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Abstract. We consider the problem of efficiently interpolating an “approximate” black-box
polynomial p(x) that is sparse when represented in the Chebyshev basis. Our computations
will be in a traditional floating-point environment, and their numerical sensitivity will be in-
vestigated. We also consider the related problem of interpolating a sparse linear combination
of “approximate” trigonometric functions. The costs of all our algorithms will be sensitive
to the sparsity of the output.

1 Introduction

A black-box polynomial p(x) ∈ R[x] is a procedure that can output the value of p(α) at any given
input α ∈ R. The traditional definition of a sparse polynomial is a sum of a small number of non-
zero terms, where the terms are of the form cxk for some constant c ∈ R and exponent k ∈ Z≥0.
It is also reasonable to consider polynomials whose representations are sparse in other bases, such
as the Chebyshev polynomials. Now, let Tk(x) denote the kth Chebyshev polynomial of the first
kind:

T0(x) = 1, T1(x) = x, Tk(x) = 2xTk−1(x)− Tk−2(x) for k ≥ 2.

Any polynomial p(x) can be represented in the Chebyshev basis as

p(x) =
t∑

j=1

cjTdj (x), (1)

where 0 ≤ d1 < d2 < · · · < dt and c1, . . . , ct ∈ R. Lakshman and Saunders [10] give a sparse
algorithm (using exact arithmetic in Q[x]) which interpolates the Chebyshev representation of a
black-box polynomial. Its cost (the number of black-box evaluations plus auxiliary field operations)
is polynomial of the sparsity t in the Chebyshev representation.

In this paper, we consider the situation in which both the inputs and outputs of the black
box for p(x) are precise only to a fixed precision. We give two approaches to solving the sparse
Chebyshev interpolation problem. The first is a modification of the method of Lakshman and
Saunders [10]. The other is obtained by solving a generalized eigenvalue problem. Both approaches
may be regarded as extensions of the symbolic-numeric sparse polynomial interpolation algorithms
in the standard power basis presented in [6].

The trigonometric function cos kθ can be regarded as the kth Chebyshev polynomial in cos θ.
We also consider the related problem of efficiently interpolating a sparse linear combination of
trigonometric functions cos kθ and sin kθ. Thus, we seek to efficiently interpolate f as

f(θ) =
A0

2
+

m∑
k=1

(Ak cos kθ +Bk sin kθ), (2)

in which many Ak ∈ R and Bk ∈ R are zero.
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It is standard to interpolate f on a uniform partition of [0, 2π], and that f(θ) is interpolated
from the points (φk, f(φk)), where φk = 2πk/n for some appropriately chosen n (for an overview
see [8], Section 9). The cost of such methods depends on the maximum number of terms in the
target function (i.e., on m in (2)). Typically n = 2m or n = 2m+ 1 and for k = 0, . . . ,m, so every
sin kθ and cos kθ is interpolated, regardless how many of them have zero coefficients. Thus, these
algorithms require time that is polynomial in m.

By a variant of Prony’s method [2, 14], the interpolation of a trigonometric function f(x) can
be sensitive to its sparsity, the number of non-zero Ak, Bk in (2) [8, pp. 382-386]. By combining
this with a connection between Prony’s method and Ben-Or/Tiwari sparse interpolation observed
in [6], we exploit the progress in sparse Chebyshev polynomial interpolation and show how a
sparse linear combination of trigonometric functions can be efficiently interpolated by solving a
generalized eigenvalue problem.

2 Sparse interpolation in the Chebyshev basis

In this section we introduce a Prony-like algorithm for the interpolation of polynomials in the
Chebyshev basis, which is derived in [10]. In Section 3 we examine the numerical sensitivity of this
algorithm and present a simple modification which improves stability.

