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ABSTRACT 

For matrix power series with coefficients over a field, the notion of a matrix 

power series remainder sequence and its corresponding cofactor sequence are intro- 

duced and developed. An algor!thm for constructing these sequences is presented. 

It is shown that the cofactor sequence yields directly a sequence of Padd frac- 

tions for a matrix power series represented as a quotient B(z)-lA(z). When 

B(z)-lA(z) is normal, the complexity of the algorithm for computing a Padd fraction 

of type (re,n) is O(pa(m+n)z), where p is the order of the matrices A(z) and B(z). 

For power series which are abnormal, for a given (re,n), Padd fractions may 

not exist. However, it is shown that a generalized notion of Padd fraction, the Padd 

form, introduced in this paper does always exist and can be computed by the algo- 

rithm. In the abnormal case, the algorithm can reach a complexity of O(pa(m+n)3), 
depending on the nature of the abnormalities. In the special case of a scalar power 

series, however, the algorithm complexity is O((m+n)2), even in the abnormal case. 

1. I n t r o d u c t i o n .  

Let 

= a , z ' ,  (:.1) 
i--@ 

where a~, i ----- 0, ... , is a p x p matrix with coefficients from a field K, be a formal power series. 

Loosely speaking, a matrix Padd approximant of A(z) is an expression of the form U(z).V(z) -1, or 

Y~z)-l.U(z), where U(z) and V(z) are matrix polynomials of degree at most m and n, respectively, 

whose expansion agrees with A(z) up to and including the term am+". 

The definition of a Padd approximant can be made more formal in a variety of ways. For 

example, Rissanen [9] restricts V(z) to be a scalar polynomial and allows U(z) to be a p x q matrix. 

Typically, however, U(z) and V(z) are p x p polynomial matrices, and V(z) is further restricted by 

the condition that the constant term, V(0), is invertible (c.f., Bose and Basu[1], Bultheel[3], and Star- 

kand[12]). In this paper, we cMl such approximants matrix Padd fractions, which is consistent with 

the scalar (p----l) case (c.f., Gragg[7]). 
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Def in i t ion  2.1: The pair of matrix polynomials (U(z),V(z)) is defined to be a R i g h t  M a t r i x  

P a d d  F o r m  (RMPFo) of type (re,n) for the pair (A(z),B(z)) if 

I. o(U(z)) < , , ,  o(v(~)) < . ,  

IX. A(z).V(z) + B(z).U(z) = zm+"+'W(z) (2.3) 

where W(z) is a formal matrix power series, and 

III. The columns of V(z) are linearly independent over the field K. • 

The matrix polynomials U(z), V(z), and W(z) are usually called the right numerator, denomina- 

tor, and residual (all of type (m,n)), respectively. Note that when B(z) = -I, Definition 2.1 

corresponds to the definition of Padd form for a single matrix power series A(z) given in Labahn[8]. 

For ease of discussion, we use the following notation. For any matrix polynomial 

V ( z )  = Uo + u l z  + . . .  + u , z  ~ , (2 .5)  

we write U (i.e., the same symbol but without the z variable) to mean the p(k+l )  by p vector of 

matrix coefficients 

[ 1' U =  Uo, Ul, " " , u ~  , (2 .0 )  

where the transpose is at the symbolic level. 

Let 

S m , n  ~- 

a0 

gttt +~, • 

tbo 
1 
I. b0 

I. 
I 

. am I b m + ,  • . b.  

(2.7) 

denote a Sylvester matrix for A(z) and B(z) of type (re,n). Then equation (2.3) can be written as 

Sin,." = 0. (2 .8 )  
U 

T h e o r e m  2.2" (Existence of Matrix Padg Forms) For any pair of power series (A(z), B(z)) and 

any pair of nonzero integers (m,n), there exists a RMPFo of type (m,n). 

One case when the RMPFo is unique is given by 

Def in i t ion  2.3. A pair (U(z),V(z)) of p x p matrix polynomials is said to be a R igh t  M a t r i x  Padd  

F r a c t i o n  (RMPFr) of type (m,n) for the pair (A(z),B(z)) if 

I. (U(z),V(z)) is a RMPFo of type (m,n) for (A(z),B(z)), and 

II. The constant term, V(0), of the denominator is an invertible matrix. • 
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For a particular m and n, however, matrix Padd fractions need not exist. Therefore, in this 

paper, we introduce the notion of a matrix Padd form, in which the condition of invertibitity of V(0) 

is relaxed. The definition is a generalization of a similar one given for the scalar case (c.f., Gragg[7]). 

