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a b s t r a c t

In this paper, we define simultaneously row and column reduced
forms of higher-order linear differential systemswith power series
coefficients and give two algorithms, alongwith their complexities,
for their computation. We show how the simultaneously row and
column reduced form can be used to transform a given higher-
order input system into a first-order system. Finally, we show that
the algorithm can be used to compute Two-Sided Block Popov
forms as given in Barkatou et al. (2010). These results extend the
previous work in Barkatou et al. (2010), on second-order systems,
and Harris et al. (1968), on first-order systems, to systems of
arbitrary order.
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Introduction

Higher-order systems of linear differential equations can be represented as an equation of the form

L · y⃗(x) = f⃗ (x), (1)
where L is a matrix of differential operators in the variable x and the · denotes operator application.
In our case, we are interested in the local analysis of such a system and hence the coefficients of
these differential operators (and the components of the right hand side) are considered to be formal
power series centered about the point x = 0. Such systems arise naturally in many applications
of multi-body systems, models of electrical circuits, robotic modeling and mechanical systems (see
Mehrmann and Shi (2006), Pantelous et al. (2009) and Schulz (2003) and the references therein).
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A standard technique for dealing with equations of the form (1) is to transform them to a system
having the same properties butwhich is in a ‘‘simpler’’ form, onewhere a local analysis ismore readily
determined.

One method for obtaining systems equivalent to (1) is by using invertible row operations on the
matrix L. As an example, the differential row Hermite form (Giesbrecht and Kim, 2009) results in a
system having a triangular form and hence is useful for solving such systems. However, the result is
often differential equations of order higher than the original system. A second form, the differential
row Popov form (Beckermann et al., 2006), always has differential operators of order at most that of
the original system. It is useful for transforming the system to onewhich can easily be transformed into
a first-order differential–algebraic system. First-order systems readily lend themselves to singularity
analysis using Moser and super-reduction algorithms (Barkatou and Pflügel, 2009). One can also
obtain equivalent systems making use of both invertible row and column operations on L. The most
extreme example of this is the transformation of our differential matrix to a diagonal form, called the
Jacobson Normal Form (Middeke, 2008).

In the case of a first-order system a reduction using both row and column operations was used by
Harris et al. (1968) for the purpose of finding analytic solutions. In the first-order case the reductions
used row and column transformations only on the coefficient matrices of formal power series. An
alternate method was proposed by Barkatou et al. (2010), this time requiring the need for both row
and column operations on the entirematrix of differential operators. In the case of first-order systems
their transformations resulted in reduction of (1) to one involving a differential system, an algebraic
systemand a set of conditions on the right hand side functions. They also presented a similar reduction
in the case of second-order systems of equations, again using row and column operations on the entire
matrix of differential operators.

In this paper we give two new algorithms for reducing systems of the form (1) by transformations
on the matrix of differential operators. The methods are applicable for arbitrary order operators and
generalize the first and second ordermethods of Barkatou, El Bacha and Pflügel though using different
techniques. The approach found in Barkatou et al. (2010) follows techniques first used in Harris et al.
(1968) while in the present paper we make use of reduction techniques used for matrix polynomial
operations (Beckermann and Labahn, 1997; Beckermann et al., 2006). Both our algorithms reduce
orders in rows and columns bymaking use of a series of elementary row and column block operations.
The methods are also extended to handle Two-Sided Block Popov forms, a special form of a matrix of
differential operators which generalizes the Popov normal form.We give a complexity analysis of our
algorithms and also illustrate their use in the special case where the operator is of first-order.

While we have chosen to focus our work on matrices of differential operators with coefficients in
a domain of Laurent power series K((x)), our methods easily extend to the field of rational functions
K(x). In fact, our algorithms are entirely algebraic involving only basic row and column operations. As
such everything that we do can be done for the more general case of matrices of Ore operators having
coefficients in the field of rational functions K(x).