Suppose that p(x) is represented with respect to the Chebyshev basis as in (1). We define the
polynomial

Λ(z) =
t∏

j=1

(z − Tdj (a)) = Tt(z) + λt−1Tt−1(z) + · · ·+ λ0

for some a > 1. The polynomial Λ(z) provides the linear relations between the evaluations of p(x)
at Tk(a) (see [10]): for αk = p(Tk(a)),

t−1∑
j=0

λj(αj+i + α|j−i|) = −(αt+i + α|t−i|) for i ≥ 0. (3)

Relations in (3) give the following t× t symmetric Hankel-plus-Toeplitz system:
2α0 2α1 . . . 2αt−1

2α1 α2 + α0 . . . αt + αt−2

...
...

. . .
...

2αt−1 αt + αt−2 . . . α2t−2 + α0


︸ ︷︷ ︸

A


λ0

λ1

...
λt−1

 = −


2αt

αt+1 + αt−1

...
α2t−1 + α1

 . (4)

By showing that A is non-singular [10, Lemma 6], Lakshman and Saunders give a sparse polynomial
interpolation algorithm in the Chebyshev basis for exact arithmetic.

Algorithm: SparseChebyshevInterp [10]

Given a black-box polynomial p(x) and the number of non-zero terms t of p(x) in the Chebyshev
basis, find c1, . . . , ct ∈ R and d1, . . . , dt ∈ Z≥0 such that p(x) =

∑t
j=1 cjTdj (x).

(1) [Evaluate p(Tk(a)).] Choose a > 1, evaluate αk = p(Tk(a)) for k = 0, 1, . . . , 2t− 1.
(2) [Degrees dj .]

(2.1) Solve the symmetric Hankel-plus-Toeplitz system in (4) to obtain Λ(z).
(2.2) Obtain Td1(a), . . . , Tdt(a) by finding all roots for Λ(z) = 0. The values of dj can be
recovered from Tdj (a) for 1 ≤ j ≤ t.
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(3) [Coefficients cj .] Coefficients cj can be obtained by solving the transposed Vandermonde-like
system: 

1 . . . 1
Td1(T0(a)) . . . Tdt(T0(a))

...
. . .

...
Td1(Tt−1(a)) . . . Tdt(Tt−1(a))


︸ ︷︷ ︸

W


c1
c2
...
ct

 =


p(T0(a))
p(T1(a))

...
p(Tt−1(a))

 . (5)

In the algorithm SparseChebyshevInterp, the target polynomial is evaluated at Tk(a) for a > 1
because Tk(a) are strictly monotonically increasing in k for any a > 1. As a result, both the one-to-
one correspondence between Tk(a) and k (for the recovery of each dj) and the non-singularity of A
in (4) are guaranteed [10]. However, it will be useful in our case to use a smaller value for a ∈ R. It
is easily proven that for N ≥ 2dt and a = cos(2π/N) we have T0(a) > T1(a) > · · · > Tdt(a). This
can be used to establish that, should we choose such an a in Step 1 of SparseChebyshevInterp,
the matrix A will be non-singular and the algorithm will work as specified. In what follows we will
examine the numerical conditioning of A, and the sensitivity of the entire algorithm.

3 Numerical issues with SparseChebyshevInterp

When the sparse Chebyshev interpolation algorithm of the previous section is implemented directly
in a floating-point environment, significant numeric errors may be encountered in the solving of
the Hankel-plus-Toeplitz system, in finding the roots of the polynomial Λ(z) = 0, and in solving
the Vandermonde-like system. That is, Steps 2.1, 2.2, and 3 in SparseChebyshevInterp.

We modify the algorithm to mitigate this ill-conditioning. In the first step, we choose a =
cos(2π/N), where N ≥ 2dt and dt = deg p. Thus we assume deg p, or at least an upper bound for
it, is supplied as part of the input. All other steps remain the same except they are now being
computed in floating-point arithmetic.

Algorithm: FPSparseChebyshevInterp (Step 1)

Given a black-box polynomial p(x), the number of non-zero terms t of p(x) in the Chebyshev basis,
and an upper bound D ≥ deg p, this algorithm determines cj and dj such that

∑t
j=1 cjTdj (x)

interpolates p(x).

