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Abstract

It is well known that any elliptic integral can be transformed into a linear combi-
nation of elementary functions and Legendre’s three Elliptic functions. Methods for
transforming these integrals to the Legendre form are described in numerous papers
and textbooks. However, when it comes to actually designing and implementing
such a reduction algorithm the existing methods require significant modification
before they can be used in practical problems. As an example, in all cases these
algorithms require the need for computing the roots of polynomials of arbitrary
degree. Symbolic root-solving either fails or produces expressions for the roots that
are unwieldy.

In this paper we describe two methods for reducing elliptic integrals to their
Legendre normal form in a computer algebra system. In both approaches presented
here, the factorization of the polynomials are delayed and an exact, symbolic closed
form solution is computed. These exact forms can then be used for numerical
evaluation to arbitrary precision using such methods as the AGM algorithm.

Key words: Legendre Normal Form, Elliptic Integral.
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1 Introduction

Let

E :=
∫ b

a
R(x, y)dx (1)

with R(x, y) ∈ K(x, y) a rational polynomial in x and y over a field K and where y2 ∈ K[x]
is a polynomial in x over K. The field K is assumed to be a subfield of the real numbers.
We are interested in closed form solutions for such integrals in the case when y2 has degree
3 or 4, that is, for the case of elliptic integrals.

Liouville’s Principle (see for example [16, 17]) states that if the integral of an ele-
mentary function (that is a function made up of exponentials, logarithms and algebraics)
can be expressed in closed form as an elementary function, then it can be expressed in a
form containing only those exponential, logarithmic and algebraic quantities found in the
integrand and logarithms of those quantities. This is the case, for example, when y2 has
degree 1 or 2. Elliptic integrals, however, are non-elementary. In order to describe a closed
form solution of an integral that having the form (1), we must introduce three additional
non-elementary quantities. Legendre determined one possible choice for these quantities
by showing that any elliptic integral could be expressed in terms of three canonical elliptic
integrals. These are Legendre’s normal integrals of the first, second and third kinds:

F (x, k) =
∫ x
0

1√
(1−k2t2)(1−t2)

dt,

E(x, k) =
∫ x
0

√
1−k2t2√
1−t2 dt,

Π(x, n, k) =
∫ x
0

1
1−nx2

√
1−k2t2√
1−t2 dt.

It can be shown that these integrals are not elementary [12], [17, page 35–37]. However,
there are cases where some integrals that appear to have the form (1) are pseudo-elliptic
and degenerate to a form that can be expressed in terms of elementary functions.

Mathematical algorithms for converting an elliptic integral to a closed form solution in
terms of Legendre’s elliptic integrals have been known since the last century. Our interest
comes from the desire to design and implement such an algorithm in a modern computer
algebra system. Such systems allow both symbolic and numeric computation. In the case
of numerical computation, the systems allow computations to arbitrary precisions. In
addition, these systems allow for exact numerical computation over such domains as the
rational numbers along with algebraic extensions of the rationals.

Ng and Polajnar [14] studied methods based on the classical approaches of Legendre,
Jacobi and Weierstrass along with a more recent approach by Carlson [8, 9] based on
hypergeometric functions. Their goal was the implementation to a normal form in the
system Macsyma. In our case, we have chosen to reduce our integrals to Legendre Normal
form. This form always exists, is well known and is easy to use for numerical evaluation
once the form has been found. Our methods can also be used to implement reductions to
alternate normal forms, in particular, to the Jacobi and Weierstrass forms.

In this paper we present and compare three algorithms for computing a Legendre
normal form of an elliptic integral. The first is one described in most classical texts on
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the subject. The second algorithm has some significant improvements and is the algorithm
that we have used in versions 3 and 4 of the MAPLE computer algebra system. The final
algorithm will be the one in use in versions of MAPLE after release 4.

2 Design Goals

In any approach to computation that includes both design and implementation it is useful
to list the goals that should be ideally met in a practical algorithm. In our case our goals
are:

1: Numerical Accuracy

We can view the reduction to Legendre normal form as the first step in a hybrid sym-
bolic/numeric algorithm for numerical approximation of elliptic integrals. Indeed,
one of the main uses of a Legendre normal form is the ability to get accurate numer-
ical approximations of such integrals. Direct methods for numerical approximation
of elliptic integrals using traditional methods such as quadrature are limited because
of the potential poles of the integrand. On the other hand, the Legendre elliptic
integrals of the first, second and third kinds allow for efficient numerical evaluation
over the complex plane. These methods, some based on the Arithmetic Geometric
Mean (AGM) algorithm, are discussed in the articles by Bulrisch [3, 4, 6, 5].

2: Efficient Conversion to Normal Form

While this goal may be considered to be obvious for most readers, the methods for
achieving this are somewhat unique in the symbolic/numeric environments found
in computer algebra systems. In this environment efficiency is rarely measured by
the number of numerical operations. In a computer algebra system the cost of each
numerical operation is not constant, as is the case in environments supporting only
floating point operations, since individual numbers can vary greatly in size. In this
case, one wishes to reduce the size of coefficients appearing in intermediate computa-
tions. In addition, if the need for algebraic numbers are required, then the algebraic
extensions should be as simple as possible. For example, arithmetic operations in

the domain Q(
√

2) are considerably simpler than in the domain Q(

√
2 +

√
3 +
√

7).

