Elastic matching in linear time and constant space

Scott MacLean
University of Waterloo
200 University Ave. West
Waterloo, Ontario, Canada
smaclean@uwaterloo.ca

ABSTRACT

Dynamic time warping (DTW) is well known as an effective
method for model-based symbol recognition. Unfortunately,
its complexity is quadratic in the number of points present
in the symbols to be matched. In this paper, we propose a
greedy approximate solution to Tappert’s dynamic program
formulation of DTW, and show empirically that it performs
as well as the exact solution while requiring only linear time
to compute.

Categories and Subject Descriptors
1.5 [Pattern Recognition]: Applications— Text processing

General Terms
Algorithms, Experimentation, Performance

Keywords
Symbol recognition, Dynamic time warping, Elastic match-
ing

1. INTRODUCTION

Dynamic time warping (DTW) is a signal processing tech-
nique providing a measure of the difference between two time
series. It was extended by Tappert in 1982 to two dimen-
sional data points for use in symbol recognition as a type
of elastic matching [7]. Over time, this approach and its
variants have proved to give an accurate measurement of
the difference between two digital ink strokes. This paper
presents a new, approximate version of DTW using a greedy
approach.

In the most basic form of DTW, as applied to symbol recog-
nition, one is given a model stroke and an input stroke, and
is asked to measure the distance between them. A large dis-
tance corresponds to highly dissimilar strokes, while a small
distance indicates that the strokes trace out similar curves.
To compute the distance, each point in the input stroke is
matched with a point in the model stroke and a distance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAS 10, June 9-11, 2010, Boston, MA, USA

Copyright 2010 by the author(s)/owner(s) 978-1-60558-773-8/10/06

George Labahn
University of Waterloo
200 University Ave. West
Waterloo, Ontario, Canada
glabahn@uwaterloo.ca

measure is applied to each matched pair. The distance be-
tween the strokes is given by the sum of the distances be-
tween matched pairs. The goal is to match up the points in
a way that minimizes the total distance.

By introducing additional constraints, Tappert solved this
optimization problem using a dynamic program. In his for-
mulation, a digital ink stroke is treated as a pair of simul-
taneous time series © = (z1,...,2n) and y = (y1,...,Yn)
representing the x- and y-coordinates of the points sampled
by the tablet digitizer. Let x,y be coordinate series of n
points representing the input stroke, and £, be similar (of
m points) for the model stroke. Tappert’s contraints are as
follows:

1. The first input point is matched to the first model
point;

2. The last input point is matched to the last model point;
and

3. If the ¢th input point is matched to the jth model
point, then the ¢ + 1st input point is matched to the
jth, j + 1st, or j 4+ 2nd model point.

Given a distance function d(, j) between the points (Z;, J:)
and (z;,y;), these constraints induce the dynamic program
D3, j], the minimal distance between model points up to the
ith and input points up to the jth, as follows:

D[2,5] = d(2,j)+min{D[2,5—1],D[1,57 — 1]}
D[i,j] = d(i,j)+min{D[i—k,j—1]:k=0,1,2}

Note that many distance functions d are possible. For cur-
sive writing, Tappert uses

d(i,j):min{ ,‘360—(éi—9]-))}+|@i—yjl,

where 0; is the tangent angle at (z;,y;). We have found that
including |#; — ;| improves results for our own work with
mathematical symbol recognition. (In any case, all terms
should be normalized so as to have equal weight.)

0; —0;

This basic approach can be extended in various ways. For
example, Scattolin proposed to use weights to increase the
influence of those points in the model stroke which define its
characteristic shape [6]. In this paper, we are not concerned

with such extensions, but rather with the complexity of the
basic technique itself.

Each table cell requires only constant time to compute, but
there are O(nm) ~ O(n?) table cells to be computed and
stored. In situations such as mathematical expression recog-
nition, symbol libraries may be quite large, the strokes them-
selves may be long and complex (&, for instance), and sym-
bol recognition may be invoked several times if there are
several ways to partition a large input into distinct symbols.
Quadratic matching time per stroke can therefore consume
a significant proportion of total processing time in the con-
text of a larger system. For example, in the MathBrush
math recognition system, real-time recognition feedback is
required [2]. The quadratic cost of DTW was found to be
unacceptable in this case, prompting our development of a
faster variant.