It is shown that  matrix Padg forms always exist, but that they may not be unique. In general, 

matrix Padd forms need not have an invertible denominator, V(z). However, for m and n given, by 

obtaining a basis for all the Padg forms, we are also able to construct a matrix Padg form with an 

invertible V(z), in the case that  one does exist. 

In the one dimensional case, some algorithms that calculate Padg approxlmants for normal 

power series (Gragg[7]) include the ~-aigorlthm of Wynn, the y-algorithm of Bauer, and the Q-D 

algorithm of Rutlshauser. Algorithms that are successful in the degenerate non-normai case are 

given by Brent et ai[2], Bultheel[4], Rissanen[ll], and Cabay and Choi[5]. 

The matrix case parallels the scalar situation in that  most algorithms are restricted to normal 

power series. Algorithms that  require the normality condition include those of Bultheel[3], Bose and 

Basu[1], Starkand[12], and Rissanen[10]. An algorithm that calculates Padg approximants in a non- 

normal case is given by Labahn[8]. However, in this algorithm there are still strict conditions that 

need to be satisfied by the power series before Padg approxlmants can be calculated. 

The primary contribution of this paper is an algorithm, MPADE, for computing matrix Padd 

forms for a matrix power series. Central to the development of MPADE are the notions of a matrix 

power series remainder sequence and the corresponding cofactor sequence, which are introduced in 

section 4. These are generalizations of notions developed by Cabay and Kossowski[ 6] for power 

series over an integral domain. The cofactor sequence computed by MPADE yields a sequence of 

matrix Padd fractions along a specific off-diagonai path of the Padd table for A(z). 

Unlike other algorithms, there are no restrictions placed on the power series in order that 

MPADE succeed. For  normal power series, the complexity of MPADE is O(pa.(m+n) 2) operations in 

K. This is the same complexity as some of the algorithms proposed by Bultheel[3], Bose and Basu 

[1], Starkand [12], and Rissanen[10]. In the abnormal case, the complexity of the algorithm can reach 

O(pa-(m +n) a) operations in K, depending on the nature of the abnormalities. 

2. Matr ix  Pad~  F o r m s  and Matr ix  Pad~ Frac t ions .  

Let A(z) and B(z) be formal power series 
• c o  . 

A(~) = ~ a , z '  . B ( z ) =  E b ,  z' (2.1) 
i - O  i--O 

with coefficients from the ring of p x p matrices over some field K. Throughout this paper it is 

assumed that  the leading coefficient, b0, of B(z) is an invertible matrix. For non-negative integers m 

and n, let 

v(~) = ~ , , ~ '  , v(~) = ~ , , ~ '  (2.2) 
i - O  i - - O  

denote p x p matrix polynomials. 
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Condition II ensures that  the denominator, V(z), is an invertible matrix polynomial. 

The problem with Padg fractions, as mentioned in the previously , is that  they do not always 

aO 

a m + n - - 1  

aO 

• a m 

T~,~ = 

exist. However, let 

bo 

bin+.-1 • b n 

(2.9) 

and define 

t 1, rn ~0,n==0, d..,. = (2.1o) 
det(Tm.~) , otherwise.  

Then, a sufficient condition for the existence of a RMPFr is given by 

Theorem 2.4. If dm.~ # 0, then every RMPFo of type (re,n) is an RMPFr of type (re,n). In addi- 

tion, a RMPFr of type (re,n) is unique up to multiplication on the right by a nonslngul~" p x p 

matrix having coefficients from the field K. I 

In the next section we also require 

Theorem 2.5. Let A(z) and B(z) be given by (2.1). If m and n are positive integers such that 

din, n ~ 0, then RMPFo's (P(z),Q(z)) of type (m-l,n-1) for (A(z),B(z)) are unique up to multiplication 

of P(z) and Q(z) on the right by a nonsingular matrix from K. In addition, the leading term R(0) of 

the residual in condition II for RMPFo's,  

A(z) Q(z) + S(z)P(~)  = zm+~-'R(~}, (2.11) 

is a nonsingular matrix. • 

3. Matrix Power Series Remainder Sequences. 

We define a R i g h t  M a t r i x  P a d ~  T a b l e  for (A(z), B(z)) to be any infinite two-dimensional 

collection of RMPFo's of type (re,n) for (A(z),B(z)) with m ~ 0, 1 .... and n ~ 0, I, .... It is 

assumed that there is precisely one entry (i.e., one RMPFo) assigned to each position in the table. 