(1) [Evaluate p(Tk(a)).] Choose a = cos(2π/N), where N ≥ 2D, and evaluate αk = p(Tk(a)) for
k = 0, 1, . . . , 2t− 1.

In the remainder of this subsection we study the sensitivity of Steps 2.1, 2.2, and 3 in algorithm
FPSparseChebyshevInterp.

3.1 Solving the Hankel-plus-Toeplitz system

In general, if the target polynomial p(x) is of a high degree and p(x) is evaluated at Tk(a) for
a > 1, the difference among the powers of a can contribute detrimentally to the ill-conditioning of
the Hankel-plus-Toeplitz system. This problem is avoided when we choose −1 < a < 1.

To discuss the condition of the Hankel-plus-Toeplitz system A, we consider its factorization as
a product of a lower triangular matrix and a Vandermonde matrix. First note that the polynomial
Tkd(x) can be expressed as a kth degree polynomial in Td(x) with leading coefficient 2k−1.

Lemma 1. For k ≥ 1,

Tkd(x) = 2k−1T kd (x) +
k−1∑
j=0

γjT
j
d (x) (6)

(see [9, Lemma 10]).
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Based on Lemma 1, the Vandermonde-like W in (5) can be factored as a product of a lower
triangular matrix L and a Vandermonde matrix V:

W =



1 0 0 . . . 0

0 1 0 . . .
...

∗ ∗ 2 . . .
...

...
...

...
. . .

...
∗ ∗ ∗ . . . 2t−2




1 . . . 1

Td1(a) . . . Tdt(a)
...

. . .
...

T t−1
d1

(a) . . . T t−1
dt

(a)

 = LV. (7)

With D = diag(2c1, . . . , 2ct), our factorization of A follows (cf. [9, 10]):

A =WDWTr = LVD(LV)Tr = L(VDVTr)LTr. (8)

We take advantage of the factorization above to obtain upper and lower bounds for the condition
number of A. Throughout this paper we will let ‖A‖ = ‖A‖∞ (for any matrix A) be the infinity
norms. All results stated will apply to any norm, up to an appropriate multiplicative constant.

Theorem 1. Let A be the Hankel-plus-Toeplitz matrix in Step 2.1 of FPSparseChebyshevInterp.
Then

1
minj |2cj | · ‖L‖2‖V‖2

≤ ‖A−1‖ ≤ ‖L
−1‖2‖V−1‖2

minj |2cj |
.

Proof. Consider the factorization of A in (8). Let Dj be the matrix derived from D by using 0 to
replace 2cj in the diagonal. Then the matrix LVDjVTrLTr is singular for 1 ≤ j ≤ t, and we have

1
‖A−1‖

= min{‖A −H‖, H singular }

≤min{‖A − LVDjVTrLTr‖} ≤ ‖L‖2 · ‖V‖2 ·min |2cj |.

For the upper bound, since A−1 = (LTr)−1(VTr)−1D−1V−1L−1, we have

‖A−1‖ ≤ ‖L−1‖2‖V−1‖2‖D−1‖

≤ ‖L−1‖2‖V−1‖2 ·
t∑

j=1

‖D−1ej‖ ≤ ‖L−1‖2 · ‖V−1‖2 ·max
j

1
|2cj |

.

It remains to find bounds for the norms of L and L−1, and V and V−1.

Lemma 2. For L as in (7) we have

‖L‖ ≤ t · 2t−1 and ‖L−1‖ ≤ K := 9.

Proof. We first bound the norm of L. Recall T0(x) = 1 and the iterative relations

Tkd(x) = Tk(Td(x)) = 2Td(x) · Tk−1(Td(x))− Tk−2(Td(x))
= 2Td(x) · T(k−1)d(x)− T(k−2)d(x).

The coefficient γj in (6) is either 0 or a (t− 2)th degree polynomial in 2, that is

γj =
k−2∑
l=0

ql2l with ql ∈ {−1, 0, 1}. (9)

Then ‖L‖ ≤ t
∑t−2
l=0 2l = t · (2t−1 − 1).