The next section of this paper presents a greedy approxima-
tion algorithm to the dynamic program given above. Follow-
ing the algorithm, we describe an empirical study demon-
strating the technique’s performance, contrast our proposed
approach with some related work, and offer some conclusions
on the algorithm’s applicability.

2. GREEDY DYNAMIC TIME WARPING

We motivate our algorithm by some straightforward obser-
vations about Tappert’s constraints (reproduced in the pre-
vious section). Let I, Ia,...,I, be the points comprising
the input stroke, and Mi, Mas,..., M,, be similar for the
model stroke. According to constraints 1 and 2, 1 must
be matched to M; and I, must be matched to M,,. By
constraint 3, I must be matched to one of My, Ms, M3,
and I,—1 must be matched to one of My,, Mp—1, Mp—2.
Similarly, supposing I; is matched to My), I;+1 must be
matched to one of My, Ms(i)4+1, Myei)42, and ;-1 must
be matched to one of Mgy, Myy—1, Myiy—2.

Tappert’s dynamic program finds a globally-optimal match-
ing satisfying these constraints. Our approximate version
is to simply match endpoints to endpoints, then to greedily
choose the locally-optimal matching from the available op-
tions for each intermediate point along the input stroke. To
ensure endpoints are matched together, we perform a two-
sided match beginning at the start and end of the strokes
and working simultaneously toward the middle.

There are two potential problems we must be aware of in this
scheme, particularly if the number of points differs signifi-
cantly between the input and model strokes. After matching
all the input points to model points, there may be a large
number of points in the middle of the model stroke which
were never considered by the algorithm. Conversely, the al-
gorithm may run out of model points available for matching
before all of the input points have been considered. These
situations are exemplified schematically by Figures 1 and 2,
respectively. In the figures, dashed lines indicate pairs of
matched points, and grey points are unmatched and prob-
lematic.

To account for these cases, we include the following two rules
in our procedure:

Input: h

Figure 1: Many unmatched model points remain af-
ter matching every input point.

Model:

Input: r“"l

Figure 2: No more model points are available, but
several input points remain to be matched.

1. After matching each input point to a model point, im-
plicitly match the center-most input point to every
second model point not yet considered for matching.
(This process simulates skipping over model points, as
permitted by Tappert’s constraints.)

2. If there are no available model points to consider for

matching, match all remaining input points to the center-

most model point.

These rules immediately give an algorithm for approximate
dynamic time warping, listed in Algorithm 1.

Regardless of the length of the strokes, the algorithm uses
a fixed number of variables to track point indices, local and
global match costs, and which local match choice was opti-
mal. In each iteration of the main while loop (line 7), fr is
incremented and by is decremented, so only n/2 iterations
are possible. Notice that the loop body requires only con-
stant time, assuming d requires constant time. If the else
clause at line 24 is invoked, then the loop at line 30 will
not be entered; otherwise that loop will run at most m/2
times. The algorithm’s runtime is thus linear in the number
of input and model points.

This algorithm is suitable for an efficient practical imple-
mentation. If the x- and y-coordinates comprising a stroke
are stored in separate arrays, then it is plausible that, after
appropriate subdivision, a model stroke and an input stroke
may be contained in a few cache lines. Branch prediction for
each of the if statements in the main loop should only fail
once each. From a practical perspective, the most expensive
lines are the argmin operations, which must find the least of
three values.

3. EVALUATION

To evaluate its performance, we compared our proposed
greedy dynamic time warping algorithm to an implemen-
tation of Tappert’s original formulation. All single-stroke
symbols were extracted from a publicly available, ground-
truthed corpus of handwritten mathematical expressions ([3])
giving 70 distinct symbol classes of various sizes. The cor-

I

Algorithm 1 Greedy approximate dynamic time warping.

Require: Input and model strokes of n,m points respec-
tively; distance function d(i,7) as in the previous sec-
tion.

