
An ϵ-monotone Fourier method for Guaranteed Minimum1

Withdrawal Benefit as a continuous impulse control problem *
2

Yaowen Lu � Duy-Minh Dang� Peter A. Forsyth § George Labahn ¶
3

May 31, 20224

Abstract5

When formulated as an impulse control problem, the no-arbitrage pricing of Guaranteed Minimum6

Withdrawal Benefit contracts with continuous withdrawals results in a Hamilton-Jacobi-Bellman7

Quasi-Variational Inequality (HJB-QVI), which must be solved numerically. In this paper, using8

an associated Green’s function, we develop a numerical Fourier method which is only monotone9

within a tolerance ϵ > 0 to solve the above HJB-QVI under jump-diffusion dynamics. We appeal to a10

Barles-Souganidis-type analysis in [14], which is originally developed for strictly monotone scheme, to11

rigorously prove the convergence of our scheme to the viscosity solution of the HJB-QVI as ϵ→ 0. Ex-12

tensive numerical experiments demonstrate an excellent agreement with benchmark results obtained13

by finite difference methods and Monte Carlo simulation.14
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1 Introduction18

In a continuous withdrawal setting, the no-arbitrage pricing problem of Guaranteed Minimum With-19

drawal Benefit (GMWB) contracts can be formulated using either impulse control or singular control,20

typically resulting in an Hamilton-Jacobi-Bellman Quasi-Variational Inequality (HJB-QVI). This HJB-21

QVI must be solved numerically, since a closed-form solution for it is not known to exist. The reader22

is referred to [15, 24, 40, 41, 42, 54] and [7, 19, 20] for an analysis of singular control and impulse con-23

trol formulations, respectively. Generally speaking, the impulse control approach is suitable for many24

complex situations in stochastic optimal control [3, 8, 16, 25, 31, 37, 46, 57, 64]. For GMWB contracts,25

impulse control is more convenient than singular control in handling complex contract features, such as26

is the reset provision[1, 24, 26, 38, 54, 67].27

Provable convergence of numerical methods for HJB equations are typically built upon the framework28

established by Barles and Souganidis in [14]. This framework requires numerical methods to be (i) mono-29

tone (in the viscosity sense), (ii) stable, and (iii) consistent. Among these requirements, monotonicity30

is often the most challenging to achieve, and consistency in the viscosity sense is usually the most diffi-31

cult to prove theoretically, especially for equations with complex boundary conditions. Non-monotone32

schemes could produce numerical solutions that fail to converge to viscosity solutions, resulting in a33
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violation of the no-arbitrage principle [55, 59, 68]. When a finite difference method is used, monotonicity34

is ensured by a positive coefficient discretization method [34, 52, 59, 66].1 In the context of pricing35

GMWB contracts with continuous withdrawal, convergence of finite difference scheme to the viscosity36

solution of the associated HJB-QVI is studied in great detail in [19, 20, 24, 40, 41, 42].37

Pricing GMWB contracts with discrete withdrawals typically involves solving, between fixed inter-38

vention times, either (i) an associated linear Partial-Integro Differential Equation (PIDE) using finite39

differences [19, 24], or (ii) an expectation problem using numerical integration [1, 15, 44, 45, 51, 62],40

or regression-type Monte Carlo [9, 43]. Across intervention times, an optimization problem needs to41

be solved. Numerical integration Fourier-based methods often depend on the availability of a closed-42

form expression of the Fourier transform of the underlying transition density function or an associated43

Green’s function [1, 45]. It is well-known that, if applicable, Fourier-based methods offer several im-44

portant advantages over finite differences, such as no timestepping error between intervention times,45

and the capability of straightforward handling of realistic underlying dynamics, such as jump diffusion46

and regime-switching. However, a major drawback of existing Fourier-based methods is their lack of47

strict monotonicity. This issue is particularly problematic in the context of stochastic optimal control48

in general where optimal decisions are determined by comparing numerically computed value functions.49

Furthermore, another challenge with Fourier-based methods is potential wraparound contamination in50

numerical solutions. This matter is also crucial to stochastic optimal control problems, especially to51

impulse control formulations, due to the non-local nature of impulses. To the best of our knowledge,52

both of these deficiencies of Fourier-based methods have not been addressed adequately in the impulse53

control literature. The reader is referred to [18, 23, 33, 49, 50] for analysis of error bounds, and [1, 45]54

for zero padding techniques in GMWB pricing.55

The main focus of this paper is the development of a provably convergent Fourier method to tackle56

the challenging HJB-QVI arising from an impulse control formulation of GMWB contracts under jump-57

diffusion dynamics. Major contributions of the paper are as follows.58

� We propose the pricing problem of GMWB contracts with continuous withdrawals under jump-59

diffusion dynamics [47, 53] as an HJB-QVI posed on an infinite definition domain consisting of a60

finite interior and infinite boundary sub-domains with appropriate boundary conditions.61

� Using the Green’s function of an associated PIDE, we study proper truncation of boundary sub-62

domains to ensure loss of information is negligible. We then develop a Fourier scheme which is63

monotone within a tolerance ϵ > 0 to solve the above HJB-QVI on a finite computational domain.64

Under a suitable growth condition, the scheme is shown to be ℓ∞-stable and consistent in the65

viscosity sense with respect to the HJB-QVI defined on the infinite domain.66

� We propose an efficient implementation of the scheme via Fast Fourier Transform, including a67

proper handling of boundary conditions and padding techniques. We mathematically prove that68

our padding techniques, whilst simple, can effectively control wraparound errors in the numerical69

solutions.70

� We prove a strong comparison principle result for the finite interior sub-domain and parts of its71

boundary. We then appeal to a Barles-Souganidis-type analysis in [14], to rigorously prove the72

convergence of our scheme the unique viscosity solution of the HJB-QVI as the discretization73

parameter and the monotonicity tolerance ϵ approach zero.74

� Numerical experiments confirm excellent agreement with benchmark results obtained by finite dif-75

ference methods and Monte Carlo simulation, as well as the robustness of the proposed ϵ-monotone76

Fourier method. Through experiments, we also numerically show that inadequate treatments of77

1When dealing with cross derivative terms, a wide-stencil method based on a local coordinate rotation can be used to

construct monotone finite difference schemes [28, 52, 52]; however, this could be computationally expensive.
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padding areas could significantly contaminate the numerical solutions of the impulse control for-78

mulation.79

Although we focus specifically on GMWB, our comprehensive and systematic approach could serve as a80

numerical and convergence analysis framework for the development of similar weakly monotone methods81

for HJB-QVIs arising from impulse control problems in finance.82

2 Underlying processes83

This section briefly reviews the impulse control formulation [7, 19, 20] and introduces the notation to84

be used in this paper. We respectively denote by Z(t) and A(t) the balance of the personal sub-account85

and of the guarantee account at time t, t ∈ [0, T ], where T > 0 is a fixed investment horizon. Let z086

be the up-front premium to the insurer, which is placed in the personal account at the inception of the87

contract, hence Z(0) = z0. The policy guarantees that the sum of withdrawals throughout the policy’s88

life is equal to the premium, hence A(0) = z0. For subsequent use, let t
− = t− ε, where ε ↓ 0+.89

Roughly speaking, the holder of the policy can either (i) withdraw continuously at a rate determined90

by the holder, or (ii) withdraw specific amounts at specific times, both determined by the holder, subject91

to a penalty charge imposed by the insurer. Regarding (i), as almost all policies with a GMWB have92

a cap on the maximum allowed continuous withdrawal rate without penalty [24], we let Cr be such a93

contractual (continuous) withdrawal rate. For (ii), withdrawing a finite amount is subject to a penalty94

charge proportional to the withdrawal amount as well as a strictly positive fixed cost. We let µ < 1 be95

the positive penalty rate, and c be the positive fixed cost.96

Under an impulse control framework [46, 57], the time-t control for the holder consists of (i) a con-97

tinuous control γ̂(t), γ̂(t) ∈ [0, Cr], representing continuous withdrawal rate, and (ii) an impulse control98

{(tk, γk)}k≤K , K ≤ ∞, representing intervention times {tk}k≤K and associated impulses {γk}k≤K , where99

each tk corresponds to a time at which the holder instantaneously withdraws a finite amount, and γk,100

γk ∈ [0, A(tk−)], corresponds to the withdrawal amount at that time. Here, {tk}k≤K is any sequence of101

(Ft)-stopping times satisfying 0 ≤ t ≤ t1 ≤ t2 < . . . < tK ≤ T , and {γk}k≤K is a corresponding sequence102

of random variables with each γk being of Ftk -measurable for all tk. Due to penalty charge, the net103

revenue cash flow provided to the policy holder at time tk is (1− µ)γk − c.104

As shown in [24], the dynamics of A(t) are given by105

dA(t) = −γ̂(t)1{A(t)>0}dt, for t ̸= tk, k = 1, 2, . . . ,K,106

A(t) = A(t−)− γk, for t = tk, k = 1, 2, . . . ,K. (2.1)107

The dynamics of Z(t) are assumed to follow108

dZ(t)

Z(t)
= (r − β − λκ) dt+ σdW (t) + d

π(t)∑
i=1

(ψi − 1)

− γ̂(t)1{Z(t),A(t)>0}dt,109

for t ̸= tk, k = 1, 2, . . . ,K,110

Z(t) = max
(
Z(t−)− γk, 0

)
, for t = tk, k = 1, 2, . . . ,K. (2.2)111

In (2.2), W (t) denotes a standard Wiener process, r > 0 and σ > 0 are the risk-free rate and volatility,112

respectively, β is the proportional annual insurance rate paid by the policy holder, and π (t) is a Poisson113

process with intensity λ ≥ 0. Denote by ψ the random number representing the jump multiplier, and114

κ = E [ψ − 1] with E[·] being the expectation operator. Finally, ψi are i.i.d. random variables having the115

same distribution as ψ with ψi, π (t) and W (t) assumed to all be mutually independent. The mean and116

variance of ψ are assumed to be finite.117

As a specific example for dynamics (2.2), we consider two jump distributions for ψ, namely the log-118

normal distribution [53] and the log-double-exponential distribution [47]. Let b(y) be the density of lnψ.119

In the first case, lnψ is normally distributed with mean ν and standard deviation ς, with b(y) given by120

b (y) =
1

ς
√
2π

exp

{
−(y − ν)2

2ς2

}
. (2.3)121
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In the latter case, lnψ has an asymmetric double-exponential distribution, with b(y) given by122

b (y) = puη1e
−η1y1{y≥0} + (1− pu) η2e

η2y1{y<0}. (2.4)123

Here, pu ∈ [0, 1], η1 > 1 and η2 > 0. Given that a jump occurs, pu is the probability of an upward jump,124

and (1− pu) is the probability of a downward jump.125

3 Impulse control formulation126

For the controlled processes (Z(t), A(t)), t ∈ [0, T ], let (z, a) be the state of the system. We denote by127

u(z, a, t) the time-t no-arbitrage price of a variable annuity with a GMWB when Z(t) = z and A(t) = a.128

Using dynamic programming, u(z, a, t) is shown to satisfy the impulse control formulation [4, 19]129

min

{
− ut − L′u− J ′u− sup

γ̂∈[0,Cr]
γ̂
(
1− uz1{z>0} − ua

)
1{a>0},130

u− sup
γ∈[0,a]

[u (max (z − γ, 0) , a− γ, t) + (1− µ) γ − c]

}
= 0, (3.1)131

where (z, a, t) ∈ [0,∞)× [amin, amax]× [0, T ). Here, amin = 0 and amax = z0 and132

L′u (z, a, t) =
σ2z2

2
uzz + (r − λκ− β) zuz − (r + λ)u, J ′u (z, a, t) = λ

∫ ∞

−∞
u (zey, a, τ) b(y) dy, (3.2)133

with b(·) being the probability density function of lnψ. We note that the fixed cost c is introduced as a134

technical tool to ensure uniqueness of the impulse formulation, as commonly done in the impulse control135

literature [57, 58, 65].136

Let τ = T−t, and for z > 0, we apply the change of variable w = ln(z) ∈ (−∞,∞). Let x = (w, a, τ),137

and denote by v(x) ≡ v(w, a, τ) = u(ew, a, T − t). Since log(·) is undefined at zero, in (3.1), under the138

log-transformation in z, the term max(u − γ, 0) becomes ln (max (ew − γ, ew-∞)) for a finite w-∞ ≪ 0.139

With these in mind, formulation (3.1) becomes140

min

{
vτ − Lv − J v − sup

γ̂∈[0,Cr]
γ̂
(
1− e−wvw − va

)
1{a>0},141

v − sup
γ∈[0,a]

[v (ln (max (ew − γ, ew-∞)) , a− γ, τ) + (1− µ) γ − c]

}
= 0, (3.3)142

where (w, a, τ) ∈ Ω∞ ≡ (−∞,∞)× [amin, amax]× [0, T ), and L(·) and J (·) are defined by143

Lv (x) = σ2

2
vww + (r − σ2

2
− λκ− β)vw − (r + λ)v, J v (x) = λ

∫ ∞

−∞
v(w + y, a, τ) b(y) dy. (3.4)144

3.1 Localization145

Under the log transformation, the GBMW formulation (3.3) is posed on the infinite domain Ω∞. For146

the problem statement and convergence analysis of numerical schemes, we define a localized GMWB147

impulse formulation. To this end, with wmin < 0 < wmax, |wmin| and wmax sufficiently large, we define148

the following sub-domains:149

Ω∞
τ0 = (−∞,∞)× [amin, amax]× {0},

Ω∞
wmax

= [wmax,∞)× [amin, amax]× (0, T ],

Ω∞
wmin

= (−∞, wmin]× (amin, amax]× (0, T ],

Ωamin = (wmin, wmax)× {amin} × (0, T ], (3.5)

Ω∞
wamin

= (−∞, wmin]× {amin} × (0, T ],

Ωin = Ω∞ \ Ω∞
τ0 \ Ω∞

wmin
\ Ω∞

wamin
\ Ω∞

wmax
\ Ωamin ,

∂Ωin = Ωamin ∪ (wmin, wmax)× [amin, amax]× {0}
∪ {wmin, wmax} × [amin, amax]× [0, T ].

An illustration of the sub-domains for the localized

problem is given in Figure 3.1.

0

a

∞wmin−∞ wmax

amax = z0

Ωamin

ΩinΩ∞
wmin

Ω∞
wmax

Ω∞
wamin

Figure 3.1: Spatial computational do-

main at each τ .

150
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We now present equations for sub-domains defined in (3.5). We note that boundary conditions for151

τ → 0, w → −∞, w → ∞, and a → amin are obtained by relevant asymptotic forms of the HJB-QVI152

(3.1) when t→ T , z → 0, z → ∞, and a→ amin, respectively, similar to [19, 24]. We also note that the153

initial and boundary solutions in Ω∞
τ0 and Ω∞

wmax
may grow unbounded as w → ∞. Therefore, to ensure154

boundedness of numerical solutions in the interior sub-domains Ωin ∪ Ωamin , where convergence to the155

unique viscosity solution is studied, we require the initial and boundary solutions in Ω∞
τ0 and Ω∞

wmax
to156

be bounded as w → ∞. This is detailed below.157

� For (w, a, τ) ∈ Ωin, we have (3.3).158

� For (w, a, τ) ∈ Ω∞
τ0 , we use the initial condition v(w, a, 0) = max(ew, (1−µ)a− c)∧ ew∞ for a finite159

w∞ ≫ wmax, where x ∧ y = min(x, y).160

� For (w, a, τ) ∈ Ω∞
wmax

, according to [24], the withdrawal guarantee becomes insignificant for w suf-161

ficiently large. As suggested in [40], the exact boundary condition at point (w, a, τ) ∈ Ω∞
wmax

162

is v(w, a, τ) = e−βτew
(
1 +O

(
amax
ew

))
. Therefore, following [24, 40], in Ω∞

wmax
, we impose the163

(bounded) Dirichlet-type boundary condition164

v = e−βτ (ew ∧ ew∞). (3.6)165

We note that the theoretical quantity w∞ is needed to indicate that the solutions Ω∞
τ0 and Ω∞

wmax
166

are bounded as w → ∞, and it does not need to be numerically specified. It is possible to relax167

this boundedness requirement to an exponential growth via a simple change of variable (see, for168

example, [32][Remark 3.7]).169

� As w → −∞, z = ew → 0. Set z = 0 in (3.1), and then transform back to the w = ln z coordinates170

to obtain171

min

{
vτ + rv − sup

γ̂∈[0,Cr]
γ̂ (1− va)1{a>0}, v − sup

γ∈[0,a]
[v(w, a− γ, τ) + γ(1− µ)− c]

}
= 0. (3.7)172

Further justification of this boundary condition is given in [24]. We use the boundary condition173

(3.7) for point (w, a, τ) ∈ Ω∞
wmin

. This is essentially a Dirichlet boundary condition since it can be174

solved independently without using any information other than from Ω∞
wmin

.175

� For (w, a, τ) ∈ Ωamin , the impulse formulation becomes the linear PDE vτ − Lv − J v = 0 which176

can be solved independently without using any information other than at a = 0.177

� For (w, a, τ) ∈ Ω∞
wamin

, (3.7) becomes vτ + rv = 0.2178

Note that no further information is needed along the boundary a = amax due to the hyperbolic nature179

of the variable a in the HJB-QVI (3.1).180

3.2 Compact representation181

We now write the GMWB pricing problem in a compact form, which includes the terminal and boundary

conditions in a single equation. We define the intervention operator

M(γ)v(x) =

{
v(w, a− γ, τ) + γ(1− µ)− c x ∈ Ω∞

wmin
,

v (ln(max(ew − γ, ew-∞)), a− γ, τ) + γ(1− µ)− c x ∈ Ωin.

(3.8a)

(3.8b)

With x = (w, a, τ), we let Dv(x) = (vw, va, vτ ) and D
2v(x) = vww, and define182

FΩ∞ (x, v) ≡ FΩ∞
(
x, v(x), Dv(x), D2v(x),J v(x),Mv(x)

)
, (3.9)183

2There exists a unique viscosity solution in
{
Ω∞

wmin
∪ Ω∞

wamin

}
\ {wmin} × [amin, amax]× (0, T ] (see [10, 63]).
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where184

FΩ∞ (x, v) =



Fin (x, v) ≡ Fin

(
x, v(x), Dv(x), D2v(x),J v(x),Mv(x)

)
, x ∈ Ωin,

Famin (x, v) ≡ Famin

(
x, v(x), Dv(x), D2v(x),J v(x)

)
, x ∈ Ωamin ,

Fwmin (x, v) ≡ Fwmin (x, v(x), Dv(x),Mv(x)) , x ∈ Ω∞
wmin

,

Fwamin (x, v) ≡ Fwamin (x, v(x), Dv(x)) , x ∈ Ω∞
wamin

,

Fwmax (x, v) ≡ Fwmax (x, v(x)) , x ∈ Ω∞
wmax

,

Fτ0 (x, v) ≡ Fτ0(x, v(x)), x ∈ Ω∞
τ0 ,

185

with operators186

Fin (x, v) = min

[
vτ−Lv−J v− sup

γ̂∈[0,Cr]
γ̂
(
1− e−wvw − va

)
1{a>0}, v− sup

γ∈[0,a]
M(γ)v

]
, (3.10)187

Famin (x, v) = vτ − Lv − J v, (3.11)188

Fwmin (x, v) = min

[
vτ + rv − sup

γ̂∈[0,Cr]
γ̂ (1− va)1{a>0}, v − sup

γ∈[0,a]
M(γ)v

]
, (3.12)189

Fwamin (x, v) = vτ + rv, (3.13)190

Fwmax (x, v) = v − e−βτ (ew ∧ ew∞), (3.14)191

Fτ0 (x, v) = v −max(ew, (1− µ)a− c) ∧ ew∞ . (3.15)192

Definition 3.1 (Impulse control GMWB pricing problem). The pricing problem for the GMWB under193

an impulse control formulation is defined as194

FΩ∞
(
x, v(x), Dv(x), D2v(x),J v(x),Mv(x)

)
= 0, (3.16)195

where the operator FΩ∞(·) is defined in (3.9).196

We note that FΩ∞ is discontinuous [11, 14] since we include boundary equations in FΩ∞ , which are197

in general not the limit of the equations from the interior.198

Next, we recall the notions of the upper semicontinuous (u.s.c. in short) and the lower semicontinuous199

(l.s.c. in short) envelops of a function u : X → R, where X is a closed subset of Rn. They are respectively200

denoted by u∗(·) (for the u.s.c. envelop) and u∗(·) (for the l.s.c. envelop), and are given by201

u∗(x̂) = lim sup
x→x̂

x,x̂∈X

u(x) (resp. u∗(x̂) = lim inf
x→x̂

x,x̂∈X

u(x)).202

In general, the solution to impulse control problems are non-smooth, and we seek the viscosity203

solution of (3.16) [27, 39, 61]. To this end, let G(Ω∞) be the set of bounded functions defined by [13, 61]204

G(Ω∞) =

{
u : Ω∞ → R, sup

x∈Ω∞
|u(x)| <∞

}
. (3.17)205

Definition 3.2 (Viscosity solution of equation (3.16)). (i) A locally bounded function v ∈ G(Ω∞) is a206

viscosity subsolution (resp. supersolution) of (3.16) in Ω∞ if for all test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞)207

and for all points x̂ ∈ Ω∞ such that v∗ − ϕ has a global maximum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂) (resp.208

v∗ − ϕ has a global minimum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂)), we have209

(FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
≤ 0, (3.18)210 (

resp. (FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
≥ 0,

)
211

where the operator FΩ∞(·) is defined in (3.9).212

(ii) A locally bounded function v ∈ G(Ω∞) is a viscosity solution of (3.16) in Ωin ∪ Ωamin if v is a213

viscosity subsolution and a viscosity supersolution in Ωin ∪ Ωamin.214
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Remark 3.1 (Equivalent definitions). In the existing literature, there are several equivalent definitions of215

viscosity solution for HJB-QVIs arising from general impulse control problems [27, 61]. Here, equivalence216

between two different definitions of viscosity solution means that a subsolution (resp. supersolution) in217

the sense of one definition is also a subsolution (resp. supersolution) in the sense of the other. For218

example, in Definition 3.2 (i), it is possible to replace ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) by ϕ ∈ G(Ω∞) ∩ C2(Ω∞) [12].219

It is also possible to replace ϕ(x̂) by v∗(x̂) (resp. v∗(x̂)) in the non-local terms J (·) and M(·), as these220

terms contain no partial derivatives [27]. For the GMWB pricing problem as given in (3.16), equivalence221

between these definitions can be established (see Appendix B). For the purpose of verifying consistency222

of a numerical scheme, it is convenient to use Definition 3.2.223

Remark 3.2 (Strong comparison result and convergence region). Using an equivalent definition of224

viscosity solution, we can show that the GMWB pricing problem as given in (3.16) satisfies a strong225

comparison principle result in Ωin ∪ Ωamin, where Ωamin ⊂ ∂Ωin (see Appendix B). That is, if u1(x) and226

u2(x) respectively are subsolution and supersolution in Ωin ∪Ωamin, of (3.16), then u1(x) ≤ u2(x) for all227

x ∈ Ωin ∪ Ωamin. Hence, a unique continuous viscosity solution exists in Ωin ∪ Ωamin.228

In general, we cannot hope for a continuous solution to the GMWB problem (3.16) on all the boundary229

Γ = ∂Ωin \Ωamin as it is possible that loss of boundary data can occur over parts of Γ, i.e. as τ → 0 and230

w → {wmin, wmax} [40, 58, 65]. However, these problematic parts of Γ are trivial in the sense that231

either the boundary data is used or is irrelevant. In all cases, we consider the computed solution as the232

limiting value approaching Γ from the interior.233

4 Numerical methods234

The GMWB pricing problem as given in (3.16) is still posed in an infinite domain, due to the infinite235

boundary sub-domains in w. For computational purposes, we need to truncate these infinite sub-domains236

into finite ones. For the purpose of proving convergence, we also need to make sure that the boundary237

truncation error, i.e. loss of information in the boundary due to this truncation, vanish sufficiently fast238

as a discretization parameter approaches zero. This is discussed in Subsection 4.1 below.239

4.1 Computational domain240

A key step of our numerical scheme is a timestepping method based on a convolution integral that involves241

the Green’s function of an associated PIDE in w. In the following, for ease of exposition, we ignore the242

dependence on a by letting a ∈ [amin, amax] be fixed, and we primarily focus on the dependence on w243

and τ . Let {τm}, m = 0, . . . ,M , be an equally spaced partition in the τ -dimension, where τm = m∆τ244

and ∆τ = T/M . For a fixed τm > 0 such that τm+1 ≤ T , we consider the PIDE245

vτ − Lv − J v = 0, w ∈ (−∞,∞), τ ∈ (τm, τm+1], (4.1)246

subject to the initial condition at time τm given by a function v̂(w, ·, τm) where247

v̂(w, ·, τm) =


vbc(w, ·, τm) satisfies (3.7) w ∈ (−∞, wmin],

v(w, ·, τm) w ∈ (wmin, wmax),

vbc(w, ·, τm) satisfies (3.6) w ∈ [wmax,∞).

(4.2)248

We denote by g (·) the Green’s function of the PIDE (4.1) which has the form g(w,w′,∆τ) ≡ g( w − w′,∆τ ).249

The solution v(w, ·, τm+1) for w ∈ (wmin, wmax) can be represented as the convolution of g(·) and v̂(·) as250

follows [30, 36]251

v(w, ·, τm+1) =

∫ ∞

−∞
g
(
w − w′,∆τ

)
v̂(w′, ·, τm) dw′, w ∈ (wmin, wmax). (4.3)252

The solution v(w, ·, τm+1) for w ∈ (−∞, wmin] ∪ [wmax,∞) are given by the boundary conditions (3.6)253

and (3.7). In the analysis below, we focus on integral (4.3).254
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For computational purposes, we truncate the infinite interval of integration of (4.3) to [w†
min, w

†
max],255

where w†
min ≪ wmin < 0 < wmax ≪ w†

max and |w†
min| and w

†
max are sufficiently large, resulting in256

v(w, ·, τm+1) ≃
∫ w†

max

w†
min

g(w − w′,∆τ) v̂(w′, ·, τm) dw′, w ∈ (wmin, wmax). (4.4)257

We denote by Eb the error of the above truncation of the integration domain, i.e.258

Eb =
∫
R\[w†

min,w
†
max]

g(w − w′,∆τ) v̂(w′, ·, τm) dw′, w ∈ (wmin, wmax), (4.5)259

For subsequent use in the paper, let P † = w†
max − w†

min. Results in [21][Proposition 4.2] indicate that,260

for general jump diffusion models, such as those considered in this paper, Eb is bounded by261

|Eb| ≤ K1∆τe
−K2P †

, ∀w ∈ (wmin, wmax), K1,K2 > 0 independent of ∆τ, P †. (4.6)262

For fixed [w†
min, w

†
max], and hence fixed P †, (4.6) shows Eb → 0, as ∆τ → 0. However, as typically263

required for showing consistency, one would need to ensure Eb
∆τ → 0 as ∆τ → 0. Therefore, from (4.6),264

we need P † → ∞ as ∆τ → 0, which can be achieved by letting P † = C/∆τ , for a finite C > 0.3265

(For relevant discussions, see, for example, [32][Theorem 4.2]). We note that, for practical purposes, if266

P † is chosen sufficiently large, it can be kept constant for all ∆τ refinement levels (as we let ∆τ → 0).267

The effectiveness of this practical approach is demonstrated through numerical experiments in Section 6.268

Remark 4.1 (Padding considerations). For the PIDE (4.1), the Green’s function g(w,∆τ) is not269

known in closed-form. However, we do have a closed-form representation for the Fourier transform270

of g(w,∆τ). Therefore, we can approximate (4.4) efficiently by discrete convolution via Fast Fourier271

Transform (FFT). As noted in the introduction, wraparound error (due to periodic extension) is an im-272

portant issue for Fourier methods, particularly in the case of impulse control problems. For our scheme,273

the intervals [w†
min, wmin] and [wmax, w

†
max] also serve as padding areas for nodes in Ωin ∪Ωamin. Without274

loss of generality, for convenience, we assume that |wmin| and wmax are chosen sufficiently large so that275

w†
min = wmin −

wmax − wmin

2
, and w†

max = wmax +
wmax − wmin

2
. (4.7)276

In Subsection 4.4, we show that, for practical purposes, this simple choice for padding areas is sufficient277

for eliminating wraparound error. This is also verified by extensive numerical experiments in Section 6.278

We now have a finite computational domain Ω = [w†
min, w

†
max]× [amin, amax]× [0, T ], which consists of

Ωin = defined in (3.5), Ωamin = defined in (3.5),

Ωτ0 = [w†
min, w

†
max]× [amin, amax]× {0}, Ωwmin = [w†

min, wmin]× (amin, amax]× (0, T ],

Ωwamin = [w†
min, wmin]× {amin} × (0, T ], Ωwmax = [wmax, w

†
max]× [amin, amax]× (0, T ]. (4.8)

Due to withdrawals, the non-local impulse operator M(·) for Ωin, defined in (3.8b), may require evaluat-279

ing a candidate value at a point having w = ln(max(ew − γ, ew-∞)), which could be outside [w†
min, w

†
max],280

if w-∞ < w†
min. Without loss of generality, we assume w-∞ ≥ w†

min.281

4.2 Discretization282

We denote by N (respectively N †) the number of points of a uniform partition of [wmin, wmax] (respec-283

tively [w†
min, w

†
max]). For convenience, we typically choose N † = 2N so that only one set of w-coordinates284

is needed. Recall that P † = w†
max −w†

min, and also let P = wmax −wmin. We define ∆w = P
N = P †

N† . We285

use an equally spaced partition in the w-direction, denoted by {wn}, where286

wn = ŵ0 + n∆w; n = −N †/2, . . . , N †/2, where (4.9)287

∆w = P/N = P †/N †, and ŵ0 = (wmin + wmax)/2 = (w†
min + w†

max)/2.288

3For the special case of a GBM, straightforward calculus shows that |Eb| ≤ Ce−1/∆τ/
√
∆τ , for a finite C > 0, and hence,

even with fixed P †, we still have Eb
∆τ

→ 0, as ∆τ → 0.
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We use an unequally spaced partition in the a-direction, denoted by {aj}, j = 0, . . . , J , with a0 = amin,289

and aJ = amax. We use the same previously defined uniform partition {τm}, m = 0, . . . ,M , τm = m∆τ290

and ∆τ = T/M .4 Let ∆amax = maxj (aj+1 − aj), ∆amin = minj (aj+1 − aj), j = 0, . . . , J − 1. In291

addition, we assume that there is a discretization parameter h > 0 such that292

∆w = C1h, ∆amax = C2h, ∆amin = C ′
2h, ∆τ = C3h, P † = C ′

3/h, (4.10)293

where the positive constants C1, C2, C
′
2, C3 and C ′

3 are independent of h. We denote by vmn,j a numerical294

approximation to the exact solution v(wn, aj , τm) at node (wn, aj , τm) ≡ xm
n,j . For m = 1, . . . ,M , nodes295

xm
n,j having (i) n = −N †/2, . . . ,−N/2, are in Ωwmin ∪ Ωwamin , (ii) n = −N/2 + 1, . . . N/2 − 1, are in296

Ωin ∪Ωamin , and (iii) n = N/2, . . . N †/2, are in Ωwmax . We conclude this subsection by noting that it is297

straightforward to ensure the theoretical requirement P † → ∞ as h → 0. For example, with C ′
3 = 1 in298

(4.10), we can quadruple N † as we halve h.299

4.3 Numerical scheme300

For (wn, aj , τ0) ∈ Ωτ0 , we impose the initial condition (3.15) by301

v0n,j = max(ewn , (1− µ)aj − c) ∧ ew∞ , n = −N †/2, . . . , N †/2− 1, j = 0, . . . , J. (4.11)302

We impose the condition (3.14) for (wn, aj , τm+1) ∈ Ωwmax by303

vm+1
n,j = e−βτm+1(ewn ∧ ew∞), n = N/2, . . . , N †/2, j = 0, . . . , J, m = 0, . . . ,M − 1. (4.12)304

In the subsequent discussion, we denote by γmn,j is the control representing the withdrawal amount at305

node (wn, aj , τm), n = −N †/2, . . . , N/2− 1, j = 0, . . . , J , m = 0, . . . ,M − 1. We let τ+m = τm+ ε, ε ↓ 0+.306

4.3.1 Ωwmin ∪ Ωwamin307

For (wn, aj , τm+1) in Ωwmin ∪ Ωwamin , let ṽ
m
n,j be an approximation to v(wn, aj − γmn,j , τm) computed by308

linear interpolation. To this end, we denote by I {vm} (w, a) a two-dimensional linear interpolation309

operator acting on the time-τm discrete solutions
{(

(wl, ak) , v
m
l,k

)}
, l = −N †/2, . . . , N †/2, k = 0, . . . , J ,310

m = 0, . . . ,M − 1. Then, ṽmn,j is computed as follows311

ṽmn,j = I{vm}
(
wn, aj − γmn,j

)
, n = −N †/2, . . . ,−N/2, j = 0, . . . , J. (4.13)312

We compute intermediate results vm+
n,j by solving313

vm+
n,j = sup

γm
n,j∈[0,aj ]

(
ṽmn,j + f

(
γmn,j

))
, n = −N †/2, . . . ,−N/2, j = 0, . . . , J, (4.14)314

where ṽmn,j is given in (4.13) and f (·) is the cash amount received by the investor and is defined by315

f (γ) =

{
γ if 0 ≤ γ ≤ Cr∆τ,

γ(1− µ) + µCr∆τ − c if Cr∆τ < γ.
(4.15)316

To advance to time τm+1, we solve the first-order ODE vτ + rv = 0 with the initial condition given by317

vm+
n,j in (4.14) by simply applying a finite difference timestepping method318

vm+1
n,j = vm+

n,j −∆τ
(
rvm+1

n,j

)
, n = −N †/2, . . . ,−N/2, j = 0, . . . , J, m = 0, . . . ,M − 1. (4.16)319

We note that (4.16) is strictly monotone. We also emphasize that numerical solutions in Ωwmax and320

Ωwmin ∪ Ωwamin can be computed without using information from Ωin or Ωamin .321

4While it is straightforward to generalize the numerical method to non-uniform partitioning of the τ -dimension, for the

purposes of proving convergence, uniform partitioning suffices.
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4.3.2 Ωin ∪ Ωamin: scheme322

For (wn, aj , τm+1) in Ωin∪Ωamin , let ṽ
m
n,j be an approximation to v(ln(max(ewn−γmn,j , ew

†
min)), aj−γmn,j , τm)323

computed by linear interpolation. We compute ṽmn,j by linear interpolation as follows324

ṽmn,j = I {vm}
(
ln
(
max

(
ewn − γmn,j , e

w†
min

))
, aj − γmn,j

)
, n = −N/2 + 1, . . . , N/2− 1. (4.17)325

We note that the min{·} operator of (3.3) contains two terms, with the continuous control γ̂ in the

first term having a local nature (γ̂ ∈ [0, Cr]), while the impulse control γ in the second term having

a non-local nature (γ ∈ [0, a]). Motivated by this observation, as in [19], with the convention that

(Cr∆τ, aj ] = ∅ if aj ≤ Cr∆τ , we partition [0, aj ] into [0,min(aj , Cr∆τ)] and (Cr∆τ, aj ]. We compute

respective intermediate results (vloc)
m+
n,j and (vnlc)

m+
n,j by solving the optimization problems

(vloc)
m+
n,j = sup

γm
n,j∈[0,min(aj ,Cr∆τ)]

(
ṽmn,j + f

(
γmn,j

))
, (vnlc)

m+
n,j = sup

γm
n,j∈(Cr∆τ,aj ]

(
ṽmn,j + f

(
γmn,j

))
,

n = −N/2 + 1, . . . , N/2− 1, j = 0, . . . , J, m = 0, . . . ,M − 1, (4.18)

where f (·) is defined in (4.15) and ṽmn,j , n = −N/2 + 1, . . . , N/2 − 1 is given in (4.17). Intuitively, as326

h→ 0, (vloc) and (vnlc) in (4.18) respectively correspond to the solutions of the first and the second term327

of the min{·} operator of (3.3) set equal to zero.328

Remark 4.2 (Attainability of supremum). It is straightforward to show that, due to boundedness of329

nodal values used in I {vm} (·) (see Lemma 5.1 on stability), the interpolated value ṽmn,j in (4.17) is330

uniformly continuous in γmn,j. As a result, the supremum in the discrete equations for (vloc)
m+
n,j and331

(vnlc)
m+
n,j in (4.18) can be achieved by a control in [0,min(aj , Cr∆τ)] and (Cr∆τ, aj ], respectively, with332

the latter case being made possible due to c > 0 [19].333

To prepare for time advancement to τm+1, m = 0, . . . ,M − 1, we combine boundary values Ωwmin ∪334

Ωwamin and Ωwmax with results from (4.18) as below (with a slight abuse of notation)335

(vloc)
m+
l,j

(resp. (vnlc)
m+
l,j )

=


vml,j in (4.16), l = −N †/2, . . . ,−N/2,
(vloc)

m+
l,j

(resp. (vnlc)
m+
l,j )

in (4.18), l = −N/2 + 1, . . . , N/2− 1,

vml,j in (4.12), l = N/2, . . . , N †/2− 1.

(4.19)336

For τ ∈ [τ+m, τm+1], our timestepping method for solving the PIDE (4.1) is the convolution (4.4) with337

the Green’s function being g(w,∆τ) and the initial condition v̂(w, ·, τ+m) given by a linear combination338

of discrete values in (4.19). Specifically, using (vloc)
m+
l,j , l = −N †/2, . . . , N †/2− 1, v̂(w, ·, τ+m) is given by339

v̂
(
w, ·, τ+m

)
=

N†/2−1∑
l=−N†/2

φl (w) (vloc)
m+
l,j , w ∈ [w†

min, w
†
max]. (4.20)340

Here, {φl(w)}, l = −N †/2, . . . , N †/2− 1, are piecewise linear basis functions defined by5341

φl(w) =


(w − wl−1) /∆w, wl−1 ≤ w ≤ wl,

(wl+1 − w) /∆w, wl ≤ w ≤ wl+1,

0, otherwise.

(4.21)342

The timestepping results (vloc)
m+1
n,j , n = −N/2 + 1, . . . , N/2− 1, is given by the discrete convolution

(vloc)
m+1
n,j =

∫ w†
max

w†
min

g (wn − w,∆τ) v̂(w, ·, τ+m) dw = ∆w

N†/2−1∑
l=−N†/2

g̃(wn − wl,∆τ) (vloc)
m+
l,j , (4.22)

where g̃n−l ≡ g̃(wn − wl,∆τ) =
1

∆w

∫ w†
max

w†
min

φl(w) g(wn − w,∆τ) dw. (4.23)

5For a discussion of different choices of basis functions, see [35].
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Using similar steps on (vnlc)
m+
l,j , l = −N †/2, . . . , N †/2 − 1, in (4.19), gives us the timestepping results343

(vnlc)
m+1
n,j , n = −N/2 + 1, . . . , N/2− 1, j = 0, . . . , J , and m = 0, . . . ,M − 1.344

That is, with g̃n−l given in (4.23) we compute two discrete convolutions

(vloc)
m+1
n,j = ∆w

N†/2−1∑
l=−N†/2

g̃n−l (vloc)
m+
l,j , (vnlc)

m+1
n,j = ∆w

N†/2−1∑
l=−N†/2

g̃n−l (vnlc)
m+
l,j . (4.24)

n = −N/2 + 1, . . . , N/2− 1, j = 0, . . . , J, m = 0, . . . ,M − 1.

Finally, we compute vm+1
n,j by

vm+1
n,j = max

(
(vloc)

m+1
n,j , (vnlc)

m+1
n,j

)
, where (vloc)

m+1
n,j and (vnlc)

m+1
n,j from (4.24),

n = −N/2 + 1, . . . , N/2− 1, j = 0, . . . , J, m = 0, . . . ,M − 1. (4.25)

In (4.25), the exact weight g̃n−l, n = −N/2 + 1, . . . , N/2 − 1, l = −N †/2, . . . , N †/2 − 1, defined in345

(4.23), is strictly positive. Therefore, scheme (4.25) is strictly monotone. However, since a closed-form346

representation for g(w,∆τ) is not known, the exact weight g̃n−l can only approximated, and hence, this347

potentially results in negative weights, i.e. loss of monotonicity. In the next subsection, we will show348

that it is possible to achieve monotonicity, for fixed N and ∆τ , for any tolerance ϵ > 0.349

Remark 4.3 (Optimization method). In (4.18), we discretize the control γmn,j with spacing O(h), and350

solve the optimization problem at each node by exhaustive search, using binary search to query the351

database of discrete solution values on the unequally spaced (w, a) mesh. As has been proven in [19,352

Proposition 1], the error in this step is O(h2) for any smooth test function. One dimensional optimization353

methods could be used to reduce the computational cost, but there is then no guarantee of obtaining the354

global maximum as h→ 0.355

4.3.3 Ωin ∪ Ωamin: ϵ-monotonicity356

To approximate g̃n−l, we follow the same steps as in [35]. For the sake of completeness, we provide some357

key steps below. We recall the Fourier transform and inverse Fourier transform358

F [g(·)] = G(η,∆τ) =

∫ ∞

−∞
e−2πiηwg(w,∆τ)dw, F−1[G(·)] = g(w,∆τ) =

∫ ∞

−∞
e2πiηwG(η,∆τ)dη.(4.26)359

It is straightforward to show that a closed-form expression for G (η,∆τ), the Fourier transform of the360

Green’s function of equation (4.1), is361

G (η,∆τ) = exp (Ψ (η)∆τ) , with362

Ψ(η) =

(
−1

2
σ2(2πη)2 +

(
r − λκ− 1

2
σ2 − β

)
(2πiη)− (r + λ) + λB (η)

)
. (4.27)363

Here, B (η) is the complex conjugate of the integral B (η) =
∫∞
−∞ b(y) e−2πiηy dy, noting b(y) is the364

density function of ln (ψ), where ψ is the random variable representing the jump multiplier.365

For a fixed n ∈ {−N/2 + 1, . . . , N/2− 1}, to approximate g̃n−l, l = −N †/2, . . . , N †/2− 1, in (4.23),366

we replace g(w,∆τ) by its localized, periodic approximation ĝ(w,∆τ) given by367

ĝ(w,∆τ) =
1

P †

∞∑
k=−∞

e2πiηkwG(ηk,∆τ) with ηk =
k

P † , P † = w†
max − w†

min. (4.28)368

369

Remark 4.4. We note that the coefficients G(ηk,∆τ) in (4.28) are the exact coefficients corresponding370

to the Green’s function of the PIDE (4.1) with periodic boundary conditions at w†
min and w†

max. Hence,371

ĝ(w,∆τ) is a valid Green’s function, and in particular ĝ(·) ≥ 0.372

We note that, for a fixed ∆τ , ĝ(w,∆τ) ̸= g(w,∆τ), w ∈ [w†
min, w

†
max]. However, as ∆τ → 0, or373

equivalently, as h→ 0, we have374

ĝ(w,∆τ)
(i)
=

∫ ∞

−∞
e2πiηwG(η,∆τ)dη +O

(
1/(P †)2

)
by
=

(4.26)
g(w,∆τ) +O

(
h2
)
. (4.29)375
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Here, (i) is due to P † → ∞ as h → 0, ensuring in an O
(
1/(P †)2

)
∼ O

(
h2
)
error for the traperzoidal376

rule approximation of the integral.377

After replacing g(w,∆τ) by ĝ(w,∆τ) in (4.23), we integrate the resulting finite integral and obtain378

g̃n−l ≡ g̃n−l(∞) =
1

P †

( ∞∑
k=−∞

e2πiηk(n−l)∆w

(
sin2 πηk∆w

(πηk∆w)
2

)
G(ηk,∆τ)

)
. (4.30)379

For α ∈ {2, 4, 8, . . .}, (4.30) is truncated to αN † terms, resulting in an approximate weight380

g̃n−l(α) =
1

P †

 αN†/2−1∑
k=−αN†/2

e2πiηk(n−l)∆w

(
sin2 πηk∆w

(πηk∆w)
2

)
G(ηk,∆τ)

 . (4.31)381

As α → ∞, there is no loss of information in the discrete convolution (4.31). However, for any finite α,382

there is an error due to the use of a truncated Fourier series, which is shown to be [35]383

g̃n−l(α)− g̃n−l(∞) = O(e−1/h). (4.32)384

Although the error in (4.32) indicates a rapid convergence of truncated Fourier series as α → ∞, strict385

monotonicity is not guaranteed for a finite α. To control this potential loss of monotonicity for a finite386

α, as in [35], the selected α must satisfy387

∆w

N†/2−1∑
l=−N†/2

∣∣min (g̃n−l(α), 0)
∣∣ < ϵ

∆τ

T
, ∀n ∈ {−N/2 + 1, . . . , N/2− 1}, (4.33)388

where 0 < ϵ≪ 1 is an user-defined monotonicity tolerance. As discussed in detail in Section 5, to show389

convergence of the numerical scheme, we need ϵ → 0 as h → 0. In practice, however, if ϵ is chosen390

sufficiently small, it can be kept constant for all refinement levels (as we let h→ 0). The effectiveness of391

this practical approach is demonstrated through numerical experiments in Section 6.392

4.3.4 Efficient implementation via FFT and algorithms393

For a fixed α ∈ {2, 4, 8, . . .}, the sequence {g̃−N†/2(α), . . . , g̃N†/2−1(α)} is N †-periodic. With this in mind,394

we let q = n− l in the discrete convolution (4.31), and, for a fixed α, the set of approximate weights in395

the physical domain to be determined is g̃q(α), q = −N †/2, . . . , N †/2− 1. Using this notation, in (4.31),396

with q = n− l, we rewrite e2πiηk(n−l)∆w = e2πikαq/(αN
†), and obtain397

g̃q(α) =
1

P †

αN†/2−1∑
k=−αN†/2

e2πik(αq)/(αN
†) yk, q = −N †/2, . . . , N †/2− 1,

where yk =

(
sin2 πηk∆w

(πηk∆w)
2

)
G(ηk,∆τ), k = −αN

†

2
, . . . ,

αN †

2
− 1.

