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ABSTRACT

Stochastic control problems in finance often involve complex controls at discrete
times. As a result, numerically solving such problems using, for example, methods
based on partial differential or integrodifferential equations inevitably gives rise to
low-order (usually at most second-order) accuracy. In many cases, Fourier methods
can be used to efficiently advance solutions between control monitoring dates, and
numerical optimization methods can then be applied across decision times. However,
Fourier methods are not monotone, and as a result they give rise to possible viola-
tions of arbitrage inequalities. This is problematic in the context of control problems,
where the control is determined by comparing value functions. In this paper, we give
a preprocessing step for Fourier methods that involves projecting the Green’s func-
tion onto the set of linear basis functions. The resulting algorithm is guaranteed to be
monotone (to within a tolerance), £,-stable and satisfies an e-discrete comparison
principle. In addition, the algorithm has the same complexity per step as a standard
Fourier method and second-order accuracy for smooth problems.
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1 INTRODUCTION

Optimal stochastic control problems in finance often involve monitoring or making
decisions at discrete points in time. These monitoring times typically cause diffi-
culties when solving optimal stochastic control problems numerically, both for effi-
ciency and correctness. This is because, for efficiency, numerical methods are typ-
ically applied from one monitoring time to the next; correctness arises as an issue
when the decision is determined by comparing value functions, which is somewhat
problematic when discrete approximations are not monotone. These optimal stochas-
tic problems arise in many important financial applications and include problems
such as asset allocation (Cong and Oosterlee 2016; Forsyth and Vetzal 2017; Huang
2010; Li and Ng 2000), pricing of variable annuities (Alonso-Garcia et al 2018;
Bauer et al 2008; Chen et al 2008; Dai et al 2008; Huang et al 2017; Ignatieva
et al 2018) and hedging in discrete time (Angelini and Herzel 2014; Remillard and
Rubenthaler 2013).

These optimal control problems are typically modeled as the solutions of par-
tial integrodifferential equations (PIDEs), which can be solved via numerical, finite-
difference (Chen et al 2008) or Monte Carlo (Cong and Oosterlee 2016) methods.
When cast into dynamic programming form, the optimal control problem reduces to
solving a PIDE backward in time between each decision point, and then determining
the optimal control at each such point. In many cases, including those mentioned
above, the models are based on fairly simple stochastic processes, with the main
interest being the behavior of the optimal controls. These parsimonious stochastic
models can be justified if we are looking at long-term problems, eg, variable annu-
ities or saving for retirement, where the time scales are of the order of ten to thirty
years. In these situations, it is reasonable to use a parsimonious stochastic process
model.

In these (and many other) situations, the characteristic function of the associated
stochastic process is known in closed form. For the PIDE types that appear in finan-
cial problems, knowing the characteristic function implies that the Fourier transform
of the solution is also known in closed form. By discretizing these Fourier trans-
forms, we obtain an approximation to the solution, which can be used for effective
numerical computation. A natural approach in this case is to use a Fourier scheme to
advance the solution in a single time step between decision times, and then to apply
a numerical optimization approach to advance the solution across the decision time.
This technique is repeated until the current time is reached (Lippa 2013; Ruijter et al
2013). These methods are based on Fourier space time-stepping (FST) (Jackson et al
2008), the convolution (CONV) technique (Lord et al 2008) or the Fourier cosine
(COS) algorithm (Fang and Oosterlee 2008). Fourier methods have been applied to,
among other things, the pricing of exotic variance products and volatility derivatives
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(Zheng and Kwok 2014), guaranteed minimum withdrawal benefits (Alonso-Garcia
et al 2018; Huang et al 2017; Ignatieva et al 2018) and equity-indexed annuities
(Deng et al 2017).

Fourier methods have a number of advantages over finite-difference and other
methods; primarily, there are no time-stepping errors between decision dates. These
methods also provide easy handling for stochastic processes involving jump diffusion
(Lippa 2013) and regime switching (Jackson et al 2008). Although Fourier meth-
ods typically need a large number of discretization points, the algorithms reduce
to using finite fast Fourier transforms (FFTs) that operate efficiently on most plat-
forms (including graphics processing units). The algorithms are also quite easy to
implement. For example, using Fourier methods for the pricing of variable annu-
ities reduces to the use of discrete FFTs and local optimization. A detailed know-
ledge of partial differential equation algorithms is not actually required in this case.
Fourier methods also easily extend to multifactor stochastic processes, where finite-
difference methods have difficulties because of cross-derivative terms. Of course,
Fourier methods suffer from the curse of dimensionality, and hence are restricted,
except in special cases, to problems of dimension 3 or less. Finally, Fourier meth-
ods have good convergence properties for problems with noncomplex controls. For
example, for European option pricing, in cases where the characteristic function of
the underlying stochastic process is known, the COS method achieves exponential
convergence (with regard to the number of terms in the Fourier series) (Fang and
Oosterlee 2008).

A major drawback with current Fourier methods is that they are not monotone. In
the contingent claims context, monotone methods preserve arbitrage inequalities, or
discrete comparison properties, independent of any discretization errors. As a con-
crete example, consider the case of a variable annuity contract, with ratchet features
and withdrawal controls at each decision date. Suppose contract A has a larger payoff
at the terminal time than contract B. Then a monotone scheme generates a value for
contract A that is always larger than the value of contract B, at all points in time and
space, regardless of the accuracy of the numerical scheme. In a sense, the arbitrage
inequality (discrete comparison) condition is the financial equivalence of conserva-
tion of mass in engineering computations. Use of nonmonotone methods is especially
problematic in the context of control problems, where the control is determined by
comparing value functions.

Monotonicity is also relevant for the convergence of numerical schemes. In gen-
eral, optimal control problems posed as PIDEs are nonlinear and do not have unique
solutions. The financially relevant solution is the viscosity solution of the PIDEs, and
it is well known that a discretization of a PIDE converges to the viscosity solution if
it is monotone, consistent and stable (Barles and Souganidis 1991). There are exam-
ples where nonmonotone discretizations fail to converge (Obermann 2006) and also

www.risk.net/journals Journal of Computational Finance

27



28

P. A. Forsyth and G. Labahn

examples where there is convergence (Pooley er al 2003) but not to the financially
correct viscosity solution. In addition, in cases where the Green’s function has a thin
peak, existing nonmonotonic Fourier methods require a very small space step that
often results in numerical issues. Finally, monotone schemes are more reliable for
the numerical computation of Greeks (ie, derivatives of the solution), which is often
important for financial instruments.

The starting point for this paper is the assumption that we have a closed-form
representation of the Fourier transform of the Green’s function of the stochastic pro-
cess PIDE. From a practical point of view, we also assume that a spatial shift prop-
erty holds. The latter assumption can be removed but at the cost of increasing the
computational complexity of our method. We will discuss these assumptions further
below.

In this paper, we present a new Fourier algorithm in which monotonicity can be
guaranteed to within a user-specified numerical tolerance. The algorithm is for use
with general optimal control problems in finance. In these general control problems,
the objective function may be complex and nonsmooth; hence the optimal control
at each step must be determined by a numerical optimization procedure. Indeed, in
many cases, this is done by discretizing the control and using exhaustive search.
Reconstructing the Fourier coefficients is typically done by assuming the control
is constant over discretized intervals of the physical space, by numerically deter-
mining the control at the midpoint of these intervals and, finally, by reconstructing
the Fourier coefficients by quadrature. This is equivalent to using a type of trape-
zoidal rule to reconstruct the Fourier coefficients, and hence this can be at most
second-order accurate (in terms of the physical domain mesh size).

In fact, we show how the FST or CONV schemes can be modified to get new
schemes in which monotonicity can be guaranteed to within a user-specified numer-
ical tolerance. Our approach is similar to that used in these schemes, which first
approximate the solution of a linear PIDE by a Green’s function convolution, then
discretize the convolution and finally carry out the dense matrix—vector multipli-
cation efficiently using an FFT. In our case, we discretize the value function and
generate a continuous approximation of the function by assuming linear basis (or
alternatively piecewise constant) functions. Given this approximation, we carry out
an exact integration of the convolution integral and then truncate the series approxi-
mation of this integral so that monotonicity holds to within a certain tolerance. Con-
sequently, we prove that our algorithm has an e-discrete comparison property, that
is, given a tolerance ¢, a discrete comparison (also called arbitrage inequality) holds
to O(e), independent of the number of discretization nodes and time steps. This is
similar in spirit to the e-monotone schemes discussed in, for example, Bokanowski
et al (2018). Typically, the convergence to the integral is exponential in the series
truncation parameter, so it is inexpensive to specify a small tolerance. The key idea
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here is that the number of terms required to accurately determine the projection of
the Green’s function onto linear basis functions can be larger than the number of
basis functions. After an initial setup cost, the complexity per step is the same as for
the standard FST or CONV methods. This requires only a small change to existing
codes in order to guarantee monotonicity. The desirable property of our method is
that monotonicity can be guaranteed (to within a certain tolerance) independent of
the number of FST (CONYV) grid nodes or the time-step size.

While Fourier methods have good convergence properties for vanilla contracts or
problems where controls are smooth, it is a different story for general optimal control
problems. For example, if the COS method is applied to optimal control problems,
then it is challenging to maintain exponential convergence, as the optimal control
must be determined in the physical space. Hence, a highly accurate recursive expres-
sion for the Fourier coefficients must be found after application of the optimal con-
trols in order to maintain exponential convergence. In the case of bang-bang controls,
it is often possible to separate the physical domain into regions where the control is
constant. If these regions are determined to high accuracy, then an accurate algo-
rithm for recursive generation of the Fourier coefficients can be developed (Ruijter
et al 2013). However, even for the case of an American option, this requires careful
analysis and implementation (Fang and Oosterlee 2008). Our interest is in general
problems, where the control may not be of the bang-bang type, and we expect that
such good convergence properties will not hold. In addition, in the path-dependent
case, the problem is usually converted to Markovian form through additional state
variables. The dynamics of these state variables are typically represented by a deter-
ministic equation (between monitoring dates). At monitoring dates, the state variable
may have nonsmooth jumps (eg, cashflows), and hence the standard approach would
be to discretize this state variable and then to interpolate the value function across
the monitoring dates. If linear interpolation is used, this also implies that the solution
is at most second-order accurate at a monitoring date.