// Initialize indices to the start and end of strokes
fr e 1br < n; far < 1500 < m
// Match endpoints
cso < d(far, fr); coo < d(bar, br)
5: ¢« cyo+ cro
fr—fr+1;br—br—1
while f[< b; do
// Measure relevant local match costs
r—bym — fum
10: if r > 0 then
cro < d(far, fr); coo < d(bar, br)
cp1 —d(fm + 1, fr);eon < d(ba — 1,br)
if r > 1 then
cr2 — d(far +2, fr); o2« d(ba — 2,b1)
15: else
Cf2 < OQ; Cp2 <— OO
// Choose minimum-cost match locally
i« argmin{cy, : k =0,1,2}
j < argmin {cpr : k =0,1,2}
20: Cc+ c+cpi +
// Advance to the next points under consideration
v — fa+ a0 — by — 3
fr—fr+Lbr—br—1
else
25: // Model exhausted; match remaining input points
to last matched point
while f] < br do
c—c+d(fu, f1)
fr—fr+1
// Input exhausted; match remaining model points to
last matched point
30: while fM < by do
c—c+d(fm, f1)
v — fma+2
return c

pus contains handwriting samples from 20 writers. We ag-
gregated the first k instances of each symbol written by each
writer together into a symbol library, for k = 1,2, 3,4, 5, and
tested the algorithms on the remaining symbols. (If fewer
than k instances were available for a particular writer, then
we used all instances but one.) Using both the original dy-
namic time warping algorithm and our greedy variant, each
input symbol was compared against all library symbols. The
class of the library symbol with lowest match cost (i.e. the
nearest neighbour) was declared the winner and compared
to the actual class of the input symbol. We used Manhattan
distance for the distance function d.

We also varied the number of stroke points shown to the
algorithms. Strokes were either left unprocessed or subdi-
vided into one of 6, 12, 18, 24, 30, 36, or v/n points (n being
the number of points in the original stroke). We used an ar-
clength subdivision algorithm that gives preference to points
of high curvature.

The results of our tests are summarized by the graphs shown
in Figures 3 through 5. The first graph shows how the algo-

rithms’ performance varies with a fixed-size symbol library
but with strokes subdivided into varying numbers of points.
The other graphs show the algorithms’ performance using a
fixed subdivision strategy, but varying the number of exam-
ple symbols in the symbol library.

In all graphs, the bars show the cumulative time taken by
the algorithms. The number of input symbols and DTW
invocations for each library size is summarized by Table 1.
The lines show recognition accuracy: dashed lines indicate
the standard DTW algorithm and solid lines indicate our
variant. The lines marked “Correct” measure the proportion
of input symbols whose class matched that of the library
symbol with lowest match cost. The lines marked “Top 5”
measure the proportion of input symbols whose class ap-
peared within the five lowest-cost matched symbols.

Symbols per user | # Input symbols | # Stroke Cmps
1 14667 16559043
2 13625 29579875
3 12674 39568228
4 11826 46949220
5 11078 52266004

Table 1: Number of tests during our experiments.

5 example symbols per writer

20000

18000

16000

14000

12000

10000

Time (s)

8000

Accuracy (%)

.

02
o [:L-
o — = [
12 18 24 30 36

6

6000
4000
2000

orig

Subdivision points

ODTW Time M Quick Time # DTW Correct (%)
& DTW Top 5 (%) #-Quick Correct (%) = Quick Top 5 (%)

Figure 3: Test results using five library symbols per
class per writer.

24-point subdivision
1 N N " " 4000

3500

3000

2500

2000

Accuracy (%)
Time (s)

1500

1000

500

Example symbols per writer

CIDTW Time B Quick Time - DTW Correct (%)
& DTW Top 5 (%) #-Quick Correct (%) = Quick Top 5 (%)

Figure 4: Test results using subdivision into 24
points.

In our experiments, the greedy variant of DTW was always
at least as accurate as and much faster than the original
algorithm. It is particularly accurate when the strokes have
few points, as its accuracy climbs quickly as the number of
points increases before leveling off. The standard algorithm

sqrt(n)-point subdivision

05
04
")4
0.2
o
0
1 2

Example symbols per writer

Accuracy (%)
Time (s)

O DTW Time M Quick Time -® DTW Correct (%)
& DTW Top 5 (%) #Quick Correct (%) = Quick Top 5 (%)

Figure 5: Test results using subdivision into /n
points.

requires relatively many points before it reaches maximum
recognition accuracy.

Intuitively, with fewer points per stroke, there are fewer pos-
sibilities for the greedy algorithm to “go wrong” compared
to when there are many points in a stroke. Indeed, the ac-
curacy of the greedy algorithm drops slightly after 36 points
per stroke. However, it is always competitive with, and most
often superior to, the accuracy of standard DTW.