(4.34)398

It is observed from (4.34) that, given {yk}, {g̃q(α)} can be computed efficiently via a single FFT of399

size αN †. A suitable value for α, i.e. satisfying the ϵ-monotonicity condition (4.33), can be determined400

through an iterative procedure based on formula (4.34). Let this value be αϵ. We also observe that,401

once αϵ is found, the discrete convolutions (4.24) can also be computed efficiently using an FFT. This402

suggests that we only need to compute the weights in the Fourier domain, i.e. the DFT of {g̃q(αϵ)}, only403

once, and reuse them for all timesteps. We define {G̃q(αϵ)} to be the DFT of {g̃q(αϵ)} given by404

G̃(ηk,∆τ, αϵ) =
P †

N †

N†/2−1∑
q=−N†/2

e−2πiqk/N†
g̃q(αϵ), k = −N †/2, . . . , N †/2− 1. (4.35)405

An iterative procedure for computing {G̃q(αϵ)} is given in Algorithm 4.1, where we also use the stopping406

criterion ∆w
∑N†/2−1

q=−N†/2

∣∣g̃q(α) − g̃q(α/2)
∣∣ < ϵ1, ϵ1 > 0. As noted in [35], Algorithm 4.1 stops after a407

finite number of iterations. For practical purposes, αϵ is typically 2 or 4.408
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Algorithm 4.1 Computation of weights G̃q(αϵ), q = −N †/2, . . . , N †/2− 1, in Fourier domain.

1: set α = 1 and compute g̃q(α), q = −N †/2, . . . , N †/2− 1 using (4.34);

2: for α = 2, 4, . . . until convergence do

3: compute g̃q(α) q = −N †/2, . . . , N †/2− 1, using (4.34);

4: compute test1 = ∆w
∑N†/2−1

q=−N†/2
min (g̃q(α), 0) for monotonicity test;

5: compute test2 = ∆w
∑N†/2−1

q=−N†/2

∣∣g̃q(α)− g̃q(α/2)
∣∣ for accuracy test;

6: if |test1| < ϵ(∆τ/T ) and test2 < ϵ1 then

7: αϵ = α;

break from for loop;

8: end if

9: end for

10: use (4.35) to compute and output weights G̃q(αϵ), q = −N †/2, . . . , N †/2− 1, in Fourier domain.

Remark 4.5. For simplicity, unless otherwise stated, we adopt the notional convention g̃n−l = g̃n−l(αϵ)409

and G̃(ηk,∆τ) ≡ G̃(ηk,∆τ, αϵ), where αϵ is selected by Algorithm 4.1, hence satisfies the ϵ-monotonicity410

condition (4.33): ∆w
∑N†/2−1

l=−N†/2

∣∣min (g̃n−l(α), 0)
∣∣ < ϵ∆τ

T , ϵ > 0, for all n ∈ {−N/2+ 1, . . . , N/2− 1}.411

The discrete convolutions (4.24) can then be implemented efficiently via an FFT as follows

(vloc)
m+1
n,j ≃

N†/2−1∑
q=−N†/2

e2πiqn/N
†
Vloc(ηq, aj , τ

+
m) G̃(ηq,∆τ), (4.36)

with Vloc
(
ηq, aj , τ

+
m

)
=

1

N †

N†/2−1∑
l=−N†/2

e−2πiql/N†
(vloc)

m+
l,j , q = −N †/2, . . . , N †/2− 1,

where G̃(ηq,∆τ) is given by (4.35). Similarly, we can compute (vnlc)
m+1
n,j , n = −N/2 + 1, . . . , N/2 − 1,412

j = 0, . . . , J , and m = 0, . . . ,M − 1, using an FFT as above. Putting everything together, an ϵ-413

monotone algorithm for Ω is presented in Algorithm 4.2, where, for simplicity, we use the notation414

N† = {−N †/2, . . . , N †/2− 1}.415

Algorithm 4.2 An ϵ-monotone Fourier algorithm for GMWB problem defined in Definition (3.1). x◦y
is the Hadamard product of vectors x and y; N† = {−N †/2, . . . , N †/2− 1}.

1: compute vector G̃ =
[
G̃(ηq,∆τ)

]
q∈N†

, using Algorithm 4.1;

2: initialize v0n,j = max (ewn , (1− µ)aj − c), n = −N†

2 , . . . ,
N†

2 , j = 0, . . . , J ;

3: for m = 0, . . . ,M − 1 do

4: solve (4.18) to obtain (vloc)
m+
n,j and (vnlc)

m+
n,j , n = −N

2 + 1, . . . , N2 − 1, j = 0, . . . , J ; //Ωin ∪ Ωamin

5: combine results in Line-4 with vmn,j in Ωwmin , Ωwamin and Ωwmax , to obtain vectors

(vloc)
m+
j =

[
(vloc)

m+
n,j

]
n∈N†

and (vnlc)
m+
j =

[
(vnlc)

m+
n,j

]
n∈N†

, j = 0, . . . , J ;

6: compute vectors
[
(vloc)

m+1
n,j

]
n∈N†

= IFFT
{
FFT

{
(vloc)

m+
j

}
◦ G̃
}
, j = 0, . . . , J ;

7: compute vectors
[
(vnlc)

m+1
n,j

]
n∈N†

= IFFT
{
FFT

{
(vnlc)

m+
j

}
◦ G̃
}
, j = 0, . . . , J ;

8: discard FFT values in Ωwmin , Ωwamin and Ωwmax , namely (vloc)
m+1
n,j and (vnlc)

m+1
n,j ,

n = −N†

2 , . . . ,−N
2 , and n = N

2 , . . . ,
N†

2 − 1, j = 0, . . . , J ;

9: set vm+1
n,j = max

(
(vloc)

m+1
n,j , (vnlc)

m+1
n,j

)
, n = −N

2 + 1, . . . , N2 − 1, j = 0, . . . , J ; //Ωin ∪ Ωamin

10: compute vm+1
n,j , n = N

2 , . . . ,
N†

2 , j = 0, . . . , J , using (4.12); //Ωwmax

11: compute vm+1
n,j , n = −N†

2 , . . . ,−N
2 , j = 0, . . . , J , using (4.16); //Ωwmin ∪ Ωwamin

12: end for
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Remark 4.6 (Algorithm complexity). The complexity of Algorithm 4.2, at each timestep, consists of416

two major parts, intervention action and time advancement. For intervention action, a binary search417

is carried out for each mesh node, with each search costing O(| log(1/h)|). For each timestep, we need418

to solve O(1/h2) optimization problems (that is, for each mesh node (wn, aj) with n = −N†

2 , . . . ,
N
2 − 1,419

j = 0, . . . , J), each optimization performs O(1/h) linear interpolations (i.e. for O(1/h) elements in420

the admissible control set). The intervention action results in O(| log(1/h)|/h3) computational cost at421

each timestep. Regarding time advancement, we basically solve O(1/h) PIDEs (i.e. for each aj when422

j = 0, . . . , J) using the ϵ-monotone Fourier method. Apart from a preprocessing step in Algorithm 4.1,423

the complexity of the time advancement mainly depends on the FFT to evaluate the discrete convolution,424

with each FFT costing O(| log(1/h)|/h). In total, the computational cost of the time advancement is425

O(| log(1/h)|/h2) at each timestep. Thus the major cost of Algorithm 4.2 is determined by the interven-426

tion action, that is by the local optimization problems.427

4.4 Wraparound error428

A well-known issue requiring special attention is that FFT algorithms effectively assumes that the input429

functions are periodic. This tends to cause wraparound pollution near the boundaries, unless special430

care is taken when implementing the algorithms [29]. In our case, wraparound error may occur at nodes431

near wmin and wmax, i.e. near the boundaries between Ωin ∪Ωamin and Ωwmin ∪Ωwamin or Ωwmax , with the432

contamination being particularly problematic near wmin. This is because the non-local impulse operator433

always moves the solution to smaller w values, due to withdrawals.434

As introduced in Remark 4.1, the boundary sub-domains Ωwmin ∪Ωwamin and Ωwmax are also set up to435

act as padding areas to minimize the wraparound error in the computation of discrete convolutions (4.24)436

via an FFT in (4.36). Specifically, as stated in Algorithm 4.2, for each τm, solutions in the boundary437

sub-domains Ωwmin ∪Ωwamin and Ωwmax are combined with (vloc)
m+
n,j and (vnlc)

m+
n,j in Ωin∪Ωamin (Lines 4-5)438

to form the data for an FFT (Lines 6-7). After an FFT is applied, all results of auxiliary padding nodes439

in Ωwmin ∪ Ωwamin and Ωwmax are discarded to minimize the wraparound error at nodes in Ωin ∪ Ωamin440

(Line 8). Note that our treatment is different from the zero padding technique used in [1, 45], which441

might produce errors near wmin. In the below, we show that, with our choice of N † = 2N , N is chosen442

large enough, our handling of wraparound described above is sufficiently effective.443

For full generality, we consider the generic recursion in the form of the discrete convolution (4.24)444

um+1
n = ∆w

N†/2−1∑
l=−N†/2

g̃n−l u
m
l , n = −N/2 + 1, . . . , N/2− 1. (4.37)445

As noted above, wraparound in (4.37) may occur if (n− l) < −N †/2 or (n− l) > N †/2− 1. (Also see446

Appendix A.) This leads us to the following formal definition of wraparound error at each time τm.447

Definition 4.1 (wraparound error). Assume {g̃q}, q = −N †/2, . . . , N †/2−1, is periodic with period N †
448

and uml , for l < −N/2 + 1 or l > N/2− 1, are determined by boundary data with N † = 2N . Then, the449

wraparound error for equation (4.37), at timestep m, denoted by emwrap, is450

emwrap = max
−N/2+1≤n≤N/2−1

N†/2−1∑
l=−N†/2

∣∣∣g̃n−l u
m
l

∣∣∣ (1{(n−l)<−N†/2} + 1{(n−l)>N†/2−1}

)
.451

452

We now state a theorem on the effectiveness of our padding technique. See Appendix A for a proof.453

Theorem 4.1. Let {g̃q}, q = −N †/2, . . . , N †/2−1, be periodic with period N †, and uml , for l < −N/2+1454

or l > N/2 − 1, be determined by boundary data with N † = 2N . Assume further that {uml } is bounded455

in ℓ∞-norm, so that for 0 ≤ m ≤M , there exists a constant C > 0 such that456

|uml | ≤ C, l = −N †/2, . . . , N †/2− 1. (4.38)457
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If N is selected sufficiently large so that458

∆w

−N/2∑
l=−N†/2

|g̃l| ≤ ϵe
2
∆τ and ∆w

N†/2−1∑
l=N/2

|g̃l| ≤ ϵe
2
∆τ , ϵe > 0, (4.39)459

then the wraparound error after M steps is bounded by TCϵe.460

We now have a corollary about the wraparound error of our scheme.461

Corollary 4.1. The wraparound error, defined in Definition 4.1, of scheme (4.11), (4.12), (4.16), and462

(4.25), is bounded by TCϵe, where ϵe > 0 can be made arbitrarily small by choosing N sufficiently large.463

5 Convergence to the viscosity solution464

It is established by Barles-Souganidis in [14] that, provided a comparison result for PDEs applies, a465

numerical scheme converges to the unique viscosity solution of the equation if the scheme is ℓ∞-stable,466

strictly monotone, and consistent. In our case, as noted in Remark 3.2, a provable strong comparison467

principle result exists for Ωin ∪ Ωamin . However, our scheme is only monotone within a tolerance ϵ > 0468

(see (4.33)), and hence, the framework in [14] is not directly applicable. Nonetheless, [14] does note that469

the monotonicity requirement can be relaxed. This idea was explored in [17].470

In this section, we appeal to a Barles-Souganidis-type analysis to rigorously study the convergence of471

our scheme in Ωin∪Ωamin as h→ 0 by verifying three properties: ℓ∞-stability, ϵ-monotonicity (as opposed472

to strict monotonicity), and consistency. We will show that convergence of our scheme is ensured if the473

monotonicity tolerance ϵ → 0 as h → 0. Although our proofs share some similarities with those in [19]474

for a strictly monotone scheme, we stress that these are distant similarities. Specifically, due to key475

differences in the monotonicity property and the use of Fourier methods which requires careful handling476

of boundary regions, our proof techniques are significantly more involved. We will emphasize these key477

differences where suitable.478

For subsequent use, we state two results below: for any n ∈ {−N/2 + 1, . . . , N/2− 1}, we have

∆w

N†/2−1∑
l=−N†/2

g̃n−l = e−r∆τ , ∆w

N†/2−1∑
l=−N†/2

(max (g̃n−l, 0) + |min (g̃n−l, 0)|) ≤ 1 + 2ϵ
∆τ

T
≤ e2ϵ

∆τ
T . (5.1)

Here, the first result is proved in [35], while the second follows from the first, noting e−r∆τ ≤ 1,479

g̃n−l = max(g̃n−l, 0) + min(g̃n−l, 0), together with the monotonicity condition (4.33).480

Our scheme consists of the following equations: (4.11) for Ωτ0 , (4.12) for Ωwmax , (4.16) for Ωwmin ∪ Ωwamin ,481

and finally (4.25) for Ωin ∪ Ωamin . We start by verifying ℓ∞-stability of our scheme.482

5.1 Stability483

Lemma 5.1 (ℓ∞-stability). Suppose the discretization parameter h satisfies (4.10). If linear inter-484

polation is used to compute ṽmn,j in (4.13) and (4.17), then scheme (4.11), (4.12), (4.16), and (4.25)485

satisfies sup
h>0

∥vm∥∞ < ∞ for all m = 0, . . . ,M , as the discretization parameter h → 0. Here, ∥vm∥∞ =486

maxn,j |vmn,j |, n = −N †/2, . . . , N †/2− 1, and j = 0, . . . , J .487

Proof. We note that, for any fixed h > 0, we have
∥∥v0∥∥∞ < ∞, and therefore, suph>0

∥∥v0∥∥∞ < ∞.488

Motivated by this observation, to demonstrate ℓ∞-stability of our scheme, we will show that, for a fixed489

h > 0, at any (wn, aj , τm), we have490

|vmn,j | < K(
∥∥v0∥∥∞ + aj), K > 0 bounded above independently of h. (5.2)491

Since aj ≤ z0 < ∞, where z0 is the up-front premium to the insurer, (5.2) essentially means that492

∥vm∥ ≤ ∞ for a fixed h > 0. Therefore, we obtain suph>0 ∥vm∥∞ < ∞ for all m = 0, . . . ,M , as493

wanted. We note that the constant K > 0 is typically of the form e2mϵ∆τ
T , m = 0, . . . ,M , where ϵ is the494

monotonicity tolerance used in (4.33) with 0 < ϵ≪ 1. Since m∆τ ≤ T , K is bounded above by e2.495
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For the rest of the proof, we will show the key inequality (5.2) when h > 0 is fixed. For clarity, we496

will address stability for the boundary and interior sub-domains (together with their respective initial497

conditions) separately, starting with the boundary sub-domains. It is straightforward to show that (4.11)498

and (4.12) are ℓ∞-stable, since499

max
n,j

|vmn,j | ≤
∥∥v0∥∥∞ , n = N/2, . . . N †/2, j = 0, . . . , J, m = 0, . . . ,M. (5.3)500

Similarly, we can also show ℓ∞-stability of (4.11) and (4.16) by proving maxn,j |vmn,j | ≤
∥∥v0∥∥∞ + aj via501

0 ≤ vmn,j ≤
∥∥v0∥∥∞ + aj , n = −N †/2, . . .−N/2, j = 0, . . . , J, m = 0, . . . ,M. (5.4)502

This can be done by induction on m in a straightforward manner, noting that (4.11) and (4.16) are503

strictly monotone. We omit this for brevity.504

We now prove stability for (4.11) and (4.25). For n = −N/2 + 1, . . . , N/2− 1 and j = 0, . . . , J , and

m = 0, . . . ,M , we define the measures∥∥∥vm+
j

∥∥∥
∞

= max
n

∣∣∣vm+
n,j

∣∣∣ and
∥∥vmj ∥∥∞ = max

n

∣∣∣vmn,j∣∣∣, where[
vm+
j

]
max

= max
n

{
vm+
n,j

}
,
[
vmj
]
max

= max
n

{
vmn,j
}
,
[
vm+
j

]
min

= min
n

{
vm+
n,j

}
,
[
vmj
]
min

= min
n

{
vmn,j
}
.