The rest of the paper is organized as follows. Section 1 gives somedefinitions andbasic properties of
the matrices of differential operators with the following section detailing the concept of a simultane-
ously row and column reducedmatrix operator and a first algorithm for its computation. In Section 3,
we develop a second algorithm for the construction of a simultaneously row and column reduced
form. We also introduce the notion of a Two-Sided Block Popov form for a matrix of operators and
propose a procedure for its computation. Section 4 gives the complexity of our procedures while Sec-
tions 5 and 6 discuss the reduction for the case of first and higher order systems, respectively, as they
apply to differential systems. The paper ends with a conclusion along with topics for future research.

Notation. For any vector of integers δ⃗ = (δ1, . . . , δp), we denote by |δ⃗| =
p

i=1 δi. For any matrix of
differential operators L we denote by Li,∗ the ith row or block row (depending on the context) of L
(with L∗,j the notation for the jth (block) column).

1. Preliminaries

Let K be an extension of the field of rational numbers (Q ⊆ K ⊆ C). We denote by K[[x]] the ring of
formal power series over K in the variable x and by K((x)) its quotient field. Moreover, we denote by ∂
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the standard derivation d
dx of K((x)) and by K[[x]][∂] (resp. K((x))[∂]) the ring of differential operators

with coefficients in K[[x]] (resp. in K((x))). Recall that the multiplication in K((x))[∂] satisfies the
commutation rule:

∀ a ∈ K((x)), ∂a =
da
dx
+ a∂.

Definition 1. Any nonzero matrix of differential operators L of sizem× n can be written as

L = aℓ(x)∂ℓ
+ aℓ−1(x)∂ℓ−1

+ · · · + a0(x),

where ℓ ∈ N, for i = 0, . . . , ℓ, ai(x) ∈ K((x))m×n and aℓ(x) ≠ 0. The integer ℓ is called the order of L
and is denoted by ord(L). Thematrix aℓ(x) is called the leading coefficient of L and is denoted by ℓc(L).

When L = 0, we set ord(L) = −∞ and ℓc(L) = 0.

Definition 2. Let L ∈ K((x))[∂]m×n and J ⊆ {1, . . . ,m}. The rows Li,∗ with index i ∈ J are said to be
K((x))[∂]-linearly dependent if there exist differential operators {Wi}i∈J ⊆ K((x))[∂] not all zero such
that


i∈J Wi Li,∗ = 0; otherwise, they are said to be K((x))[∂]-linearly independent.

Definition 3. Let L ∈ K((x))[∂]m×n be amatrix of differential operators. Denote byML the submodule
of the left K((x))[∂]-module K((x))[∂]1×n defined by ML = {P L; P ∈ K((x))[∂]1×m}. The row rank
of L is defined to be the rank of the module ML, i.e., the cardinality of a maximal K((x))[∂]-linearly
independent subset ofML. Analogously, by working with the columns of L,we define the column rank
of L.

It has been shown in Beckermann et al. (2006, Appendix) that the row rank of L is equal to the
maximum number of K((x))[∂]-linearly independent rows of L.

Since K((x))[∂] is a one-sided Euclidean domain it is a principal ideal domain. Thus we can deduce
from Cohn (1971, Chapter 8, Th. 1.1) that if L ∈ K((x))[∂]m×n is a matrix of differential operators, then
the row rank and column rank of L are equal.

Definition 4. A square matrix of differential operators U ∈ K((x))[∂]m×m is said to be unimodular
if it has a two-sided inverse in K((x))[∂]m×m, that is, if there exists U ∈ K((x))[∂]m×m such thatU U = UU = Im.

In the sequel, wewill denote the inverse of a unimodularmatrix of differential operatorsU byU−1.
We are primarily interested in applying elementary row operations (resp. elementary column

operations) to a matrix of differential operators L. These operations are of three types:

(E1) interchanging two rows (resp. two columns);
(E2) multiplying a row (resp. a column) on the left (resp. on the right) by a nonzero element of K((x));
(E3) adding to a row (resp. to a column) another one multiplied on the left (resp. on the right) by a

scalar differential operator with coefficients in K((x)).