3: Simple Final Answers

The computation of the Legendre normal form is only unique up to a Landen trans-
form. As such there are many choices for the final answer. Clearly it is best to try
for the simplest possible answer that can be found. This is also very important for
design goal one, since simpler expressions are less prone to numerical inaccuracies
when individually approximated and then combined. In addition, simply using or
obtaining intuition from the forms is best done with the simplest form possible. In
this case one can use the measure that elementary answers are simpler than non-
elementary answer, non-elementary answers should have either the fewest possible
Legendre integrals or else Legendre functions having the simplest arguments if pos-
sible. As an example, using the algorithm from section 5 as implemented in MAPLE
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gives the answer

∫ 1
2

0

√
1 + x4

1− x4
dx = −

√
2

4
arctan(

√
17
√

2

4
) +

√
2

8
ln(

4
√

17
√

2

9
+

25

9
) +

π
√

2

8
.

The classical algorithm of the next section and the algorithm from section 4 produce
an answer having on the order of approximately 100 lines of output. In both cases
the answers are equivalent to that given above, but any recognizable structure or
form is lost.

4: Answers for Symbolic Input

Texts on elliptic integration often give a large set of tables for results of normal form
computations of elliptic integrals. These texts rarely use individual values for the
coefficients of y2. Rather the tables have input entries of the form

∫ u

a

x2√
(x− a)(x− b)(x− c)(x− d)

dx

with qualifications such as for example a < b < u ≤ c < d, that is, integrands with
symbolic data as input. One of the uses of software for reduction of elliptic integrals
to normal form is to provide examples for input entries of a form similar to the above
but which cannot be found in existing tables. Since there are computer algebra
systems which allow for adding assumptions to variables, any practical algorithm
should also manipulate elliptic integrals having symbolic entries.

The algorithms presented in the next three sections are all mathematically correct.
However, only the last algorithm successful satisfies goals 1 to 4.

3 Classical Algorithm

Every integral of the form (1) can be rationalized into the form

∫
R(x, y)dx =

∫ r1(x) + r2(x)y

r3(x) + r4(x)y
=
∫
R0(x)dx+

∫ R1(x)

y
dx (2)

where R0(x) and R1(x) are rational functions. Since the integral of a rational function
always has a closed form solution in terms of elementary functions [12], it only remains

to determine closed form solutions of the form
∫ R1(x)

y
dx with R1(x) ∈ K(x) a rational

function.

If
y2 = a0x

4 + a1x
3 + a2x

2 + a3x+ a4
= b0(x− c)4 + b1(x− c)3 + b2(x− c)2 + b3(x− c) + b4

where c is any constant, then the integrals

Is =
∫ xs

y
dx and Js =

∫ 1

(x− c)sy
dx
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satisfy the recurrence relations

xsy = (s+ 2)a0Is+3 +
1

2
a1(2s+ 3)Is+2 + a2(s+ 1)Is+1 +

1

2
a3(2s+ 1)Is + sa4Is−1 (3)

and

1

(x− c)(s−1)y
= (3−s)b0Js−4 +

b1
2

(5−2s)Js−3 +b2(2−s)Js−2 +
b3
2

(1−2s)Js−1−(s−1)b4Js

(4)
for s = 0, 1, . . .. Decomposing the rational function R1(x) into a full partial fraction
expansion (that is, with linear factors) and using the above two recurrence relations
shows that such integrals can always be written in terms of a combination of rational
expressions of x and y along with the integrals∫ 1

y
dx,

∫ x

y
dx,

∫ x2

y
dx and

∫ 1

(x− c)y
dx.

Classical algorithms all follow this central idea in one form or another - combine
full partial fraction with the recurrences (3) and (4) to reduce an elliptic integral to
normal form. One form of the classical algorithm that is described in numerous texts
[1, 7, 10, 13, 15] is given as follows:

Classical Algorithm

Input: An expression of the form
∫ b
a
R1(x)
y
dx with y2 of degree 3 or 4.

Output: A Legendre Normal Form for the elliptic integral.

1: Remove odd terms in radicand (c.f. [1])

Determine an invertible transformation of the form

x =
rt+ s

ut+ v
such that

dx

y
= g

dt

z
(5)

where z2 = a0(1±mt2)(1±mt2) and a0,m, n are all real quantities. The particular
transformation components are determined from the root structure of y2.

This reduces the problem to converting∫ R1(x)

y
dx =

∫ R2(t)

z
dt,

with R2(t) a rational function of t, to normal form.

