B(Z)


has rank s. Such an assumption is natural since otherwise we may have GCRDs
of arbitrarily high degree [Kailath, 1980, page 376]. After row reduction and
possibly a permutation of the rows, we obtain

U(Z) F(Z) =

U11(Z) U12(Z)

U21(Z) U22(Z)

 ·
A(Z)

B(Z)

 =

G(Z)

0

 (34)

with G(Z) ∈ ID [Z;σ, 0]s×s, and U1,j(Z), U2,j(Z) matrices of skew polynomials
of size s×mj, and (m1 +m2−s)×mj, respectively. Standard arguments (see,
for example, Kailath [1980]) show that G(Z) is a GCRD of A(Z) and B(Z).
Furthermore, for any common left multiple V1(Z) A(Z) = V2(Z) B(Z) we see

that the rows of
[
V1(Z) −V2(Z)

]
belong to the left nullspace NF(Z). Since[

U21(Z) U22(Z)

]
is a basis of NF(Z) by Theorem A.2, there exists Q(Z) ∈

QID [Z;σ, 0](m1+m2−s)×(m1+m2−s) such that[
V1(Z) −V2(Z)

]
= Q(Z)

[
U21(Z) U22(Z)

]
,

implying that U21(Z) A(Z) and −U22(Z) B(Z) are LCLMs of A(Z) and
B(Z).

In contrast to the method proposed in Beckermann and Labahn [2000], our
GCRD has the additional property of being row-reduced or being in weak
Popov form.

9.4 Computation of Subresultants

The method of Section 9.3, applied to two 1×1 matrices, gives the GCRD and
LCLM of two skew polynomials a(Z) and b(Z). In this subsection we examine
the relationship of the intermediate results obtained during our algorithm to
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the subresultants of skew polynomials defined by Li [1996, 1998]. Denoting
the degrees of a(Z), b(Z) by da ≥ db, the j-th subresultant sres j(a, b) for skew
polynomials is defined by taking the determinant of the matrix

σdb−j−1(ada) · · · · · · · · · σdb−j−1(a2j+2−db) Z
db−j−1a(Z)

. . .
...

...

σ(ada) · · · · · · σ(aj) Za(Z)

ada · · · aj+1 a(Z)

σda−j−1(bdb) · · · · · · · · · σda−j−1(b2j+2−da) Z
da−j−1b(Z)

. . .
...

...

σ(bdb) · · · · · · σ(bj) Zb(Z)

bdb · · · bj+1 b(Z)



.

Theorem 9.4 Let a(Z) and b(Z) be two skew polynomials of degrees da and
db, respectively, such that da ≥ db. Then sres j(a, b) 6= 0 if and only if there
exists an ` = `j with ~µ[2da−2j−1] = (da − j, da − j)− ~e`. In this case,

T[2da−2j−1](Z)`,1 = ±γ sres j(a, b), γ =
da−db−1∏
i=0

σdb−j+i(ada).

In other words, sres j(a, b) 6= 0 if and only if the FFreduce algorithm computes
an order basis of degree (da − j − 1, da − j) or (da − j, da − j − 1) as an
intermediate result.

Proof: After expanding with respect to the first da−db columns of the matrix

σda−j−1(ada) · · · · · · · · · σda−j−1(a2j+2−da) Z
da−j−1a(Z)

. . .
...

...

σ(ada) · · · · · · · · · σ(aj) Za(Z)

ada · · · · · · aj+1 a(Z)

σda−j−1(bda) · · · · · · · · · σda−j−1(b2j+2−da) Z
da−j−1b(Z)

. . .
...

...