We now bound the norm of L−1. The first two rows of matrix L−1 are [1, 0, . . . , 0] and
[0, 1, 0, . . . , 0]. We consider the kth row in the t × t matrix L−1: L−1

k = [l−1
k,1, . . . , l

−1
k,k, 0, . . . , 0]
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for k > 2. Recall that the entries in the kth row of L are polynomials in the constant 2 of degree
no more that k − 2. Combining this fact with l−1

k,k = 1/2k−2, we have

l−1
k,i ≤

∑k−i
j=0 2j

2k−2
≤ 2k−i+1

2k−2
= 23−i for 1 ≤ i < k,

and

‖L−1
k ‖ ≤

k−1∑
i=1

23−i +
1

2k−2
≤ 23 + 1 for 2 < k ≤ t.

For 1 ≤ j ≤ t, it is obvious that ‖V‖ ≤ t. For ‖V−1‖ we have:

Lemma 3. Let V be the Vandermonde matrix in (7), then

‖V−1‖ ≤ 2t−1

mink
∏t
j=1,j 6=k |Tdk(a)− Tdj (a)|

. (10)

Proof. See [3, Theorem 1] for |Tdj (a)| ≤ 1.

Lemma 4. Let A be the Hankel-plus-Toeplitz matrix in the Step 2.1 of FPSparseChebyshevInterp,
then

1
22(t−1) · t2 ·minj |2cj |

≤ ‖A−1‖ ≤ K2 · t · 22(t−1)

min
∏
j 6=k |Tdk(a)− Tdj (a)|2 ·minj |2cj |

.

Note that the previous lemmas also apply to other matrix norms, up to a suitable multiplicative
constant.

3.2 Root finding for the polynomial Λ(z) = 0

We now consider Step 2.2 in algorithm FPSparseChebyshevInterp, in which we find the roots of
the polynomial Λ(z) = 0, with coefficients obtained from solving the Hankel-plus-Toeplitz system
A in Step 2.1.

Finding the roots of a polynomial is generally an ill-conditioned problem with respect to pertur-
bations in the coefficients. However, for our polynomial Λ(z) =

∏t
j=1(z − Tdj (a)) with a ∈ (−1, 1)

all the roots Tdj (a) are in (−1, 1) and the conditioning depends on the distribution of Tdj (a) in
the interval (cf. [16]).

Let ỹj be a zero of Λ(z) + εΓ (z), a perturbation of Λ, where Γ (z) = εtz
t+ εt−1z

t−1 + · · ·+ ε0 ∈
R[z], and ε > 0 can be thought of as “small.” Then ỹj = Tdj (a) +

∑∞
k=1 ζkε

k ≈ Tdj (a) + ζ1ε for
some ζ1, ζ2, . . ., and

Λ(Tdj (a) + ζ1ε) + εΓ (Tdj (a) + ζ1ε) =
t∑

k=0

λk(Tdj (a) + ζ1ε)k + ε
t∑

k=0

εk(Tdj (a) + ζ1ε)k ≈ 0.

Taking the Taylor expansion about the point Tdj (a) gives

t∑
k=0

1
k!
Λ(k)(Tdj (a)) · (ζ1ε)k + ε

t∑
k=0

1
k!
Γ (k)(Tdj (a)) · (ζ1ε)k ≈ 0.

Since Λ(Tdj (a)) = 0 and |Tdj (a)| ≤ 1, and considering only the first order terms in ε, we have
Λ(1)(Tdj (a)) · ζ1ε+ εΓ (Tdj (a)) ≈ 0 and so

|ζ1| ≈
∣∣∣∣ Γ (Tdj (a))
Λ(1)(Tdj (a))

∣∣∣∣ ≤ ∑t
k=0 |εk|

|
∏
k 6=j(Tdj (a)− Tdk(a))|

.

Therefore,

|Tdj (a)− ỹj | <
ε ·
∑t
k=0 |εk|

|
∏
j 6=k(Tdj (a)− Tdk(a))|

+O(ε2).