Each elementary row operation (resp. elementary column operation) corresponds to a left-
multiplication (resp. right-multiplication) by an elementary matrix. Note that it has been shown in
Miyake (1980, Theorem III) that a matrix of differential operators U is unimodular if and only if it can
be expressed as a product of elementary matrices.

Lemma 1 (Beckermann et al., 2006, Lemma A.3). Let L be a matrix of differential operators of size m× n
and U and V two unimodular matrices of differential operators of sizes m × m and n × n, respectively.
Then the ranks of L, U L and L V are all equal.

Definition 5. Two matrices of differential operators L,L ∈ K((x))[∂]m×n are said to be equivalent if
there exist unimodular matrices U ∈ K((x))[∂]m×m and V ∈ K((x))[∂]n×n such thatL = U L V .

2. Two-sided reduced matrix differential forms

In the case of a scalar differential operator the leading coefficient (the highest nonzero coefficient)
plays an important role in a number of tasks, for example singularity analysis and finding local
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solutions. In the case of a matrix of differential operators this is complicated by the fact that there
are a number of ways to define a leading coefficient. This can include the matrix of highest-order, the
matrix of highest row orders or the matrix of highest column orders. Invertibility conditions are then
important with a matrix of differential operators having a leading row coefficient matrix invertible
called a row-reduced form (a column-reduced form is the corresponding notion for columns). It is
often the case that a matrix of differential operators needs to be transformed into reduced form via
unimodular matrix operators.

In this section we introduce the concept of a simultaneously row and column reduced matrix
of differential operators and give an algorithm for transforming an arbitrary matrix of differential
operators into a matrix having such a property. When applied to problems of the form (1) one obtains
a conversion into a useful algebraic structure for system simplification. For example, when L is both
simultaneously row and column reduced and of first-order then the system (1) can be decoupled
into both a purely algebraic and a purely differential system. For higher-order systems one can use
such a transformation to extract a purely algebraic part (if it exists) with a second component easily
transformable into a square system of first-order.

2.1. Row-reduction

In the case of row-reduction alone we can make use of a procedure used by Beckermann and
Labahn (1997) for the commutative case of matrix polynomials and later generalized for Ore matrix
polynomials in Beckermann et al. (2006). In this subsection, we will review this method for use with
matrices of differential operators.

Definition 6. Let L ∈ K[[x]][∂]m×n and let δi = max(0, ord(Li,∗)) for i = 1, . . . ,m.

(a) The row vector δ⃗ = (δ1, . . . , δm) is called the row-order of L.
(b) The leading row coefficientmatrix of L is them×nmatrixwith the (i, j) entry being the coefficient

of order δi of the (i, j) entry of L.
(c) L is row-reduced if the nonzero rows of its leading row coefficient matrix are linearly independent

over K((x)).

Lemma 2 (Beckermann et al., 2006, Appendix). The rank of a row-reduced matrix of differential
operators is equal to the rank of its leading row coefficient matrix.

The following lemma shows that any matrix of differential operators can be transformed into a
row-reduced form by means of elementary row operations.

Lemma 3 (Beckermann et al., 2006, Th. 2.2). Let L ∈ K[[x]][∂]m×n be a matrix of differential operators
of rank s ≤ min(m, n). Then, one can always construct a unimodular matrix of differential operators
U ∈ K[[x]][∂]m×m such that U L is of the form

U L =

L∗

0


where L∗ is a row-reduced matrix of differential operators of size s× n such that ord(L∗) ≤ ord(L) and all
its rows are nonzero.

For the sake of completeness, we recall the proof of the lemma here.

Proof. If L is already row-reduced thenU = Im andwe are done. Otherwise, wemay suppose, without
any loss of generality, that L has all its zero rows at the bottom of the matrix. In this case the leading
row coefficient matrix of L is of the form

L0
0


,

where L0 ∈ K[[x]]k×n is the leading row coefficient matrix of the first k rows of L (k ≥ s). As L is not
row-reduced L0 is of rank less than k and hence we can find a nonzero row vector v = (v1, . . . , vk) ∈
K[[x]]1×k such that v L0 = 0. Select an index ν such that vν ≠ 0 and δν = max(δi; vi ≠ 0) where
δ⃗ = (δ1, . . . , δm) denotes the row-order of L. Define U1 = diag(U11, Im−k) where Im−k denotes the
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identity matrix of sizem− k and

U11 =



1
. . .