σ(bda) · · · · · · σ(bj) Zb(Z)

bdb · · · bj+1 b(Z)



,

we see that the determinant coincides with the quantity γ sres j(a, b). Denote
by Sj the matrix of size (2da − 2j)× (2da − 2j − 1) obtained by dropping the
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last column, and notice that

σ−(da−j−1)(Sj) = K((da − j, da − j), (2da − 2j − 1)), (35)

the Krylov matrix associated to F̂(Ẑ) = (â(Ẑ), b̂(Ẑ))T , â(Ẑ) = a(Ẑ−1) Ẑda ,
and b̂(Ẑ) = b(Ẑ−1) Ẑda . Thus sres j(a, b) 6= 0 if and only if the dimension (over
QID ) of the left nullspace of Sj is equal to one, which in turn is true if and
only if there is a unique P ∈ QID [Z;σ, 0] (up to multiplication with an element
from QID ) of order ~ω = (2da − 2j − 1) and deg P ≤ da − j − 1.

One verifies using [Beckermann et al., 2002, Lemma 5.2] and the relation da 6=
0 that |~ω[k]| = k = |~µ[k]| for all k in algorithm FFreduce. Let k = 2da− 2j− 1,
then from (2) we conclude that sres j(a, b) 6= 0 if and only if ~µ[k] has one
component being equal to da− j − 1 and the other one being at least as large
as da − j, that is, ~µ[k] = (da − j, da − j)− ~e` for some ` ∈ {1, 2}.

Finally, if sres j(a, b) 6= 0, then we use (35) and the determinant representa-
tions of Section 5 together with the uniqueness of Mahler systems in order to
conclude that

γ sres j(a, b) = ±Zµ` R̂[k](Ẑ)`,∗ Ẑ
~ω−da·~e = T[k](Z)`,1.

Thus, whenever ~µ[2k−1] is of the form (k, k) − ~e` for some ` ∈ {1, 2} during
the execution of our algorithm, we can recover the nonzero sres da−k(a, b) from
R̂[2k−1](Ẑ)Z~ω−da·~e after multiplying by Zk and dividing by the extra factor of
γ (or by dividing T[2k−1](Z)`,1 by γ).

Notice that the extra factor of γ is introduced at the beginning of the algo-
rithm, before any step with |Λ| > 1. There is no reduction performed in these
first da − db steps. Thus, we may modify our algorithm so that no reduction
is done until |Λ| = 2 for the first time, except the updating of ~µ[k]. Then

sres da−k(a, b) =

±Zµ
[2k−1]
1 −da+db R̂[2k−1](Ẑ)1,1 Ẑ

2k−1−da if ~µ[2k−1] = (k − 1, k),

±Zµ
[2k−1]
2 R̂[2k−1](Ẑ)2,1 Ẑ

2k−1−da if ~µ[2k−1] = (k, k − 1).

10 Conclusion

In this paper we have given a fraction-free algorithm for transforming a given
matrix of Ore polynomials into one where both the rank and the left nullspace
is easily determined. The algorithm is a modification of the FFFG algorithm
of Beckermann and Labahn [2000] in the commutative case. In the case of skew
polynomials we also show how our approach can be used to find a weak Popov
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form of a matrix of skew polynomials. In addition, in the special case of 2× 1
skew polynomial matrices we relate our algorithm along with the intermediate
quantities to the classical subresultants typically used for one sided GCD and
LCM computations.

There are a number of topics for future research. In this paper we have given
a fraction-free method for elimination of low order terms of a matrix of Ore
polynomials. However for general Ore domains it appears to be more useful
to work with leading coefficients, something not possible using our methods
except for the case of skew-polynomial domains. We note that this is possible
to do using the approach of Abramov and Bronstein simply by using Theorem
2.2. In our case we would like to find a fraction-free method for such a reduction
over Ore domains. We will look at combining the procedure in Theorem 2.2
along with modified Schur complements [Beckermann et al., 1997] of Krylov
matrices to help us develop such an algorithm.

In a recent work Abramov and Bronstein [2002] extend their results to handle
the case of nested skew Ore domains, allowing for computations for example in
Weyl algebras. We would like to extend our methods to this important class of
matrices again with the idea of controlling the growth of the resulting matrices.
This is a difficult extension to do using the methods described in our paper
since the corresponding associated linear systems do not have commutative
elements. As such the standard tools that we use from linear algebra, namely
determinants and Cramer’s rule, do not exist in the classical sense.