From Theorem 2.2, it follows that a right matrix Pad~ table exists for any given (A(z), B(z)). How- 

ever, the table is not unique, because RMPFo's are not unique. This is unlike the definition of a 

Pad~ table for scMar power series (c.f. Gragg[7]), since here a Pad~ table consists of a collection of 

Pad~ fractions, which arc unique. 

A matrix power series palr (A(z),B(z)) is said to be n o r m a l  (c.f., Bultheel[3 D if dm,n ~ 0 for all 

m,n. For normal power series, it follows from Theorem 3.2 that  every entry in the right matrix Pad~ 

table is a RMPFr. Consequently, from condition II in Definition 2.3 of RMPFr's,  a right matrix 
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Padd table for normal power series may be made unique by insisting that  the constant  term, V(O), in 

the denominator of any Padd fraction be the identi ty matrix. 

Following the convention used in the scalar case (c.f., Gragg[7]), we also define 

and 

(U(z), V(z)) = (Z'nI, 0) for m > --1, n ------- --1, (3.1) 

(u(~), v(~)) = (0, ,~z) for m ---- --1, ~ >_ 0 (3.2) 

A right matrix Padd table appended with (3.1) and (3.2) is called an e x t e n d e d  r i g h t  m a t r i x  P a d ~  

t a b l e  (e.f., Gragg[7]). The use of an extended table is strictly for initialization purposes. The entries 

given by (3.1) and (3.2) are not right matrix Padd forms (indeed the (-1,-1) entry  is not even a 

matrix polynomial). However they do satisfy property II of Definition 2.1. For example, for m _> -1  

and n = -1 ,  we have that  

with 

A(,)~z)  + B(z)U(,) = zm+n+'W(*) (3.3) 

and 

( m i + t , n i + 3  = ( m i  + s i  ,h i  + s i  ), i = 0, I ,  2, • " - , ( 3 . 8 )  

where sl > 1. Observe that  

rni - ni =- rn - n , i = 0, 1, 2, •. • , (3.9) 

and consequently the sequence (3.6) lies along the m-n off-diagonal path of the extended right matrix 

Pad~ table. In (3.8), the s~ are selected so that  

d,~,+,.,,+, # 0 (3.10) 

and 

w(, )  = B(,); (3.4) 

while, for m -- -1  and n > 0, we have (3.3) with 

w(~) = A(,). (3.5) 

Given the power series (2.1) and any non-negative integers m and n, we introduce a sequence 

of points 

( too , -0) ,  ( m 1 , - 1 ) ,  (m2,n~) ,  • (3.8) 

in the extended right matrix Padd table by setting 

{ ( m - ~ - l , - 0  for ,n > n  

(too,%) = (3.7) 
( - l , n - - m - 1 )  for m < n  
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d(mi+j},(ni+j ) = 0 , (3.11) 

for j = l, 2, . . .  , s i -1 .  

For i = I, 2 . . . . .  let (Ui(z),Vi(z)) be the unique RMPFr (c.f., Theorem 3.2) of type (m,,ni) for 

(A(z),B(z)). Thus IV i , Ui ] '  satisfies 

['l = 0 (3.12) Sm,,'~ Ui 

and, according to (2.3), there exists a matrix power series Wi(z) such that  

a(z).V,.(z) + S(z).Ui(z ) = z m' + " + 'Wi(z ). (3.13) 

Generalizing the notions of Cabay and Kossowski[8], we introduce 

Def in i t ion  $.1. The sequence 

is called the P o w e r  Ser ies  R e m a i n d e r  Sequence  for the pair (A(z),B(z)). The sequence of pairs 

{(U,(z),Vi(z))}, i ffi l, 2, " " , (3.15) 

is called the corresponding eo fac to r  sequence .  The integer pairs {(mi, n~)} are called n o n s l n g u l a r  

n o d e s  a long t h e  m - n off-diagonal path of the extended right matrix Pad~ table for (A(z),B(z)). [] 

We note that  each term of a power series remainder sequence is unique up to multiplication on 

the right by a nonsingular matrix. This is also true for each term of the corresponding cofactor 

sequence. 