2: Remove Odd Terms

Writing R2(t) = tR3(t
2) + R4(t

2) with R3(t
2) and R4(t

2) rational functions of t2,
gives ∫ R2(t)

z
dt =

1

2

∫ R3(u)√
a0(1±mu)(1± nu)

du+
∫ R4(t

2)

z
dt

The second integral uses the substitution u = t2 and can further be given in terms
of elementary functions via trigonometric substitutions.
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3: Final Forms for Square Root (c.f. [7] )

Apply an invertible transformation of the form

t2 =
rx2 + s

ux2 + v
(6)

which converts the component

∫ R4(t
2)√

a0(1±mt2) · (1± nt2)
dt

into a sum of one or more integrals of the form

∫ R5(x
2)√

(1− x2)(1− k2x2)
dx.

with k2 real and 0 < k2 < 1 for each such summand. In each case, the transformation
(6) depends both on the form of the terms under the square root a0(1±mt2)·(1±nt2)
and the limits of integration. A complete description of these transforms can be
found in numerous texts (c.f.[7] ).

4: Full Partial Fraction Decomposition

For each integral of the form

∫ R5(x
2)√

(1− x2) · (1− k2x2)
dx.

let

R5(x) = p(x) +
n∑
i=1

i∑
j=1

cij
(x− ri)j

be a full partial fraction decomposition of R5(x). Then (with w2 = (1 − x2) · (1 −
k2x2)) ∫ R5(x

2)

w
dx =

∫ p(x2)

w
dx+

n∑
i=1

i∑
j=1

cij

∫ 1

(x2 − ri)jw
dx

5: Final Forms

Using recurrence (3), reduces
∫ p(x2)

w
dx to Legendre elliptic integrals of the first and

second kinds. Using recurrence (4), reduces each
∫ 1

(x2−ri)jwdx to a combination of
Legendre’s integrals of the first, second and third kinds along with some elementary
terms. This gives a normal form for elliptic integrals.

Note that one can alter the order of the steps of the classical algorithm and still
compute a normal form. For example many algorithms first compute the reduction to the
four basic forms I0, I1, I2 and Jα, then eliminate the odd parts, the transform to modulus
and characteristic form.
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4 Algorithm 1

In this section we present a slightly altered algorithm for reduction to normal form. This
algorithm improves the algorithm of the previous section by first using Hermite reduction
to reduce the problem to the case where the denominator of the rational function is
square-free, that is, to the case where there are no multiple poles. In addition, the new
algorithm also addresses an obvious limitation of the classical algorithm, namely the need
(in step 4) for a a full partial fraction decomposition of a rational function. This problem
is handled by the use of implicit full partial fraction decompositions which avoids the need
for splitting fields. It has the effect of delaying any need for explicit factorizations.

4.1 Hermite Reduction

If R(x, y) ∈ K(x, y), then Hermite reduction computes∫
R(x, y)dx = A(x, y) +

∫ p(x)

y
dx+

∫ R1(x)

y
dx

where A(x, y) ∈ K(x, y), p(x) ∈ K[x] is a polynomial and R1(x) ∈ K(x) is a rational
function having a numerator of smaller degree than its denominator and having a de-
nominator without any repeated factors, that is, having a square-free denominator. The
important point is that Hermite reduction is done using only polynomial operations over
the original domain of coefficients K (such as polynomial division or gcds in K[x]). In
the case of ∫ R(x)√

x4 + 3x2 + 2
dx (7)

where

R(x) =
14x12 + 4x10 + 149x8 − 228x6 + 102x4 − 93x2

(x6 + x4 − 3x2)2
(8)

Hermite reduction gives

∫ R(x)

y
dx =

(−2287
13

x3 + 2971
13

x)y

x4 + x2 − 3
+
∫ 2287

13
x2 + 5258

13

y
dx+

∫ −5912
13

x2 + 9299
13

(x4 + x2 − 3)y
dx. (9)

There is no polynomial factorization involved in the above computation.

By (2) we can assume that our integrand is of the form R(x)
y

with R(x) ∈ K(x).

Let R(x) = a(x)
b(x)

with a(x), b(x) ∈ K[x] and gcd(a(x), b(x)) = 1 and let b(x) =

b1(x)b2(x)2 · · · bk(x)k be the square-free decomposition of b(x). A square-free factoriza-
tion separates repeated components of a polynomial. It does not require polynomial
factorization, rather uses only polynomial gcd operations (c.f. [12]). We can further sep-
arate our factors, again using only polynomial operations, into bi(x) = ci(x) · ĉi(x) where
gcd(ci(x), z(x)) = 1 and gcd(ĉi(x), z(x)) = ĉi(x) with z(x) = y2 ∈ K[x]. A partial fraction
decomposition then gives

R(x) =
k∑
i=1

i∑
j=1

aij
ci(x)j

+
k∑
i=1

i∑
j=1

âij
ĉi(x)j
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so ∫ R(x)

y
dx =

k∑
i=1

i∑
j=1

∫ aij
ci(x)jy

dx+
k∑
i=1

i∑
j=1

∫ âij
ĉi(x)jy

dx.