Similarly, we also have
∥∥∥(vloc)mj ∥∥∥∞ and

∥∥∥(vnlc)mj ∥∥∥∞, and other respective measures.505

Recall the monotonicity tolerance ϵ, where 0 < ϵ ≪ 1, used in (4.33). To prove stability for (4.11)506

and (4.25), we show that, for m ∈ {0, . . .M}, we have507 ∥∥vmj ∥∥∞ ≤ e2mϵ∆τ
T
(∥∥v0∥∥∞ + aj

)
, j = 0, . . . , J, (5.5)508

which is bounded above by e2(
∥∥v0∥∥∞ + z0) independently of h, since m∆τ ≤ T . We typically use509

ϵ ≤ 1/2 in the proof below. To show (5.5), using induction on m, m = 0, . . . ,M , we will show that, for510

all j ∈ {0, . . . , J},511 [
vmj
]
max

≤ e2mϵ∆τ
T
(∥∥v0∥∥∞ + aj

)
, (5.6)512

−2mϵ
∆τ

T
e2mϵ∆τ

T
(∥∥v0∥∥∞ + aj

)
≤

[
vmj
]
min

. (5.7)513

We note that numerical solutions at nodes in Ωwmin ∪ Ωwamin satisfy the bounds (5.6)-(5.7) at the same514

j ∈ {j = 0, . . . , J} and m ∈ {0, . . . ,M},515

max
−N†/2≤n≤−N/2

{
vmn,j
}

satisfies (5.6), and min
−N†/2≤n≤−N/2

{
vmn,j
}

satisfies (5.7). (5.8)516

Base case: when m = 0, (5.6)-(5.7) hold for all j ∈ {0, . . . , J}, which follows from the initial condition517

(4.11) for n = −N/2 + 1, . . . , N/2− 1.518

Hypothesis: we assume that (5.6)-(5.7) hold form = m̂, where m̂ ≤M−1, and n = −N/2+1, . . . , N/2−1,519

j = 0, . . . , J .520

Induction: we show that (5.6)-(5.7) also hold for m = m̂+1 and j = 0, . . . , J . This is done in two steps.521

In Step 1, we show, for j = 0, . . . , J ,522 [
vm̂+
j

]
max

≤ e2m̂ϵ∆τ
T
(∥∥v0∥∥∞ + aj

)
(5.9)523

−2m̂ϵ
∆τ

T
e2m̂ϵ∆τ

T
(∥∥v0∥∥∞ + aj

)
≤

[
vm̂+
j

]
min

. (5.10)524

In Step 2, we bound the timestepping result (4.25) at m = m̂+ 1 using (5.9)-(5.10).525

Step 1 - Bound for vm̂+
n,j : Since v

m̂+
n,j = max

(
(vloc)

m̂+
n,j , (vnlc)

m̂+
n,j

)
, using (4.18), we have526

vm̂+
n,j = sup

γm̂
n,j∈[0,aj ]

[
I
{
vm̂
}(

max
(
ewn − γm̂n,j , e

w†
min

)
, aj − γm̂n,j

)
+ f(γm̂n,j)

]
. (5.11)527

As noted in Remark 4.2, for the case c > 0 as considered here, the supremum of (5.11) is achieved by528

an optimal control γ∗ ∈ [0, aj ]. That is, (5.11) becomes529

vm̂+
n,j = I

{
vm̂
}(

max
(
ewn − γ∗, ew

†
min

)
, aj − γ∗

)
+ f(γ∗), γ∗ ∈ [0, aj ]. (5.12)530
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We assume that max
(
ewn − γ∗, ew

†
min

)
∈ [ewn′ , ewn′+1 ] and (aj−γ∗) ∈ [aj′ , aj′+1], and nodes that are used531

for linear interpolation are (xm̂
n′,j′ , . . . ,x

m̂
n′+1,j′+1). We note that these node could be outside Ωin ∪Ωamin ,532

in Ωwmin ∪ Ωwamin . However, by (5.8), the numerical solutions at these nodes satisfy the same bounds533

(5.6)-(5.7). Computing vm̂+
n,j using linear interpolation results in534

vm̂+
n,j = xa

(
xw vm̂n′,j′ + (1− xw) v

m̂
n′+1,j′

)
+ (1− xa)

(
xw vm̂n′,j′+1 + (1− xw) v

m̂
n′+1,j′+1

)
, (5.13)535

where 0 ≤ xa ≤ 1 and 0 ≤ xw ≤ 1 are interpolation weights. In particular,536

xa =
aj′+1 − (aj − γ∗)

aj′+1 − aj′
. (5.14)537

Using (5.8) and the induction hypothesis for (5.6) gives abound for nodal values used in (5.13){
vm̂n′,j′ , v

m̂
n′+1,j′

}
≤ e2m̂ϵ∆τ

T (∥v0∥∞ + aj′),
{
vm̂n′,j′+1, v

m̂
n′+1,j′+1

}
≤ e2m̂ϵ∆τ

T (∥v0∥∞ + aj′+1). (5.15)

Taking into account the non-negative weights in linear interpolation, particularly (5.14), and upper538

bounds in (5.15), the interpolated result I
{
vm̂
}
(·) in (5.12) is bounded by539

I
{
vm̂
}(

max
(
ewn − γ∗, ew

†
min

)
, aj − γ∗

)
≤ e2m̂ϵ∆τ

T (∥v0∥∞ + (aj − γ∗)). (5.16)540

Using (5.16) and f(γ∗) ≤ γ∗ (by definition in (4.15)), (5.12) becomes541

vm̂+
n,j ≤ e2m̂ϵ∆τ

T
(
∥v0∥∞ + aj − γ∗

)
+ γ∗ ≤ e2m̂ϵ∆τ

T
(
∥v0∥∞ + aj

)
,542

which proves (5.9) at m = m̂.543

For subsequent use, we note, since vm̂+
n,j = max

(
(vloc)

m̂+
n,j , (vnlc)

m̂+
n,j

)
, (5.9) results in544 {

(vloc)
m̂+
n,j , (vnlc)

m̂+
n,j

}
≤ vm̂+

n,j ≤ e2m̂ϵ∆τ
T
(
∥v0∥∞ + aj

)
. (5.17)545

Next, we derive a lower bound for (vloc)
m̂+
n,j and (vnlc)

m̂+
n,j . By the induction hypothesis for (5.7), we have546

vm̂n,j ≥ −2mϵ∆τ
T e2m̂ϵ∆τ

T

(∥∥v0∥∥∞ + aj
)
. Comparing (vloc)

m̂+
n,j given by the supremum in (4.18) with vm̂n,j ,547

which is the candidate for the supremum evaluated at γm̂n,j = 0, yields548

(vloc)
m̂+
n,j ≥ vm̂n,j ≥ − 2m̂ϵ

∆τ

T
e2m̂ϵ∆τ

T
(∥∥v0∥∥∞ + aj

)
, (5.18)549

which proves (5.10) at m = m̂.550

For (vnlc)
m̂+
n,j in (4.18), consider optimal γ = γ∗, where γ∗ ∈ (Cr∆τ, aj ]. Using the induction hypoth-551

esis and non-negative weights of linear interpolation, noting γ∗ ≥ 0 and assuming f(γ∗) ≥ 0, gives552

(vnlc)
m̂+
n,j ≥ −2m̂ϵ

∆τ

T
e2m̂ϵ∆τ

T
(∥∥v0∥∥∞ + (aj − γ∗)

)
+ f(γ∗) ≥ −2m̂ϵ

∆τ

T
e2m̂ϵ∆τ

T
(∥∥v0∥∥∞ + aj

)
. (5.19)553

From (5.17)-(5.18) and (5.19), noting ϵ ≤ 1/2, we have554 {
| (vloc)m̂+

n,j |, | (vnlc)m̂+
n,j |

}
≤ e2m̂ϵ∆τ

T
(
∥v0∥∞ + aj

)
. (5.20)555

Step 2 - Bound for vm̂+1
n,j : We will show that (5.6)-(5.7) hold at m = m̂ + 1. For all n = −N/2 +

1, . . . , N/2− 1, and j = 0, . . . , J , we have
∣∣∣(vloc)m̂+1

n,j

∣∣∣ = ∣∣∣∑N†/2−1

l=−N†/2
g̃n−l (vloc)

m̂+
l,j

∣∣∣ . . .
. . . ≤ ∆w

N†/2−1∑
l=−N†/2

|g̃n−l| | (vloc)m̂+
l,j |

(i)

≤ e2m̂ϵ∆τ
T (∥v0∥∞ + aj)∆w

N†/2−1∑
l=−N†/2

(max(g̃n−l, 0) + |min(g̃n−l, 0)|)

(ii)

≤ e2m̂ϵ∆τ
T (∥v0∥∞ + aj)(1 + 2ϵ∆τ/T )

≤ e2(m̂+1)ϵ∆τ
T (∥v0∥∞ + aj). (5.21)
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Here, (i) comes from (5.20), and (ii) comes from (5.1). Similarly, for n = −N/2 + 1, . . . , N/2 − 1, and556

j = 0, . . . , J , we also have557

| (vnlc)m̂+1
n,j | ≤ e2(m̂+1)ϵ∆τ

T (∥v0∥∞ + aj). (5.22)558

Therefore, from (5.21)-(5.22), we conclude, for n = −N/2 + 1, . . . , N/2 − 1, and j = 0, . . . , J ,

|vm̂+1
n,j | ≤ e2(m̂+1)ϵ∆τ

T (∥v0∥∞ + aj),

which is bounded above by e2(
∥∥v0∥∥∞ + z0) independently of h, since m∆τ ≤ T . This proves (5.6) at559

time m = m̂+ 1.560

To prove (5.7) at m = m̂+ 1, note that (vloc)
m̂+1
n,j = ∆w

∑N†/2−1

l=−N†/2
g̃n−l (vloc)

m̂+
l,j . . .

. . . ≥ −2m̂ϵ
∆τ

T
e2m̂ϵ∆τ

T (∥v0∥∞ + aj)∆w

N†/2−1∑
l=−N†/2

max(g̃n−l, 0)− e2m̂ϵ∆τ
T (∥v0∥∞ + aj)∆w

N†/2−1∑
l=−N†/2

|min (g̃n−l, 0)|

≥ −2m̂ϵ
∆τ

T
e2m̂ϵ∆τ

T (∥v0∥∞ + aj)∆w

N†/2−1∑
l=−N†/2

(max(g̃n−l, 0) + |min (g̃n−l, 0)|)

≥ −2m̂ϵ
∆τ

T
e2m̂ϵ∆τ

T (∥v0∥∞ + aj)(1 + 2ϵ
∆τ

T
) ≥ −2(m̂+ 1)ϵ

∆τ

T
e2(m̂+1)ϵ∆τ

T
(
∥v0∥∞ + aj

)
.

This proves (5.7) at m = m̂+ 1 and concludes the proof.561

Remark 5.1. In the above proof, to derive (5.19), for simplicity, we assume that, for an optimal562

γ∗ ∈ (Cr∆τ, aj ], f(γ
∗) ≥ 0. If this is not the case, we still have ℓ∞-stability with (5.6) becoming563 [

vmj

]
max

≤ e2mϵ∆τ
T

(∥∥v0∥∥∞ + aj + c
)
, and (5.7) becoming

[
vmj

]
min

≥ −2mϵ∆τ
T e2mϵ∆τ

T (
∥∥v0∥∥∞ + aj + c),564

and hence (5.5) becomes
∥∥∥vmj ∥∥∥∞ ≤ e2mϵ∆τ

T

(∥∥v0∥∥∞ + aj + c
)
, noting the constant fixed cost c > 0. The565

assumption 0 < ϵ ≤ 1/2 is entirely for ease of exposition, and is trivially satisfied in any setting.566

Finally, if ϵ = 0, i.e. strictly monotone, the lower bounds (5.7) and (5.10) become zero, while the567

upper bounds (5.6) and (5.9) become
∥∥v0∥∥∞ + aj, which are the same as bounds established in [19] for568

a monotone finite difference method for fixed computational domain.569

5.2 Consistency570

While equations (4.11), (4.12), (4.16), and (4.25) are convenient for computation, they are not in a form571

amendable for analysis. For purposes of verifying consistency, it is more convenient to rewrite them in572

a single equation. Unless noted otherwise, in the following, j = 0, . . . , J , and m = 0, . . . ,M − 1.573

For (wn, aj , τm+1) ∈ Ωwmin ∪ Ωwamin , i.e. n = −N †/2, . . . ,−N/2, we define the operators574

Am+1
n,j

(
h, vm+1

n,j ,
{
vml,k
}
k≤j

)
=

1

∆τ

[
vm+1
n,j − sup

γm
n,j∈[0,min(aj ,Cr∆τ)]

(
ṽmn,j + f

(
γmn,j

))
+∆τ

(
rvm+1

n,j

)]
,575

Bm+1
n,j

(
h, vm+1

n,j ,
{
vml,k
}
k≤j

)
= vm+1

n,j − sup
γm
n,j∈(Cr∆τ,aj ]

(
ṽmn,j + f

(
γmn,j

))
+∆τ

(
rvm+1

n,j

)
, (5.23)576

where ṽmn,j , n = −N †/2, . . . ,−N/2, is given in (4.13), and f (·) is defined in (4.15).577
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For (wn, aj , τm+1) ∈ Ωin ∪ Ωamin , i.e. n = −N/2 + 1, . . . N/2− 1, we define the operators578

Cm+1
n,j

(
h, vm+1

n,j ,
{
vml,k
}
k≤j

)
=

1

∆τ

[
vm+1
n,j −∆w

N/2−1∑
l=−N/2+1

g̃n−l sup
γm
l,j∈[0,min(aj ,Cr∆τ)]

(
ṽml,j + f

(
γml,j
))

579

− ∆w

−N/2∑
l=−N†/2

g̃n−l v
m
l,j −∆w

N†/2−1∑
l=N/2

g̃n−l v
m
l,j

]
,580

Dm+1
n,j

(
h, vm+1

n,j ,
{
vml,k
}
k≤j

)
= vm+1

n,j −∆w

N/2−1∑
l=−N/2+1

g̃n−l sup
γm
l,j∈(Cr∆τ,aj ]

(
ṽml,j + f

(
γml,j
))

581

−∆w

−N/2∑
l=−N†/2

g̃n−l v
m
l,j −∆w

N†/2−1∑
l=N/2

g̃n−l v
m
l,j , (5.24)582

where ṽml,j , l = −N/2 + 1, . . . , N/2− 1, is given (4.17), and f (·) is defined in (4.15).583

Using Am+1
n,j (·), Bm+1

n,j (·), Cm+1
n,j (·) and Dm+1

n,j (·) defined above, our numerical scheme at the reference584

node (wn, aj , τm+1) ∈ Ω can be rewritten in an equivalent form585

0 = Hm+1
n,j

(
h, vm+1

n,j ,
{
vml,k
}
k≤j

)
(5.25)586

≡



Am+1
n,j (·) w†

min ≤ wn ≤ wmin, 0 ≤ aj ≤ Cr∆τ, 0 < τm+1 ≤ T,

min
{
Am+1

n,j (·) ,Bm+1
n,j (·)

}
w†
min ≤ wn ≤ wmin, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T,

Cm+1
n,j (·) wmin < wn < wmax, 0 ≤ aj ≤ Cr∆τ, 0 < τm+1 ≤ T,

min
{
Cm+1
n,j (·) ,Dm+1

n,j (·)
}

wmin < wn < wmax, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T,

vm+1
n,j − e−βτm+1ewn wmax ≤ wn ≤ w†

max, 0 ≤ aj ≤ aJ , 0 < τm+1 ≤ T

vm+1
n,j −max(ewn , (1− µ)aj − c) w†

min ≤ wn ≤ w†
max, 0 ≤ aj ≤ aJ , τm+1 = 0.

587

To verify the consistency in the viscosity sense of (5.25), we first need some supporting results related588

to local consistency of our scheme. To this end, we define operators Fin′ and Fw′
min

for the case 0 ≤ aj ≤589

Cr∆τ , i.e. 0 ≤ a/∆τ ≤ Cr,590

Fin′ (x, v) = vτ − Lv − J v − sup
γ̂∈[0,a/∆τ ]

γ̂
(
1− e−wvw − va

)
1{a>0}, 0 ≤ a/∆τ ≤ Cr,591

Fw′
min

(x, v) = vτ + rv − sup
γ̂∈[0,a/∆τ ]

γ̂ (1− va)1{a>0}, 0 ≤ a/∆τ ≤ Cr. (5.26)592

Below, we state the key supporting lemma related to local consistency of scheme (5.25).593

Lemma 5.2 (Local consistency). Suppose that (i) the discretization parameter h satisfies (4.10), (ii) lin-594

ear interpolation in (4.13) and (4.17) is used, and (iii) wmin satisfies595

ewmin − ew
†
min ≥ Cr∆τ. (5.27)596

Then, for any test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞), with ϕmn,j = ϕ
(
xm
n,j

)
and x = (wn, aj , τm+1) ∈ Ω, and

for a sufficiently small h, we have

Hm+1
n,j

(
h, ϕm+1

n,j + ξ,
{
ϕml,k + ξ

}
k≤j

)
(5.28)

=



Fin (·, ·) + c (x) ξ +O(h) + E(xm
n,j , h) wmin < wn < wmax, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T ;

Fin′ (·, ·) + c (x) ξ +O(h) + E(xm
n,j , h) wmin < wn < wmax, 0 < aj ≤ Cr∆τ, 0 < τm+1 ≤ T ;

Famin (·, ·) + c (x) ξ +O(h) wmin < wn < wmax, aj = 0, 0 < τm+1 ≤ T ;

Fwmin (·, ·) + c (x) ξ +O(h) w†
min ≤ wn ≤ wmin, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T ;

Fw′
min

(·, ·) + c (x) ξ +O(h) w†
min ≤ wn ≤ wmin, 0 < aj ≤ Cr∆τ, 0 < τm+1 ≤ T ;

Fwamin (·, ·)+ c (x) ξ +O(h) w†
min ≤ wn ≤ wmin, aj = 0, 0 < τm+1 ≤ T ;

Fwmax (·, ·) + c (x) ξ wmax ≤ wn ≤ w†
max, 0 ≤ aj ≤ aJ , 0 < τm+1 ≤ T ;

Fτ0 (·, ·) + c (x) ξ w†
min ≤ wn ≤ w†

max, 0 ≤ aj ≤ aJ , τm+1 = 0.
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Here, ξ is a constant and c(·) is a bounded function satisfying |c(x)| ≤ max(r, 1) for all x ∈ Ω, and597

E(xm
n,j , h) → 0 as h → 0. The operators Fin (·, ·), Famin (·, ·), Fwmin (·, ·), Fwamin (·, ·), Fwmax (·, ·) and598

Fτ0 (·, ·), defined in (3.10)-(3.15), as well as Fin′ and Fw′
min

defined in (5.26), are function of (x, ϕ (x)).599

To prove Lemma 5.2, starting from a discrete convolution of the Green’s function g(·,∆τ) and a function600

q ∈ G(Ω∞), we typically need to recover an associated continuous convolution (in w) and then utilize the601

Fourier Transform and inverse Fourier Transform. There are two cases: (i) q is not necessarily smooth,602

but locally bounded (as it is in G(Ω∞)), which corresponds to non-local impulses, and (ii) q is a test603

function in G(Ω∞)∩C∞(Ω∞), which corresponds to local impulses. We first present some auxiliary results,604

namely Lemma 5.3 (for case (i)) and in Lemma 5.4 (for case (ii)).605

Lemma 5.3 (Function in G(Ω∞)). Suppose the discretization parameter h satisfies (4.10). Let p(w, a, τ)606

be in G(Ω∞). For any xm
n,j, n ∈ {−N/2 + 1, . . . N/2− 1}, j ∈ {0, . . . , J} and m ∈ {1, . . . ,M}, we have607

∆w

N†/2−1∑
l=−N†/2

g̃n−l p
m
l,j = pmn,j +O(h2) + E(xm

n,j , h), where E(xm
n,j , h) → 0 as h→ 0.608

Proof of Lemma 5.3. We fix a = aj and τ = τm, and instead of writing p(w, aj , τm), we will write p(w)609

which is a bounded function of w ∈ R. We will also write pl instead of pml,j .610

Since p(w) does not need to be in L1(R), we first construct a function p̂(w) : R → R which is in611

L1(R) and bounded in R and agrees with p(w) in [w†
min, w

†
max]. This can be achieved by using a standard612

smooth cut-off function [48]. To this end, with ŵ0 =
(
w†
min + w†

max

)
/2, we define Dd(ŵ0) := {w ∈613

R : |w − ŵ0| ≤ d}, the closed ball centered at ŵ0 with radius d sufficiently large so that [w†
min, w

†
max]614

is contained in Dd(ŵ0). Consider a smooth cut-off function ζ(w), w ∈ R, satisfying 0 ≤ ζ(w) ≤ 1,615

ζ(w) = 1 on Dd(ŵ0) and ζ(w) = 0 outside of D2d(ŵ0). Then the function p̂(w) = ζ(w)ϕ(w) satisfies our616

requirements.617

Consider function q : R → R defined as follows: (i) q(w) =
∑N†/2−1

l=−N†/2
plφl(w), w ∈ [w†

min, w
†
max], and

(ii) q(w) = p̂(w), w ∈ R\ [w†
min, w

†
max], where {φl(w)} are piecewise linear basis functions given in (4.21).