While monotone schemes have good numerical properties, they appear to be inher-
ently low-order methods. However, it would seem that in the most general case it
is difficult to develop high-order schemes for control problems. For example, in
the COS method, this difficulty can be traced to that of reconstructing the Fourier
coefficients after numerically determining the optimal control at discrete points in
the physical space. Consequently, in this paper we focus on FST or CONV tech-
niques, which use straightforward procedures to move between Fourier space and
the physical space (and vice versa).

We illustrate the behavior of our algorithm by comparing various implementa-
tions of FST/CONYV on some model option-pricing examples, particularly European
and Bermudan options. In addition, we demonstrate the use of the monotone scheme
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methods on a realistic asset allocation problem. Our main conclusion is that for prob-
lems with complex controls, where we can expect fairly low-order convergence to the
solution, a small change to standard FST or CONV methods can be made that guar-
antees monotonicity, at least to within a user-specified tolerance. This does not alter
the order of convergence in this case; hence, we can ensure a monotone scheme with
only a slightly increased setup cost. After the initialization, the complexity per step
of the monotone method is the same as that of the standard FST/CONYV algorithm.

The remainder of this paper is as follows. In the next section, we describe our
optimal control problem in a general setting. Section 3 describes existing Fourier
methods and contrasts them with our new monotone Fourier method presented in
Section 4. The monotone algorithm for solving optimal control problems is then
given in Section 5, with properties of the algorithm and proofs given in Section 6.
Wraparound is an important issue for Fourier methods, particularly in the case of our
control problems. Our method of minimizing such an error is described in Section 7.
Section 8 presents two numerical examples used to stress test the monotone algo-
rithm. This is followed by an application of our algorithm to the multiperiod mean—
variance optimal asset allocation problem, a general optimal control problem well
suited to our monotone methods. The paper ends with our conclusions and topics for
future research.

2 GENERAL CONTROL FORMULATION

In this section, we describe our optimal control problem in a general setting. Consider
a set of intervention (or monitoring) times ?,

T ={t0<-- <ty @2.1)

with 79 = 0 the inception time of the investment and 73y = T the terminal time.
For simplicity, we specify the set of intervention times to be equidistant, that is,
ty —th—1 = At = T /M for each n.

Lett, =ty —eand t, = t, + ¢ (with ¢ — 07) denote the instants before
and after the nth monitoring time f,,. We define a value function v(x, t) with domain
x € R (we restrict our attention to one-dimensional problems for ease of exposition)
that satisfies

b +LD=0, 1€, 1,41, (2.2)

A

with £ a partial integrodifferential operator. At t,, € & we find an optimal control
C(x,t,) via

D(x, 1) = grelg,/%(é)ﬁ(x, th), (2.3)

where M (¢) is an intervention operator and Z is the set of admissible controls.
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It is more natural to rewrite these equations going backward in time, t = T — ¢,
that is, in terms of time to completion. In this case, the value function is v(x, 1) =
0(x, T —t) and satisfies

ve—Lv =0, t€([ 1), (2.4)
v(x, 7)) = inf M(c)v(x,T,), T eET. (2.5)
c

Here the control c(x,t) = ¢(x,T — ), and T now refers to the set of backward
intervention times

T={rg<---<ty} withty=0, =T and 1, =T —ty—n.
A typical intervention operator has the form
Mv(x, ;) =v(x+T'(x,1,,0),71,). (2.6)

As an example, in the context of portfolio allocation, we can interpret I"(x, T, )
as a rebalancing rule. In general, there can also be cashflows associated with the
decision process, as in the case of variable annuities. However, for simplicity, we
will ignore such a generalization in this paper, and we will instead assume that the
intervention operator has the form (2.6). In our asset allocation example (described
later), the cashflows are modeled by updating a path-dependent variable.

3 CONVOLUTION AND FOURIER SPACE TIME-STEPPING
METHODS

In this section, we derive the FST and the closely related CONV technique in an
intuitive fashion. This will allow us to contrast these methods with the monotone
technique developed in the next section. For ease of exposition, we will continue to
restrict our attention to one-dimensional problems. However, there is no difficulty
generalizing this approach to the multidimensional case. In a financial context, it is
often the case that the variable x = log(S) € (—o0, 00), where S is an asset price.

3.1 Green’s functions
A solution of the PIDE (2.4),
v — LV =0, 7€ (1, ht1]s

can be represented in terms of the Green’s function of the PIDE, a function typically
of the form g = g(x, x’, At). However, in many cases this will have the form g =
g(x —x’, At); we will assume this to hold in our problems. More formally, we make
the following assumptions, which we assume hold in the rest of this work.
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ASSUMPTION 3.1 (The form of Green’s function) The Green’s function can be
written as

g(x,x', At) = g(x — x', A1)

o0
N / G(w, Ar)e?™ =) 4o, (3.1

—0o0
where G(w, At) is known in closed form, and G(w, At) is independent of (x, x').

REMARK 3.2  If we view the Green’s function in Assumption 3.1 as a scaled con-
ditional probability density f, then our assumption is that f(y | x) only depends on
x and y via their difference f(y | x) = f(y — x). This assumption holds for Lévy
processes (independent and stationary increments), but it does not hold, for example,
for a Heston stochastic volatility model or for mean-reverting Ornstein—Uhlenbeck
processes (but see Surkov (2010), Zhang et al (2012) and Shan (2014) for possible
workarounds). The e-monotonicity modifications described in this paper also hold
when we do not have g(x, x’, At) = g(x — x’, At), but at the price of reduced effi-
ciency. This is discussed later, in Section 4.2. The second assumption, that we know
the Fourier transform of our Green’s function in closed form, holds, for example, in
situations where the characteristic function of the underlying stochastic process is
known. In the case of Lévy processes, the Lévy—Khintchine formula provides such
an explicit representation of the characteristic function.

From Assumption 3.1, the exact solution of our PIDE is then
v(x, T+ A7) = / glx —x', At)v(x’, 7) dx’. (3.2)
R

The Green’s function has a number of important properties (Garroni and Menaldi
1992). For this work, the two properties

/ gx,At)dx =C; <1 and g(x,A7)=0 (3.3)
R

are particularly important.! These properties are formally proven in Garroni and
Menaldi (1992), but they can also be deduced from the interpretation of the Green’s
function as a scaled probability density.

We define the Fourier transform pair for the Green’s function as

o0
G(w, At) = f g(x, Ar)e 27X 4y,
ey ’ (3.4)
g(x, Ar) = / G(w, A1)e®™ " dw,
—00

with a closed-form expression for G(w, At) being available.

'For the examples in this paper the constant Cy is explicitly given (in each example) in Sec-
tion 3.1.1. Cy is a constant independent of x.
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As is typically the case, we assume that the Green’s function g(x, A7) decays to
zero as |x| — oo, ie, g(x, A1) is negligible outside a region x € [—A, A]. Choosing
Xmin < —A and xp.x > A, we localize the computational domain for the integral
in (3.2) so that x € [Xmin, Xmax]. We can therefore replace the Fourier transform pair
(3.4) by its Fourier series equivalent:

xmﬂx .
G(wy, At) >~ / g(x, Ar)e 20k dx,
Xmin
| @ ' (3.5)
g(x, A1) = sz G(wg, AT)e>™ @k~
=—00

with P = Xmax — Xmin and wr = k/P. Here the scaling factors in (3.5) are selected
to be consistent with the scaling in (3.4). The solution of the PIDE (3.2) is then
approximated as

xmax
v(x, T+ A1) ~ / g(x —x', At)v(x’, 1) dx’. (3.6)
Xmin
Note that the Fourier series (3.5) implies a periodic extension of g, that is, g(x +
P,t) = g(x,t). The localization assumption also then implies that v(x,t) is
periodically extended.
Substituting the Fourier series (3.5) into (3.6) gives our approximate solution as
Xmax

Q" . S
v(x, T+ A1) ~ > Z G(w, Ar)ez’“wkx/ v(x', T)e kX dx’. (3.7)
k=—o00 X

Let Ax = P/N and choose points {x;}, {x}} by

xj = %o+ jAx, xj=2ZXo+ jAx forj=—IN.....iN -1

Then, the integral in (3.7) can be approximated by a quadrature rule with weights
wy, giving

N/2—1

Xmax X , k
/ v(x, T)e 2Tk 4y ~ Z wev(Xy, T) exp (—Zni?xé)Ax
Xmin (=—N/2
ko,
= Pexp —2711;)60 V(wg, 1), (3.8)
where
N/2—1
Viog.1) =~ Y wplx), r)e 7K/N (3.9)
N
{=—N/2
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is the discrete Fourier transform (DFT) of {w; v(xj’., 7)}. In the following, we will
consider two cases for the weights wy: the trapezoidal rule and Simpson’s quadra-
ture. Substituting (3.8) and (3.9) into (3.7) and truncating the infinite sum to k €
[—%N, %N — 1] then gives

N/2—1

v(xj, 7+ Ar) ~ % Z exp (ZNi%fco)G(wk, At)exp (2?]](] )
k=—N/2
ko
X P exp (—2771?360) V(wg, 7)
N/2—1 _
= Y Glor ADV(@r. v exp (2”]\1;” ) (3.10)
k=—N/2

Thus, {v(x;, T + A1)} is the inverse DFT of the product {G (wk, A7)V (wk, T)}.

In summary, we can obtain a discrete set of values for the solution v by first going
to the Fourier domain by constructing its Fourier transform V using a set of quadra-
ture weights and then returning to the physical domain by convolution of V' with the
Fourier transform of the Green’s function. The cost is then that of doing a single FFT
and inverse FFT (iFFT).