The size of |
∏
j 6=k(Tdj (a)− Tdk(a))| is related to the condition of the Vandermonde system V.
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3.3 Solving the Vandermonde-like system

The coefficients cj in (1) can be recovered by solving the Vandermonde-like system in (5). Based
on the factorization in (7) we have

‖W−1‖ = ‖V−1‖‖L−1‖ ≤ K · ‖V−1‖,

where K = 9 as in Lemma 2. The Vandermonde matrix V has all its nodes Tdj (a) at real values.
When the Tdj (a) are located symmetrically with respect to the origin, then the lower bound for
the condition number of such a t× t system V grows exponentially in t. This happens, for example,
when values of Tdj (a) = 1− 2(j − 1)/(n− 1) for j = 1, 2, . . . , n, are equidistant points between −1
and 1. This phenomenon also occurs when the dj ’s are evenly distributed between 0 and m, where
m = N/2 when N is even and m = (N + 1)/2 when N is odd. If all the nodes in V are positive,
then it is known that condition number of V is bounded from below by a constant times 2t [4, 1].

4 Sparse Chebyshev interpolation using generalized eigenvalues

An important variant of Prony’s method proposed by Golub, Milanfar, and Varah [7] combines
solving the Hankel system and finding roots of the corresponding generating polynomial into into
a single generalized eigenvalue problem (see also [11]). The advantage of this reformulation is that
there are well-estalished, numerically stable methods for the solving the generalized eigenvalue
problem.

We can apply the generalized eigenvalue reformulation to the associated symmetric Hankel-
plus-Toeplitz system in our method. As a result, Steps 2.1 and 2.2 in FPSparseChebyshevInterp
can be combined into the procedure for solving a generalized eigenvalue problem.

From the Hankel-plus-Toeplitz system A in (4), we define

A↑ =


2α1 α2 + α0 . . . αt + αt−2

2α2 α3 + α1 . . . αt+1 + αt−3

...
...

. . .
...

2αt αt+1 + αt−1 . . . α2t−1 + α1

 , (11)

A↓ =


2α1 α2 + α0 . . . αt + αt−2

2α0 2α1 . . . 2αt−1

2α1 α2 + α0 . . . αt + αt−2

...
...

...
2αt−2 αt−1 + αt−3 . . . α2t−3 + α1

 , (12)

and set Z = diag(Td1(a), . . . , Tdt(a)). Then for the Vandermonde-like system W in (5) and D =
diag(2c1, . . . , 2ct), we have A =WDWTr and 1

2 (A↑+A↓) =WDZWTr. The values Td1(a), Td2(a),
. . ., Tdt(a) are solutions for z in the generalized eigenvalue system

1
2

(A↑ +A↓)v = zAv. (13)

Algorithm: GEVSparseChebyshevInterp

Given a black-box polynomial p(x), and the number of non-zero terms t of p(x) in the Chebyshev
basis, determine cj and dj such that

∑t
j=1 cjTdj (x) interpolates p(x).

(1) [Evaluate p(Tk(a)).] Choose an appropriate a, evaluate αk = p(Tk(a)) for k = 0, 1, . . . , 2t− 1.
(2) [Degrees dj .] Obtain Tdj (a) by solving the generalized eigenvalue system (13), dj can be recov-

ered from values of Tdj (a).
(3) [Coefficients cj .] Compute coefficients cj .
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4.1 Sensitivity of the generalized eigenvalue problem

We can apply the analysis of the generalized eigenvalue problem in [7, 6] to our Hankel-plus-Toeplitz
system in the Step 2 of GEVSparseChebyshevInterp. For a given eigenvalue zj and the associated
eigenvector ν, suppose

1
2

((A↑ +A↓) + ε(Â↑ + Â↓))(ν + εν(1) + · · · ) = (zj + εz
(1)
j + · · · )(A+ εÂ)(ν + εν(1) + · · · )

is an ε-perturbation of our eigenvalue problem. Looking only at first order errors gives