It is straightforward to see that q(w) is in L1(R) and bounded in R. We have

∆w

N†/2−1∑
l=−N†/2

g̃n−l pl
(i)
= ∆w

N†/2−1∑
l=−N†/2

g̃n−l(∞) pl + Ef
(ii)
=

∫ w†
max

w†
min

q(w) ĝ(wn − w,∆τ) dw + Ef + Eo

(iii)
=

∫ w†
max

w†
min

q(w) g(wn − w,∆τ) dw + Ef + Eo + Eĝ

(iv)
=

∫ ∞

−∞
q(w) g(wn − w,∆τ) dw + Ef + Eo + Eĝ + Eb

(v)
= pn + Ef + Eo + Eĝ + Eb + Ec, (5.29)

where the errors Ef , Eo, Eĝ, Eb, and Ec are described below.618

� In (i), Ef ≡ Ef(xm
n,j , h) is the Fourier series error arising from truncating g̃n−l(∞), defined in (4.30),619

to g̃n−l(α), α ∈ {2, 4, 8, . . .}, in (4.31). As noted in (4.32), Ef(xm
n,j , h) = O(e−

1
h ).620

� In (ii), Eo ≡ Eo(xm
n,j , h) is the error associated with projecting q(w) onto φl(·), and is given by621

Eo ≡ Eo(xm
n,j , h) =

∫ w†
max

w†
min

[ N†/2−1∑
l=−N†/2

plφl(w)− q(w)

]
ĝ (wn − w,∆τ) dw, (5.30)622

which, by the definition of function q(w), is zero.623
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� In (iii), the error Eĝ ≡ Eĝ(xm
n,j , h) is due to approximating g(w,∆) by its localized, periodic approx-624

imation ĝ(w,∆), and is defined by625

Eĝ ≡ Eĝ(xm
n,j , h) =

∫ w†
max

w†
min

q(w) (ĝ(wn − w,∆τ)− g(wn − w,∆τ)) dw. (5.31)626

Using (4.29) with q(w) ∈ L1(R) and its boundedness in R, we obtain Eĝ(xm
n,j , h) = O

(
h2
)
as h→ 0.627

� In (iv), Eb ≡ Eb(xm
n,j , h) is the boundary truncation error defined in (4.5), satisfying |Eb| < K1∆τe

−K2P †
,628

where K1 and K2 are positive constants independent of h, hence Eb(xm
n,j , h) = O(he−

1
h ) as h→ 0.629

� In (v), Ec ≡ Ec(xm
n,j , h) =

∫∞
−∞ g(wn − w,∆τ) (q(w)− q(wn)) dw. By the “cancelation properties”630

of the Green’s function [30, 36]), noting the continuity of q(·), we have Ec(xm
n,j , h) → 0 as h→ 0.631

Letting E(xm
n,j , h) = Ec(xm

n,j , h) concludes the proof.632

For a test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞), we have the lemma below.633

Lemma 5.4 (Test function in G(Ω∞)∩ C∞(Ω∞)). Let ϕ ∈ G(Ω∞)∩ C∞(Ω∞). For any xm
n,j, n ∈ {−N/2 +634

1, . . . N/2− 1}, j ∈ {0, . . . , J} and m ∈ {1, . . . ,M},635

∆w

N†/2−1∑
l=−N†/2

g̃n−l ϕ
m
l,j = ϕmn,j +∆τ [Lϕ+ J ϕ]mn,j +O

(
h2
)
, (5.32)636

where the operators L and J are defined in (3.4).637

Proof of Lemma 5.4. Since we apply the Fourier transform and inverse Fourier transform with respect638

to w, we fix a = aj and τ = τm. Instead of ϕ(w, aj , τm), we will write ϕ(w), which is a smooth univariate639

function of w ∈ R. Since ϕ(w) does not need to be in L1(R), we apply a similar smooth cut-off function640

as in Lemma 5.3 to obtain a smooth function χ(w) that is in L1(R), bounded in R, and agrees with ϕ(w)641

in [w†
min, w

†
max]. With this in mind, starting from the left-hand-side of (5.32), we apply steps (i)-(iv) in642

(5.29), noting that the projection error Eo(xm
n,j , h) associated with the smooth function χ(w) becomes643

(also noting χ(wl) = ϕml,j)644

Eo(xm
n,j , h) =

∫ w†
max

w†
min

[ N†/2−1∑
l=−N†/2

χ(wl)φl(w)− χ(w)

]
ĝ (wn − w,∆τ) dw = O(h2).645

Here, we used Taylor series expansions and the form of φl(w) given in (4.21). This gives646

∆w

N†/2−1∑
l=−N†/2

g̃n−l χ
m
l,j =

∫ ∞

−∞
χ(w) g (wn − w,∆τ) dw +O(h2)647

= [χ ∗ g](wn) +O(h2) = F−1 [F [χ](η) G (η,∆τ)] (wn) +O(h2), (5.33)648

where [χ ∗ g] denotes the convolution of χ(w) and g(w,∆τ). In (5.33), with Ψ(η) given in (4.27),649

expanding G(η,∆τ) = eΨ(η)∆τ by a Taylor series gives650

[χ ∗ g] (wn) = F−1
[
F [χ](η)

(
1 + Ψ(η)∆τ +R(η)∆τ2)

)]
(wn)651

= χ(wn) + ∆τF−1 [F [χ](η) Ψ (η)] (wn) + ∆τ2F−1 [F [χ](η) R (η)] (wn), (5.34)652

where R(η) = 1
2Ψ(η)2eΨ(η)ξ, ξ ∈ (0,∆τ), is the remainder.653

For the second term ∆τF−1 [·] (wn) in (5.34), first, using the closed-form expression for Ψ(η) in (4.27)654

gives655

F [χ](η) Ψ(η) = F
[
−σ

2

2
χww+

(
r − λκ− σ2

2
− β

)
χw−(r + λ)χ+ λ

∫ ∞

−∞
χ(w + y) b(y) dy

]
(η)656

= F [Lχ+ Jχ](η). (5.35)657
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Then, substituting (5.35) into the second term ∆τF−1 [·] (wn) in (5.34) gives658

∆τF−1 [F [χ] (η) Ψ (η)] (wn) = ∆τ [Lχ+ Jχ]mn,j . (5.36)659

For the third term ∆τ2F−1 [·](wn) in (5.34), we have660

∆τ2
∣∣F−1 [F [χ](η) R(η)](wn)

∣∣ = ∆τ2
∣∣∣∣ ∫ ∞

−∞
e2πiηwnR(η)

[ ∫ ∞

−∞
e−2πiηwχ(w) dw

]
dη

∣∣∣∣661

≤ ∆τ2
∫ ∞

−∞
|χ(w)| dw

∫ ∞

−∞
|R(η)| dη662

(i)
= ∆τ2

∫ ∞

−∞
|χ(w)| dw

∫ ∞

−∞

1

2
|Ψ(η)|2 eRe(Ψ(η))ξ dη663

(ii)

≤ ∆τ2
∫ ∞

−∞
|χ(w)| dw

∫ ∞

−∞

1

2
|Ψ(η)|2 e−

1
2
ξσ2(2πη)2 dη664

(iii)
= O(∆τ2). (5.37)665

Here, in (i), we use R(η) = 1
2Ψ(η)2eΨ(η)ξ and Re(Ψ(η)) is the real part of Ψ(η). In (ii), using the666

closed-form expression of Ψ(η) in (4.27) and noting that Re(B(η)) ≤ 1 and r > 0, we have667

Re(Ψ(w)) = −1

2
σ2(2πη)2 − (r + λ) + λRe(B(η)) ≤ −1

2
σ2(2πη)2.668

In (iii), we note χ(w) ∈ L1(R), and the second integral is bounded by a constant, since |Ψ(η)|2 is a669

quartic polynomial in η, and
∫∞
−∞ |η|k e− 1

2
ξσ2(2πη)2dη, k ∈ {0, 1, 2, 3, 4}, are bounded. Substituting (5.36)670

and (5.37) back into (5.34), noting (5.33) and the definition of χ(w), gives671

∆w

N†/2−1∑
l=−N†/2

g̃n−l ϕ
m
l,j = ϕmn,j +∆τ [Lϕ+ J ϕ]mn,j +O(h2). (5.38)672

673

We are now ready to present a proof of Lemma 5.2.674

Proof of Lemma 5.2. Since ϕ ∈ C∞(Ω∞) and Ω is bounded, ϕ has continuous and bounded derivatives of675

up to second-order in Ω. We now show that the first equation of (5.28) is true, that is,676

Hm+1
n,j (·) = min

{
Cm+1
n,j (·) ,Dm+1

n,j (·)
}
= Fin (x, ϕ (x)) + c (x) ξ +O(h) + E(xm

n,j , h)677

if wmin < wn < wmax, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T,678

where operators Cm+1
n,j (·) and Dm+1

n,j (·) are defined in (5.24). In this case, operator Cm+1
n,j (·) is written as

Cm+1
n,j (·) = 1

∆τ

[
ϕm+1
n,j + ξ −∆w

N/2−1∑
l=−N/2+1

g̃n−l sup
γm
l,j∈[0,Cr∆τ ]

(
ϕ̃ml,j + f

(
γml,j
))

−∆w

−N/2∑
l=−N†/2

g̃n−l

(
ϕml,j + ξ

)
−∆w

N†/2−1∑
l=N/2

g̃n−l

(
ϕml,j + ξ

) ]
, (5.39)

where ϕ̃ml,j + f
(
γml,j
)
= I {ϕ (xm) + ξ}

(
ln
(
max

(
ewl − γml,j , e

w†
min

))
, aj − γml,j

)
+ γml,j . (5.40)

Condition (5.27) implies that, for any wl ∈ (wmin, wmax), e
wl − γml,j > ew

†
min for all γml,j ∈ [0, Cr∆τ ],

and hence, we can eliminate the max(·) operator in the linear interpolation operator in (5.40) when

γml,j ∈ [0, Cr∆τ ]. Consequently, with γ
m
l,j ∈ [0, Cr∆τ ], (5.40) becomes

ϕ̃ml,j + f
(
γml,j
) (i)
= ϕ

(
ln
(
ewl − γml,j

)
, aj − γml,j , τm

)
+ ξ +O

(
(∆w +∆amax)

2
)
+ γml,j

(ii)
= ϕml,j + ξ + γml,j

(
1− e−wl(ϕw)

m
l,j − (ϕa)

m
l,j

)
+O

(
h2
)
. (5.41)

22



Here, in (i), due to linear interpolation, we obtain an error of size O
(
(∆w +∆amax)

2
)
, and also we679

can completely separate ξ from interpolated values; and in (ii), we apply a Taylor series to expand680

ϕ
(
ln
(
ewl − γml,j

)
, aj − γml,j , τm

)
about (wl, aj , τm), noting γml,j = O(∆τ).681

In (5.41), since the control γml,j can be factored out completely from the objective function, namely682

γml,j

(
1− e−wl(ϕw)

m
l,j − (ϕa)

m
l,j

)
, we define a new control variable γ̂ml,j = γml,j/∆τ ∈ [0, Cr]. With this in683

mind, let ϕ′ (γ̂,x′) be a function of γ̂ ∈ [0, Cr] and x′ = (w′, a′, τ ′) ∈ Ω∞ defined by684

ϕ′
(
γ̂,x′) = { γ̂ (1− e−wϕw (x′)− ϕa (x

′)) , wmin < w′ < wmax, Cr∆τ < a′ ≤ aJ , 0 ≤ τ ′ < T,

0 otherwise.
(5.42)685

Using (5.42), operator Cm
n,j(·) in (5.39) can be written as686

Cm+1
n,j (·) =

1

∆τ

ϕm+1
n,j −∆w

N†/2−1∑
l=−N†/2

g̃n−l ϕ
m
l,j + ξ

1−∆w

N†/2−1∑
l=−N†/2

g̃n−l

+O
(
h2
)687

−∆w

N†/2−1∑
l=−N†/2

g̃n−l sup
γ̂∈[0,Cr]

ϕ′
(
γ̂,xm

l,j

)
. (5.43)688

For the term ∆w
∑

l g̃n−l ϕ
m
l,j in (5.43), using Lemma 5.4 on the smooth function ϕ(·) at xm

n,j gives689

∆w

N†/2−1∑
l=−N†/2

g̃n−l ϕ
m
l,j = ϕmn,j +∆τ [Lϕ+ J ϕ]mn,j +O

(
h2
)
. (5.44)690

Regarding ∆w
∑N/2−1

l=−N/2+1 g̃n−l supγ̂∈[0,Cr] ϕ
′ (·) in (5.43), note that supγ̂∈[0,Cr] ϕ

′ (γ̂,x′) is a function of x′,691

and is in G(Ω∞). Applying Lemma 5.3 on
{
xm
l,j , supγ̂∈[0,Cr] ϕ

′
(
γ̂,xm

l,j

)}
, l = −N †/2, . . . , N †/2− 1, gives692

∆w

N†/2−1∑
l=−N†/2

g̃n−l sup
γ̂∈[0,Cr]

ϕ′
(
γ̂,xm

l,j

)
=

[
sup

γ̂∈[0,Cr]
γ̂
(
1− e−wϕw − ϕa

)]m
n,j

+O(h2) + E(xm
n,j , h), (5.45)693

where E(xm
n,j , h) → 0 as h → 0. Also, in (5.43), the term ∆w

∑N†/2−1

l=−N†/2
g̃n−l = e−r∆τ by (5.1). Substi-

tuting this result and (5.44)-(5.45) into (5.43) gives

Cm+1
n,j (·) (i)

=
ϕm+1
n,j − ϕmn,j

∆τ
− [Lϕ+ J ϕ]mn,j +

[
sup

γ̂∈[0,Cr]
γ̂
(
1− e−wϕw − ϕa

)]m
n,j

+ rξ +O(h) + E(xm
n,j , h)

(ii)
=

[
ϕτ − Lϕ− J ϕ− sup

γ̂∈[0,Cr]
γ̂
(
1− e−wϕw − ϕa

)]m+1

n,j

+ rξ +O(h) + E(xm
n,j , h).

Here, in (i) we have ξ
∆τ

(
1−∆w

∑N†/2−1

l=−N†/2
g̃n−l

)
= rξ +O(h). In (ii), we use694

(ϕτ )
m
n,j = (ϕτ )

m+1
n,j +O (h) , (ϕw)

m
n,j = (ϕw)

m+1
n,j +O (h) , (ϕa)

m
n,j = (ϕa)

m+1
n,j +O (h) .695

This step results in an O (h) term inside supγ̂ (·), which can be moved out of the supγ̂ (·), because it696

has the form K(γ̂)h, where K(γ̂) is bounded independently of h, due to boundedness of γ̂ ∈ [0, Cr]697

independently of h.698

For operator Dm+1
n,j (·), we have

Dm+1
n,j (·) =

(
ϕm+1
n,j + ξ

)
−∆w

N/2−1∑
l=−N/2+1

g̃n−l sup
γm
l,j∈(Cr∆τ,aj ]

(
ϕ̃ml,j + f

(
γml,j
))

−∆w

−N/2∑
l=−N†/2

g̃n−l

(
ϕml,j + ξ

)
−∆w

N†/2−1∑
l=N/2

g̃n−l

(
ϕml,j + ξ

)
, (5.46)

where ϕ̃ml,j + f
(
γml,j
)
= I {ϕ (xm) + ξ}

(
ln
(
max

(
ewl − γml,j , e

w†
min

))
, aj − γml,j

)
(5.47)

+ γml,j(1− µ) + µCr∆τ − c.
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Since γml,j ∈ (Cr∆τ, aj ], we cannot eliminate the max(·) operator in linear interpolation in (5.47), hence699

I {ϕ (xm) + ξ} (·) = ϕ
(
ln
(
max

(
ewl − γml,j

)
, ew

†
min

)
, aj − γml,j , τm

)
+ ξ +O(h2).700

Let ϕ′′ (γ,x′) be a function of γ ∈ [0, a] and x′ = (w′, a′, τ ′) ∈ Ω∞ defined by

ϕ′′ (γ,x′) =

{
M(γ)ϕ(x′) + µCr∆τ wmin < w′ < wmax, Cr∆τ < a′ ≤ aJ , 0 ≤ τ ′ < T,

ϕ(x′) otherwise,

(5.48a)

(5.48b)

where M(·) is defined in (3.8b). It is straightforward to show that, for a fixed x′ ∈ Ω satisfies (5.48a),701

ϕ′′ (γ;x′) is (uniformly) continuous in γ ∈ [0, a]. Hence, for the case (5.48a)702

sup
γ∈(Cr∆τ,a′]

ϕ′′
(
γ,x′)− sup

γ∈(0,a′]
ϕ′′
(
γ,x′) = max

γ∈[Cr∆τ,a′]
ϕ′′
(
γ,x′)− max

γ∈[0,a′]
ϕ′′
(
γ,x′) = O (h) , (5.49)703

since the difference of the optimal values of γ for the two max(·) expressions is bounded by Cr∆τ = O(h).704

Using (5.48), with (5.49) in mind, operator Dm
n,j(·) in (5.46) can be written as705

Dm+1
n,j (·) = ϕm+1

n,j + ξ

1−∆w

N†/2−1∑
l=−N†/2

g̃n−l

−∆w

N†/2−1∑
l=−N†/2

g̃n−l sup
γ∈[0,aj ]

ϕ′′
(
γ,xm

l,j

)
+O(h). (5.50)706

Note that supγ∈[0,aj ] ϕ
′′ (γ,x′) is a function of x′, and it is straightforward to show that it is in G(Ω∞).707

Applying Lemma 5.3 to
{
xm
l,j , supγ∈[0,a]

(
ϕ′′
(
γ,xm

l,j

))}
, l = −N †/2, . . . , N †/2− 1, we obtain708

∆w

N†/2−1∑
l=−N†/2

g̃n−l sup
γ∈[0,aj ]

ϕ′′
(
γ,xm

l,j

) (i)
= sup

γ∈[0,aj ]
M(γ)ϕ

(
xm
n,j

)
+ µCr∆τ +O(h2) + E(xm

n,j , h)709

(ii)
= sup

γ∈[0,aj ]
M(γ)ϕ

(
xm+1
n,j

)
+O (h) + E(xm

n,j , h).710

Here, in (i) the error term E(xm
n,j , h) → 0 as h→ 0, and we use the definition (5.48a) of ϕ′′(·), and in (ii)711

we have M(γ)ϕ
(
xm
n,j

)
= M(γ)ϕ

(
xm+1
n,j

)
+O (h), which is combined with µCr∆τ = O (h). Substituting712

(5.51) into (5.50) gives713

Dm+1
n,j (·) = ϕm+1

n,j − sup
γ∈[0,a]

M(γ)ϕ
(
xm+1
n,j

)
+O(h) + E(xm

n,j , h). (5.51)714

Overall, recalling x = xm+1
n,j , we have715

Hm+1
n,j

(
h, ϕm+1

n,j + ξ,
{
ϕml,k + ξ

}
k≤j

,
)
− Fin

(
x, ϕ (x) , Dϕ (x) , D2ϕ (x) ,J ϕ (x) ,Mϕ (x)

)
716

= c (x) ξ +O(h) + E(xm
n,j , h), if wmin < wn < wmax, Cr∆τ < aj ≤ aJ , 0 < τm+1 ≤ T,717

where c(·) is a bounded function satisfying 0 ≤ c(x) ≤ r and E(xm
n,j , h) → 0 as h → 0. This proves the718

first equation in (5.28). The remaining equations in (5.28) can be proved using similar arguments with719

the first equation.720

Remark 5.2. We emphasize that for the limiting case P † = ∞ (i.e. ∆τ = 0), the Green’s function721

g(w,∆τ) trivially becomes the Dirac delta function. Thus, for this case, we do not need to use the smooth722

cut-off function and the Fourier Transform as in Lemma 5.4. The results in Lemma 5.2, Lemma 5.3723

and Lemma 5.4 are still valid for this limiting case.724

Remark 5.3. We impose the condition (5.27) to ease the presentation of the proof, i.e. max(·) in the725

operator Cm+1
n,j (·) can be removed. However, we can avoid this condition by the following steps: if it726

is not satisfied, we find w′
min satisfying ew

′
min − ew

†
min ≥ Cr∆τ . For the range w ∈ [w†

min, w
′
min], we727

employ the idea in [19, Remark 5.1] to solve the HJB-QVI under the original z = ew grid using a728

finite difference method. For each time τm, numerical solutions for w ∈ [w†
min, w

′
min] (obtained by finite729

difference method) and for w ∈ (w′
min, wmax] (obtained by our scheme) can be combined to compute τm+1730

solutions in (wmin, wmax). This approach allows for a consistency proof essentially the same. It is also731

noteworthy that we show good numerical results in Section 4 without imposing the condition (5.27).732
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Remark 5.4. It can be verified that, for a smooth test function ϕ (x), the operator Fin (x, p1, p2, p3, p4, p5),733

defined in (3.10), is continuous in its parameters, i.e. continuous in (x, p1, p2, p3, p4, p5). The same734

continuity property also holds for operators Famin (x, p1, p2, p3, p4), Fwmin (x, p1, p2, p5), Fwamin (x, p1, p2),735

Fwmax (x, p1), Fτ0 (x, p1), respectively defined in (3.11)-(3.15).736

We now verify the consistency of scheme (5.25). We first define the notion of consistency in the737

viscosity sense below.738

Definition 5.1 (Consistency in viscosity sense). Suppose the discretization parameter h satisfies (4.10).739

The numerical scheme (5.25) is consistent in the viscosity sense if, for all x̂ = (ŵ, â, τ̂) ∈ Ω∞, and for740

any ϕ ∈ G(Ω∞) ∩ C∞(Ω∞), with ϕmn,j = ϕ
(
xm
n,j

)
and x = (wn, aj , τm+1), we have both of the following741

lim sup
h→0, x→x̂

ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j +ξ,
{
ϕml,k+ξ

}
k≤j

)
≤ (FΩ∞)∗

(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
, (5.52)742

lim inf
h→0, x→x̂

ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j +ξ,
{
ϕml,k+ξ

}
k≤j

)
≥ (FΩ∞)∗

(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
. (5.53)743

Below, we state and prove the main lemma on consistency of scheme (5.25).744

Lemma 5.5 (Consistency). Assuming all the conditions in Lemma 5.2 are satisfied, then the scheme745

(5.25) is consistent with the impulse control problem (3.1) in Ω∞ in the sense of Definition 5.1.746

Proof of Lemma 5.5. We first prove (5.52). There exists sequences {hi}i, {ni}, {ji}, {mi}, and {ξi},747

such that748

hi → 0, ξi → 0, xi ≡ (wni , aji , τmi+1) → x̂ ≡ (ŵ, â, τ̂), as i→ ∞, (5.54)749

and750

lim sup
i→∞

Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

+ξi,
{
ϕmi
li,ki

+ξi

}
ki≤ji

)
= lim sup

h→0, x→x̂
ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j +ξ,
{
ϕml,k +ξ

}
k≤j

)
. (5.55)751

We first consider the case x̂ ∈ Ωin. Denote by ∆τi the time step associated with the parameter hi. For752

sufficiently small hi, we have753

wmin < wni < wmax, Cr∆τi < aji ≤ aJ , and 0 < τmi+1 ≤ T.754

According to the first equation of (5.28) in Lemma 5.2, we have

Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

+ ξi,
{
ϕmi
li,ki

+ ξi

}
ki≤ji

)
(5.56)

= Fin

(
xi, ϕ (xi) , Dϕ (xi) , D

2ϕ (xi) ,J ϕ (xi) ,Mϕ (xi)
)
+ c (xi) ξi +O (hi) + E

(
xmi
ni,ji

, hi

)
.

Combining (5.55) and (5.56), for x̂ ∈ Ωin, with continuity of Fin (see Remark 5.4), we have

lim sup
h→0, x→x̂

ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j +ξ,
{
ϕml,k +ξ

}
k≤j

)
≤ lim sup

i→∞
Fin

(
xi, ϕ (xi) , Dϕ (xi) , D

2ϕ (xi) ,J ϕ (xi) ,Mϕ (xi)
)

+ lim sup
i→∞

[
c (xi) ξi +O (hi) + E(xmi

ni,ji
, hi)

]
= Fin

(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
= (FΩ∞)∗

(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
.