4. RELATED WORK

There are several other techniques for approximating the
DTW distance measure in linear time. Salvador and Chan’s
FastDTW algorithm uses a multilevel coarsening/refining
process and obtains 1-D distance measurements within about
2% of the quadratic DTW algorithm using linear time and
space [5]. The method presented in this paper has much
larger mean error, on the order of 100%, but different goals.
FastDTW is intended for use as a distance measure, whereas
we are only interested in the properties of the greedy algo-
rithm in symbol recognition applications. Our experiments
indicate that, despite its large discrepancy from the optimal
solution, the greedy algorithm is still able to match inputs
to the corresponding models at least as well as DTW.

Ratanamahatana and Keogh pointed out that, using band-
ing constraints and lower-bounding techniques, the DTW
algorithm needs to compute only O(n) of the table cells
DJi, j] in an amortized sense when matching an input to a
large collection of models. They suggest that there is no
sense in searching for other linear time variants [4]. Our
greedy approach can be seen as a banding constraint that
obviates the dynamic programming table altogether, and al-
ways requires O(n) time. While banding and lower-bound
checks are useful in general, for some applications it may
be more appropriate to choose a particularly effective band
in which it is fast to compute the dynamic time warping
distance.

Recently, Golubitsky and Watt proposed a linear-time sym-
bol recognition algorithm based on comparing the first d co-
efficients of truncated Legendre-Sobolev series representing
the ink strokes [1]. Their algorithm has slightly poorer recog-
nition performance than DTW, but can be used in a stream-
ing context, processing each stroke as it is sampled by the
digitizer using O(1) operations per point and O(d) further

operations upon completion of the stroke. Such streaming
usage is not supported by our greedy algorithm as it matches
strokes beginning simultaneously at both endpoints.

5. CONCLUSIONS

In this paper, we have presented a straightforward greedy
approximation to the dynamic time warping algorithm, with
particular attention to the application of symbol recognition.
The algorithm runs in linear time and uses only a constant
amount of memory. Our experiments showed that it is at
least as accurate as DTW for short time series (an appro-
priate limitation for most symbol recognition applications),
and much faster. The experiments were performed on a re-
alistic data set of 15796 handwritten symbols of 70 distinct
classes, written by 20 different writers.

In the case of symbol recognition, the precise value given by
a distance measure between input and model strokes is not
as important as the relation between several distances. So
long as the correct model stroke gives the lowest distance
measure, the application will perform well. It is worthwhile
to investigate the extent to which this observation applies
to other application areas. Another area requiring further
investigation is the behaviour of our greedy variant using
different pointwise distance functions d.

In practice, the processor time saved by using such a fast
distance measure can be used to boost recognizer perfor-
mance either by including several complementary fast dis-
tance measures and combining their results, or by using
context-sensitive processing and domain models (e.g. gram-
mars, dictionaries, etc.). The greedy approximation algo-
rithm described in this paper has essentially made feasible
a hybrid model for math recognition using two-dimensional
parsing with multiple symbol grouping possibilities [2].

6. REFERENCES

[1] O. Golubitsky and S. Watt. Computation of similarity
between handwritten characters. In Proc. Document
Recognition and Retrieval X VI, pages C1-C10, 2009.

[2] G. Labahn, E. Lank, S. MacLean, M. Marzouk, and
D. Tausky. Mathbrush: A system for doing math on
pen-based devices. In Proc. of the Eighth IAPR
Workshop on Document Analysis Systems, 2008.

[3] S. MacLean, D. Tausky, G. Labahn, E. Lank, and
M. Marzouk. Tools for the efficient generation of
hand-drawn corpora based on context-free grammars.
In Proc. of the Sizth Symposium on Sketch-Based
Interfaces and Modeling, 2009.

[4] C. A. Ratanamahatana and E. J. Keogh. Three myths

about dynamic time warping data mining. In Proc. of

the 2005 SIAM International Conference on Data

Mining, pages 506-510, 2005.

S. Salvador and P. Chan. Toward accurate dynamic

time warping in linear time and space. Intell. Data

Anal., 11(5):561-580, 2007.

P. Scattolin. Recognition of handwritten numerals

using elastic matching. Master’s thesis, University of

Concoria, Montreal, Canada, 1995.

[7] C. C. Tappert. Cursive script recognition by elastic
matching. IBM J. Res. Dev., 26(6):765-771, 1982.

[5

[6