(
1
2

(A↑ +A↓)− zjA)ν(1) = (z(1)
j A+ zjÂ −

1
2

(Â↑ + Â↓))ν. (14)

Both 1
2 (A↑ +A↓) and A are symmetric. As a result, ν is a left and right eigenvector at the same

time. The left side of (14) is cancelled by multiplication on the left by νTr giving

z
(1)
j =

νTr( 1
2 (Â↑ + Â↓)− zjÂ)ν

νTrAν
. (15)

Assuming the perturbations are of the same size as the precise value, that is, ‖Â‖ = ‖A‖ and
‖ 1

2 (Â↑ + Â↓)‖ = ‖ 1
2 (A↑ + A↓)‖, and ν is normalized as a unit vector, then (15) gives the error

bound
‖ 1

2 (A↑ +A↓)‖+ |zj |‖A‖
|νTrAν|

.

Notice that the columns of (WTr)−1 give both the right and left eigenvectors of (13). If zj is
the eigenvalue corresponding to the jth column of (WTr)−1, that is vj = (WTr)−1ej for (13), then
1/|νTrAν| can be reduced to

1
|νTrAν|

=
|vTr
j vj |2

|vTr
j Avj |

=
‖vj‖2

|vTr
j WDWTrvj |

=
‖(WTr)−1ej‖2

|cj |
≤ ‖V

−1‖2‖L−1‖2

|cj |
≤ K2 · ‖V−1‖2

|cj |
.

Based on their similar structures, we may assume ‖ 1
2 (A↑ + A↓)‖ = ‖A‖. If a is chosen such

that Tdj (a) ≤ 1, then ‖zj‖ ≤ 1 and

‖z(1)
j ‖ ≤

2K2 · ‖A‖ · ‖V−1‖2

|cj |
. (16)

4.2 Computing the coefficients cj

From the computed Tdj (a), both W and W−1 can be obtained. The coefficients cj can then be
computed since D = diag(2c1, . . . , 2ct) = W−1A(WTr)−1. On the other hand, if the Tdj (a) are
obtained as generalized eigenvalues by the QZ algorithm, then the computed eigenvectors νj can
be used:

cj = (νTr
j Aνj)(Hj,1)2,

where H = M−1, M = (WTr)−1S has νj as columns, and S is a diagonal scaling matrix. The
diagonals of S can be computed by solving [S]j,jHj,1 = 1 (see [7]).

Coefficients cj can also be recovered by solving the associated Vandermonde-like system (5), as
described in the previous section.

5 Trigonometric interpolation

In this section we present new algorithms to interpolate an approximate black-box function f as
a linear combination of trigonometric functions of different periods. That is, we wish to find a
representation of f as

f(θ) =
A0

2
+

m∑
k=1

(Ak cos kθ +Bk sin kθ),

in which many of the Ak ∈ R and Bk ∈ R are zero, with a small number of evaluations of the black
box. We exhibit algorithms whose costs are proportional to the number of non-zero terms (i.e., the
sparsity) in f when represented as above, and discuss their numerical sensitivity.
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5.1 Cosine interpolation

Recall that the kth Chebyshev polynomial gives polynomial relations between cos kθ and cos θ:
cos kθ = Tk(cos θ). For the problem of interpolating a sum of cosine functions

g(θ) =
t∑

j=1

Aj coshjθ with h1 < h2 < · · · < ht,

the sparse Chebyshev polynomial interpolation algorithms in Sections 3 and 4 can be transformed
easily into sparse consine interpolation algorithms by considering g(cos−1 a) = p(a) for a = cosφ,
where φ = 2π/N and N ≥ 2ht. We have −1 ≤ a ≤ 1 because a = cosφ.

By modifying the algorithm FPSparseChebyshevInterp of the previous section, we obtain the
algorithm SparseConsineInterp:

Algorithm: SparseCosineInterp

Given a black box for g(θ) =
∑t
j=1Aj coshjθ, the number of cosine terms t of g(θ), and an upper

bound M for the maximum period of a term in g(θ), find A1, . . . , At ∈ R and h1 < . . . < ht ≤ M
such that g(θ) =

∑t
j=1Aj coshjθ.