This proves (5.52) for x̂ ∈ Ωin.755

We define Ωbd = {wmin ∪wmax} × [amin, amax]× (0, T ]. Following similar steps, (5.52) can be proved756

for x̂ ∈ Ω∞
wmin

\Ωbd, x̂ ∈ Ω∞
wmax

\Ωbd, and x̂ ∈ Ω∞
τ0 , leaving x̂ ∈ Ωbd as a special case to be addressed below.757
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We now show (5.52) for special cases, namely x̂ ∈ Ωamin , x̂ ∈ Ω∞
wamin

, and x̂ ∈ Ωbd. First, we consider758

x̂ ∈ Ωamin . For the sequence {xi} → x̂, we cannot guarantee aji ≤ Cr∆τi or aji > Cr∆τi even for a759

sufficiently small hi. According to (5.28) in Lemma 5.2, Hmi+1
ni,ji

(·) is given by760

Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

+ ξi,
{
ϕmi
li,ki

+ ξi

}
ki≤ji

)
(5.57)761

762

=



Fin

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi),Mϕ(xi)
)
+ c (xi) ξi +O(hi) + E(xmi

ni,ji
, hi),

if wmin < wni < wmax, Cr∆τi < aji ≤ aJ , 0 < τmi+1 ≤ T

Fin′
(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi)
)
+ c (xi) ξi + O(hi) + E(xm

n,j , h),

if wmin < wni < wmax, 0 < aji ≤ Cr∆τi, 0 < τmi+1 ≤ T

Famin

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi)
)
+ c (xi) ξi +O(hi),

if wmin < wni < wmax, aji = 0, 0 < τmi+1 ≤ T.

763

Note that the right hand side of (5.57) contains Fin′(·), which is problematic since this operator is not764

part of FΩ∞ . To handle this, we note that supγ̂∈[0,a/∆τ ] γ̂ (1− e−wϕw − ϕa) ≥ 0. Using this with the765

definition of Famin(·) and Fin′(·) in (3.11) and (5.26), respectively, for amin < aji ≤ Cr∆τi, we obtain766

Fin′
(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi)
)
≤ Famin

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi)
)
.767

Using this result to eliminate Fin′(·) from lim supHm+1
n,j (·) gives

lim sup
h→0, x→x̂

ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j + ξ,
{
ϕml,k + ξ

}
k≤j

)
≤ lim sup

i→∞
FΩ∞

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi),Mϕ(xi)
)

+ lim sup
i→∞

[
c (xi) ξi + E(xmi

ni,ji
, hi)

]
≤ (FΩ∞)∗

(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
,

which proves (5.52) for x̂ ∈ Ωamin . Other special cases are treated similarly.768

We now prove (5.53) for x̂ ∈ Ω∞, which can be proven in the same manner except the case x̂ ∈ Ωamin ,769

x̂ ∈ Ω∞
wamin

. For brevity, we only show (5.53) for x̂ ∈ Ωamin here. The other special cases can be tackled770

similarly. There exists sequences {hi}, {ni}, {ji}, {mi}, and {ξi} satisfying (5.54) and771

lim inf
i→∞

Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

+ ξi,
{
ϕmi
li,ki

+ ξi

}
ki≤ji

)
= lim inf

h→0, x→x̂
ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j + ξ,
{
ϕml,k + ξ

}
k≤j

)
.(5.58)772

Then, for sufficiently large i, (5.57) holds as discussed above. If 0 < aji ≤ Cr∆τi, we observe773

sup
γ̂∈[0,aji/∆τi]

γ̂
(
1− e−wniϕw (xi)− ϕa (xi)

)
≤ sup

γ̂∈[0,Cr]
γ̂
(
1− e−wniϕw (xi)− ϕa (xi)

)
,774

which implies that

Fin′
(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi)
)
≥ Fin

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi),Mϕ(xi)
)
.

Using this result to eliminate Fin′(·) from lim infHm+1
n,j (·) gives

lim inf
h→0, x→x̂

ξ→0

Hm+1
n,j

(
h, ϕm+1

n,j + ξ,
{
ϕml,k + ξ

}
k≤l

)
≥ lim inf

i→∞
FΩ∞

(
xi, ϕ(xi), Dϕ(xi), D

2ϕ(xi),J ϕ(xi),Mϕ(xi)
)

+ lim inf
i→∞

[
c (xi) ξi + e

(
xmi
ni,ji

, hi

)]
≥ (FΩ∞)∗

(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
.

This concludes the proof.775
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5.3 Monotonicity776

We present a result on the monotonicity of scheme (5.25).777

Lemma 5.6 (ϵ-monotonicity). If linear interpolation is used and the weight g̃n−l satisfies the mono-778

tonicity condition (4.33), i.e. ∆w
∑N†/2−1

l=−N†/2

∣∣min (g̃n−l, 0)
∣∣ < ϵ∆τ

T , where ϵ > 0, then scheme (5.25)779

satisfies780

Hm+1
n,j

(
h, vm+1

n,j ,
{
xml,k
}
k≤j

)
≤ Hm+1

n,j

(
h, vm+1

n,j ,
{
yml,k
}
k≤j

)
+ Kϵ (5.59)781

for bounded {xml,k} and {yml,k} having {xml,k} ≥ {yml,k}, where the inequality is understood in the component-782

wise sense, and K is a positive constant independent of h and ϵ.783

Proof. It is straightforward to show Am+1
n,j (·) and Bm+1

n,j (·), defined in (5.23), are strictly monotone, i.e.784

Am+1
n,j (·, ·,

{
xml,k
}
k≤j

) ≤ Am+1
n,j (·, ·,

{
yml,k
}
k≤j

), Bm+1
n,j (·, ·,

{
xml,k
}
k≤j

) ≤ Bm+1
n,j (·, ·,

{
yml,k
}
k≤j

). (5.60)785

The proof then boils down to proving ϵ-monotonicity for Cm+1
n,j (·) and Dm+1

n,j (·), defined in (5.24). Recall786

the linear interpolation operator I{·}(·) in (4.13)-(4.17). Let x̃mn,j and ỹmn,j be the results of the linear787

operators I{xm}(·) and I{ym}(·) acting on
{(

(wl, ak) , x
m
l,k

)}
, and

{(
(wl, ak) , y

m
l,k

)}
, respectively. We788

also define for (xloc)
m+
n,j , (xnlc)

m+
n,j , (yloc)

m+
n,j , and (ynlc)

m+
n,j in a similar way that we define (vloc)

m+
n,j , (vnlc)

m+
n,j789

in (4.18).790

For the rest of the proof, let K be a generic positive constant independent of h and ϵ, which may take791

different values from line to line. From the boundedness of {xml,k} and {yml,k}, and {xml,k} ≥ {yml,k}, noting792

I{xm}(·) and I{ym}(·) are linear interpolation operators, we have, for all l = −N †/2, . . . , N †/2− 1,793

(yloc)
m+
l,j ≤ (xloc)

m+
l,j and

∣∣∣(yloc)m+
l,j − (xloc)

m+
l,j

∣∣∣ ≤ K, (5.61)794

(ynlc)
m+
l,j ≤ (xnlc)

m+
l,j and

∣∣∣(ynlc)m+
l,j − (xnlc)

m+
l,j

∣∣∣ ≤ K, (5.62)795

where K is a positive constant independent of h and ϵ.796

Next, using (5.61) together with the definition of the operator Cm+1
n,j (·) in (5.24), we have797

Cm+1
n,j

(
h, vm+1

n,j ,
{
xml,k
}
k≤j

)
− Cm+1

n,j

(
h, vm+1

n,j ,
{
yml,k
}
k≤j

)
798

=
1

∆τ

vm+1
n,j −∆w

N†/2−1∑
l=−N†/2

g̃n−l (xloc)
m+
l,j

− 1

∆τ

vm+1
n,j −∆w

N†/2−1∑
l=−N†/2

g̃n−l (yloc)
m+
l,j

799

≤ 1

∆τ

∆w N†/2−1∑
l=−N†/2

|min (g̃n−l, 0)|
∣∣∣(yloc)m+

l,j − (xloc)
m+
l,j

∣∣∣
800

≤ K

∆τ

∆w

N†/2−1∑
l=−N†/2

∣∣min (g̃n−l, 0)
∣∣ ≤ ϵ

K

T
, (5.63)801

where the last equality uses (4.33).802

Similarly, using (5.62) together with the definition of the operator Dm+1
n,j (·) in (5.24) yields803

Dm+1
n,j

(
h, vm+1

n,j ,
{
xml,k
}
k≤j

)
−Dm+1

n,j

(
h, vm+1

n,j ,
{
yml,k
}
k≤j

)
804

≤ ∆w

N†/2−1∑
l=−N†/2

|min (g̃n−l, 0)|
∣∣∣(ynlc)m+

l,j − (xnlc)
m+
l,j

∣∣∣ ≤ ϵ
K∆τ

T
. (5.64)805

Putting (5.60), (5.63) and (5.64) together concludes the proof.806
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5.4 Convergence to viscosity solution807

We have demonstrated that the scheme (5.25) satisfies the three key properties in Ω: (i) ℓ∞-stability808

(Lemma 5.1), (ii) consistency (Lemma 5.5) and (iii) ϵ-monotonicity (Lemma 5.6). With a provable strong809

comparison principle result for Ωin ∪ Ωamin , we now present the main convergence result of the paper.810

Theorem 5.1 (Convergence in Ωin ∪ Ωamin). Suppose that all the conditions for Lemmas 5.1, 5.5 and811

5.6 are satisfied. Under the assumption that the monotonicity tolerance ϵ → 0 as h → 0, scheme (5.25)812

converges locally uniformly in Ωin ∪Ωamin to the unique bounded viscosity solution of the GMWB pricing813

problem in the sense of Definition 3.2.814

Proof. To clearly indicate the important role of the discretization parameter h, in this proof, we use815

xm+1
n,j (h) = (wn, aj , τm+1;h). Furthermore, we use vm+1

n,j (h) to denote the numerical solution at the node816

xm+1
n,j (h). We define the u.s.c. (respectively l.s.c.) function v : Ω∞ → R (respectively v : Ω∞ → R) by817

v (x) = lim sup
h→0

xm+1
n,j (h)→x

vm+1
n,j (h) (resp. v(x) = lim inf

h→0
xm+1
n,j (h)→x

vm+1
n,j (h)) x ∈ Ω∞. (5.65)818

We now show that v(x) (resp. v(x)) is a subsolution (resp. supersolution) in Ω∞ in the sense of Defi-819

nition 3.2. By stability of our scheme in Ω∞ established in Lemma 5.1, functions v and v are in G(Ω∞).820

Since definition (5.65) implies that v∗(x) = v(x) and v∗(x) = v(x) for all x ∈ Ω∞, we will work with821

v(x) and v(x) instead of their respective envelopes.822

For the case v(x), we let x̂ ∈ Ω∞ be fixed, and ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) such that (i) (v − ϕ) (x) has a823

global maximum on Ω∞ at x = x̂, and (ii) ϕ (x̂) = v (x̂). That is, ϕ (x) satisfies824 {
ϕ (x) > v (x) , ∀ x ∈ Ω∞ and x ̸= x̂,

ϕ (x) = v (x) , x = x̂.
(5.66)825

Consider a sequence of grids with discretization parameter hi such that hi → 0 as i → ∞. We denote by826

Ωhi
the grid parameterized by hi, noting that Ωhi

→ Ω∞ as i → ∞. Let xmi+1
ni,ji

(hi) ≡ (wni , aji , τmi+1;hi)827

be a node in Ω∞ such that828

vmi+1
ni,ji

(hi)− ϕmi+1
ni,ji

(hi) is a global maximum on Ωhi
, (5.67)829

where ϕ (x) is the test function satisfying (5.66), with the usual notation ϕmi+1
ni,ji

(hi) = ϕ
(
xmi+1
ni,ji

(hi)
)
.830

First, we note that831

xmi+1
ni,ji

(hi) → x̂ and also xmi
ni,ji

(hi) → x̂, as i→ ∞. (5.68)832

In addition, for any finite discretization parameter hi, the global maximum in (5.67) is not necessarily833

zero, as xmi+1
ni,ji

(hi) = x̂ is not necessarily true. Since ϕ(·) satisfies (5.66), we have834

vmi+1
ni,ji

(hi) = ϕmi+1
ni,ji

(hi) + ξi, where ξi → 0, as i→ ∞. (5.69)835

Because the global maximum (5.67) is attained at xmi+1
ni,ji

(hi), we have that, for all li and ki used in the836

scheme Hmi+1
ni,ji

(
hi, v

mi+1
ni,ji

(hi),
{
vmi
li,ki

(hi)
}
ki≤ji

)
, we have837

vmi
li,ki

(hi)− ϕmi
li,ki

(hi) ≤ vmi+1
ni,ji

(hi)− ϕmi+1
ni,ji

(hi) = ξi, (5.70)838

where ξi is defined in (5.69). Using (5.69), (5.70), and the monotonicity result in Lemma 5.6, we obtain839

0 = Hmi+1
ni,ji

(
hi, v

mi+1
ni,ji

(hi),
{
vmi
li,ki

(hi)
}
ki≤ji

)
840

≥ Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

(hi) + ξi,
{
ϕmi
li,ki

(hi) + ξi

}
ki≤ji

)
−Cϵi, (5.71)841

where C > 0 and ϵi → 0, as i→ ∞.842
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Letting i→ ∞ and using the consistency result from Lemma 5.5, (5.71) gives843

0 ≥ lim inf
i→∞

Hmi+1
ni,ji

(
hi, ϕ

mi+1
ni,ji

(hi) + ξi,
{
ϕmi
li,ki

(hi) + ξi

}
ki≤ji

)
− lim inf

i→∞
Cϵi844

≥ (FΩ∞)∗
(
x̂, ϕ (x̂) , Dϕ (x̂) , D2ϕ (x̂) ,J ϕ (x̂) ,Mϕ (x̂)

)
.845

This shows that v(x) is a subsolution in Ω∞ in the sense of Definition 3.2. A similar argument shows that846

v(x) is a supersolution in Ω∞. By definition of v(x) and v(x) in (5.65), we have that v(x) ≥ v(x), ∀x ∈ Ω∞.847

Since a strong comparison principle result holds in Ωin ∪ Ωamin , we have v(x) ≤ v(x), ∀x ∈ Ωin ∪ Ωamin .848

Therefore, v(x) = v(x) = v(x) is the unique viscosity solution in Ωin ∪ Ωamin . As a result,849

v (x) = lim
h→0

xm+1
n,j (h)→x

vm+1
n,j (h), for x ∈ Ωin ∪ Ωamin ,850

from which we obtain that convergence is locally uniform.851

6 Numerical examples852

In this section, we provide selected numerical results of our ϵ-monotone Fourier method applied to the853

the impulse control GMWB pricing problem. For all experiments, unless otherwise noted, the details of854

the mesh size/timestep refinement levels used are given in Table 6.2. As noted previously, for practical855

purposes, if P † is chosen sufficiently large, it can be kept constant for all refinement levels (as we let856

h → 0). For our numerical experiments, we use wmin = ln(z0) − 10 and wmax = ln(z0) + 10, and w†
min857

and w†
max constructed as discussed in Remark 4.1, so wmin = ln(z0)− 20 and w†

max = ln(z0) + 20. Tests858

with larger intervals also show negligible effect on numerical solutions.859

Our numerical prices are verified against those produced by two other methods, namely (i) Finite860

Difference (FD) methods ([19] and [40]), and (ii) Monte Carlo (MC) simulation. To carry out Monte861

Carlo validation, we proceed in two steps. In Step 1, we solve the GMWB pricing problem using the862

proposed ϵ-monotone Fourier method on a relatively fine computational grid (212 w-nodes, 401 a-nodes,863

and 480 timesteps). During this step, the optimal controls are stored for each discrete state value and864

timestep. In Step 2, we carry out Monte Carlo simulations from t = 0 to t = T following these stored865

PDE-computed optimal strategies, using linear interpolation, if necessary, to determine the controls for866

a given state value. For Step 2, a total of 106 paths is used.867

Motivated by findings in [19], [40], a sufficiently small fixed cost c = 10−8 is used all numerical tests.868

For user-defined tolerances ϵ and ϵ1 in Algorithm (4.1), we use ϵ = ϵ1 = 10−6 for all refinement levels.869

Through numerical experiments, it is observed that using smaller ϵ or ϵ1 produced virtually identical870

numerical results, indicating that this value of ϵ and ϵ1 are sufficient for all practical purposes.871

Parameter Value

Expiry time (T ) 10.0 years

Interest rate (r) 0.05

Maximum withdrawal rate (Gr) 10/year

Withdrawal penalty (µ) 0.10

Initial Lump-sum premium (z0) 100

Initial guarantee account balance (= z0) 100

Initial sub-account value (= z0) 100

Table 6.1: Common GMWB pa-

rameters used in the numerical tests

Level N J M

(w) (a) (τ)

0 210 51 60

1 211 101 120

2 212 201 240

3 213 401 480

4 214 801 960

Table 6.2: Grid and timestep refinement

levels for numerical tests; wmin = ln(z0) −
10 and wmax = ln(z0) + 10; w†

min and w†
max

constructed using (4.7).

872

6.1 Validation examples873

6.1.1 No Jumps – the GBM model874

In this example, we repeat some numerical examples in [19] where (2.2) is a GBM. Table 6.3 presents875

convergence results for σ = {0.2, 0.3}, assuming a zero insurance fee and continuous withdrawal. To876
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provide an estimate of the convergence rate of the algorithm, we compute the “Change” as the difference877

in values from the coarser grid and the “Ratio” as the ratio of changes between successive grids. The878

numerical results indicate that first-order convergence is achieved for the algorithm. Results obtained879

by MC simulation also indicate excellent agreement with those obtained by the proposed ϵ-monotone880

Fourier method

Method Level
σ = 0.20 σ = 0.30

Value Change Ratio Value Change Ratio

ϵ-monotone

Fourier

0 107.7726 115.7736

1 107.7573 -0.0153 115.8422 0.0686

2 107.7481 -0.0092 1.65 115.8716 0.0294 2.33

3 107.7423 -0.0058 1.59 115.8834 0.0118 2.49

4 107.7391 -0.0032 1.83 115.8881 0.0047 2.50

FD 107.7313 115.8842

MC 95%-CI [107.6020, 107.8430] [115.6192, 116.0480]

Table 6.3: Convergence study for the value of the GMWB guarantee at t = 0, z = a = 100. No

insurance fee (β = 0) is imposed; FD benchmark value is from [19] (Table 3, finest grid).

881

6.1.2 Jumps – log-normal882

In this test, lnψ is normally distributed with its density function b(y) given by (2.3). Table 6.4 shows883

the parameters of the log-normal jump process, taken from [42]. Table 6.5 presents the convergence884

results with σ = 0.3, assuming a fair/no-arbitrage insurance fee of β = 0.045452043 and continuous885

withdrawal. As stated in [42], since the no-arbitrage fee is imposed, the exact price is 100. It is observed886

from Table 6.5 that numerical prices produced by our method exhibit (first-order) convergence to this887

exact price. Results obtained by MC simulation also indicate excellent agreement with those obtained888

by the proposed ϵ-monotone Fourier method.889

Parameter Value

ς 0.45

ν -0.9

λ 0.1

Table 6.4: Jump

parameters for log-

normal distribution

Method Level Value Change Ratio

ϵ-monotone

Fourier

0 100.2822

1 100.1391 -0.1432

2 100.0694 -0.0696 2.06

3 100.0350 -0.0345 2.02

4 100.0177 -0.0173 1.99

FD 100.00003

MC 95%-CI [99.9056, 100.1010]

Table 6.5: Convergence study for the value of the GMWB guarantee at

t = 0, z = a = 100. σ = 0.3 and fair insurance fee (β = 0.045452043) is

imposed; FD benchmark value is from [42] (Table 7.4, finest grid).

890

6.1.3 Jumps – log-double-exponential891

In this test, lnψ is double-exponential distributed with its density function b(y) given by (2.4). Table 6.6892

shows the jump diffusion parameters. Since a reference price for this case is not available in the literature,893

we implement the FD scheme proposed in [19], originally developed for diffusion processes. For the finest894

grid (i.e. the level 5 grid and timestep data used in [19, Table 2]), the FD benchmark value in this case895

is 118.4130. Table 6.7 presents the convergence results σ = 0.3, assuming a zero insurance fee and896

continuous withdrawal. Results obtained by Monte Carlo simulation also indicate excellent agreement897

with those obtained by the FD and the proposed ϵ-monotone Fourier method898
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Parameter Value

pu 0.3445

η1 3.0465

η2 3.0775

λ 0.1

Table 6.6: Jump

parameters for log-

double-exponential

distribution

Method Level Value Change Ratio

ϵ-monotone

Fourier

0 118.3453

1 118.3905 0.0452

2 118.4097 0.0192 2.35

3 118.4172 0.0075 2.56

4 118.4200 0.0028 2.63

FD 118.4130

MC 95%-CI [118.1679, 118.7308]

Table 6.7: Convergence study for the value of the GMWB guarantee at

t = 0, z = a = 100; σ = 0.3 and no insurance fee (β = 0).