Finally, it is well known that modular algorithms improve on fraction-free
methods by an order of magnitude. We plan to investigate such algorithms
for our rank and left nullspace computations. We note that the determinantal
representations gives a first step in this direction since it provides an upper
bound for the sizes of the objects which need to be computed. As in the
modular algorithm for computing a GCRD of Ore polynomials [Li, 1996, Li
and Nemes, 1997], we expect that the fraction-free algorithm would be a basis
for the modular algorithm.
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A Appendix: Further Facts on Matrices of Ore Polynomials

In this appendix we will present a number of technical results that are needed
in our paper. These results are typically well understood in the context of
commutative matrix polynomials but are not at all obvious for the case of
noncommutative matrices of Ore polynomials.

Consider first the notion of the rank of a matrix of Ore polynomials, F(Z) ∈
IK [Z;σ, δ]m×s. Denote by MF(Z) = {Q(Z)F(Z) : Q(Z) ∈ IK [Z;σ, δ]1×m}
the submodule of the (left) IK [Z;σ, δ]-module ⊂ IK [Z;σ, δ]1×s obtained by
forming left linear combinations of the rows of F(Z). Then following [Cohn,
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1971, p. 28, Section 0.6], the rank of a module M over IK [Z;σ, δ] is defined
to be the cardinality of a maximal IK [Z;σ, δ]-linearly independent subset of
M. Comparing with our Definition 2.1, we see that rank F(Z) ≤ rankMF(Z).
Theorem A.2 below shows that in fact we have equality.

Notice that for any A(Z) ∈ IK [Z;σ, δ]m×m we have thatMA(Z)F(Z) ⊂MF(Z).
If now A(Z) has a left inverse V(Z) ∈ IK [Z;σ, δ]m×m, then we also have the
inclusions MF(Z) = MV(Z)A(Z)F(Z) ⊂ MA(Z)F(Z), showing that in this case
MA(Z)F(Z) =MF(Z).

For identifying the different concepts of rank, it will be useful to show that the
rows of a row-reduced matrix of Ore polynomials are linearly independent over
IK [Z;σ, δ]. This however is an immediate consequence of Lemma A.1(a) below
which in case of ordinary matrix polynomials is referred to as the predictable
degree property (see Kailath [1980], Theorem 6.3.13).

Lemma A.1 Let F(Z) ∈ IK [Z;σ, δ]m×s, with ~µ = row-deg F(Z).

(a) F(Z) is row-reduced if and only if, for all Q(Z) ∈ IK [Z;σ, δ]1×m,

deg Q(Z)F(Z) = max
j

(µj + deg Q(Z)1,j).

(b) Let A(Z) = B(Z) C(Z) be matrices of Ore polynomials of sizes m × s,
m× r, and r × s, respectively. Then rank A(Z) ≤ r.

(c) Let A(Z) = B(Z) C(Z) be as in part (b), with A(Z) and C(Z) row-
reduced with row degrees α1 ≤ α2 ≤ ... ≤ αm and γ1 ≤ γ2 ≤ ... ≤ γr,
respectively. Then m ≤ r, and αj ≥ γj for j = 1, ...,m.

(d) Let T(Z) = U(Z) S(Z), with U(Z) unimodular and with both S(Z) and
T(Z) row-reduced. Then, up to permutation, the row degrees of S(Z) and
T(Z) coincide.

Proof: For any Q(Z) ∈ IK [Z;σ, δ]1×m let N ′ := maxj
(
µj + deg Q(Z)1,j

)
and define the vector ~h ∈ IK 1×m, ~h 6= ~0, by

Q(Z)1,j = hjZ
N ′−µj + lower degree terms.

Clearly, deg Q(Z) F(Z) ≤ N ′, with the coefficient at ZN ′ being given by

m∑
j=1

hjσ
N ′−µj(F

(µj)
j,∗ ) = ~h σN

′−N(L(F(Z))).