(1) [Evaluate g(kφ).] Choose φ = 2π/N for N ≥ 2M , evaluate αk = g(kφ) for k = 0, 1, . . . , 2t− 1.
(2) [Find periods hj .]

(2.1) Solve the symmetric Hankel-plus-Toeplitz system in equation (4).
(2.2) Find roots of Λ(z) to obtains coshjφ. The hj can then be recovered from values of coshjφ.

(3) [Find coefficientsAj .] Determine coefficientsA1, . . . , At by solving the transposed Vandermonde-
like system 

1 . . . 1
cos(h1φ) . . . cos(htφ)

...
. . .

...
cos(h1(t− 1)φ) . . . cos(ht(t− 1)φ)


︸ ︷︷ ︸

W


A1

A2

...
At

 =


g(0)
g(φ)

...
g((t− 1)φ)

 . (17)

As in Section 4, we can combine the explicit formation of Λ(z) and finding its roots into a
single generalized eigenvalue problem as in GEVSparseChebyshevInterp. This should improve the
numerical stability of the algorithm. We replace Steps 2.1 and 2.2 in the above algorithm, as follows:

Algorithm: GEVSparseCosineInterp

Given a black box g(θ) =
∑t
j=1Aj coshjθ, the number of cosine terms t of g(θ), and an upper

bound M for the maximum period of a term in g(θ), find A1, . . . , At ∈ R and h1 < . . . < ht ≤ M
such that g(θ) =

∑t
j=1Aj coshjθ.

(1) [Evaluate g(kφ).] Choose φ = 2π/N for N ≥ 2M , evaluate αk = g(kφ) for k = 0, 1, . . . , 2t− 1.
(2) [Find periods hj .] Obtain coshjφ via solving the associated generalized eigenvalue system as

in (13). The periods hj can be recovered from values of coshjφ.
(3) [Find coefficients Aj .] Compute coefficients Aj .

5.2 Sparse interpolation for trigonometric functions

We now consider the interpolation of a sparse linear combination of sine and cosine functions:

f(θ) =
t1∑
j=1

Aj coshjθ︸ ︷︷ ︸
g1(θ)

+
t2∑
j=1

Bj sin kjθ︸ ︷︷ ︸
g2(θ)

. (18)
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When t1 = t2 and hj = kj , f(θ) can interpolated through a variant of Prony’s method that
requires 3t1 evaluations [8, pp. 382-386], though Hildebrand notes that this algorithm suffers from
the numerical instability generally associated with Prony’s method.

Alternatively, the interpolation of f(θ) can be transformed into the problem of finding an
associated phase polynomial that is a sum of exponential functions (see, e.g., [15]). Let N be
chosen as either 2m+ 1 (odd) or 2m (even), and φ` = 2π`/N for ` = 0, . . . , N − 1 over the interval
[0, 2π]. It is easily derived that for ` = 0, . . . , N − 1,

coshjφ` =
ehjiφ` + e(N−hj)iφ`

2
and sin kjφ` =

ekjiφ` − e(N−kj)iφ`

2i
.

The phase polynomial p(θ) for f(θ) is defined by

p(θ) =
N−1∑
`=0

β`e
`iθ, (19)

with coefficients β` as follows:
• If N = 2m+ 1, then for k = 1, . . . ,m,

β0 =
A0

2
, βk =

1
2

(Ak − iBk), βN−k =
1
2

(Ak + iBk).

• If N = 2m, then βm = Am/2, and for k = 1, . . . ,m− 1,

β0 =
A0

2
, βk =

1
2

(Ak − iBk), βN−k =
1
2

(Ak + iBk).

While p(θ) = f(θ) need not to hold everywhere, by definition p(φ`) = f(φ`), and p(θ) can be
interpolated from f(φ0), f(φ1), . . . , f(φN−1). Once the phase polynomial p(θ) is found, coefficients
Aj and Bj in f(θ) can be recovered according to their relations with β`.