1
v1 ∂δν−δ1 · · · vν−1 ∂δν−δν−1 vν vν+1 ∂δν−δν+1 · · · vk ∂δν−δk

1

. . .

1


.

Then U1 is unimodular and multiplying L on the left by U1 leaves the rows of index i ≠ ν unchanged
and replaces the νth row by

k
i=1

vi ∂
δν−δiLi,∗ =

k
i=1

vi ℓc(Li,∗)∂δν + terms of order less than δν

= v L0
= 0

∂δν + terms of order less than δν .

Thus, the νth row of U1 L has order less than the one of L. Repeating this process a finite number of
times, we get a unimodular matrix of differential operators U such that U L is of the form

U L =

L∗

0


,

where L∗ is a row-reducedmatrix of differential operators of sizem1×n (m1 ≤ k) having only nonzero
rows. It remains to show thatm1 = s. By Lemma 1, we have that rank L = rankU L = rank L∗. On one
hand, the rank of L∗ is equal to that of its leading row coefficient matrix which is m1 (see Lemma 2).
On the other hand, we have rank L = s and thus m1 = s. �

Algorithm Row-Reduction.

Input: L ∈ K[[x]][∂]m×n a matrix of differential operators of row-order δ⃗ = (δ1, . . . , δm)
and of order ℓ = max(δi, i = 1, . . . ,m).

Output: A row-reduced matrix of differential operators L′ ∈ K[[x]][∂]m×n and a
unimodular matrix of differential operators U ∈ K[[x]][∂]m×m such that
L′ = UL.

Initialization: Let L′ = L and define L′0 as the leading row coefficient matrix of L′.
Let δ⃗′ = (δ′1, . . . , δ

′
m) = δ⃗ and U = Im.

While the nonzero rows of L′0 are linearly dependent do

1. Compute v = (v1, . . . , vm) ∈ K[[x]]1×m \ {0} in the left nullspace of L′0;

2. Select an integer ν s.t. vν ≠ 0 and δ′ν = max(δ′i ; vi ≠ 0);

3. Replace L′ν,∗ ←−
m

i=1 vi ∂
δ′ν−δ′i L′i,∗;

4. Replace Uν,∗ ←−
m

i=1 vi ∂
δ′ν−δ′iUi,∗;

5. Update L′0 and δ⃗′;

end do;

Return L′ and U;
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Proposition 1. AlgorithmRow-Reduction costs atmost O

mn


|δ⃗| +m

 
m+ 2 ℓ+ |δ⃗|


operations

in K[[x]].

Proof. Computing an element of the left nullspace of a matrix L′0 ∈ K[[x]]m×n costs at most O

m2 n


operations in K[[x]] and so gives the cost of Step 1. Since L′ has order always bounded by ℓ, the cost
of Step 3 is then O (mn ℓ) operations in K[[x]]. From Beckermann et al. (2006, Theorem 2.2), we can
deduce that the order of the multiplier U is always bounded by ℓ + |δ⃗|, and so for i = 1, . . . ,m,

ord

∂δ′ν−δ′iUi,∗


≤ 2 ℓ + |δ⃗|. Hence Step 4 can be done in at most O


mn


2 ℓ+ |δ⃗|


operations in

K[[x]]. Finally, as thewhile loop is repeated atmost |δ⃗|+m−1 times, we obtain a row-reducedmatrix
of differential operators equivalent to L after at most O


mn


|δ⃗| +m

 
m+ 2 ℓ+ |δ⃗|


operations

in K[[x]]. �

Analogous definitions and results can also be stated for column-reduction (where now the leading
columncoefficientmatrix of the nonzero columnshas full column rank). Thus it is possible to construct
a unimodular matrix of differential operators V ∈ K[[x]][∂]n×n such that L V is column-reduced.