Initially, when m >_ n, observe that  m 1 = m - n  and n i ffi 0 (i.e., s o = 1), because in (3.2) the 

nonslngularity of b 0 implies that  d(m_n),o ~ O. Thus, Vl(z ) is some arbitrary nons|ngular matrix from 

K and, using (3.12), Ul(z ) can be obtained by solving [bo i Iaol • U I - -  

bm t • b 0 am t 

(3.18)  

That is, Ul(z ) can be obtained by multiplying the first m1+l terms of the quotient power series 

B-l (z ) .A(z)  on the right by -Vx(Z ). 

Initially, when m < n, depending on a o there are two eases to consider. The simple ease, when 

det(ae) ~ O, yields 
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I °° • 1 
d0,(._., ) -- det . ~ 0 .  (3.17) 

gn-m-I  a0 

Thus, s o = 1, m 1 - 0, and n 1 -- n--re. Then, the RMPFr  (Ul(z),Vt(z)) of type (ml,nl) is determined by 

setting Ul(z) to be an arbitrary nonsingular matrix from K and then  solving 

• ' . v ~ = - i  u ~ .  (3 .18 )  

an 1 aO n 1 

That  is, when m < n and &t(%) ~ O, Vl(z ) can be obtained by multiplying the first n l + l  terms of 

the quotient  power series A-l(z).B(z) on the right by -Ul(z ). 

When m <~ n and det(%) -- O, we must first determine the smallest positive integer % (i.e., the 

smallest rn I ---too+8 0 and n 1 ~ n0+%) so that  d,%,1 ~ O. Notice tha t  we must have % ~_ n - m + l .  

Once % has been obtained, then (Ul(z), Vl(z)) is obtained by solving 

s . , , . .  = o .  (3.1o) 
ul 

In section 5, we give an algorithm which computes a R M P F o  of type (m,n) for (A(z),B(z)) by 

performing a sequence of the above types of initializations (albeit, each for different power series). 

When the power series pair (A(z),B(z)) is normal, only the initializations corresponding to 

(3.16) and (3.18) are required. Thus, for normal power series 8~ --- 1 for all i > 1, and the algorlthm 

reduces to a sequence of t runcated power series divisions. 

There are also some non-normal power series that  share this property. For  each pair of 

integers m and n, let rm, ~ be the rank of the matrix Tin, . .  Then normali ty is equivalent to  

~ , .  = ( . * + - ) ' v  ( 3 . 2o )  

for all m and n. A matrix power series pair (A(z), B(z)) is said to be n e a r l y - n o r m a l  (c.f., 

Labahn[8]) if, for all integers m and n, 

r. , , .  ---- km,a-p (3.21) 

for some integer kin, ~. Clearly, every normal power series is also a nearly-normal power series. In 

addition, all scalar power series are nearly-normal. 

For  a nearly-normal power series pair (A(z),B(z)) it is easy to see that  when a 0 is singular, then 

a 0 -- 0. This follows from the observation that  the rank of a 0 is jus t  %j,  which, if it is not p, must 

be zero. Also, if a 0 . . . . .  ak_ l -- 0 and a t ~ 0, then a k must be a nonsingular matrix for similar 

reasons. When k > ra this implies tha t  there are no nonsingular nodes along the m - n off-diagonal 

path before and including the node (re,n). Otherwise, when k ~ m,  the initialization (3.19) becomes 
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0 

~m 1 

~ml~n I am I b m l + n  I 

bo 

• bll I 

U1 
= O, (3.22) 

where s0 = k+l,  m I = k and n I = n--m+k.  Consequently the RMPFr (Ul(z),Vt(z)) of type (ml,nl) is 

obtained from (3.22) first by setting Ul(z ) = zm~.U, where U is any nonsingular matrix from K. Then, 

Vl(z ) is obtained by multiplying the first n l+ l  terms of the quotient power series (z-'~.A(z))-l-B(z) on 

the right by -U. Thus, also for nearly-normal power series (and therefore also for all scalar power 

series), all initializations reduce to truncated power series divisions. 