We notice that the phase polynomial can be interpolated through sparse methods that are
similar to sparse polynomial interpolation on the unit circle [6]. Hence, the generalized eigenvalue
approach can be used in the interpolation of the phase polynomial p(θ) and the corresponding
trigonometric function f(θ). This provides considerable numerical stability. We note that it does
so at the expense of moving to compuations over the complex numbers.

On the other hand, taking advantage of the facts that g1(θ) is odd and g2(θ) is even (cf. [13]),
when t1 = t2, hj = kj , and Aj 6= 0 in (18) for 1 ≤ k ≤ t1, either SparseCosineInterp or
GEVSparseCosineInterp can be used to interpolate the cosine component of f(θ) from the follow-
ing evaluation:

g1(θ) =
1
2

(f(θ) + f(−θ)).

Once g1(θ) is interpolated, the kj in g2(θ) are also recovered. The coefficients Bj can be computed
by solving 

1 . . . 1
sin(k1φ) . . . sin(kt2φ)

...
. . .

...
sin(k1(t2 − 1)φ) . . . sin(kt2(t2 − 1)φ)



B1

B2

...
Bt2

 =


g2(0)
g2(φ)

...
g2((t2 − 1)φ)

 . (20)

The values for g2(j · φ) are obtained from evaluating:

g2(θ) =
1
2

(f(θ)− f(−θ)).

5.3 Multivariate case

We can also extend this trigonometric interpolation to the multivariate case. For sparse polynomial
interpolation, multivariate methods for floating-point arithmetic are developed in [6]. This may be
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applicable to multi-dimensional Fourier series, as it applies to image processing [12]. We consider
the following case of multivariate trigonometric interpolation:

f(θ1, . . . , θn) =
t1∑
j=1

Aj cos(h1,jθ1 + . . .+ hn,jθn) +
t2∑
j=1

Bj sin(k1,jθ1 + . . .+ kn,jθn),

when hi,j and ki,j are all integers.
If f is interpolated through its associated phase polynomial, the multivariate method developed

in [6] can be directly implemented. Here we apply a similar strategy for interpolating a sum of
cosine functions:

g(θ1, . . . , θn) =
t∑

j=1

Ahj cos(h1,jθ1 + . . .+ hn,jθn),

with h1,j ≤ m1, . . . , hn,j ≤ mn.
Let p1, . . . , pn ∈ Z≥0 be pairwise relatively prime and pj > mj for 1 ≤ k ≤ n. Consider

interpolating g at ωk = 2π/pk. Set m = p1 · · · pn and ω = 2π/m, then ωk = m/pk for 1 ≤ k ≤ n.
In g(ω1, . . . , ωn), each term cos(h1,jθ1 + . . .+ hn,jθn) is mapped to value cos(h1,j2π/p1 + . . .+

hn,j2π/pn) = cos(hj2π/m). The period for each variable (hj1 , . . . , hjn) ∈ Zn≥0 can be uniquely
determined by the Chinese remainder algorithm (cf. [5]). That is, dj mod pk ≡ djk for 1 ≤ k ≤ n,
and

hj = hj1 ·
(
m

p1

)
+ · · ·+ hjn ·

(
m

pn

)
. (21)

6 Conclusions and future works

We develop sparse Chebyshev interpolation algorithms in floating-point arithmetic. We give for-
mulations based on a Prony-like root-finding method, and on a more numerically stable generalized
eigenvalue approach. Based on the relations between cosine functions and Chebyshev polynomials,
we extend these interpolation results to sparse trigonometric functions. We also show how these
can be improved numerically through the use of generalized eigenvalue solvers. Finally, we give a
method for a sparse, multivariate trigonometric interpolation.

We have implemented FPSparsChebyshevInterp and GEVSparseChebyshevInterp in Maple1.
Currently we are conducting extensive testing and numerical experiments. We are further studying
the numerical sensitivity, especially in the situation when only an inexact upper is supplied for the
number of terms in the input, and investigating connections to Fourier series.
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