899

6.2 Wrap-around errors900

6.2.1 Application of Theorem 4.1901

In this experiment, we numerically illustrate that the proposed treatment of the wrap-around error is902

sufficient, i.e. the wrap-around error is bounded Theorem 4.1. For brevity, we present only results of the903

GBM case with σ = 0.2. Results of other cases are similar, and hence omitted.904

First, we note that the condition (4.38) of Theorem 4.1 is satisfied due to stability by Lemma 5.1.905

To numerically check condition (4.39), using similar notations in Subsection 4.4, we denote906

SUMLEFT = ∆w

−N/2−1∑
ℓ=−N†/2

|g̃(ℓ)|, SUMRIGHT = ∆w

N†/2−1∑
ℓ=N/2+1

|g̃(ℓ)|, SUM = ∆w
∑
ℓ∈N†

g̃(ℓ).907

Table 6.8 presents select results. Using the padding technique presented in Subsection 4.4, it is clear908

from Table 6.8 that the approximations of the Green’s function on the left and right padding areas,909

namely the quantities SUMLEFT and SUMRIGHT, are negligible. It is worth noting that condition (4.39) is910

fulfilled for all refinement levels with the same user-specified numerical tolerance ϵe. Also from Table 6.8,911

it is clear that the total sum of the approximations of the Green’s function approximately equals e−r∆τ
912

for each level, which agrees with (5.1).913

Level ϵe∆τ/2 SUMLEFT SUMRIGHT SUM

0 8.33333e-10 7.14037e-16 6.74673e-16 0.991701

1 4.16667e-10 8.71373e-16 7.75466e-16 0.995842

2 2.08333e-10 9.34340e-16 1.00408e-15 0.997919

3 1.04167e-10 1.17304e-15 1.15816e-15 0.998959

4 5.20833e-11 1.23246e-15 1.34286e-15 0.999479

Table 6.8: The approximation of the Green’s functions for the GBM model with ϵe = 10−8.

914

6.2.2 Padding areas915

Numerical results presented so far are based padding areas constructed via (4.7). In this experiment, we916

numerically demonstrate that larger padding areas are not needed. To this end, we use917

w†
min = wmin − 1.5 (wmax − wmin) and w†

max = wmax + 1.5 (wmax − wmin) ,918

and N † = 4N . For fair comparison, we utilize the same padding techniques and the same ∆w with919

previous numerical tests, where (4.7) and N † = 2N are employed. The numerical prices of this test are920

reported in Table 6.9 (col. “Value”). They are to be compared with numerical prices from Tables 6.3,921

6.5, 6.7 (col. “Value”), which, for convenience, are also included in Table 6.9. It it evident from Table 6.9922

that using a larger padding area virtually does not affect the numerical prices. This confirms that our923

choice of the padding areas in (4.7) is sufficiently suitable for practical purposes.924

31



Level

GBM model log-normal

distribution

log-double-exp

distributionσ = 0.20 σ = 0.30

Value Value Value Value Value Value Value Value

(Tab. 6.3) (Tab. 6.3) (Tab. 6.5) (Tab. 6.7)

0 107.7726 107.7726 115.7735 115.7736 100.2823 100.2822 118.3451 118.3453

1 107.7574 107.7574 115.8420 115.8422 100.1390 100.1391 118.3903 118.3905

2 107.7481 107.7481 115.8714 115.8716 100.0696 100.0694 118.4096 118.4097

3 107.7423 107.7423 115.8832 115.8834 100.0352 100.0350 118.4172 118.4172

4 107.7391 107.7391 115.8879 115.8881 100.0180 100.0177 118.4201 118.4200

Table 6.9: Prices obtained using larger padding areas with θ = 3 in (4.7) and N† = 4N . Compare with

prices in Table 6.3, 6.5, 6.7 where (4.7) is used and N† = 2N .

6.2.3 Zero padding technique925

We redo all the above experiments using the zero padding techniques proposed in [1, 45], and prices926

obtained from these experiments are presented in Table 6.10. These prices are to be compared with927

numerical prices from Tables 6.3, 6.5, 6.7 (col. “Value”), which, for convenience, are also included in928

Table 6.10.929

Level

GBM model log-normal

distribution

log-double-exp

distributionσ = 0.20 σ = 0.30

Value Value Value Value Value Value Value Value

(Tab. 6.3) (Tab. 6.3) (Tab. 6.5) (Tab. 6.7)

0 107.4793 107.7726 115.3974 115.7736 99.7237 100.2822 117.9545 118.3453

1 107.4458 107.7574 115.4431 115.8422 99.5491 100.1391 117.9760 118.3905

2 107.4274 107.7481 115.4608 115.8716 99.4636 100.0694 117.9831 118.4097

3 107.4170 107.7423 115.4668 115.8834 99.4211 100.0350 117.9847 118.4172

4 107.4115 107.7391 115.4686 115.8881 99.3999 100.0177 117.9846 118.4200

Table 6.10: Results using zero padding technique. Compare with results in Table 6.3, 6.5, 6.7 where the

asymptotic boundary conditions are used.

It is evident from Table 6.10 that numerical prices obtained using the zero padding technique do930

not converge to the same prices as those obtained using our padding techniques. Specifically, numerical931

prices in the former case are consistently smaller than our numerical prices, with the contamination932

appears to be more severe with jumps-diffusion models. This is expected as the zero padding technique933

tends to underprice a GMWB as ew → 0. These results indicate that the zero padding technique is not934

suitable for use in pricing GMWB.935

7 Conclusion936

In this paper, we develop an ϵ-monotone numerical Fourier method for the HJB-QVI associated with an937

impulse control formulation arising in the pricing of GMWB under jump-diffusion dynamics. We propose938

an efficient implementation of the scheme via FFT, including a proper handling of boundary conditions939

and padding techniques. We mathematically prove that our padding techniques can effectively control940

wraparound errors in the numerical solutions. We appeal to a Barles-Souganidis-type analysis in [14],941

to rigorously prove the convergence of our scheme the unique viscosity solution of the HJB-QVI as the942

discretization parameter and the monotonicity tolerance ϵ approach zero. Although we focus specifically943

on GMWB, our comprehensive and systematic approach could serve as a numerical and convergence944

analysis framework for the development of similar weakly monotone methods for HJB-QVIs arising from945
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impulse control problems in finance.946
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Appendix A Wraparound error1085

To avoid subscript clutter, in this appendix, we use the notation g̃(n− l) ≡ g̃n−l and u
m(n) ≡ umn . Noting this1086

notation, the equation (4.37) becomes the following generic recursion1087

um(n) = ∆w

N†/2−1∑
l=−N†/2

g̃(n− l) um−1(l), N† ∈ {N, 2N, 4N, . . .} ,1088

As an example of wraparound error, we examine a worst case term in equation (A.1) below. Consider the term in1089

(A.1) corresponding to n = −N/2+1, which corresponds to the node having w adjacent to wmin, and l = N†/2−1,1090

namely1091

∆w g̃(−N/2 + 1−N†/2 + 1) um−1(N†/2− 1). (A.1)1092

By periodic extension, we shift the argument of g̃(·) by N†, resulting in1093

g̃(−N/2 + 1−N†/2 + 1) = g̃(−N/2 + 1−N†/2 + 1 +N†) = g̃(−N/2 +N†/2 + 2),1094

and hence, the term (A.1) becomes1095

∆w g̃(−N/2 +N†/2 + 2) um−1(N†/2− 1).1096

Hence, in this extreme case, equation (A.1) becomes1097

um(−N/2 + 1) = ∆w g̃(−N/2 +N†/2 + 2) um−1(N†/2− 1) +

N†/2−2∑
l=−N†/2

( remaining terms ). (A.2)1098
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Example 1 (No padding: N† = N). Suppose we do not use any padding, so that that N† = N. In this case,1099

equation (A.2) becomes1100

um(−N/2 + 1) = ∆w g̃(2) um−1(N/2− 1) +

N/2−2∑
l=−N/2

( remaining terms ). (A.3)1101

Since, in general, g̃(2) is not small, we can see that the term um−1(N/2− 1) has a considerable effect on1102

um(−N/2+1), which should not be the case. We can see here that the periodic extension of g̃ causes a wraparound1103

effect.1104

Example 2 (Padding: N† = 2N). If N† = 2N , then equation (A.2) becomes1105

um(−N/2 + 1) = ∆w g̃(N/2 + 2) um−1(N†/2− 1) +

N†/2−2∑
l=−N†/2

( other terms ). (A.4)1106

In this case, from (4.6), we have selected N sufficiently large so that g̃(l) ≃ 0, l > N/2 and l < −N/2, hence the1107

leading term in equation (A.4) is small, and hence, wraparound error is reduced.1108

Now we proceed to proving Theorem 4.1.1109

Proof. Using |uml | ≤ C, l = −N†/2, . . . , N†/2− 1 and equation (4.38) gives1110

emwrap ≤ Cmax
n

{
∆w

N†/2−1∑
l=−N†/2

|g̃(n− l)|
(
1{(n−l)<−N†/2} + 1{(n−l)>N†/2−1}

)}
. (A.5)1111

Recall that n ∈ {−N/2 + 1, . . . , N/2 − 1}, hence the worst case values of n on the right hand side of equation1112

(A.5) are n = −N/2 + 1 and n = N/2− 1. Therefore, equation (A.5) gives1113

emwrap ≤ C∆w

N†/2−1∑
l=−N†/2

|g̃(N/2− 1− l)|1{(N/2−1−l)>N†/2−1}1114

+ C∆w

N†/2−1∑
l=−N†/2

|g̃(−N/2 + 1− l)| 1{(−N/2+1−l)<−N†/2}. (A.6)1115

Also, since N = N†/2 equation (A.6) becomes1116

emwrap ≤ C∆w

N†/2−1∑
l=−N†/2

|g̃(N†/4− 1− l)| 1{(N†/4−1−l)>N†/2−1}1117

+ C∆w

N†/2−1∑
l=−N†/2

|g̃(−N†/4 + 1− l)| 1{(−N†/4+1−l)<−N†/2},1118

and eliminating the indicator functions gives1119

emwrap ≤ C∆w

−N†/4−1∑
l=−N†/2

|g̃(N†/4− 1− l)| + C∆w

N†/2−1∑
l=N†/4+2

|g̃(−N†/4 + 1− l)|.1120

Shifting g̃(·) by ±N† so that the argument of g̃(·) is in the range [−N†/2, N†/2− 1], implies1121

emwrap ≤ C∆w

−N†/4−1∑
l=−N†/2

|g̃(N†/4− 1− l −N†)| + C∆w

N†/2−1∑
l=N†/4+2

|g̃(−N†/4 + 1− l +N†)|1122

1123

= C∆w

−N†/4−1∑
l=−N†/2

|g̃(−3N†/4− 1− l)| + C∆w

N†/2−1∑
l=N†/4+2

|g̃(3N†/4 + 1− l)|.1124

Rearranging the indices, gives1125

emwrap ≤ C∆w

−N†/4−1∑
l=−N†/2

|g̃(l)| + C∆w

N†/2−1∑
l=N†/4+2

|g̃(l)|, (A.7)1126
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which, since N = N†/2, implies that equation (A.7) satisfies1127

emwrap ≤ C∆w

−N/2−1∑
l=−N†/2

|g̃(l)| + C∆w

N†/2−1∑
l=N/2

|g̃(l)|1128

= Cϵe∆τ, (A.8)1129

where the last step follows from (4.39). Applying equation (A.8) recursively gives the bound TCϵe.1130

1131

Appendix B Proof of a strong comparison principle1132

In this section, we prove a comparison principle in Ωin ∪ Ωamin
for the GMWB impulse control pricing problem1133

given in Definition 3.1. As the first step, in the next subsection, we will establish equivalence between relevant1134

definitions of viscosity solutions for this problem.1135

B.1 Definitions of viscosity solution1136

For HJB-QVIs of the form (3.16), there are two alternative definitions of viscosity solution available in the literature.1137

The first definition, previously presented in Definition 3.2 and reproduced in Definition B.1 below, is similar to1138

[27, Definition 4.1], [6, Definition 2]. It appears that, for convergence analysis of a numerical scheme, it is often1139

more convenient to use this definition.1140

Definition B.1 (Viscosity solution of equation (3.16)). A locally bounded function v ∈ G(Ω∞) is a viscosity1141

subsolution (resp. supersolution) of (3.16) in Ω∞ if for all test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) and for all points1142

x̂ ∈ Ω∞ such that (v∗ − ϕ) has a global maximum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂) (resp. (v∗ − ϕ) has a global1143

minimum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂)), we have1144

(FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)

)
≤ 0, (B.1)1145 (

resp. (FΩ∞)
∗ (

x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J ϕ(x̂),Mϕ(x̂)
)

≥ 0,
)

1146

where the operator FΩ∞(·) is defined in (3.9). A locally bounded function v ∈ G(Ω∞) is a viscosity solution in1147

Ωin ∪ Ωamin
if it is both a viscosity subsolution and a viscosity supersolution in Ωin ∪ Ωamin

.1148

The second definition is similar to [56, Definition 9.6], [61, Definition 5.3], [6, Definition 1], [60, Definition 2.2],1149

and [27, Definition 4.2], which it is presented in Definition B.2 below. We find that it is more convenient to use1150

this definition to prove a comparison principle.1151

Definition B.2 (Viscosity solution of equation (3.16)). A locally bounded function v ∈ G(Ω∞) is a viscosity1152

subsolution (resp. supersolution) of (3.16) in Ω∞ if for all test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) and for all points1153

x̂ ∈ Ω∞ such that (v∗−ϕ) has a local maximum on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂) (resp. (v∗−ϕ) has a local minimum1154

on Ω∞ at x̂ and v∗(x̂) = ϕ(x̂)), we have1155

(FΩ∞)∗
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J v∗(x̂),Mv∗(x̂)

)
≤ 0, (B.2)1156 (

resp. (FΩ∞)
∗ (

x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J v∗(x̂),Mv∗(x̂)
)

≥ 0,
)

1157

where the operator FΩ∞(·) is defined in (3.9). A locally bounded function v ∈ G(Ω∞) is a viscosity solution in1158

Ωin ∪ Ωamin
if it is both a viscosity subsolution and a viscosity supersolution in Ωin ∪ Ωamin

.1159

Proposition B.1. For the impulse control problem stated in Definition 3.1, Definition B.2 and Definition B.11160

are equivalent.1161

Proof. For a fixed x ∈ Ω∞, and δ > 0, we define Bδ(x) = {y ∈ Ω∞ : |x− y| ≤ δ}.1162

Definition B.2 ⇒ Definition B.1: Since the jump operator J and intervention operator M are non-decreasing, it1163

is straightforward to prove this part using the ellipticity of FΩ∞(·).1164

Definition B.1 ⇒ Definition B.2: In the below, we prove the “subsolution” case of this direction of implication.1165

(The “supersolution” case can be handled similarly, and hence is omitted for brevity.) Specifically, assume that1166

we are given (i) v as a viscosity subsolution in the sense of Definition B.1; and (ii) an arbitrary test function1167

ϕ ∈ G(Ω∞)∩ C∞(Ω∞) such that (v∗ − ϕ) has a local maximum at a point x̂ ∈ Bδ(x̂) ⊂ Ω∞ for some δ > 0, and that1168

v∗(x̂) = ϕ(x̂). We now show that the inequality (B.2) holds.1169

Since v∗(x) is upper semi-continuous, there exists ϕ′ ∈ G(Ω∞) ∩ C∞(Ω∞) such that, for any ϵ > 0, we have1170

v∗(x) ≤ ϕ′(x) ≤ v∗(x) + ϵ, ∀ x ∈ Ω∞. Let us consider a smooth cut-off function ζ(x) such that1171

0 ≤ ζ(x) ≤ 1; ζ(x) ≡ 1 ∀x ∈ Bδ/2(x̂); ζ(x) ≡ 0 ∀x ∈
{
Ω∞ \Bδ(x̂)

}
.1172
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We then define a new function φ(x) := ζ(x)ϕ(x) + (1− ζ(x))ϕ′(x), x ∈ Ω∞. By construction of φ(x), it follows1173

that φ ∈ G(Ω∞) ∩ C∞(Ω∞) and1174

v∗(x) ≤ φ(x) ≤ v∗(x) + ϵ, ∀ x ∈ Ω∞. (B.3)1175

We also have v∗(x̂) = φ(x̂), since v∗(x̂) = ϕ(x̂) (by assumptions) and φ(x̂) = ϕ(x̂) by construction of φ(x).1176

Following (B.3), we can conclude that (v∗ − φ)(x) has a global maximum on Ω∞ at x̂ and v∗(x̂) = φ(x̂).1177

Since v is a viscosity subsolution in the sense of Definition B.1, using φ(x) as the test function in (B.1), we1178

arrive at (noting that φ(x̂) = ϕ(x̂), Dφ(x̂) = Dϕ(x̂), D2φ(x̂) = D2ϕ(x̂))1179

(FΩ∞)∗(x̂, ϕ(x̂), Dϕ(x̂), D
2ϕ(x̂),Jφ(x̂),Mφ(x̂)) ≤ 0. (B.4)1180

Using (B.4), we will derive (B.2) case by case, depending where Bδ(x̂) is in Ω∞.1181

� We first consider Bδ(x̂) ⊂ Ωin. By definition of FΩ∞(·) in (3.9), (B.4) becomes1182

min

[
ϕτ (x̂)− Lϕ(x̂)− Jφ(x̂)− sup

γ̂∈[0,Cr]

γ̂
(
1− e−wϕw(x̂)− ϕa(x̂)

)
, ϕ(x̂)− sup

γ∈[0,a]

M(γ)φ(x̂)

]
≤ 0.1183

If the first argument in the above min operator is less than 0, using (B.3), we have that1184

ϕτ (x̂)− Lϕ(x̂)− sup
γ̂∈[0,Cr]

γ̂
(
1− e−wϕw(x̂)− ϕa(x̂)

)
≤ λ

∫ ∞

−∞
φ(w + y, a, τ) b(y) dy1185

≤ λ

∫ ∞

−∞
(v∗(w + y, a, τ) + ϵ) b(y) dy1186

= J v∗(x̂) + λϵ. (B.5)1187

Otherwise, if the second argument in the above min operator is less than 0, using (B.3) again gives1188

ϕ(x̂) ≤ sup
γ∈[0,a]

[φ (ln(max(ew − γ, ew-∞)), a− γ, τ) + (1− µ)γ − c]1189

≤ sup
γ∈[0,a]

[v∗ (ln(max(ew − γ, ew-∞)), a− γ, τ) + ϵ+ (1− µ)γ − c]1190

= sup
γ∈[0,a]

M(γ)v∗(x̂) + ϵ. (B.6)1191

Combining these two cases (B.5) and (B.6), and letting ϵ→ 0, we have that1192

min

[
ϕτ (x̂)− Lϕ(x̂)− J v∗(x̂)− sup

γ̂∈[0,Cr]

γ̂
(
1− e−wϕw(x̂)− ϕa(x̂)

)
, ϕ(x̂)− sup

γ∈[0,a]

M(γ)v∗(x̂)

]
≤ 0,1193

which implies that1194

(FΩ∞)∗(x̂, ϕ(x̂), Dϕ(x̂), D
2ϕ(x̂),J v∗(x̂),Mv∗(x̂)) ≤ 0. (B.7)1195

� The other cases when Bδ(x̂) ⊂ Ω∞
τ0 , Ω

∞
wmin

, Ω∞
wamin

, Ω∞
wmax

, or Ωamin can be treated similarly.1196

� We then consider a special case when Bδ(x̂) ⊂ Ωin ∪ Ω∞
wmin

and x̂ ∈ {wmin} × (amin, amax] × (0, T ]. By1197

definition of FΩ∞(·) in (3.9), (B.4) becomes1198

min
[
Fwmin(x̂, ϕ(x̂), Dϕ(x̂),Mφ(x̂)), Fin(x̂, ϕ(x̂), Dϕ(x̂), D

2ϕ(x̂),Jφ(x̂),Mφ(x̂))
]
≤ 0.1199

Using the technique in (B.5) and (B.6), we can derive (B.7). All the other cases can be treated similarly.1200

Finally, we can conclude that v is a viscosity subsolution in the sense of Definition B.2.1201

To facilitate our proof of a strong comparison principle in Ωin∪Ωamin
, following [6][Appendix A] and [5, 61, 65],1202

in Definition B.3 below, we rewrite Definition B.2 specifically for the sub-domains Ωin ∪ Ωamin
, without using the1203

envelopes (FΩ∞)∗ and (FΩ∞)∗. From the definition of the operator FΩ∞ , we can deal with the lim inf and lim sup1204

operators in Ωin ∪ Ωamin , which yields the following definition of viscosity solution.1205
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Definition B.3 (Viscosity solution of equation (3.16)). A locally bounded function v ∈ G(Ω∞) is a viscosity1206

subsolution (resp. supersolution) of (3.16) in Ωin ∪ Ωamin
if for all test functions ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) and for all1207

points x̂ ∈ Ωin∪Ωamin
such that (v∗−ϕ) has a local maximum on Ωin∪Ωamin

at x̂ and v∗(x̂) = ϕ(x̂) (resp. (v∗−ϕ)1208

has a local minimum on Ωin ∪ Ωamin
at x̂ and v∗(x̂) = ϕ(x̂)), we have1209

FΩ∞
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J v∗(x̂),Mv∗(x̂)

)
≤ 0, (B.8)1210 (

resp. FΩ∞
(
x̂, ϕ(x̂), Dϕ(x̂), D2ϕ(x̂),J v∗(x̂),Mv∗(x̂)

)
≥ 0,

)
1211

where the operator FΩ∞(·) is defined in (3.9). A locally bounded function v ∈ G(Ω∞) is a viscosity solution in1212

Ωin ∪ Ωamin if it is both a viscosity subsolution and a viscosity supersolution in Ωin ∪ Ωamin .1213

It is straightforward to show that a viscosity solution in Ωin ∪Ωamin
in the sense of Definition B.2 is a viscosity1214

solution in Ωin ∪ Ωamin in the sense of Definition B.3. We will use Definition B.3 to prove a strong comparison1215

principle in Ωin ∪ Ωamin
.1216

B.2 A strong comparison principle1217

Next, we follow [61, Lemma 5.10] to introduce a lemma.1218

Lemma B.1. For the impulse control problem (3.1), there exists a function q ∈ G(Ω∞) ∩ C∞(Ω∞) and a positive1219

function k : Ω∞ → R such that1220

FΩ∞
(
x, q(x), Dq(x), D2q(x),J q(x),Mq(x)