Corresponding to the Power Series Remainder Sequence, we introduce 

Definition 3.2. The sequence 

{(P,(z),Q,(z))}, i = 1 ,  2, . . '  , (3.23) 

where (P~(z),Qi(z)) is the (mi-1,  n i - l )  entry in the extended matrix Padd table for (A(z),B(z)), is 

called a predecessor sequence of the power series remainder sequence, a 

Theorem 3.3: For i ---- 1, 2 . . . . .  the predecessors (Pi(z),Qi(z)) are unique up to right multipli- 

cation by a nonslngular matrix from K. In addition, the leading term of the residual, R~(0), is non- 

singular, m 

The main result of this section is 

T h e o r e m  3.4. For  any positive integer k, (k - 1, k) is a nonslngular node in the Pad~ table for 

(Wi(z),Ri(z)) if and only if (m~+k, ni+k ) is a nonslngular node in the Fade table for (A(z), B(z)). M 

Theorem 3.4 allows us to calculate nonsingular nodes of a pair of power series by calculating 

nonsingular nodes of the residual pair of power series. This gives us an iterative method of calculat- 
ing nonslngular nodes. 

Theorem 3.5: The eofactor and predecessor sequences for (A(z),B(z)) satisfies 

Where (UtCz),~(z)) is the RMPFr of type (s,-1, st) for (Wi(z),R~(z)), and where (t~(z),O'Cz)) is its 

predecessor. • 
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4. The  A l g o r i t h m :  

Given non-negative integers m and n, the algorithm MPADE below makes use of Theorem 3.5 

to compute the eofactor and predecessor sequences (3.10) and (3.18), respectively. Thus, intermedi- 

ate results available from MPADE include those RMPFr's  (U¢(z),V~(z)) for (A(z),B(z)) at all the non- 

singular nodes (m¢, nl) , i=1,2  . . . . .  k-l ,  smaller than (re,n), along the off-diagonal path m~-n,. --= 

m-n. The output gives results associated with the final node (re~,nk). If (re,n) is also a nonsingular 

node, then the output (Uk(z),Vk(z)) is a RMPFr of type (re,n) for (A(z),B(z)), and (Pk(z),Qk(z)) is a 

RMPFo of type (m-l,n-1). If (re,n) is a singular node, then the output (Uk(z),Vk(z)) is simply a 

RMPFo of type (m,n) for (A(z),B(z)), and now (Pk(z),Q~(z)) is set to be the RMPFr of type 

Note that,  when (re,n) is not a nonsingular node, a simple modification of MPADE allows the 

computation of all RMPFo's of type (re,n) for (A(z),B(z)). It is only necessary to arrange to compute 

q columns of [~k ,  U°k], rather than p, in order to form a basis for the solution space of the equation 

in step 3.1 of MPADE. From this basis, it is then possible to construct a p x p matrix V(z), and a 

corresponding U(z), for which (U(z),V(z)) is a RMPFo of type (re,n) for (A(z),B(z)) and has the pro- 

perty that  V(z) is an invertibte matrix, assuming such a RMPFo exists. This enhancement is not 

included in MPADE primarily to simplify the presentation of the algorithm. 

A L G O R I T H M  ( M P A D E ) :  

S t e p  1: ~ Initialization 

I f m  > n  

then set 

1 . 1 )  i ~ -  1 

1 . 2 )  So * -  re  - n 

H 1.3) -- 
nl 

1.4) LV,(,) Q,C,)I = x 

else set 

1.5) i 4"- 0 

l0 i:l 

LV0(z) Q0(z)] _ 
Step 2: ~ Search for next nonsingular node :~ 

2.1) s,. ~-- 0 

o'l 
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2.2) d 4- 0 

2.3) Do while n i + s  i < n and d = 0 

2.4) Set s; *- s# + 1 

2.5) Compute the residual W~.(z) such that 

(A(z).V,.(z) + B(z).U;(z) ) rood ,~,+n,+2.,+, = z . , , , . ,+, .W,(~)  