In all cases the above computations, from square-free factorization to partial fraction
decomposition, are done using the Extended Euclidean Algorithm in K[x]. Hermite re-
duction then relies on the recurrences∫ a(x)

c(x)ry
dx =

−v(x)y

(r − 1)c(x)(r−1)
+
∫ â(x)

c(x)(r−1)y
dx

with â(x) = u(x) + 1
2(r+1)

(2v′(x)y2 + v(x)z′(x)) and where u(x) and v(x) are solutions to
the linear diophantine equation

a(x) = c(x)u(x) + z(x)c′(x)v(x)

which always exists since gcd(c(x), z(x)c′(x)) = 1 and (setting w(x) = z(x)/ĉ(x))∫ â(x)

ĉ(x)ry
dx =

v̂(x)y

ĉ(x)r
+
∫ û(x)− v̂′(x)w(x)

ĉ(x)(r−1)y
dx

where û(x) and v̂(x) are solutions to the linear diophantine equation

â(x) = ĉ(x)û(x) + (z′(x)/2− rw(x)ĉ′(x))v̂(x)

Again this always exists since gcd(ĉ(x), z′(x)/2− rw(x)ĉ′(x))) = 1.

4.2 Implicit Full Partial Fraction Decompositions

Classical algorithms, as presented in the previous section, have a number of limitations
when actually implemented in a computer algebra environment. The most obvious prob-
lem is that of step 4, the reduction of the rational function to a full partial fraction
decomposition. At first glance there are two options. We can factor the denominator of
the rational function into numerically approximate linear terms. This has two significant
problems. The first problem is that there will still be a number of steps (for example,
using recurrence (4)) which will require further arithmetic with the approximate roots.
This introduces unwanted numerical inaccuracies into the reduction to normal form com-
putation. A second problem is that the numerical root approximation will be done at the
present numerical precision setting. If a second numerical precision is specified, say for
complete numerical evaluation of an elliptic integral, then the entire reduction to normal
form will need to be redone.

A second option is to factor the denominators into linear factors. If this is not possible
in the base field K then we use splitting fields of polynomials. In most cases this becomes
highly impractical. For example, the integral∫ −90x16 − 96x12 + 96x8 + 90x4

(9x20 + 51x16 + 109x12 − 3x10 + 109x8 + 51x4 + 9)
√
x4 + 1

dx

would require determining the splitting field of a polynomial of degree 20, a field that could
possibly require 20! = 2, 432, 902, 008, 176, 640, 000 variables to represent. Even when it
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is possible to obtain a full linear factorization the results are often unwieldy, difficult and
inefficient to use. For example, the rational function R(x) appearing in example (7) has
a denominator with linear roots given by0,

√
−2 + 2

√
13

2
,−

√
−2 + 2

√
13

2
,

√
−2− 2

√
13

2
,−

√
−2− 2

√
13

2


all lying in the field Q(u, v) with u2 = 13, v2 = 2− 2u. The full partial fraction decompo-
sition of R(x) is then computed over this field extension. It has 10 terms, including 8 of
a form such as

− 1

1014

√
−2 + 2

√
13
(
−10829 + 6823

√
13
)

2x+
√
−2 + 2

√
13

.

Applying the remaining steps of the classical algorithm to each component involves sig-
nificant computation with nested square roots.

By the previous subsection we can consider the problem to have already been reduced
to the case where there are no repeated poles, that is, we now only have the problem
of reducing

∫ R1(x)
y
dx where the denominator of R1(x) is square-free. In this case we

need a full partial fraction decomposition, something which appears to destroy all the
computational gains made by Hermite reduction. We overcome this problem by using
an implicit rather than an explicit full partial fraction expansion [2]. An implicit partial
fraction decomposition for a rational function R1(x) having no multiple poles returns an
expression of the form

R1(x) =
A(x)

B(x)
=

∑
B(α)=0

a(α)

x− α

where a(α) is a polynomial in the indeterminant α. In the square-free case, which is our
main interest here, the a(α) are easily found by a(α) = A(α)/B′(α). This is computed
by solving the linear diophantine equation A(α) = B(α)U(α) + B′(α)V (α) using the
Extended Euclidean Algorithm (a solution always exists since B(α) is square-free) and
then setting

V (α) = A(α) · (B′(α))−1 mod B(α).

For example, the remaining rational function from (9) reduces to implicit form via

−5912
13
x2 + 9299

13

x4 + x2 − 3
=

∑
α|α4+α2−3=0

−26173
1014

α3 + 47357
1014

α

x− α
. (10)

4.3 The Algorithm

Using the implicit full partial reduction reduces the problem to one of computing the
normal form of expressions of the form∫ b

a

1

y
dx,

∫ b

a

x

y
dx,

∫ b

a

x2

y
dx,

∫ b

a

1

(x− α)y
dx

where α is either an indeterminant or a rational number. The algorithm then keeps track
of the remaining reductions for these 4 cases. The reductions follow the same transforms
as used in the classical algorithm.
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Algorithm 1:

Input:
∫ b
a R(x, y)dx with R(x, y) ∈ K(x, y) and y2 ∈ K[x] of degree 3 or 4.

Output: A Legendre Normal Form for
∫ b
a R(x, y)dx.