)
≥ k, x ∈ Ωin ∪ Ωamin

. (B.9)1221

Then, for any viscosity supersolution v in the sense of Definition B.3 in Ωin ∪Ωamin
, vm := (1− 1

m )v+ 1
mq, where1222

m ≥ 1, is a viscosity supersolution in the sense of Definition B.3 of1223

FΩ∞
(
x, v(x), Dv(x), D2v(x),J v(x),Mv(x)

)
− k/m = 0, x ∈ Ωin ∪ Ωamin . (B.10)1224

A proof of the above lemma is straightforward, and hence omitted for brevity. For example, we can define a1225

smooth perturbation function q(x) = a+ c/r in Ω∞, with c be the positive fixed cost, and then show that1226

FΩ∞
(
x, q(x), Dq(x), D2q(x),J q(x),Mq(x)

)
≥ c, x ∈ Ωin ∪ Ωamin .1227

Now we can proceed to proving a strong comparison principle in Ωin ∪ Ωamin
.1228

Theorem B.1. Suppose that (i) a locally bounded and u.s.c. function u : Ω∞ → R is a viscosity subsolution in1229

the sense of Definition B.3 in Ωin ∪ Ωamin
, and (ii) a locally bounded and l.s.c. function v : Ω∞ → R is a viscosity1230

supersolution in the sense of Definition B.3 in Ωin ∪ Ωamin , such that1231

u(x) ≤ v(x), ∀ x ∈ Ω∞
out (B.11)1232

u(x) := lim sup
y→x

y∈Ωin∪Ωamin

u(y) ≤ v(x) := lim inf
y→x

y∈Ωin∪Ωamin

v(y), ∀ x ∈ Ωin
τ0 , (B.12)1233

where Ω∞
out := {R \ [wmin, wmax]} × [amin, amax]× (0, T ] and Ωin

τ0 := [wmin, wmax]× [amin, amax]× {0}. Then u ≤ v1234

in Ωin ∪ Ωamin
.1235

Proof. Following [65], we (re)define u and w for x ∈ {wmin, wmax} × [amin, amax]× (0, T ] by1236

u(x) = lim sup
y→x

y∈Ωin∪Ωamin

u(y) and v(x) = lim inf
y→x

y∈Ωin∪Ωamin

v(y). (B.13)1237

From (B.13), we have that u is u.s.c. on Ωin and v is l.s.c. on Ωin, where Ωin is the closure of Ωin, and also the1238

closure of Ωin ∪ Ωamin
. Let q as given in Lemma B.1, and vm := (1− 1

m )v + 1
mq for all m ∈ {1, 2, . . .}. Note that1239

when we impose the operators J and M on u and vm for any x ∈ Ωin ∪ Ωamin , we need to use information from1240

Ω∞
out. Using the condition (B.11), without loss of generality, we set v ≤ q in Ω∞

out, which implies u ≤ vm in these1241

areas.1242

It is sufficient to prove that u− vm ≤ 0 for sufficiently large m. Let m be fixed for the moment. To prove by1243

contradiction, let us firstly assume Q := supx∈Ωin
[u(x)− vm(x)] > 0. Denote Q = u(x̄)−vm(x̄) with x̄ := (w̄, ā, τ̄).1244

If x̄ ∈ Ωin
τ0 , then it contradicts with the condition (B.12).1245
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� Now we consider the supremum Q is approximated from within the sub-domain Ωin, i.e. x̄ is contained1246

in some open subset G ⊂ Ωin with compact closure G. For any two points x := (wx, ax, τx) ∈ G and1247

y := (wy, ay, τy) ∈ G, we define a test function φε(x,y), for any ε > 0, such that1248

φε(x,y) =
1

2ε

∣∣x− y
∣∣2 :=

1

2ε

[
(wx − wy)

2 + (ax − ay)
2 + (τx − τy)

2
]
,1249

and then we define1250

Qε = sup
(x,y)∈G×G

[u(x)− vm(y)− φε(x,y)] .1251

By the definition of u and vm, the maximum must be attained on the compact set G ×G (independent of1252

ε). Choose a point (xε,yε) ∈ G×G where the maximum is attained. Following [22, Lemma 3.1], we obtain1253

that 1
2ε |xε − yε|2 → 0 as ε→ 0. Without loss of generality, we assume that we have chosen a sub-sequence1254

of {xε} and {yε}, converging to the same limit x̄ when ε → 0. By the definition of φε, We obtain that1255

Qε → Q = u(x̄)− vm(x̄) for all limit points x̄ of {xε} and {yε}. Let ε small enough such that xε,yε ∈ Ωin.1256

To ease the notation, we rewrite Mu(x) ≡ supγ∈[0,a]M(γ)u(x) and rewrite the operator Fin(x, v) as1257

Fin(x, v) ≡ min
[
F (x, v(x), Dv(x), D2v(x),J v(x)), v(x)−Mv(x)

]
.1258

Using Lemma B.1, we know vm(yε)−Mvm(yε) ≥ k/m.1259

– If u(xε)−Mu(xε) ≤ 0, by the definition of M, we have for ϵ > 0, there exists γϵ ∈ [0, ā] such that1260

Mu(x̄) ≤ u
(
ln(max(ew̄ − γϵ, e

w-∞)), ā− γϵ, τ̄
)
+ (1− µ)γϵ − c+ ϵ,1261

Mvm(x̄) ≥ vm
(
ln(max(ew̄ − γϵ, e

w-∞)), ā− γϵ, τ̄
)
+ (1− µ)γϵ − c. (B.14)1262

Note that Mu is u.s.c. and Mvm is l.s.c. see [61, Lemma 4.3]. Thus, we derive that1263

Q = lim sup
ε→0

(u(xε)− vm(yε)) ≤ lim sup
ε→0

Mu(xε)− lim inf
ε→0

Mvm(yε)− k/m1264

≤ Mu(x̄)−Mvm(x̄)− k/m1265

≤ Q+ ϵ− k/m, (B.15)1266

which is a contradiction for ϵ sufficiently small, and we use (B.14) in the last inequality.1267

– If u(xε)−Mu(xε) > 0, we need apply Jenson-Ishii Lemma [22, Theorem 3.2].6 To this end, following1268

[22, Section 8], we make use of the parabolic semijets P2,±
Ω u(xε) and their closures P2,±

Ω u(xε). Specif-1269

ically, consider the maximum point (xε,yε) ∈ G × G of (u − vm − φε), for any α > 0, there exists1270

(Dxφε, X) ∈ P2,+

Ω u(xε) and (Dyφε, Y ) ∈ P2,−
Ω vm(yε) such that1271

−3α

(
I 0

0 I

)
≤
(
X 0

0 −Y

)
≤ 3α

(
I −I
−I I

)
, (B.16)1272

and by definition of φε, we obtain Dxφε = −Dyφε = ε−1(xε − yε).1273

It remains to treat (using Lemma B.1 again)1274

F
(
xε, u(xε), ε

−1(xε − yε), X,J u(xε)
)

≤ 0,1275

F
(
yε, vm(yε), ε

−1(xε − yε), Y,J vm(yε)
)

≥ k/m. (B.17)1276

Subtracting the above inequalities yields1277

k/m ≤ F
(
yε, vm(yε), ε

−1(xε − yε), Y,J vm(yε)
)
− F

(
xε, u(xε), ε

−1(xε − yε), X,J u(xε)
)

1278

≤ (r + λ) (vm(yε)− u(xε)) + (J u(xε)− J vm(yε)) ,1279

where we cancel out the derivative terms. Next, letting ε→ 0 yields1280

k/m ≤ r (vm(x̄)− u(x̄)) + λ

∫ ∞

−∞

[
(u(w̄ + y, ā, τ̄)− vm(w̄ + y, w̄, τ̄))1281

− (u(x̄)− vm(x̄))
]
b(y) dy1282

≤ −rQ, (B.18)1283

which yields a contradiction.1284

6In [61], a non-local Jenson-Ishii Lemma (see Corollary 5.13) is applied there, due to the complex structure of the jump

operator. For our case, the treatment of the linear jump operator can be referred to [2].

40



Similarly, we can construct a contradiction when the supremum Q is approximated from within the sub-1285

domain Ωamin
.1286

� Next we consider x̄ ∈ {wmin, wmax} × [amin, amax] × (0, T ]. From (B.13), there exists a sequence (denoted1287

by {zi = (wi
z, a

i
z, τ

i
z); i = 1, 2, . . .}) in some open subset of Ωin ∪ Ωamin

(still denoted by G ⊂ Ωin ∪ Ωamin
1288

with compact closure G) converging to x̄, such that vm(zi) tends to vm(x̄) when i goes to infinity. We only1289

consider the case when G ⊂ Ωin below, and the other case when G ⊂ Ωamin can be handled similarly. If1290

x̄ ∈ {wmax}× [amin, amax]×(0, T ] (the case when x̄ ∈ {wmin}× [amin, amax]×(0, T ] can be handled similarly),1291

we use the technique in [65] to handle the boundary area. Let εi = |zi − x̄|, and set1292

φi(x,y) =
1

2εi

∣∣x− y
∣∣2 + 1

4

(
d(y)

d(zi)
− 1

)4

+
1

4

∣∣x− x̄
∣∣4,1293

where d(y) denotes the distance from y to the boundary area, i.e. d(y) = wmax − wy. Then we define1294

Qi = sup
(x,y)∈G×G

[u(x)− vm(y)− φi(x,y)] .1295

There exists (xi,yi) ∈ G × G such that Qi = u(xi) − vm(yi) − φi(xi,yi). Denote xi = (wi
x, a

i
x, τ

i
x) and1296

yi = (wi
y, a

i
y, τ

i
y). Moreover, there exists a subsequence of (xi,yi), still denoted by (xi,yi), converging to1297

(x,y) ∈ G×G. When i goes to infinity, we have1298

Qi ≥ u(x̄)− vm(zi)−
εi
2

→ u(x̄)− vm(x̄) = Q,1299

which yields 1
2εi

∣∣xi − yi

∣∣2 is bounded and x = y. On the other hand, we also have1300

0 ≤ lim sup
i→∞

φi(xi,yi) = lim sup
i→∞

[u(xi)− vm(yi)−Qi] ≤ u(x)− vm(x)−Q ≤ 0.1301

Thus, x = x̄, 1
2εi

∣∣xi − yi

∣∣2 → 0, and d(yi) ≥ d(zi)/2 > 0 for i sufficiently large. In particular, d(yi) =1302

wmax − wi
y > 0, and so yi ∈ Ωin. When i sufficiently large, we can also assume xi,yi ∈ G. The remaining1303

proof is similar with the previous case when x̄ is attained in the sub-domain Ωin. We present some details1304

for the readers’ convenience.1305

- We can still have1306

Q = lim sup
i→∞

(u(xi)− vm(yi)) ≤ lim sup
i→∞

Mu(xi)− lim inf
i→∞

Mvm(yi)− k/m1307

≤ Mu(x̄)−Mvm(x̄)− k/m,1308

which is a contradiction according to (B.15).1309

- Now we can apply Jenson-Ishii Lemma. Consider the maximum point (xi,yi) ∈ G×G of (u−vm−φi),1310

for any α > 0, there exists (Dxφi, X) ∈ P2,+

Ω u(xi) and (Dyφi, Y ) ∈ P2,−
Ω vm(yi) such that (B.16) holds,1311

and by definition of φi, we obtain1312

Dxφi =
(xi − yi)

εi
+ (xi − x̄)

3
and Dyφi = − (xi − yi)

εi
− 1w

d(zi)

(
d(yi)

d(zi)
− 1

)3

,1313

with 1w := (1, 0, 0). Similarly with (B.17), we can have1314

F

(
xi, u(xi),

(xi − yi)

εi
+ (xi − x̄)

3
, X,J u(xi)

)
≤ 0,1315

F

(
yi, vm(yi),

(xi − yi)

εi
+

1w

d(zi)

(
d(yi)

d(zi)
− 1

)3

, Y,J vm(yi)

)
≥ k/m.1316
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Similarly with (B.18), subtracting the above inequalities, and letting i→ ∞ can derive1317

k/m ≤ (r + λ) (vm(yi)− u(xi)) + (J u(xi)− J vm(yi))1318

+

(
r − σ2

2
− λκ− β

)(wi
x − w̄

)3 − 1

wmax − wi
z

(
wmax − wi

y

wmax − wi
z

− 1

)3
1319

+ sup
γ̂∈[0,Cr]

∣∣∣∣∣∣γ̂ (aix − ā
)3

+ γ̂

(wi
x − w̄

)3 − 1

wmax − wi
z

(
wmax − wi

y

wmax − wi
z

− 1

)3
∣∣∣∣∣∣1320

≤ (r + λ) (vm(x̄)− u(x̄)) + (J u(x̄)− J vm(x̄)) (since i→ ∞)1321

≤ r (vm(x̄)− u(x̄)) + λ

∫ ∞

−∞

[
(u(w̄ + y, ā, τ̄)− vm(w̄ + y, w̄, τ̄))1322

− (u(x̄)− vm(x̄))
]
b(y) dy1323

≤ −rQ,1324

which yields a contradiction.1325

Combining all these cases concludes the proof.1326

By combining the previous results, we finally obtain an characterization of the numerical solutions.1327

Corollary B.1. For the functions v and v, defined in (5.65), we have v ≤ v in Ωin ∪ Ωamin
.1328

Proof. In the proof of Theorem 5.1, we have shown that v (resp. v) is a viscosity subsolution (resp. supersolution)1329

of equation (3.16) in the sense of Definition B.1. By Proposition B.1, v (resp. v) is also a viscosity subsolution1330

(resp. supersolution) in the sense of Definition B.3. Here, the region of definition is Ωin ∪ Ωamin .1331

To apply Theorem B.1, we only need to show that v (x) and v (x) satisfy condition (B.12) for all x ∈ Ωin
τ0 ,1332

noting condition (B.11) is trivially satisfied given the definition (5.65). We describe the main steps of this proof1333

below.1334

� Step 1 We prove a strong comparison result for an associated QVI. Note that for w ∈ [wmin, wmax],1335

max(ew, (1− µ)a− c) ∧ ew∞ trivially becomes max(ew, (1− µ)a− c). We ignore ew∞ for brevity.1336

– Step 1.1 Recalling Ωin
τ0 := [wmin, wmax]× [amin, amax]× {0}, we consider the QVI71337

min

[
v −max(ew, (1− µ)a− c), v − sup

γ∈[0,a]

M(γ)v

]
= 0, x ∈ Ωin

τ0 . (B.19)1338

We then define the viscosity solution of the QVI (B.19) in the sense of Definition B.3 below8.1339

Definition B.4 (Viscosity solution of (B.19)). A locally bounded function v ∈ G(Ω∞) is a viscosity1340

subsolution (resp. supersolution) of (B.19) in Ωin
τ0 if for all test function ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) and for1341

all points x̂ = (ŵ, â, 0) ∈ Ωin
τ0 such that (v∗ − ϕ) has a local maximum on Ωin

τ0 at x̂ and v∗(x̂) = ϕ(x̂)1342

(resp. (v∗ − ϕ) has a local minimum on Ωin
τ0 at x̂ and v∗(x̂) = ϕ(x̂)), we have1343

min

[
ϕ(x̂)−max(eŵ, (1− µ)â− c), ϕ(x̂)− sup

γ∈[0,a]

M(γ)v∗(x̂)

]
≤ 0,1344

(
resp. min

[
ϕ(x̂)−max(eŵ, (1− µ)â− c), ϕ(x̂)− sup

γ∈[0,a]

M(γ)v∗(x̂)

]
≥ 0.

)
1345

A locally bounded function v ∈ G(Ω∞) is a viscosity solution in Ωin
τ0 if it is both a viscosity subsolution1346

and a viscosity supersolution in Ωin
τ0 .1347

– Step 1.2 We prove a strong comparison principle for (B.19)9.1348

This can be done using similar arguments in Theorem B.1. (Also see [61, Theorem 5.9].) We can then1349

conclude that, if u(x) (resp. v(x)) is a viscosity subsolution (resp. supersolution) of equation (B.19) in1350

the sense of Definition B.4, then u(x) ≤ v(x) for all x ∈ Ωin
τ0 .1351

7When a = amin = 0, this QVI trivially becomes v − ew = 0, which can be viewed as a special case.
8For the QVI (B.19), it is possible to fully remove the dependence on τ in the definition of viscosity solution. However,

to facilitate the proofs for Step 2, we still require that v ∈ G(Ω∞) in Definition B.4.
9Note that this result requires a similar condition to (B.11), which is satisfied by the function v and v in Step 3.
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� Step 2 We prove that v(x) and v(x), defined in (5.65), are viscosity subsolution and supersolution of1352

(B.19) in the sense of Definition B.4, respectively. We will provide details for Step 2 below.1353

� Step 3 By Step 2 and Step 3, we can conclude that v(x) ≤ v(x) for all x ∈ Ωin
τ0 . This result shows that1354

v (x) and v (x) satisfy condition (B.12) in Theorem B.1. Therefore, applying Theorem B.1 gives the desired1355

result v (x) ≤ v (x), ∀x ∈ Ωin ∪ Ωamin
.1356

Below, we provide details for Step 2. By definition (5.65), v∗(x) = v(x) and v∗(x) = v(x), so we will work with1357

v(x) and v(x) instead of the envelopes.1358

� Step 2.1: Using Theorem 5.1 and the equivalence between Definition B.1 and Definition B.2, we have v(x)1359

(resp. v(x)) is a viscosity subsolution (resp. supersolution) of equation (3.16) in the sense of Definition B.21360

for all x ∈ Ωin ⊂ Ω∞.1361

� Step 2.2 (v(x) is a subsolution of (B.19)): Let ϕ ∈ G(Ω∞) ∩ C∞(Ω∞) and x̂ = (ŵ, â, 0) ∈ Ωin
τ0 be1362

a point at which (v − ϕ)(x̂) is a local maximum and v(x̂) = ϕ(x̂). (We only consider the case when1363

x̂ ∈ (wmin, wmax)× (amin, amax]× {0} below, and the other cases can be treated similarly.)1364

Define φ(w, a, τ) := ϕ(w, a, τ) + Cτ , where C > 0 is a constant to be chosen later. Since φ(x) ≥ ϕ(x)1365

for all x ∈ Ω∞, and φ(x) = ϕ(x) for all x ∈ Ωin
τ0 , it follows that (v − φ)(x̂) is also a local maximum, and1366

v(x̂) = φ(x̂). Thus, by Step 2.1, we have1367

0 ≥ (FΩ∞)∗
(
x̂, φ(x̂), Dφ(x̂), D2φ(x̂),J v(x̂),Mv(x̂)

)
1368

= min

[
ϕτ (x̂) + C − Lϕ(x̂)− J v(x̂)− sup

γ̂∈[0,Cr]

γ̂
(
1− e−ŵϕw(x̂)− ϕa(x̂)

)
1{â>0},1369

ϕ(x̂)− sup
γ∈[0,a]

M(γ)v(x̂), ϕ(x̂)−max
(
eŵ, (1− µ)â− c

)]
.1370

By choosing C large enough, we have1371

min

[
ϕ(x̂)−max(eŵ, (1− µ)â− c), ϕ(x̂)− sup

γ∈[0,a]

M(γ)v(x̂)

]
≤ 0,1372

which implies that v(x) is a viscosity subsolution of (B.19) in the sense of Definition B.4 in Ωin
τ0 .1373

� Step 2.3 (v(x) is a supersolution of (B.19)): Similarly, let ϕ ∈ G(Ω∞)∩ C∞(Ω∞) and x̂ = (ŵ, â, 0) ∈ Ωin
τ01374

be a point at which (v − ϕ)(x̂) is a local minimum and v(x̂) = ϕ(x̂). (We only consider the case when1375

x̂ ∈ (wmin, wmax)× (amin, amax]× {0} below, and the other cases can be treated similarly.)1376

Define φ(w, a, τ) := ϕ(w, a, τ)−Cτ , where C > 0 is a constant to be chosen later. Since φ(x) ≤ ϕ(x) for all1377

x ∈ Ω∞, and φ(x) = ϕ(x) for all x ∈ Ωin
τ0 , it follows that (v−φ)(x̂) is also a local minimum, and v(x̂) = φ(x̂).1378

Thus, by Step 2.1, we have1379

0 ≤ (FΩ∞)
∗ (

x̂, φ(x̂), Dφ(x̂), D2φ(x̂),J v(x̂),Mv(x̂)
)

1380

= max

[
min

[
ϕτ (x̂)− C − Lϕ(x̂)− J v(x̂)− sup

γ̂∈[0,Cr]

γ̂
(
1− e−ŵϕw(x̂)− ϕa(x̂)

)
1{â>0},1381

ϕ(x̂)− sup
γ∈[0,a]

M(γ)v(x̂)

]
, ϕ(x̂)−max

(
eŵ, (1− µ)â− c

)]
.1382

By choosing C large enough, we have that1383

ϕ(x̂)−max
(
eŵ, (1− µ)â− c

)
≥ 0. (B.20)1384

By definition of v(x̂), we have v(x̂) ≤ max
(
eŵ, (1− µ)â− c

)
. By the definition of M, we also have1385

sup
γ∈[0,a]

M(γ)v(x̂) ≤ sup
γ∈[0,a]

M(γ)max
(
eŵ, (1− µ)â− c

)
≤ max

(
eŵ, (1− µ)â− c

)
,1386

which yields that1387

ϕ(x̂)− sup
γ∈[0,a]

M(γ)v(x̂) ≥ ϕ−max
(
eŵ, (1− µ)â− c

)
≥ 0. (B.21)1388
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Combining (B.20) and (B.21), we have that1389

min

[
ϕ(x̂)−max(eŵ, (1− µ)â− c), ϕ(x̂)− sup

γ∈[0,a]

M(γ)v(x̂)

]
≥ 0,1390

which implies that v(x) is a viscosity supersolution of (B.19) in the sense of Definition B.4 in Ωin
τ0 .1391

1392
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