Since σ is injective, we have that F(Z) is row-reduced if and only if σj(L(F(Z)))
is of full row rank for any integer j that is, if and only if hσj(L(F(Z))) 6=
0 for all h 6= 0 and all integers j. This in turn holds true if and only if
deg Q(Z)F(Z) = N ′ for any Q(Z) ∈ IK [Z;σ, δ]1×m.
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In order to show (b), we may suppose by eliminating a suitable number of
rows of A(Z) and B(Z) that rank A(Z) = m. If r < m, then MB(Z) ⊂
IK [Z;σ, δ]1×r, the latter IK [Z;σ, δ]-module being of rank r. Hence r ≥ rankMB(Z) ≥
rank B(Z). On the other hand, B(Z) has more rows than columns. Thus, by
definition of rank B(Z) there exists a nontrivial Q(Z) ∈ IK [Z;σ, δ]1×m with
Q(Z)B(Z) = 0. Thus Q(Z)A(Z) = 0, a contradiction to the fact that A(Z)
has full row rank m. Therefore r ≥ m, as claimed in part (b).

For a proof of part (c), recall first that the rows of the row-reduced A(Z) are
IK [Z;σ, δ]-linearly independent by part (a), and hence m = rank A(Z) ≤ r by
part (b). Suppose that αj ≥ γj for j < k, but αk < γk. Part (a) tells us that
deg B(Z)j,` ≤ αj − γ`. Since αj < γk ≤ γ` for j ≤ k ≤ `, we may conclude
that B(Z)j,` = 0 for j ≤ k ≤ `, in other words, the first k rows of A(Z) are
left polynomial combinations of the first k− 1 rows of C(Z). Again from part
(b) it follows that the first k rows of A(Z) are IK [Z;σ, δ]-linearly dependent,
a contradiction. Hence the assertion of part (c) holds.

Finally, part (d) is obtained by twice applying part (c) (compare with [Kailath,
1980, Lemma 6.3.14, p.388] for the case of ordinary matrix polynomials).

Consider now the left nullspace NF(Z) of a F(Z) ∈ IK [Z;σ, δ]m×s. Clearly,
NF(Z) is a IK [Z;σ, δ]-module. We want to construct a row-reduced basis of
this space, and obtain information about the degrees of such a basis.

Theorem A.2 Let F(Z) ∈ IK [Z;σ, δ]m×s, and U(Z) ∈ IK [Z;σ, δ]m×m be uni-
modular, with T(Z) = U(Z) F(Z) having r nonzero rows, where the submatrix
consisting of the r nonzero rows of T(Z) are row-reduced. Then

r = rankMF(Z) = rank F(Z) = m− rankNF(Z), (A.1)

with a basis over IK [Z;σ, δ] of NF(Z) given by those rows of U(Z) corresponding
to the zero rows of T(Z).

Moreover, there exists a row-reduced W(Z) ∈ IK [Z;σ, δ](m−r)×m with rows
forming a basis of the left nullspace NF(Z), and

row-deg W(Z) ≤ (m− 1)N~e, N = deg F(Z).

Proof: Denote by J the set of indices of zero rows of T(Z), and define the
matrix U(Z)J,∗ by extracting from U(Z) the rows with indices in J . In a first
step, let us determine the left nullspace of T(Z), and establish equality (A.1)
for the matrix T(Z). For some P(Z) ∈ IK [Z;σ, δ]1×m we have

P(Z)T(Z) =
∑
j 6∈J

P(Z)1,jT(Z)j,∗.
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We have shown implicitly in Lemma A.1(a) that the rows T(Z)j,∗ for j 6∈ J
are linearly independent over IK [Z;σ, δ]. Therefore P(Z) ∈ NT(Z) if and only
if P(Z)1,j = 0 for all j 6∈ J , and in addition

r = rank T(Z) = m− rankNT(Z).

As mentioned before, we also have that rank T(Z) ≤ rankMT(Z) =: ρ. Sup-
pose that there is strict inequality. Then there exist ρ elements ofMT(Z) which
are IK [Z;σ, δ]-linearly independent and which can be written as rows of the
matrix B(Z)T(Z) for some B(Z) ∈ IK [Z;σ, δ]ρ×m. Then rank B(Z)T(Z) = ρ
by construction of B(Z). However T(Z) contains only r rows different from
zero, and hence rank B(Z)T(Z) ≤ r by Lemma A.1(b), a contradiction. Con-
sequently, (A.1) holds for the matrix F(Z) being replaced by T(Z).