1: Use (2) to rationalize the integrand and Hermite reduction to reduce the problem

to determining the normal form for an integral of the form
∫ b
a
R1(x)
y
dx with R1(x) a

rational function having a square-free denominator.

2: Implicit Full Partial Fraction Decomposition

Determine a full partial fraction decomposition of R1(x). This decomposition has
explicit roots (case where α ∈ K) and implicit roots.

3: Reduce Polynomial Parts

Use recurrence (3) to reduce all polynomial expressions to ones of degree at most 2,

At this stage it remains to convert

I0 =
∫ b

a

1

y
dx, I1 =

∫ b

a

x

y
dx, I2 =

∫ b

a

x2

y
dx, and Jα =

∫ b

a

1

(x− α)y
dx,

into their normal forms. We treat α as an indeterminant. The remaining conversion
to normal form is then done as follows:

4: Remove odd terms in radicand

Determine an invertible transformation of the form (5) such that

1

y
dx =

c

z
dt

with c a constant, z2 = a0(1 ±mt2)(1 ±mt2) and a0,m, n all real quantities. This
converts

I0 = c
∫ 1

z
dt, I1 = c

∫ (rt+ s)

(ut+ v)z
dt,

I2 = c
∫ (rt+ s)2

(ut+ v)2z
dt, Jα = c

∫ (r̄(α)t+ s̄(α))

(ū(α)t+ v̄(α))z
dt.

5: Remove Odd Terms

For each of I1, I2 and Jα separate into odd and even parts. The odd parts are handled
via the u = t2 substitution and result in elementary answers. The remaining even
rational functions in I1, I2 and Jα have numerator and denominator degrees at most
(1, 1), (2, 2) and (1, 1), respectively, in t2.

6: Final Forms for Square Root

Apply an invertible transformation of the form (6) which converts the even compo-
nents of I0, I1, I2 and Jα into ones of the form∫ b

a

R(x2)

w
dx or

∫ b

a

S(x2, α)

w
dx
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with w2 = (1−x2)(1−k2x2), R(x2) a rational function in x2 of with numerator and
denominator degrees at most 2 in x2 and S(x2, α) a rational function in x2 of with
numerator and denominator degrees at most 1 in x2.

7: Final Normal Form

Convert the integrals of the form∫ (a4x
4 + a2x

2 + a0)

(b4x4 + b2x2 + b0)w
dx and

∫ (a2(α)x2 + a0(α))

(b2(α)x2 + b0(α))w
dx

into their normal forms. Special cases occur when 0, 1 or 1/k is a root of the
denominator. The remaining cases are handled with a full partial factorization, a
simple problem in these cases because of the low degrees of the rational functions.

As an example, consider R(x) and y given previously by (7) and (8). Hermite reduc-
tion gives (9) while step 4 is the trivial substitution x = t. We separate odd and even
parts of Jα by

Jα =
∫ 1

0

A(α)x

(x2 − α2)y
dx+

∫ 1

0

A(α)α

(x− α2)y
dx

and determine that∫ 1

0

A(α)x

(x2 − α2)y
dx =

A(α)√
α4 + 1

· (−arctanh(
(1 + α2

√
2
√
α4 + 1

) + arctanh(
1√

α4 + 1
))

with A(α) = −26173α3 + 47357α. Therefore the complete odd part of the integral is the
sum of such terms

∑
α|α4+α2−3=0

A(α)√
α4 + 1

· (−arctanh(
1 + α2

√
2
√
α4 + 1

) + arctanh(
1√

α4 + 1
))

Step 5 is the substitution

t2 =
x2

x2 + 1

which transforms I2 according to

The final answer is given by∫ 1
0
R(x)
y
dx = −684

13

√
6− 3890

39

√
2 · F ( 1√

2
, 1√

2
) + 2469

26

√
2 · Π( 1√

2
, 1, 1√

2
)

+
∑
α|α4+α2−3=0(−4085

338

√
2α2 + 26173

2028

√
2) · Π( 1√

2
, α

2

3
+ 4

3
, 1√

2
).

5 Algorithm 2

The altered algorithm of the previous section is limited in its effectiveness when imple-
mented in a computer algebra environment. In this case there are again two significant
problems. The first occurs as a result of removing the odd terms in the radical. The
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second is the need for explicitly determining the roots of the degree 3 or 4 polynomial
underneath the radical sign.

The problem with removing the odd terms in the radical (step 4 of the previ-
ous algorithm) is that it introduces a new radical into the coefficient domain. This
in turn often results in a significant problem when the polynomial under the rad-
ical has symbolic coefficients. For example, when this polynomial is of the form√

(x− r1)(x− r2)(x− r3)(x− r4) where the symbols have the added assumptions that

r1 < r2 < r3 < r4, then the transformation (5) is of the form t = (rx+ s)/(x+ 1) with r
and s determined by solutions of the equations

r + s = −2
r1r2 − r3r4

r1 + r2 − r3 − r4
, r · s =

r1r2(r3 + r4)− r3r4(r1 + r2)

r1 + r2 − r3 − r4

as long as r1 + r2 6= r3 + r4 and t = x − r1+r2
2

, otherwise [7, pp96–97]. In the first case

the values of r and s involve radicals of the form
√

(r1 − r3)(r1 − r4)(r2 − r3)(r2 − r4).
All remaining computations need then be done over the domain K(u) where u2 = (r1 −
r3)(r1− r4)(r2− r3)(r2− r4). This causes significant problems in the transformation from
the even terms a0(1±mt2)(1±nt2) under the radical to the normal form itself since these
transformations require sign information for expressions involving a0,m, n along with the
limits of integration.