There are four significant approximations in these steps: localization of the compu-
tational domain; representation of the Green’s function by a truncated Fourier series;
a periodic extension of the solution; and approximation of the integral in (3.7) by a
quadrature rule. For details of the effect of the errors from these approximations we
refer the reader to the discussion in Lord et al (2008).

3.1.1 Examples of Green’s functions

We consider the generic PIDE (which would be typical of a problem where the
underlying asset follows a jump diffusion):

400
ve = 10%vy + (1 — L0% — Ay — (p + M) + A / v(x + ) £() dy.
G.11)

where o, i, A, k, p are constants, and f(y) is the jump-size density. If, for example,
p = i = r, where r is the risk-free rate, then this is the option-pricing equation,
while if p = 0, then this PIDE arises in asset allocation.

Let o
v(x, 1) = / V(w, 7)e?™* do,
e (3.12)
f,t) = [ F(w, 1)e*™ %Y dw.
—0o0
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Substituting (3.12) into (3.11) gives
Viw, 1) = ¥Y(w)V(w, 1), (3.13)
where
¥(w) = (—20?2Qrw)® + (u— Ak — 10?)2niw) — (o + A) + AF (0)), (3.14)
with F (w) being the complex conjugate of F(w). Integrating (3.13) gives
V(w, T+ At) = ¥ @2V (0, 1),

from which we can deduce that the Fourier transform of the Green’s function
G(w, At) is

G(w, At) = ¥ @47, (3.15)

Two common choices for jump-size density are the double exponential (with py, 1,
1, constants)

SO) = pume ™1y + (1 — py)n2e™1, <0 (3.16)

and the lognormal (with y, v constants)

N2
S = exp (_M) (3.17)

2y2

1
N2y
In the case of a double exponential jump distribution, we have

Pu 1 —py

F(w) = , 3.18
(@) 1 —2miw/n + 1 4+ 2miw/n; (3.18)

while in the case of a lognormal jump-size distribution, we have
F(w) = exp2(miwv — (mwy)?)). (3.19)

From (3.13) and (3.15), we obtain
G(0, A1) = e P27,
which means that in these cases C; = fR g(x, At) dx becomes

e 7AT  option pricing,
C =

1, mean-—variance asset allocation.
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3.2 The FST/CONV algorithms

The FST and CONYV algorithms are described using the previous approximations.
Let (v*)™ be the vector of solution values just after 7,,, and let Wquad be the vector of
quadrature weights:

WM = N2 ) vN2-1, 1] (3.20)
Wquad = [U)(X_N/z), ceey w(xN/Z—l)]'
Furthermore, let [a, (x), Xy < x < Xg41, be a linear interpolation operator:
Xk+1 — X
Tar (O = 00(v, 1) + (1 = Ow(xsr, 1), 6= 70 5y

Ax

The full FST/CONYV algorithm applied to a control problem is illustrated in Algo-
rithm 3.3. We refer the reader to Lippa (2013), Ignatieva et al (2018) and Huang et al
(2017) for applications in finance.

ALGORITHM 3.3 (FST/CONYV Fourier method) x oy is the Hadamard product of
vectors X, y.
Require G = {G(w;, A1)}, j = —%N, e, %N -1

(1) Input: number of time steps M and initial solution (v®)~

2) (°)7F = infe M(c)(Tax(x)(©°)7)

3) form =1,..., M do {time-step loop}

4) V™! = FFT[wgua © (v )] {frequency domain}

(5) (V™™ =iFFT[V™ 10 G] {physical domain}

©)  v(xj.75) = infe M(c)(Tax(x;))(0™)7) j=—3N,....AN -1,
{optimal control}

(7) end for

REMARK 3.4  In Jackson et al (2008), the authors describe their FST method in
slightly different terms. There, they use a continuous Fourier transform to convert
the PIDE into Fourier space. The PIDE in physical space then reduces to a linear
first-order differential equation in Fourier space that can be solved in closed form
(as in Section 3.1.1). In this way, the method is able to produce exact pricing results
between monitoring dates (if any) of an option, using a continuous domain. In prac-
tice, using a discrete computational domain leads to approximations, as a discrete
Fourier transform is used to approximate the continuous Fourier transform.
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4 AN £€-MONOTONE FOURIER METHOD

Our monotone Fourier method proceeds in a similar fashion to the previous sec-
tion, but it is based on a slightly different philosophy. We begin by discretizing the
value function, and then generate a continuous approximation of the value function
by assuming linear basis functions. Given this approximation, we carry out an exact
integration of the convolution integral. We can then truncate the series approximation
of this integral so that monotonicity holds to within a certain tolerance (using a trun-
cation parameter to keep track of the number of terms). Typically, the convergence
to the integral is exponential in the series truncation parameter, so it is inexpensive to
specify a small tolerance. The key idea here is that the number of terms required to
accurately determine the projection of the Green’s function onto a given set of linear
basis functions can be larger than the number of basis functions.

An additional important point is that, after the initial setup cost, the complexity
per step is the same as for the standard FST and CONV methods. This requires only
a small change to existing FST or CONV codes in order to guarantee monotonicity.
The desirable property of this method is that monotonicity can be guaranteed (to
within a small tolerance) independently of the number of FST (CONV) grid nodes
or time-step size.

4.1 A monotone scheme

We proceed as follows. As before, we assume a localized computational domain:

xm'dx
v(x, T+ A1) = / glx —x', At)v(x', 7)dx’ 4.1)

Xmin

and discretize this problem on the grid {x;}, {x}}:

xj =Xo+ jAx, xj=ZRo+jAx. j=—-3iN.....3N-—1,

where P = Xmax — Xmin and Ax = P/N with xp, = Xo — %NAx and X =
Xo+ %N Ax. Setting v; () = v(x;, T), we can now represent the solution as a linear
combination:

N/2-1 N/2-1
v(x, 1) >~ Z ¢ (x)v(x;, 1) = Z @; (x)v; (1), 4.2)
j=—N/2 j=—N/2

where the ¢; are piecewise linear basis functions, ie,

(Xj+1—x)
JT, Xj X X Xj41,
(x) = X —Xi_ 4.3
GO =1 G=xm) (43)
Ax
0, otherwise.
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Substituting representation (4.2) into (4.1) gives

Xmax
e (Tt + At) = [ glxp —x, At)v(x,7)dx
P

min

N/2—1 Yo
= Y v@ [ $@e0u —x Ar)dx
j=—N/2 Xmin
N/2—1
= Y (D& —xj. A)Ax, (4.4)
j=—N/2
where
1 Xxp—Xj+Ax
gla —x;, A1) = 7= f Pk—j (x)g(x, AT) dx. (4.5)
X Xp—Xx;—AXx

Here we have used ¢; (xx — x) = ¢x—;(x), a property that follows from the prop-
erties of linear basis functions. Setting { = k — j, y¢y = xx — x; = {Ax for
€=—1IN,....3N — 1 gives

1 Ye+Ax
g0ean = o [ gt anax @6)
X Jye—Ax

as the averaged projection of the Green’s function onto the basis functions ¢¢. Note
that, for this projection, g(y¢, At) = 0, since the exact Green’s function has g(x) =
0 for all x, and of course ¢¢(x) = 0. Therefore, the scheme (4.4) is monotone for
any N.

REMARK 4.1 (Green’s function availability in closed form) If the Green’s func-
tion is available in closed form, rather than just its Fourier transform, then (4.6) can
be used to compute the g(y;, At) terms directly, as, for example, in Tanskanen and
Lukkarinen (2003). However, in general this will require a numerical integration. If
the Fourier transform of the Green’s function is known, we will derive a technique
to efficiently compute g(y¢, At) to an arbitrary level of accuracy.

4.2 Approximating the monotone scheme

The scheme (4.4) is monotone, since the weights g(y,, At) given in (4.6) are non-
negative. However it is only possible for us to approximate these weights, and this
prevents us from guaranteeing monotonicity. In this subsection, we show how we
overcome this issue.
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Recall that our starting point is that G, the Fourier series of the Green’s function,
is known in closed form. We then replaced our Green’s function g(x, At) by its
localized, periodic approximation,

 J— ,
g(x, At) = 7 Z 2™k G (wy, AT),
k=—00
k P
Wk = =, = Xmax — Xmin;
k=P

and then projected the Green’s function onto the linear basis functions. Replacing
g(x, At) by g(x, A1) in (4.6), and assuming uniform convergence of the Fourier
series, we integrate (4.6) term by term, resulting in

o0

1 1 y;j+Ax ]
g(yj, At) = — Z (—/ ezm“’kxdz,-(x)dx)G(wk,Ar). 4.7

P P Ax y;—Ax

In the case of linear basis functions (4.3), we convert the complex exponential in (4.7)
into trigonometric functions, with the resulting integration giving?

2
~ o sin” wowg Ax
§j, At) = & Z_ s ( (rwp Ax)? )G(a)k,Ar). @9

This is then approximated by truncating the series.

A key point is that the truncation of the projection of the Green’s function does not
have to use the same number of terms as the number of basis functions. That is, set
N’ = aN, with N defined in (4.2) and ¢ = 2% fork =1,2,.... Suppose we now
truncate the Fourier series for the projected linear basis form for g to N’ terms. Let
g(yr, At, ) denote the use of a truncated Fourier series with truncation parameter
o for a fixed value of N so that the Fourier series (4.8) truncates to

Nzt sin? Twg Ax

~ . . k

gy, At,) = — ezmw“Ax(—)G(a)k, AT). (4.9)
’ P k=—2a:N/2 (e Ax)?

Using the notation g; (At,a) = g(yj, At,a), we have

gi+N(At,a) = gj(At, ),

so our sequence {g_n/2(AT,a), ..., gn/2—1 (AT, )} is periodic.