We now use the fact that U(Z) is unimodular, that is, there exists a V(Z) ∈
IK [Z;σ, δ]m×m with V(Z) U(Z) = U(Z) V(Z) = I. Consequently, Q(Z) ∈
NF(Z) if and only if P(Z) = Q(Z) V(Z) ∈ NT(Z), that is,

NF(Z) = {P(Z) U(Z) : P(Z)1,j = 0 for j 6∈ J} =MU(Z)J,∗
.

Since U(Z) has a right inverse, we may conclude that NU(Z) = {0}, showing
that rows of unimodular matrices are linearly independent over IK [Z;σ, δ].
Thus the rows of U(Z)J,∗ form a basis of NF(Z), and

m− rankMF(Z) = m− rankMT(Z) = m− r = rankNF(Z).

Since again the relation ρ := rank F(Z) ≤ rankMF(Z) is trivial, for a proof
of the first part of the assertion of Theorem A.2 it only remains to show that
ρ < r leads to a contradiction. Suppose without loss of generality that the
first ρ rows of F(Z) are linearly independent. Then, by maximality of ρ, we
find for any j = ρ+ 1, ...,m quantities Q(Z)j,k ∈ IK [Z;σ, δ] with

Q(Z)j,j 6= 0, Q(Z)j,jF(Z)j,∗ +
ρ∑

k=1

Q(Z)j,kF(Z)k,∗ = 0,

that is, we have found m − ρ > m − r many IK [Z;σ, δ]-linearly independent
elements of NF(Z), in contradiction to our previous findings on rankNF(Z).

In order to show the second part of Theorem A.2, suppose that U(Z) and T(Z)
are those defined in Theorem 2.2. Let W(Z) be the row-reduced counterpart
of U(Z)J,∗ obtained by applying Theorem 2.2. Since one is obtained from the
other by multiplying on the left by some unimodular factor, the rows of W(Z)
form a row-reduced basis of NF(Z), with row-deg W(Z) ≤ row-deg U(Z)J,∗.
Hence it only remains to recall the bound for the row-degree of the multiplier
U(Z) of Theorem 2.2: we have for j ∈ J

deg U(Z)j,∗ ≤ νj − µj + (|~µ| − |~ν|) ≤ |~µ| − ~µj ≤ (m− 1)N.

39



We should mention that the quantity row-deg W(Z) of Theorem A.2 is an
invariant of F(Z) since by Lemma A.1(d), we obtain the same degrees (up
to permutation) for any row-reduced basis of the left nullspace of F(Z). In
the case of ordinary matrix polynomials, the components of row-deg W(Z)
are usually referred to as left minimal indices or left Kronecker indices, (see
§6.5.4, p. 456 of Kailath [1980]).

We conclude this appendix by showing that a certain number of elementary
properties of the rank remain equally valid for matrices of Ore polynomials.

Lemma A.3 For any F(Z) ∈ IK [Z;σ, δ]m×s, the rank of F(Z) does not change
by applying any of the row operations of first or second type described in the
introduction, or by multiplying F(Z) on the right by a full rank square matrix
of Ore polynomials.

Proof: Suppose that A(Z) ∈ IK [Z;σ, δ]s×s is of rank s. Then NA(Z) = {0}
by (A.1), implying that NF(Z)A(Z) = NF(Z). Hence F(Z)A(Z) and F(Z) have
the same rank by (A.1). If U(Z) is unimodular, then MU(Z) F(Z) = MF(Z),
showing that the rank remains the same. Finally we need to examine the row
operation of multiplying one row of F(Z) with a nonzero element of IK [Z;σ, δ].
Since IK [Z;σ, δ] contains no zero divisors, it is easy to check that F(Z) and
the new matrix will have the same number of IK [Z;σ, δ]-linearly independent
rows, and hence the same rank.
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