5.1 Direct Transformations

We overcome the problems induced from adding new radicals by removing odd terms by
first separating intervals and then determining the direct transformations that will provide
the normal forms. These direct transformations are then separated into the cases where

1. y2 = a(x2 − b2)(x2 − c2) with a, b, c real,

2. y2 = a(x2 − b)(x2 − b̄) with b complex but not real

3. y2 quadratic with four real roots

4. y2 quadratic with two real roots

5. y2 quadratic with zero real roots

6. y2 cubic with three real roots

7. y2 cubic with one real root

In each case, intervals of integration [ai, bi] are determined from the polynomial (in cases
1 and 2) or the root structure of the polynomial under the radical (in cases 3 - 7). The
direct transforms used in cases 3 to 7 are given in tables 1 to 4 of the appendix.

Using these direct transformations it is possible to reduce the expressions
∫ b
a

1
y
dx,∫ b

a
x
y
dx,

∫ b
a
x2

y
dx and

∫ b
a

1
(x−α)ydx. into terms that are easily placed into their normal form.
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∫ b

a

1

y
dx =

∑
i=1

ci

∫ bi

ai

dt√
(1− t2)(1− k2i t2)∫ b

a

x

y
dx =

∑
i=1

di

∫ bi

ai

ri(t
2)dt√

(1− t2)(1− k2i t2)
+
∑
i=1

si(t)|biai

∫ b

a

x2

y
dx =

∑
i=1

d̄i

∫ bi

ai

r̄i(t
2)dt√

(1− t2)(1− k2i t2)
+
∑
i=1

s̄i(t)|biai
∫ b

a

1

(x− α)y
dx =

∑
i=1

∫ bi

ai

u1,i(t
2, α)dt√

(1− t2)(1− k2i t2)
+
∑
i=1

∫ b2i

a2i

u2,i(t
2, α)dt√

(1− t)(1− k2i t)

+
∑
i=1

∫ bi

ai

u3,i(t
2, α)dt√

(1− k2i t2)
+
∑
i=1

∫ b2i

a2i

u4,i(t
2, α)dt√

(1− k2i t)

+
∑
i=1

∫ bi

ai

u5,i(t
2, α)dt√

(1− t2)
+
∑
i=1

wi(t, α)|bit=ai .

The even functions that appear in the 4 cases all have degrees at most (2, 2) in t2. In the
first three cases the reductions simply separate the even components from the components
that result in elementary answers. In the last case the integrals depend on whether or
not the α is explicitly or implicitly given. In this case the last three integrals all compute
to elementary answers while the first reduces to Legendre’s elliptic integrals of the first,
second or third kinds.

As an example, if y2 = x4 − 3x2 + 2, with four real roots then the (in this case very
simple) change of variables will result in the reductions

∫ 1/2

0

1
√
y
dx =

1

2

√
2
∫ 1/2

0

1√
( 1− x2 )

(
1− 1

2
x2
) dx

∫ 1/2

0

x
√
y
dx =

1

2

√
2 − 1

2

√
2 arccosh( 3− 2x2 )

∫ 1/2

0

x2
√
y
dx =

1

2

√
2
∫ 1/2

0

x2√
( 1− x2 )

(
1− 1

2
x2
) dx

∫ 1/2

0

1

(x− a )
√
y
dx = − 1√

2

∫ 1/2

0

a

( a2 − x2 )

√
( 1− x2 )

(
1− 1

2
x2
) dx

+
1

2
√

2

∫ 1/4

0

1

( a2 − x )

√
( 1− x )

(
1− 1

2
x
) dx

13



5.2 Use of Implicit Roots

Let y2 = −85x4 − 55x3 − 37x2 − 35x + 97 (the result of asking MAPLE to generate a
random degree 3 polynomial).Then using Algorithm 1 for the reduction to normal form of
the simple expression

∫ 1
0

1
y
dx is not possible using the average computing power of todays

computers. The reason has to do with the roots and the transforms used by the roots.
However, Algorithm 2 also works with roots at some stage and then gets bogged down.
In our case we can still work with these roots implicitly to generate an answer given in
terms of the roots themselves. Note that such information as the number of real roots
can easily be determined by using Sturm sequences. In the case of MAPLE the solve
function returns a RootOf (representing an algebraic number) if it determines that the
nested depth of the radicals inside the answer is more than 2, a practical boundary for
our computations to begin using implicit roots.

5.3 The Algorithm

Algorithm 2:

Input: An expression of the form
∫ b
a R(x, y)dx with R(x, y) ∈ K(x, y) and y2 ∈ K[x] of

degree 3 or 4.