2.2. Simultaneous row and column reduction

Let L ∈ K[[x]][∂]m×n of order ℓ and rank s ≤ min(m, n). Unfortunately, constructing a
simultaneously row and column reduced form, equivalent to L, is not as simple as just applying row-
reduction to L then followed by column-reduction of the resulting row-reduced form (see Example 1
below). In general, such a computation requires several successive iterations of row-reduction and
column-reduction. In this case the stopping criterion is no longer based on decreasing the value of the
sumof the roworders |δ⃗| nor that of the sumof the column orders |γ⃗ |. Indeed, applying row-reduction
(resp. column-reduction) to L as in Lemma 3, the value of |δ⃗| (resp. the value of |γ⃗ |) decreases but in
the same time the value of |γ⃗ | (resp. of |δ⃗|) may increase.

Example 1. Consider the matrix of differential operators given by

L =

∂3
+ x 2∂2 x2 + x

∂2 x ∂2 2x2 + 1
∂ x ∂ 1

 , (2)

with row and column orders δ⃗ = (3, 2, 1) and γ⃗ = (3, 2, 0), respectively. L is not row-reduced since
its leading row coefficient matrix1 0 0

1 x 0
1 x 0


,

is singular. By the construction in Lemma 3 we multiply L on the left by

U1 =

1 0 0
0 1 −∂
0 0 1


which gives

L(1)
= U1 L =

∂3
+ x 2∂2 x2 + x
0 −∂ −∂ + 2x2 + 1
∂ x ∂ 1

 .

In this case the resulting operator is row-reducedwith rowand columnorders given by δ⃗(1)
= (3, 1, 1)

and γ⃗ (1)
= (3, 2, 1). Row-reduction gives |δ⃗(1)

| < |δ⃗|. However, in this case we have increased the
value of |γ⃗ | and indeed now |γ⃗ (1)

| > |γ⃗ |. In addition, L(1) is row-reduced but not column-reduced as
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the resulting leading column coefficient matrix is given by1 2 0
0 0 −1
0 0 0


.

Again, using the construction from Lemma 3, we multiply L(1) on the right by

V1 =

 2 0 0
−∂ 1 0
0 0 1


,

to obtain the column-reduced form

L(2)
= L(1) V1 =

 2x 2∂2 x2 + x
∂2

−∂ −∂ + 2x2 + 1
−x∂2

+ 2∂ x ∂ 1

 . (3)

Unfortunately this is now not row-reduced so we are back to our first case.
While a single call to row-reduction and then column-reduction will not necessarily result in a

simultaneously row and column reduced form, it turns out that by repeating this process a finite
number of times we can always end up with a simultaneously row and column reduced operator.
This is shown by the following proposition.
Proposition 2. Let L ∈ K[[x]][∂]m×n of order ℓ. It is always possible to construct two unimodularmatrices
U ∈ K[[x]][∂]m×m and V ∈ K[[x]][∂]n×n such that U L V is a simultaneously row and column reduced
matrix of differential operators.
Proof. Let us show that by iterating successively row-reduction and column-reduction we end up
with a simultaneously row and column reduced operator. For this, we consider the tuple

(rℓ, cℓ, rℓ−1, cℓ−1, . . . , r0, c0),
where, for i = 0, . . . , ℓ, ri and ci denote the number of rows and columns of L of order i,
respectively with ri = 0 (ci = 0) if no such rows (columns) exist. At each step of a row-reduction
and of a column-reduction, this tuple strictly decreases in the sense of the lexicographic ordering.
Indeed, one step of the row-reduction procedure consists of replacing a row of order i either by a
zero row or by a nonzero row of order at most i − 1. Let (r (1)

ℓ , c(1)
ℓ , r (1)

ℓ−1, c
(1)
ℓ−1, . . . , r

(1)
0 , c(1)

0 ) and
(r (2)

ℓ , c(2)
ℓ , r (2)

ℓ−1, c
(2)
ℓ−1, . . . , r

(2)
0 , c(2)