2 For wy, = 0, we take the limit w; — 0.
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REMARK 4.2 (Efficient computation of the projections) It remains to compute the
projections. For this, we need to determine the discrete convolution (4.9). Let
aN aN |

)G(a)k,Ar), k = — e, )

sin? T Ax
k= 2

(rwi Ax)?

Then rewriting e>7 1@k J/AX — 27ikt/(@N) with ¢ = jo and defining

e ikl aN aN
Yo=— Y Y, =Xty 4.1
k=—aN/2

gives {Yy} as the DFT of the {¥;} (of size N’ = aN). Consequently, using (4.9) and
(4.10) yields

g . Ata) =Y, L=ja, j=-3N,....3N—1. 4.11)

Thus, the projections {g(y;, Az, «)} are computed via a single FFT of size N'.

For k = —%N,...,%N — 1, we define G(a)k,At,a) as the DFT of the
{g(Ym,Af’a)}5

N/2—1

~ p 2rimk
Glor Ara) =5 Y exp(— ”;Vm )g(ym,Ar,oz). “.12)
m=—N/2
Note that
P P P
Ax ==
N~ N~ aN

that is, the basis function is integrated over a grid of size Ax > P/N’, and so is
larger than the grid spacing on the N/ grid. As @ — o0, there is no error in evaluating
these integrals (projections) for a fixed value of N. For any finite ¢, there is an error
due to the use of a truncated Fourier series.

Again, we emphasize that the truncation for the Fourier series representation of
the projection of the Green’s function in (4.9) does not have to use the same number
of terms (@) as the discrete convolution (N). Instead, we can take a very accu-
rate expansion of the Green’s function projection and then translate this back to the
coarse grid using (4.12). There is no further loss of information in this last step.
As remarked above, we only use the Fourier representation of g(y;, At, &) to carry
out the discrete convolution, ie, a dense matrix—vector multiplication, efficiently. The
discrete convolution in Fourier space is exactly equivalent to the discrete convolution
in physical space, assuming periodic extensions.
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REMARK 4.3 (Assumption 3.1 revisited) The assumption g(x,x’, At) = g(x —
x', At) permits fast computation of a dense matrix—vector multiplication using an
FFT. As mentioned earlier, this assumption holds for Lévy processes, but it does not
hold, for example, for a Heston stochastic volatility model. However, the basic idea
of projection of the Green’s function onto linear basis functions can be used even
if Assumption 3.1 does not hold. The cost, in this case, is a loss of computational
efficiency. As an example, in the case of the Heston stochastic volatility model, we
have a closed form for the characteristic function, but here the Green’s function has
the form g = g(v,v’, x — x’, At), where v is the variance and x = log S, where S
is the asset price. In this case, we can use an FFT effectively in the x-direction, but
not in the v-direction.

REMARK 4.4 (Relation to the COS method) In the COS method, the solution
v(x, 7) is also expanded in a Fourier series. This gives an exponential convergence of
the entire algorithm for smooth v(x, 7), which in turn requires that we have a highly
accurate Fourier representation of v(x, 7). However, suppose v(x, 7) is obtained by
applying an impulse control using a numerical optimization method at discrete points
on a previous step, using linear interpolation (the only interpolation method that is
monotone in general). In that case, we will not have an accurate representation of
the Fourier series of v(x, 7). In addition, it does not seem possible to ensure mono-
tonicity for the COS method. So far, we have only assumed that the v(x, t) can be
expanded in terms of piecewise linear basis functions. This property can be used to
guarantee monotonicity. However, convergence will be slower than the COS method
if the solution is smooth.

REMARK 4.5 (Piecewise constant basis functions) The equations and the previ-
ous discussion in this section also hold if our basis functions are piecewise constant
functions, ie, basis functions ¢; that are nonzero over [x; — %Ax, Xj + %Ax]. In this
case, computing the integral in (4.7) gives

~ o sin rowg Ax
205 A7) = Z o (I N Gl a0 (@13

with the subsequent equations also requiring slight modifications.

4.3 Computing the monotone scheme

In order to ensure our monotone approach is effective, it remains to compute the
discrete convolution (4.4) efficiently. For the DFT pair for v;(r) and V(wp, 1), we
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recall that x; = %o 4+ jAx and so

N/2—1
v (1) = Z V(wg, T)e?™ 1%

{=—N/2

N/2—1

— Z (CZNiwg)?o)V(wz,_L_)GZJTijf/N’

{=—N/2
N/2—1 4.14)
1

N Z e—2niwpxgv£(_[)

(=—N/2

V(wp, 1)

I N 2ript
:N(e_zﬂiwﬂO) Z exp (— Np )Ug(‘l.’).

t=—N/2

Suppose we write g(xx — x;, At) as a DFT:
N/2—1
gk—j(At,) = > Z G(wp, Ar, a)e?T i k=Dp/N (4.15)
p=—N/2
where we use (4.12) to determine G(a)p, At, ). Substituting (4.15) and (4.14) into
(4.4), we then get
N/2—1
v(xg, T + At) = Ax Z Vi g (xXp — xj, AT, )
j=—N/2
| N/2—-1 N/2—-1

=N Z Z (ez’”“’fxo)é(a)p,At,a)

p=—N/2 {=—N/2

Y& (2rije-p)
% V , 27'rikp/N —
(g, 7)e | Z exp N
j=—N/2
Nzt 2mik
= Z (&P X0V (wp, T) G (wp, AT, ) exp( Np)’ (4.16)
p=—N/2

where the last equation follows from the classical orthogonality properties of Nth
roots of unity.
From (4.14), we have
N/2—1

1 L.
Viwp, 1) = (€720 ) 37 exp
{=—N/2

(52 oo = e 0,.0)

4.17)
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with

N/2-1

~ 1 —2mipl
V(a)p,l'):ﬁ Z exp( 27](]1]7 )U@(T),

=—N/2

the DFT of {vy(7)}. Finally, substituting (4.17) into (4.16) gives

Nz 2mwipd
v(xg, T+ A1) = Z V(wp, I)G(a)p, At, @) exp( Np ), (4.18)
p=—N/2

which we recognize as the inverse DFT of {V(wp, I)G(wp, At,a)}.

REMARK 4.6 (Monotonicity) Equations (4.18) and (4.4) are algebraic identities
(assuming periodic extensions). Hence, if we use (4.18) to advance the solution, then
this is algebraically identical to using (4.4) to advance the solution. Thus, we can
analyze the properties of (4.18) by analyzing (4.4). In particular, if g(xz, At,a) = 0,
then the scheme is monotone.

REMARK 4.7 (Converting FST or CONV to monotone form) Equation (4.18) is
formally identical to (3.10). This has the practical result that any FST or CONV soft-
ware can be converted to a monotone form by a preprocessing step that computes
G(a)p, At, @) and choosing a trapezoidal rule for the integral in (3.8).

5 A MONOTONE ALGORITHM FOR SOLUTION OF THE CONTROL
PROBLEM

In this section, we describe our monotone algorithm for the control problem (2.4),
(2.5). Let (v™)T be the vector of values of our solution just after 7,, as defined
in (3.20), and let Ta.(x) be the linear interpolation operator defined as in (3.21).
Let

V" = [V(w-n/2.Tn). - - .. V(®ONj2-1. Ta)] = DFT[(v")7]
and

G = [G(a)_N/z, At,a),..., G(a)N/z_l, AT, @)].

Let us assume that our Green’s function is not an explicit function of 7, and that we
instead have g = g(x — x’, A7) and the time steps are all constant, ie, Ty4+1 — Tn =
At = const.

In this case, we can compute G (w, At, o) only once. If these two assumptions do
not hold, then G ( -) would have to be recomputed frequently, and hence our algorithm
for ensuring monotonicity becomes more costly.
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Algorithm 5.1 describes the computation of G (-). Here, we test for monotonic-
ity (up to a small tolerance) by minimizing the effect of any negative weights, by
requiring that

A
> Ax[min(Z(yy. Ar.a). 0)] < &1
J

The test for accuracy of the projection occurs by the comparison

max Ax|g(y;. Av.o) — §(3s. Av. 30)| < 2.

Both monotonicity and convergence tests are scaled by Ax so that these quantities
are bounded as At — 0 for all Ax (the Green’s function becomes unbounded as
At — 0, but the integral of the Green’s function is bounded by unity). In addi-
tion, the monotonicity test scales €; by At/ T in order to eliminate the number of
time steps from our monotonicity bounds. This is discussed further in Section 6.

ALGORITHM 5.1 (Initialization of the monotone Fourier method)
Require: closed-form expression for G(w, At), the Fourier transform of the Green’s
function

(1) Input: N, Ax, At
(2) Leta = 1 and compute g(y;, At, 1).
(3) fora = 2% k = 1,2, ..., until convergence do {construct accurate g}

(4) Compute g(yj, At,a), G(cq;, At,Q), ] = —%N, e, %N— 1 using (4.11),

4.12)
5) test; = Zj Ax min(g(y;, At,a),0) {monotonicity test}
(6) test, = max; Ax|g(yj, At,a) — g(yj, AT, %a)| {accuracy test}

(7)  if (testy] < e1(At/T)) and (test, < &;) then
®) break from for loop {convergence test}
©)] end if

(10)  end for {end accurate g loop}

(11) Output: weights G(a)j, At,a), j = —%N, cee, %N — 1 in Fourier domain.

In Algorithm 5.1, the test on line 5 will ensure that monotonicity holds to a user-
specified tolerance and the test on line 6 ensures accuracy of the projections. The
complete monotone algorithm for the control problem is given in Algorithm 5.4.
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REMARK 5.2 (Convergence of Algorithm 5.1) In Section 5.1, we show that, for
typical Green’s functions, the test for monotonicity on line 5 in Algorithm 5.1 and
the accuracy test on line 6 are usually satisfied for « = 2, 4, for typical values of &1,
€.

REMARK 5.3 (Complexity) The complexity of using (4.18) to advance the time
(excluding the cost of determining an optimal control) is O(N log N) operations,
roughly the same as the usual FST/CONV methods.