Output: A Legendre Normal Form for
∫ b
a R(x, y)dx.

1: Rationalize

Find rational functions R0(x), R1(x) ∈ K(x) such that∫ b

a
R(x, y)dx =

∫ b

a
R0(x)dx+

∫ b

a

R1(x)

y
dx.

The first integral has an answer in terms of elementary functions and it remains to
compute the second integral.

2 (a): Odd and Even Parts – Heuristic

If y2 has some odd terms then go to step 4. Otherwise, if y2 consists only of even
terms ax4 + bx2 + c then find rational functions R2(x) and R3(x) such that∫ b

a

R1(x)

y
dx =

∫ b

a

x ·R2(x
2)

y
dx+

∫ b

a

R3(x
2)

y
dx.

Then ∫ b

a

x ·R2(x
2)

y
dx =

1

2

∫ b2

a2

R2(x)√
ax2 + bx+ c

dx

an elementary function. Therefore it only remains to compute the last even integral.

2 (b): Hermite Transformation

If R3(x
2) satisfies one of

then there is a transformation that converts
∫ R3(x2)

y
dx into an elementary integral.

Otherwise go to step 4 (with R1(x) now set to R3(x
2)).
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3: Hermite Reduction

Determine a rational function A(x, y) ∈ K(x, y), a polynomial p1(x) ∈ K[x] and a
rational function R2(x) ∈ K(x) having a square-free denominator such that

∫ R1(x)

y
dx = A(x, y) +

∫ p1(x)

y
dx+

∫ R2(x)

y
dx.

4: Reduce Polynomial Part

Determine a rational function B(x, y) ∈ K(x, y), along with constants c0, c1 and c2
from K such that∫ p1(x)

y
dx = B(x, y) + c0

∫ 1

y
dx+ c1

∫ x

y
dx+ c2

∫ x2

y
dx.

5: Symbolic Full Partial Fractions

Determine a symbolic partial fraction decomposition of the rational function
R2(x) = c(x)

d1(x)···dm(x)

R2(x) =
k∑
i=1

ai
x− bi

+
m∑
i=1

∑
α|di(α)=0

e(α)

x− α

using the algorithm of Bronstein and Salvy [2]. The algorithm uses only rational
operations. The first sum represents explicit linear factors while the second sum
involves the implicit linear factors.

6: Determine Transforms

Determine the subintervals [ai, bi] and the transformations. Apply the transfor-
mations to each term of the full partial fraction decomposition along with each
polynomial term.

7: Convert to Normal Form

Transform terms of the form to normal form. Since the rational functions in these
cases are alll even with degree at most 2 for both numerator and denominator these
can be handled via a direct full partial fraction decomposition in the variable x2.
The values 0, 1 and 1/k represent special cases.

6 Conclusion

In this paper we have considered the problem of computing a Legendre Normal Form for
an elliptic integral. The computation should allow for easy and accurate conversion to
numeric form, reduce the size of the algebraic extensions needed in such a closed form
and produce answers with symbolic quantities, at least in those cases where the symbols
have added assumptions. We have studied three different approaches to solving this
problem, the first a classical algorithm as described in most texts on elliptic integration
and the other two being variations of the classical algorithm. The successful algorithm
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uses implicit full partial factorization for the rational function and implicit root finding for
the cubic or quartic polynomial under the radical as a major tool. These implicit forms
avoid computing with nested algebraic extensions, a significant computational problem
which tend to dominate the previous algorithms.

There are a number of directions for future research for computing with elliptic inte-
grals. The computation to normal form is known to be non-unique. It is an open problem
to find a normal form having a “minimal” algebraic extension, that is, a set of field ex-
tensions c1, . . . , ck such that all the coefficients come from the field K(c1, . . . , ck) and such
that there is no smaller field of coefficients with this property. Such a property does hold
in the case of indefinite integration of rational functions [12].

Acknowledgement: We would like to give special thanks to Greg Fee for pointing out
some of the flaws in Algorithm 1 and also for his implementation of parts of Algorithm 2.
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7 Appendix

Table 1: y2 = lc(t− a)(t− b)(t− c)(t− d). Four real roots with d < c < b < a.

Interval t substitution x substitution k2

1. −∞ ≤ L < U ≤ d c(a−d)x2−d(a−c)
(a−d)x2−(a−c)

√
(a−c)(d−t)
(a−d)(c−t)

(a−b)(c−d)
(a−c)(b−d)

2. d ≤ L < U ≤ c a(c−d)x2+d(a−c)
(c−d)x2+(a−c)

√
(a−c)(t−d)
(c−d)(a−t)

(a−b)(c−d)
(a−c)(b−d)

3. c ≤ L < U ≤ b −d(b−c)x2+c(b−d)
−(b−c)x2+(b−d)

√
(b−d)(t−c)
(b−c)(t−d)

(a−d)(b−c)
(a−c)(b−d)

4. b ≤ L < U ≤ a −c(a−b)x2+b(a−c)
−(a−b)x2+(a−c)

√
(a−c)(t−b)
(a−b)(t−c)

(a−b)(c−d)
(a−c)(b−d)

5. a ≤ L < U ≤ ∞ −b(a−d)x2+a(b−d)
−(a−d)x2+(b−d)

√
(b−d)(t−a)
(a−d)(t−b)

(a−d)(b−c)
(a−c)(b−d)
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Table 2: y2 = lc(t− a)(t− b)(t− c). Three real roots with c < b < a.