2.6) Compute the residual R~(z) such that 

(A(z) 'Qi(z)  + B(z) .Pi(z  ) ) rood z m'+'+2''-1 = z 'nd+'- l 'R , (z )  

2.7) Compute 

= &t(T(,,_l),,,). 

determined from the power series Wi(z ) and Ri(z) 
2.8) End do 

Step  S. ~ Compute RMPFr for residuals 
3.1) Solve 

S l  (li--1),$i" U t ~-- O, 

where S l is the Sylvester matrix determined from W~(z) and Ri(z) 

S t e p  4- ~ Compute predecessor for residuals 

4.1) If st > I and d ~ O, 

then solve 

where again S l is the Sylvester matrix determined from Wi(z ) and R~(z) 
else set 

Step 5: ~ Advance along off-diagonal for Padg fractions 

5.1) rn~+ I ~- m r + 8 i 

5.2) hi+ 1 * -  n i + s i 

o,(=)j .=._,- LU,(,) 
5.4) i ~ i + 1 

Step 6: ~ termination test ~t 
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If nl < n 

then go to step 2 

Else k ~-- i 

return([V.(z) Q~(z)] ) 

5. Complexi ty  of  M P A D E  Algorithm 

In assessing the costs of MPADE, it is assumed that classical algorithms are used for the multi- 

plication of polynomials. Only the more costly steps are considered. For these steps, Table 5.1 

below provides crude upper bounds on the number of multiplications in K performed during the i-th 

pass through MPADE. 

Step 

2.5 

2.6 

2.7 

3.1 

4.1 

5.3 

Table 

In step 2.7 of MPADE, it is 

the LU decomposition of T(,~_l),,: 

partied with bordering techniques. 

Bound on Number of Multiplications 

2p3(mi+ni+2)ai 

2pS(mi+ni+2)sl 

8pa(si-1)z/3 

2p38i 2 

2v3sl ~ 

4p3(rni+ni+2)(si+l) 

5.1 : Bounds on Operations per Step 

assumed that the Gaussian elimination method is used to obtain 

In addition, it is assumed that  Gaussian elimination is accom- 

Thus, as s i increases by 1 in step 2.4, the results of the previous 

pass through the while  loop are used to achieve the current LU decomposition. The bound for step 

2.7 in Table 5.1 assumes we do not take any advantage of the special nature of T(,~_I),,: 

For step 3A, it is assumed that  the LU decomposition of T(,~_I),, ~ from step 2.7, is used to sim- 

plify the triangulation of S(,~_:),o: The solution IV r, U l ] is obtained finally by solving this triangular- 

ized S{,~_:),,: Similar observations apply to step 4.1. 

An upper bound for the number of multiplications in K required by MPADE is obtained by 

summing the costs in Table 5.1 for i-----0,1, . . . .  k. We use the fact that 

In addition, 

Then, step 2.7 has a 

O(~Sfrn+n}2~ at worst. 

k k 
)_~s i = m , i f r n _ > n ,  and ~ s  i = n , i f m  < n .  (5.8) 
i--O i--O 

~rniasi# <~ ma+l ~ k a # -- and ~-~n i s¢ N n a+# . 
i -O imO 

(5.9) 

complexity of O(p3(m+rQ ~) and the remaining steps a complexity of 

When (A(z~,B(z~ is normal (i.e., s~ -~ 1 for all B, then the cost of step 2.7 is 
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zero, siuce T{,~_l)., ~ is already in triangular form, and the complexity of MPADE then reduces to 

O(p3(rn+n)~). This is also the case when (A(z),B(z)) is nearly-normal. In this case st is often larger 

than one, but the matrix T(,~_I)~ is always in triangular form and so again the complexity is 

O(pS(m +n )2). In particular, in the scalar case the complexity of MPADE is O((m+n)2). 

When the power series is neither normal nor nearly-normal, MPADE still provides significant 

savings even in the case where most intermediate nodes are singular. For example, if only the mid- 

dle node (n/2,n/2) along the main diagonal is nonsingular, then MPADE has a complexity of 

8(n/2)s/3 + 8(n/2)s/3 ~--- 2ns/3. This is a saving of a factor of 4 over the simple use of Gaussian elim- 

ination. Algorithms requiring normality, on the other hand, break down when even one intermediate 

node is singular. 
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