ALGORITHM 5.4 (Monotone Fourier method)

Require: Weights G = {G(wj,Ar,a)}, for j = —%N,...,%N — 1 in Fourier

domain (from Algorithm 5.1)
(1) Input: number of time steps M, initial solution (v®)~
2) W) =infe M(c)(Tax(x)(v°)7)
(3) form =1,..., M do {time-step loop}
4) V™l = FFT[(v" 1)7] {frequency domain}
(5) (™)~ =iFFT[V" 10 G] {physical domain}
©)  v(xj.75) = infe M(c)Tax(x;)(0™)7), j = —iIN..... AN -1
{optimal control}

(7) end for {end time-step loop}

5.1 Convergence of truncated Fourier series for the projected
Green’s functions

Since the Green’s function for (3.11) is a smooth function for any finite Az, we
can expect uniform convergence of the Fourier series to the exact Green’s function,
assuming that o > 0. This can also be seen from the exponential decay of the Fourier
coefficients, which we demonstrate in this section. Since the exact Green’s function is
nonnegative, the projected Green’s function (4.8) converges to a nonnegative value at
every point y;. Consider the case of the truncated projection on linear basis functions

Nz sin? wwg Ax k
~ i . k .

gyi, At,a) = — 2Ok Y] (—)G(a)k, A1) withw, = —
/ P k=§N/2 (rwrAx)? P
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and Ax = P/N. The error in the truncated series is then

18(yj. At a) — g(y;, At, 00)]
2
Z eanwky (Sln nkax)G(a)k,A‘L')

a2 (rwi Ax)?
—aN/2—1 .2
17 orioey; [ SIN” TORAX
— eV | ————- |G (g, A
TP k_Z_oo ((mkAx)Z) (@ 80

$ VA
Z (m Gron iz 0@ A
=aN/2

4 00
2 > 1G(x. A7) (5.1)

k=aN/2

/N

2
Pr

From (3.13), and noting that Re(F (w)) < 1 (this holds since F(w) is the Fourier
transform of a density function, and can also be seen directly from (3.18), (3.19)),
we then have

Re(¥(w)) = —%02(2710))2 —(p+ 1) + ARe(F (w))
%02(2710))2 —(p+A)+4
—%0'2(27160)2, (5.2)

<
<

since p = 0. From (3.15) and (5.2), we have
|G(w, AT)| = |[e¥@A7| < eXp(—%Uz(ZJTa))ZA‘C). (5.3)

If we let C4 = 20272 At/ P2, then (5.3) and (5.1) imply

o0

80y AT.0) = 20} AT.00) € s Y
k=aN/2

e_c“kz.

Bounding the sum gives

~ . 8 exp(—C4NZ2a?/4)
18(vj- Ar.) =g AT )| S 5 s ——— —aNa (54

Consider the monotonicity test in Algorithm 5.1, line 5, given by

test; = Z Ax min(g(y;, At, ), 0).
J
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Noting that g(y;, At,00) = 0, and from (5.4) and > ; Ax = P, we have

8 exp(—C4N2a?/4)

[test;| < a2 | _oCGiNa (5.5)
so that this test is usually satisfied to within round-off for @ = 2, 4.
Consider now the accuracy test on line 6 of Algorithm 5.1, given by
test; = max Ax|g(y;. At, ) — g(y;. AT, o),
J
which we see is bounded by
[testz] < Axmax(|g(y;, At,a) — g(y;, At, 00)|
i
+18(j, At, 50) — §(y;. At, 00)))
< Axmax(2|Z(y. Ar. Jo) ~ (. Ar.00))
64 Hexp(—C4N2a2/16)' 5.6)

=~ 7202 P 1 — e—CaNa/2
This test will also be satisfied for small values of «, although these o should be larger
than for the monotonicity test (5.5).

6 PROPERTIES OF THE MONOTONE FOURIER METHOD

In this section, we prove a number of properties satisfied by our e-monotone
Fourier algorithm. The main properties include £, stability and a type of e-discrete
comparison principle.

LEMMA 6.1  Let Cy be a constant such that the exact Green’s function satisfies
Ci = [z g(x, At)dx. Then, for all k,
N/2—1 P
Ax . Z gxk —x;,Ax,a) = C1  with Ax = N
j=—N/2

PROOF For y; = xx —xj,{ = k — j, we have

N/2—1
Ax Z g(xr —x;, Ax,a)
j=—N/2
p N2
=y 2 &unAn)
(=—N/2

N/2—1 aN/2—1

P 1 i LAx sin? way Ax
= — —_ ! G s A
N Z P Z € (Twr Ax)? (@k, A7)
(=—N/2  k=—aN/2
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1 aN/2-1 (sinznkax) N2t 2milk
= — Z ——— | G(wg, A7) Z exp( )
2
Nk=—aN/2 (TorAx) t=—N/2 N
o0
= G(0, A7) =/ g(x, At)dx
—0oQ

= (.
(]

THEOREM 6.2 (£ stability) Assume that G is computed using Algorithm 5.1,
that (V)™ is computed from

N/2—1
)" = Y AxgHT (6.1)
j=—N/2
and that
1™ lloo < 1(0™) [loo- (6.2)

Then, for every 0 < n < M, we have
[V oo < C2 = [ (v°) | co-

PROOF From (6.1), we obtain

N/2—1
W)™ = > Axg,rHt
j=—N/2
N/2—1 N/2—1
= Y Axmax(Z—;. 00 HT+ Y Axmin(g_;. 07T,
j=—N/2 j=—N/2
(6.3)
which then implies
N/2—1
)< 10" DYoo D> Axmax(Zi—;.0)
j=—N/2
N/2—1
+10" ) o > Ax|min(Z—;.0)|.
j=—N/2
From Lemma 6.1, we get
N/2—1 N/2—1
> Axmax(3—;.0)=Ci+ Y Ax|min(Z—;.0)|. (6.4)
j=—N/2 j=—N/2
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and so, noting lines 5 and 7 in Algorithm 5.1, we have
N/2-1
AN ||(v"—1>+||oo(cl 2y Ax|min<gk_,-,o>|)
j==N/2

_ AT
<" 1)+||oo(c1 + 2817). 6.5)

Since (6.5) is true for any k, we have that

_ _ At
10" oo < 10" 1>+||o<,(c1 +2el?),

which, combined with (6.2) and using C; < 1, gives

_ At
16" o < 10" o 14260 57 ).

Iterating the above bound and using (6.2) at n = 0 gives

_ AT\
1™ oo < 100) ||oo(1 + 2817)

_ At
< 10%) o exp (28171?)
< 100 e
= C,.
O

REMARK 6.3 (Jump condition) We remark that the jump condition ||(v") " ||ec <
(V™)™ |l (see 6.2) is trivially satisfied if o (x) in line 6 in Algorithm 5.4 is a linear
interpolant.

From Theorem 6.2 and Remark 6.3, we immediately obtain the following result.
COROLLARY 6.4 (Stability of Algorithm 5.4)  Algorithm 5.4 is £ o-stable.

LEMMA 6.5 (Minimum value of solution) Let (v*)" be generated using (6.1),
and set

(V") = Min(o) .

If the conditions for Lemma 6.1 are satisfied and

WM = 0"y (6.6)

min =~ min’
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then
(vn)mm = (vo)mm(c3)n C2(esl - 1)7
where Co = ||(v°)7 || o0€?®! is given in Lemma 6.1 and
N/2—1
Z Ax max(gg—;,0).
j=—N/2

PROOF From (6.1), and using (6.3) along with the definition of C3, we obtain

N/2—1 N/2-1
H™ = " Ht Z Ax max(gx—;,0) + Z Axmin(gk_j,O)(v]’-’)Jr
j=—N/2 j=—N/2
N/2-1
> (" hHt Z Ax max(gk—;,0)
j=—N/2
N/2-1
— 10" ) ¥ lleo Z Ax|min(gg—;,0)]
j=—N/2
N/2-1
= "G 10 o X AxfminGEi;.0) ).

j=—N/2

Using Lemma 6.1 and lines 5 and 7 in Algorithm 5.1 then gives

_ _ At
(vp)” = " Ht C3— Cagy T
and, since this is valid for any k, using (6.6) we obtain
_ AT
(U min / (vn l)r—r";lnCS CZEIT‘

Iterating implies

At (1 -Ck}
(U min (U mm ngl_r( 3)

T \1-0C;5
At (1 -CF}
— Cre1— ), 6.7
= (") C 281T(1—C3) (6.7)
where we again use (6.6) in the last line. From (6.4) and the definition of C3, we have
N/2—1 Az
Cy=C, + | ZN/ZAx|min(§k_j,O)| <ltei—, (6.8)
j=—
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where the last inequality follows from lines 5 and 7 in Algorithm 5.1 (and recalling
that C; < 1). Combining (6.6)—(6.8), and noting that nAt < T, gives

(V") = 0015, CF = Cole® = 1) = () Cf = Cale®! — 1),
O

REMARK 6.6  We note that condition (6.6), that is, (v"*)7
if Taox(x) in line 6 in Algorithm 5.4 is a linear interpolant.

n— .
T = (v") . is satisfied

THEOREM 6.7 (e-discrete comparison principle) Suppose we have two indepen-
dent discrete solutions:

W) = (=Nt ) u(xgna—1. 501

(6.9)
"t = [wx N/Z’Tn) w(x+N/2_1,‘c,j')],

(w
with
(R =N (i

where the inequality is understood in the component-wise sense, and (u™)™, (w™)™
are computed using Algorithm 5.4. If G is computed using Algorithm 5.1 and Ia (x)
is a linear interpolant, then

@M = Wt = —e1l|(@® —w) oo + O(e7), €1 =0, (6.10)

PrROOF Let (z*)t = ™)™ — (W™, (z")” = ")~ — (w")™. Then,

N/2-1
)™= Y Axg_H
j=—N/2
Noting that
zj(z)) = inf M(c) [ax (x;) (™) ™) — inf M(c)(Lax () (w™)7), (6.11)
we then have
EACABIIS sup M) Lax (x) (™)™ = (™) 7)]. (6.12)

Hence, using the definition of the intervention operator (2.6), we obtain

1" lloo < 112" Nloo- (6.13)
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Similarly,

(Mt = miin zi(%,))

=z mininf M(c)Iax(x;) (™)™ = (w™)7)
j c
= (2", (6.14)

min*

Hence, condition (6.2) of Lemma 6.1 and condition (6.6) of Lemma 6.5 are satisfied.
Applying Lemma 6.5 to (z") ™, (z")~, we get

() in = E)min(C3)" = [ — ) [loo(e® = 1), (6.15)
where C3 = ZJN:/:}/Z Ax max(gx—;,0). Since (z%) . > 0and 0 < C} < e€°!, the
result follows. O

REMARK 6.8  If Algorithm 5.1 is used to construct G for use in Algorithm 5.4,
then the e-discrete comparison property is satisfied for any N, At, M up to order ;.
Since typically g(y;j, At,a) = g(y;., At,00) = 0 exponentially in «, in practice it
is very inexpensive to make &1 as small as desired.