Interval t substitution x substitution k2

1) −∞ ≤ L < U ≤ c ax2−(a−c)
x2

√
a−c
a−t

a−b
a−c

2) c ≤ L < U < b (b− c)x2 + c
√

t−c
b−c

b−c
a−c

3) b ≤ L < U < a c(a−b)x2−b(a−c)
(a−b)x2−(a−c)

√
(a−c)(t−b)
(a−b)(t−c)

b−c
a−c

4) a ≤ L < U ≤ ∞ bx2−a
x2−1

√
t−a
t−b

b−c
a−c

Table 3: y2 = lc(t− a)(t2 − 2bt+ (b2 + c2)). One real root.

Set A =
√

(b− a)2 + c2.

Interval t substitution x substitution k2

1] −∞ ≤ L < U ≤ a− A (a+A)x2−2A−2A
√
1−x2

x2
2
√
A(a−t)

a+A−t
A−b+a

2A

2] a− A ≤ L < U ≤ a (a+A)x2−2A+2A
√
1−x2

x2
2
√
A(a−t)

a+A−t
A−b+a

2A

3] a ≤ L < U ≤ a+ A (a−A)x2+2A−2A
√
1−x2

x2
2
√
A(t−a)

t−a+A
A+b−a

2A

4] a+ A ≤ L < U ≤ ∞ (a−A)x2+2A+2A
√
1−x2

x2
2
√
A(t−a)

t−a+A
A+b−a

2A

Table 4: y2 = lc(t− a)(t− b)(t2 − 2ct+ c2 + d2). Two real roots, b < a.

Set A =
√

(a− c)2 + d2, B =
√

(b− c)2 + d2, p1 = B2a+ A2b+ (a+ b)AB,

p2 = bA2 + aB2 − (a+ b)AB.

Interval t substitution x substitution k2

1] −∞ ≤ L < U ≤ bA−aB
A−B

p1x2−2(a+b)AB−2AB(a−b)
√
1−x2

(A+B)2x2−4AB
2
√
AB
√

(a−t)(b−t)
A(b−t)+B(a−t)

(A+B)2−(a−b)2
4AB

2] bA−aB
A−B ≤ L < U ≤ b p1x2−2(a+b)AB+2AB(a−b)

√
1−x2

(A+B)2x2−4AB
2
√
AB
√

(a−t)(b−t)
A(b−t)+B(a−t)

(A+B)2−(a−b)2
4AB

3] b ≤ L < U ≤ bA+aB
A+B

p2x2+2(a+b)AB−2(a−b)AB
√
1−x2

(A−B)2x2+4AB

2
√
AB
√

(a−t)(t−b)
B(a−t)+A(t−b)

(a−b)2−(A−B)2

4AB

4] bA+aB
A+B

≤ L < U ≤ a p2x2+2(a+b)AB+2(a−b)AB
√
1−x2

(A−B)2x2+4AB

2
√
AB
√

(a−t)(t−b)
B(a−t)+A(t−b)

(a−b)2−(A−B)2

4AB

5] a ≤ L < U ≤ aB−bA
B−A

p1x2−2(a+b)AB−2(a−b)AB
√
1−x2

(A+B)2x2−4AB
2
√
AB
√

(t−a)(t−b)
A(t−b)+B(t−a)

(A+B)2−(a−b)2
4AB

6] aB−bA
B−A ≤ L < U ≤ ∞ p1x2−2(a+b)AB+2(a−b)AB

√
1−x2

(A+B)2x2−4AB
2
√
AB
√

(t−a)(t−b)
A(t−b)+B(t−a)

(A+B)2−(a−b)2
4AB

Note: If c < a+b
2

then the right and left endpoints of 1] and 2], respectively, are −∞.
Also, the right and left endpoints of 5] and 6] are +∞.
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Table 5: y2 = lc(t2 − 2at+ a2 + b2)(t2 − 2ct+ c2 + d2) with a < c or a = c and b < d.

Set A =
√

(a− c)2 + (b+ d)2, B =
√

(a− c)2 + (b− d)2, C = 4(c−a)
√
b2

(A+B)2−4b2 .

Interval t substitution x substitution k2

1] −∞ ≤ L < U ≤ a+ b
c

(a−bC)
√
1−x2+(b+aC)x√
1−x2+Cx

t−a+bC√
(1+C2)((t−a)2+b2)

4A2B2

2A2B2+AB(A2+B2)

2] a+ b
c
≤ L < U ≤ ∞ (a−bC)

√
1−x2−(b+aC)x√
1−x2−Cx

t−a+bC√
(1+C2)((t−a)2+b2)

4A2B2

2A2B2+AB(A2+B2)
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