REMARK 6.9 (Continuously observed impulse control problems) By determining
the optimal control at each time step, we can apply our monotone Fourier method to
the continuously observed impulse control problem:

max [v, —JLv,v— infM(c)v] = 0. (6.16)
c

This is effectively a method whereby the optimal control is applied explicitly, as
in Chen and Forsyth (2008). Using the methods developed in this paper combined
with those from Chen and Forsyth (2008), it is straightforward to show that the ¢-
monotone Fourier technique is £-stable and consistent in the viscosity sense as
At, Ax — 0. The e-monotone Fourier method is also monotone to O(h), where
h = O(Ax) = O(Ar) is the discretization parameter. Thus, it is possible to show
convergence to the viscosity solution using the results in Barles and Souganidis
(1991) extended as in Azimzadeh et al (2018), using the e-monotonicity property
as in Bokanowski et al (2018).

7 MINIMIZATION OF WRAPAROUND ERROR

The use of the convolution form for our solution (4.18) is rigorously correct for a
periodic extension of the solution and the Green’s function. In normal option-pricing
applications, the wraparound error due to periodic extension causes little error. How-
ever, in control applications, the values used in the optimization step (2.5) may be
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near the ends of the grid, and thus large errors may result (Ignatieva et al 2018;
Lippa 2013; Ruijter et al 2013). Hence, we need to consider methods to reduce errors
associated with wraparound.

In order to minimize the effect of wraparound, we proceed in the following man-
ner. Given the localized problem on [Xmin, Xmax] With N nodes, we construct an

auxiliary grid with N4 = 2N nodes, on the domain [x¢ ], where

min? max

1 1
xg]in = Xmin — E(xmax - xmin) and xranax = Xmax T E(xmax - xmin) (71)

with (X2, —x2. ) = 2(Xmax—Xmin). We construct and store the DFT of the projection
of the Green’s function G(a)p, At,a), p = —%N“, R %N“ — 1, on this auxiliary
grid. We then replace line 4 in Algorithm 5.4 by applying the DFT to the solution v

on the auxiliary grid

v(xk, T, = v(xk, 7)) (k =—%N ..5N—=1)
=v(x_n/2. 7)) (k= —%N ——N -1 (7.2a)
= A(xg, 7)) (k = 1N, % —1), (7.2b)

where A(x, t) is an asymptotic form of the solution, which we assume to be available
by financial reasoning. On the auxiliary grid near x — —oo, we simply extend the
solution by the constant value at x = xpi,, Which is expected to generate a small
error, since the grid spacing (in terms of S = e*) is very small. We then carry out
lines 4 and 5 of Algorithm 5.4 on the auxiliary grid and generate (v")~ by discarding
all the values on the auxiliary grid that are not on the original grid (as these are
contaminated by wraparound errors). The errors incurred by using extensions (7.2a)
and (7.2b) can be made small by choosing |Xmin| and xmax sufficiently large.

REMARK 7.1  (Use of asymptotic form to reduce wraparound error) Use of the
above technique necessitates some changes to the proof of Theorem 6.7. However,
the main result is the same, with adjustments to some of the constants in the bounds.
This is a tedious algebraic exercise, which we omit.

REMARK 7.2  (Additional complexity to reduce wraparound) For a one-dimen-
sional problem, the complexity for one time step is

O(N%log N%) = O(2N 1og(2N)),
where N is the number of nodes in the original grid. In the case of the path-dependent

problem in Section 9, if there are N, nodes in the log S-direction and Np nodes in
the bond direction, then the complexity for one time step is O (2Np Ny log(2Ny)).
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TABLE 1 European call option test.

Expiry time 0.25 years
Strike K 100
Payoff Call
Initial asset price So 100
Risk-free rate r 0.05
Volatility o 0.15
A 0.1
m 3.0465
N2 3.0775
Du 0.3445
Xmax log(Sp) + 10
Xmin log(Sp) — 10
£1, € 1078

Asymptotic form x — oo A(x) =¥

8 NUMERICAL EXAMPLES

8.1 European option

Consider a European option written on an underlying stock whose price S follows
a jump—diffusion process. Denote by £ the random number representing the jump
multiplier, so that when a jump occurs we have S; = £S;-. The risk-neutral process
followed by S; is

)
:—St = —Aik)dt +0dZ + d(Z(Si — 1)) withk = E[¢] — 1, (8.1)
a i=1

where E[] denotes the expectation operator. Here, dZ is the increment of a Wiener
process, r is the risk-free rate, o is the volatility, 7, is a Poisson process with positive
intensity parameter A, and §; are independent and identically distributed positive
random variables. The density function f(y), y = log(£€), is assumed to be double
exponential (Kou and Wang 2004):

f(Y) = Pu’lle_"‘ylyzo +(1- pu)n26n2y1y<0 (8.2)
with the expectation

pum (1= pu)n2
m-—1 N2+ 1

El§] = (8.3)

Given that a jump occurs, p,, is the probability of an upward jump and (1 — p,) is
the probability of a downward jump.
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TABLE 2 European call option test: value atr = 0, S = Sp.

(a) Monotone methods

Piecewise linear Piecewise constant
—_— —_—
N Value Ratio Value Ratio
29 3.9808516210 3.9443958729
210 3.9753205007 3.9662547470

2" 39739391670 4.0 3.9716756819 4.0
212 39735939225 4.0 3.9730282349 4.0
218 39735076171 4.0 3.9733662066 4.0
214 39734860412 4.0 3.9734506895 4.0

(b) FST/CONV

Trapezoidal Simpson
e N —_—
N Value Ratio Value Ratio
29  3.9075619850 3.9784907318
210 3.9571661688 3.9737010716

21 39694107823 4.1  3.9734923202 23.0
212 39724624589 4.0  3.9734796846 17.0
213 39732247908 4.0 3.9734789013 16.0
214 39734153372 4.0 3.9734788524 16.0

Parameters are given in Table 1. N denotes the number of nodes. “Ratio” is the ratio of successive changes.

The price of a European call option v(x, ) with x = log S is then given as the
solution to

+o0
o= oo 4 = S0P <= G+ o4 [ v f0)dy

—00

with v(x,0) = max(e* — K,0). (8.4)

The Green’s function for this problem is given in Section 3.1.1.

The particular parameters for this test are given in Table 1, with the results appear-
ing in Table 2. All methods obtain smooth second-order convergence, with the excep-
tion of the FST/CONYV Simpson rule method, which gives fourth-order convergence,
due to the higher-order quadrature method. This is to be expected in this case, since
there is a node at the strike. Increasing Xmax and | x| alters the last two digits of
the results in the table. This is due to the effects of both localizing the problem to
[*min» Xmax] and FFT wraparound.
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TABLE 3 European call option test: value atr = 0, § = Sg for T = 0.001.

(a) Monotone methods

Piecewise linear

Piecewise constant

r—— r— e
N Value Ratio Value Ratio
29  0.19662316859 0.94284763015
210 0.19467436458 0.041410269769
21 0.19376651687 2.1 0.15335986938 -8.0
212 0.19346709107 3.0 0.18477993505 3.6
213 0.19339179620 4.0  0.19127438852 4.8
214 019337297842 4.0 0.19284673379 441

(b) FST/CONV
Trapezoidal Simpson

— —— r——
N Value Ratio Value Ratio
29 0.24774086499 319.45747026
210 021909081933 521.62802838
211 0.18611676723 0.87 439.13444172 25

212 017728640855 3.7
213 0.18913280108 —0.75
214 019231903134 3.7

27.002978049 0.2
0.19367805822 15.0
0.19338110881 9.0 x 10*

Parameters as given in Table 1 but 7 = 0.001. N denotes the number of nodes. “Ratio” is the ratio of successive
changes.

In order to stress these Fourier methods, we repeat this example using an expiry
time of T = 0.001. Since the Green’s function in the physical space converges to a
delta function as T — 0, we can expect this to be challenging for Fourier methods,
as a large number of terms will be required in the Fourier series in order to get an
accurate representation of the Green’s function in the physical space. The results for
this test are shown in Table 3. The monotone method with piecewise linear basis
functions gives reasonable results for all grid sizes. The standard FST/CONV meth-
ods are quite poor, except for very large numbers of nodes. Indeed, using Simpson’s
rule on coarse grids even results in values larger than Sy at S = So = 100, which
violates the provable bound for a call option.

This phenomenon can be explained by examining Figure 1, which shows the
projection of the Green’s functions for the monotone method (piecewise linear
basis function) and the truncated Green’s function for the FST/CONV method. The

Journal of Computational Finance www.risk.net/journals



e-monotone Fourier methods for optimal stochastic control in finance

FIGURE 1 European call option test.

1.0 1.0
0.9 0.9
0.8 0.8
0.7 0.7

5 o3 |3 o
2 0.4 12 04
0.3 0.3
0.2 0.2
0.1 0.1

0 0

-02 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2

Parameters are as in Table 1 except T = 0.001. (a) FST/CONV Green’s function, truncated Fourier series, scaled
by Ax; N = 2048. (b) Monotone method, Green’s function projected on linear basis functions; g (x, Az, @) Ax with
N = 2048, a = 4.

FIGURE 2 European call option test with 7 = 0.001, N = 512.

Option value

—0.6 - | — FST/CONV (trapezoidal)
—0.8 |- | ——- Monotone (linear)
—10L L L L L L L L L L L
50 55 60 65 70 75 80 85 90 95 100
Asset price

Other parameters are as in Table 1. For the monotone solution, @ = 4 (see Algorithm 5.1).

projection of the Green’s function for the monotone method in Figure 1(b) clearly has
the expected properties: very peaked near x = 0 and nonnegative for all x. In con-
trast, the FST/CONYV numerical Green’s function is oscillatory and negative for some
values of x. Figure 2 compares the FST/CONV (trapezoidal) solution with the mono-
tone (piecewise linear) solution, on a coarse grid with 512 nodes. The monotone
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TABLE 4 Bermudan put option test.

Expiry time 10 years
Strike K 100
Payoff Put
Initial asset price So 100
Risk-free rate r 0.05
Volatility o 0.15
Dividend D 1.00
Monitoring frequency At 1.0 years
A 0.1
) —1.08
y 0.4
Xmax log(So) + 10
Xmin log(Sp) — 10
£1,€2 1076

Asymptotic form x — oo Ax)=0

solution can never produce a value less than zero (to within the tolerance). Note that
monotonicity is clearly violated for the FST/CONYV solution, with negative values
for a call option. The oscillations are even more pronounced if Simpson’s quadrature
is used for the FST/CONV method.

REMARK 8.1 (Error in approximating (4.6) using (4.11)) An estimate of the error
in computing the projected Green’s function is given in (5.6). We can see that a very
small time step affects the exponent in (5.6). For the extreme case of 7 = 0.001,
N = 2056 (the problem in Table 1), we observe that, for « = 8, test, in Algo-
rithm 5.1 is approximately 107!2, indicating that a very high accuracy projection
can be achieved under extreme situations. For the same problem (2056 nodes) with
T = 0.25, we find that test, in Algorithm 5.1 is approximately 1076 for o = 2.

From these tests, we can conclude both that the monotone method is robust for
all time-step sizes and that for smooth problems and large time steps the mono-
tone method exhibits a slower rate of convergence than high-order techniques, as
expected.

8.2 Bermudan option with nonproportional discrete dividends

Let us now assume that we have the same underlying process (8.1) as in the previous
subsection, except that the density function for y = log(€) is assumed to be normal:

2
exp (—%) (8.5)

1
f) = N
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TABLE 5 Bermudan put option test: value att = 0, S = Sp.

(a) Monotone methods

Piecewise linear Piecewise constant
—_— —_—
N Value Ratio Value Ratio
29 24.811127744 24.806532754
210 24789931363 24.788800257

21 24.782264461 2.8 2.4.781982815 2.6
212 24781134292 6.8 24.781063962 7.4
213 24780822977 3.6 24.780805394 3.6
2% 24.780744620 4.0 24.780740225 4.0

(b) FST/CONV

Trapezoidal Simpson
—_— —
N Value Ratio Value Ratio
29  24.801967268 24.802639420
210 24787670043 24.787731820

2" 24781701225 2.4  24.781787212 25
212 24780993635 8.4 24781007785 7.6
213 24780787811 3.4  24.780788678 3.6
214 24780735831 4.0  24.780737159 4.3

Parameters are as in Table 1. N denotes the number of nodes. “Ratio” is the ratio of successive changes.

with expectation E[£] = e’T7?/2_ Rather than a European option, we will now con-
sider a Bermudan put option that can be early exercised at fixed monitoring times t;,.
In addition, the underlying asset pays a fixed dividend amount D at 7, ie, immedi-
ately after the early exercise opportunity in forward time. Between monitoring dates,
the option price is given by (8.4). At monitoring dates, we have the condition

v(x, 7,7) = max(v(log(max(e® — D,e™™n)), 7.7), P(x)),

with P(x) = payoff = max(K —e*,0). (8.6)

The expression max(e* — D, e*min) in (8.6) ensures that the no-arbitrage condition
holds, ie, the dividend cannot be larger than the stock price, taking into account the
localized grid. Linear interpolation is used to evaluate the option value in (8.6). The
parameters for this problem are listed in Table 4, with numerical results given in
Table 5. All methods perform similarly, with second-order convergence. We can see
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that once we use a linear interpolation to impose the control there is no benefit, in
terms of convergence order, to using a high-order method.

9 MULTIPERIOD MEAN-VARIANCE OPTIMAL ASSET ALLOCATION
PROBLEM

In this section, we give an example of a realistic problem with complex controls: the
multiperiod mean—variance optimal asset allocation problem. Here we consider the
case of an investor with a portfolio consisting of a bond index and a stock index. The
amount invested in the stock index follows the process under the objective measure

s, o
5o = (W-M)ditodZ +d(;(& 1)) 9.1)

with the double exponential jump-size distribution (8.2), while the amount in the
bond index follows

dB; =rB;dr. 9.2)

The investor injects cash g, at time f, € T , with total wealth at time ¢ being
Wy = 8 + B;. Let W7 = S, + B, be the total wealth before cash injection. It
turns out that, in the multiperiod mean—variance case, in some circumstances, it is
optimal to withdraw cash from the portfolio (Cui et al 2014; Dang and Forsyth 2016).
Denote this optimal cash withdrawal as c,;. The total wealth after cash injection and
withdrawal is then

Wt =W, 4+q,—c}. (9.3)
We then select an amount b, to invest in the bond, so that

BY =b*

n n

and S;f =W —br. (9.4)

Since only cash withdrawals are allowed, we have c,; > 0. The control at rebalancing
time #, consists of the pair (b}, ¢,). That is, after withdrawing c,; from the portfolio
we rebalance to a portfolio with S, in stock and B, in bonds. A no-leverage and
no-shorting constraint is enforced by

0<br<wr . (9.5)

In order to determine the mean—variance optimal solution to this asset allocation
problem, we make use of the embedding result (Li and Ng 2000; Zhou and Li 2000).
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The mean—variance optimal strategy can be posed as

min E[((W* —Wr)?]

(B3 sees By 15y O}

(S¢, By) follow processes (9.1), (9.2); ¢ ¢ f,

W' =8, +B, +an—cy.

subject to St=w*—b* Bt =b te7, (9.6)
0<br<Wwt,

3
n

*

¢, =0,

where W* can be viewed as a parameter that traces out the efficient frontier.
Let

M-1
0c= Y ey, 9.7

j=l+1

be the discounted future contributions to the portfolio at time #;. If
(Wn_ +qn) > Wremr(T=t) _ On., (9.8)

then the optimal strategy is to withdraw cash ¢ = W~ + ¢, —(W*e 7T~ — Q)
from the portfolio, and invest the remainder (W*e™"T—) — Q) in the risk-free
asset. This is optimal in this case since E[(W* — Wr)?] = 0 (Cui et al 2012; Dang
and Forsyth 2016), which is the minimum of problem (9.6).

In the following, we will refer to any cash withdrawn from the portfolio as a sur-
plus or free cashflow (Bauerle and Grether 2015). For the sake of argument, we will
assume that the surplus cash is invested in a risk-free asset but does not contribute to
the computation of the terminal mean and variance. Other possibilities are discussed
in Dang and Forsyth (2016).

The solution of (9.6) is the so-called pre-commitment solution. We can interpret
the pre-commitment solution in the following way. Att = 0, we decide which Pareto
point is desirable (ie, a point on the efficient frontier). This fixes the value of W*. At
any time ¢ > 0, we can regard the optimal policy as the time-consistent solution to
the problem of minimizing the expected quadratic loss with respect to the fixed target
wealth W*, which can be viewed as a useful practical objective function (Menoncin
and Vigna 2017; Vigna 2014).

9.1 Optimal control problem

A brief overview of the PIDE for the solution of the mean—variance optimal con-
trol problem is given below (we refer the reader to Dang and Forsyth (2014) for
additional details).
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Let the value function v(x, b, t) with t = T — ¢ be defined as

v(x,b, 1)
= inf {E[(min(Wr — W*,0))? | log S(t) = x, B(t) = b]}. (9.9)

HCNSY R YRS

Let the set of observation times backward in time be & = {tgp, 71,..., Tar}. For
T ¢ T, v satisfies

vy = LU + rbuy,
Lv = %ozvxx +(n— %02 — A vy — (L + A)v

+4 /_ v(x + ) f() dy.
v(x,b,0) = (min(e® + b — W*,0))?,

(9.10)

on the localized domain (x, b) € [Xmin» Xmax] X [0, Dmax]-
If g(x, 7) is the Green’s function of v; = L, then the solution of (9.10) at 7, ;,
given the solution at r,f , Ty €T ,18
Xmax
v(x,b, 7, ) = / g(x — x', Ar)v(x', be™AT, o) with At = 1,41 — .

Xmin

9.11)

Equation (9.11) can be regarded as a combination of a Green’s function step for
the PIDE v, = Jv and a characteristic technique to handle the rbv, term. At
rebalancing times 7, € T,

v(x,b, 7)) = min v(x',b*, 1)
(b*,c*)
c* =max(e* + b+ gm—n— Om—n,0),
W' = eX b . —c*,
subject to e bHamn = (9.12)
0<b* < W,
x" = log(max (W’ — b*, e¥min)),

where Qg is defined in (9.7).

9.2 Computational details

We solve problem (9.9) combined with the optimal control (9.12) on the localized
domain (x,b) € [Xmin, Xmax] X [0, bmax]. We discretize in the x-direction using an
equally spaced grid with N, nodes, and in the B-direction using an unequally spaced
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grid with Nj, nodes. Set B, = e and denote the discrete solution at (X, b;, r,f )
by
(v,’,‘w)jL = v(xXm, by, 7,0,
W ={), ) = Ne/20 Ny j2— 11 =1, Ny
nm+ _ n + n +
W) =1Ly, 2 )" W2 )]
Let Lax,Ab(x,b)(v")™ be a two-dimensional linear interpolation operator acting

on the discrete solution values (v")~. Given the solution at 7,1, we use Algorithm 5.4

to advance the solution to 7, ;. For the mean—variance problem, we extend this

algorithm to approximate (9.11), as described in Algorithm 9.1.

ALGORITHM 9.1 (Advance time (v*)T — (v"*1)7)

Require: (v")", G = {G(wm. A, )}, m = —%Nx,...,%Nx — 1 (from Algo-
rithm 5.1)
(1) for j =1,..., Ny do {advance time loop}
@ vt = Iaxap(m, bie )WDY, m = =3 N, .., 5N — 1,
(3) V =FFT[u}"]
4) (v;?“)— = iFFT[V o G] {iFFT(Hadamard product)}
(5) end for {end advance time loop}

In order to advance the solution from 7, ; to r,f 1> We approximate the solu-
tion to the optimal control problem (9.12). The optimal control is approximated
by discretizing the candidate control b* using the discretized b grid and exhaustive
search:

+

V0w by 5) = i, Lo (7, D"
* ¥

c* =max(e™ +bj + qm—n — OM—n.0),
W' =e*" +bj + qp—n — ¥,

b* € {by, ..., min(byax, W)},

x* = log(max(W' — b*, g¥min)),

subject to 9.13)

This algorithm converges to the solution of the original control problem as
Ny, Np — oo. This can be proved using similar steps to the finite-difference case
(Dang and Forsyth 2014). For brevity, we omit the proof.

Using the control determined from solving (9.9), we can determine E[Wr] and
standard deviation SD[Wr] by solving an additional linear PIDE (for details, see
Dang and Forsyth (2014)).
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REMARK 9.2  (Practical implementation enhancements) As noted by several
authors, since the Green’s function and the solution are real, the Fourier coefficients
satisfy symmetry relations. Hence, G (wg, At,a) and V need to be computed and
stored only for wx = 0. It is also possible to arrange the step in line 2 of Algo-
rithm 9.1 and the optimal control step of (9.13) so that only a single interpolation
error is introduced at each node. Note that the Fourier series representation of the
Green'’s function is only used to compute the projection of the Green’s function onto
linear basis functions. After this initial step, we use FFTs only to efficiently carry
out a dense matrix—vector multiplication (the convolution) at each step. Use of the
FFT here is algebraically identical to carrying out the convolution in the physical
space. The only approximation being used in this step is the periodic extension of
the solution.

9.3 Numerical example

The data for this problem is given in Table 6. It was determined by fitting to the
monthly returns from the Center for Research in Security Prices (CRSP) through
Wharton Research Data Services, for the period January 1926 to December 2015. We
use the monthly CRSP value-weighted (capitalization weighted) total return index
(“vwretd”), which includes all distributions for all domestic stocks trading on major
US exchanges, and the monthly ninety-day Treasury bill return index from CRSP.
Both this index and the equity index are in nominal terms, so we adjust them for
inflation by using the US Consumer Price Index (also supplied by CRSP). We use
real indexes, since investors saving for retirement are focused on real (not nominal)
wealth goals.

As a first test, we fix W* = 1022, and then increase the number of nodes in
the x-direction (N,) and in the b-direction (Np). We use the monotone scheme,
with linear basis functions. In Table 7, we show the value function v (0,0, T') and
the mean E[Wr] and standard deviation SD[W7] of the final wealth, which are of
practical importance. The value function shows smooth second-order convergence,
which is to be expected. Even though the optimal control is correct only to order
Ab (since we optimize by discretizing the controls and using exhaustive search), the
value function is correct to O(Ab)? (since it is an extreme point).

We expect that the derived quantities E[Wr], SD[Wr], which are based on the
controls computed as a by-product of computing the value function, should show
a lower-order convergence. Recall that these quantities are evaluated by storing the
controls and then solving a linear PIDE. In fact, we do see somewhat erratic con-
vergence for these quantities. As an independent check, we used the stored controls
from solving for the value function (on the finest grid), and then carried out Monte

Journal of Computational Finance www.risk.net/journals



e-monotone Fourier methods for optimal stochastic control in finance 65

TABLE 6 Multiperiod mean—variance example.

Expiry time T 30 years
Initial wealth 0
Rebalancing frequency Yearly
Cash injection {g; };—o,...,29 10
Real interest rate r 0.00827
Volatility o 0.14777
" 0.08885
A 0.3222
n 4.4273
n2 5.262
Du 0.2758
Xmax log(100) + 5
Xmin log(100) — 10
&1, 82 106

Asymptotic form E[(Wy — W*)2], x — oo A(x) =0

Parameters are determined by fitting to the real (inflation adjusted) CRSP data for the period January 1926 to
December 2015. Interest rate is the average real return on ninety-day Treasury bills.

TABLE 7 Test of convergence of optimal multiperiod mean—variance investment strategy.

Nx Np Value function Ratio E[wr] Ratio SD[Wr] Ratio

512 305 97148.899100 N/A 824.02599269 N/A 240.73884508 N/A
1024 609 97042.740997 N/A 824.07104985 N/A 240.55534019 N/A
2048 1217 97014.471301 3.8 824.09034690 2.3 240.51245396 4.3
4096 2433 97007.286530 3.9 824.08961667 —26.0 240.49691620 2.7
8192 4865 97005.451814 3.9 824.09295889 —0.22 240.49585213 14.6

Monotone method, linear basis functions. Parameters are as in Table 6. Fixed W* = 1022. “Ratio” is the ratio of
successive changes.

Carlo simulations to directly compute the mean and standard deviation of the final
wealth. The results are shown in Table 8.

Of more practical interest is the following computation. In Table 9, we show the
results obtained by rebalancing to a constant weight in equities at each monitoring
date. We specify that the portfolio is rebalanced to 0.60 in stocks and 0.40 in bonds
(a common default recommendation). We then solve for the value function using the
monotone Fourier method, allowing W* to vary, but fixing the expected value so
that E[Wr] is the same as for the 60:40 constant proportion strategy. This is done
by using a Newton iteration, where each evaluation of the residual function requires
a solution for the value function and the expected value equation. The results of
this test are shown in Table 10. In this case, fixing the mean and allowing W* to
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TABLE 8 Monte Carlo simulation results, based on optimal controls from solving for the
value function using the monotone Fourier technique.

Nsim E[Wr] SD[Vr]

1.6x 105 824.3425 (1.55) 240.2263

6.4x10° 823.6719 (0.78) 240.7278
2.56 x 108 824.0077 (0.39) 240.4336
1.024 x 107 824.1043 (0.19) 240.5217

Numbers in brackets are the standard error, at a 99% confidence level, for the mean. Compare with Table 7.
Parameters are as in Table 6. Fixed W* = 1022.

TABLE 9 Portfolio rebalanced to 0.60 in stocks and 0.40 in bonds at each monitoring
date.

E[Wr] SD[Wr] Median[Wr]

824.10047 511.8482 704

Closed-form expressions for mean and standard deviation. Median is computed using Monte Carlo simulation.
Parameters are as in Table 6.

TABLE 10 At each refinement level W* is determined so that E[Wr] = 824.10047.

Ny Ny E[Wr] SD[Wr] Ratio

512 305 824.10047 240.79440842 N/A
1024 609 824.10047 240.57925928 N/A
2048 1217 824.10047 240.52022512 3.6
4096 2433 824.10047 240.50571976 4.1
8192 4865 824.10047 240.50220544 4.1

The median on the finest grid is computed by storing the controls and using Monte Carlo simulation. Median[Wr] =
936. “Ratio” is the ratio of successive changes. Parameters are as in Table 6.

vary results in smooth convergence of the standard deviation. From a practical point
of view, we can see that the optimal strategy has the same expected value as the
constant proportion strategy, but the standard deviation is reduced from 512 to 241,
and the median of the optimal strategy is 936 compared with a median of 704 for the
constant proportion strategy. A heat map of the optimal strategy is shown in Figure 3.

10 CONCLUSIONS

Many problems in finance give rise to discretely monitored complex control prob-
lems. In many cases, the optimal controls are not of a simple bang-bang type. A
numerical procedure must then be used to determine the optimal control at discrete
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FIGURE 3 Optimal strategy, fraction of portfolio invested in stock, as a function of current
total real wealth W; = S; + B; and forward time .
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Parameters are as in Table 6.

points in the physical domain. In these situations, there is little hope of obtaining
a high-order accurate solution after the control is applied. If we desire a monotone
scheme, which increases robustness and reliability for our computations, then we are
limited to the use of linear interpolation; hence, we can obtain at most second-order
accuracy.

Traditional FST/CONV methods assume knowledge of the Fourier transform of
the Green’s function, but then approximate this function by a truncated Fourier series.
As a result, these methods are not monotone. Instead, when the Fourier transform of
the Green’s function is known, we carry out a preprocessing step by projecting the
Green’s function (in the physical space) onto a set of linear basis functions. These
integrals can then be computed to within a specified tolerance, allowing us to guar-
antee a monotone scheme to within the tolerance. This monotone scheme is robust
to small time steps, which is observably not the case for the standard FST/CONV
methods, and indeed this lack of robustness is a major pitfall of the latter.

When the Green’s function depends on time only through the time-step size and
the monitoring dates for the control are equally spaced (which is typically the case),
the final monotone algorithm has the same complexity per step as the original FST/
CONYV algorithms, and the same order of convergence for smooth control problems.
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It is a simple process to add this preprocessing step to existing FST/CONV soft-
ware. This results in more robust and more reliable algorithms for optimal stochastic
control problems.
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