0 ) denote the tuples associated with the operators before and after
this row operation, respectively. Then, for k = i + 1, . . . , ℓ, we have r (2)

k = r (1)
k and c(2)

k = c(1)
k but

r (2)
i < r (1)

i and c(2)
i ≤ c(1)

i . This implies that

(r (2)
ℓ , c(2)

ℓ , r (2)
ℓ−1, c

(2)
ℓ−1, . . . , r

(2)
0 , c(2)

0 ) <lex (r (1)
ℓ , c(1)

ℓ , r (1)
ℓ−1, c

(1)
ℓ−1, . . . , r

(1)
0 , c(1)

0 )

where <lex denotes lexicographic ordering. A similar statement holds true when doing column-
reduction. Therefore, after a finite number of iterations of row-reduction and column-reduction, we
get two unimodularmatrices of differential operatorsU and V such thatU L V is a simultaneously row
and column reduced. �

Example 2. Consider the matrix of differential operators L of order ℓ = 3 given by (2). The tuple
(r3, c3, r2, c2, r1, c1, r0, c0) associated with L is then (1, 1, 1, 1, 1, 0, 0, 1). The tuples associated with
the operators L(1) and L(2) obtained after applying row-reduction to L and then column-reduction to
L(1) become (1, 1, 0, 1, 2, 1, 0, 0) and (0, 0, 3, 2, 0, 1, 0, 0), respectively. In this case we do observe
that

(0, 0, 3, 2, 0, 1, 0, 0) <lex (1, 1, 0, 1, 2, 1, 0, 0) <lex (1, 1, 1, 1, 1, 0, 0, 1).

3. A second algorithm for row–column reduction

In this section we describe a second algorithm to convert a matrix of differential operators L into
one which is simultaneously row and column reduced. For this method it becomes important to see
what the end result can be for such a computation.
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Proposition 3. Let L ∈ K[[x]][∂]m×n be a simultaneously row and column reduced matrix of differential
operators of order ℓ. Let ri, ci i = 0, . . . , ℓ denote the number of rows and columns of order i, respectively,
with ri = 0 (ci = 0) if no such rows (columns) exist. Then one can permute the rows and columns of L so
that it has the block form

L11 · · · L1k 0
...

. . .
...

...
Lk1 · · · Lkk 0
0 · · · 0 0

 (4)

where Lii are block square matrices satisfying

(a) Lii is row and column reduced with same row and column order,
(b) ord(Lii) > ord(Li+1 i+1) for all i,
(c) ord(Lij) ≤ ord(Lii) for all j < i and ord(Lij) < ord(Lii) for all j > i,
(d) ord(Lij) ≤ ord(Ljj) for all i < j and ord(Lij) < ord(Ljj) for all i > j.

Conversely, a matrix of differential operators of the form (4) is simultaneously row and column reduced.

Proof. We first sort the rows and columns of L so that the row and column orders of L are decreasing,
the zero rows are at the bottom and the zero columns are at the end. The nonzero rows and columns
then form a square submatrix of full rank (since the leading row and column coefficient matrix has
this property). For ease of presentation let us assume that L is a square matrix consisting only of these
nonzero rows and columns and having decreasing row and column orders.

For each nonzero ri let ni = ri+1+· · ·+ rℓ. Note that both rℓ and cℓ are nonzero since L is of order ℓ.
Let L11 be the rℓ× cℓ matrix in the first rℓ and cℓ rows and columns. Then, the leading row and column
coefficient matrices of L are given by

ℓc(L11) 0
∗ ∗


and


ℓc(L11) ∗

0 ∗


,

respectively. These are of full row rank and full column rank, respectively, and so it must be the case
that ℓc(L11) is square (so rℓ = cℓ) and nonsingular.

We assume now that rj = cj for j = i+ 1, . . . , ℓ and we will show that ri = ci. Assume that ri ≠ 0
and that Li, the first ni rows and columns of L, are of the form

Li =

L11 · · · L1u
...

. . .
...

Lu1 · · · Luu


all satisfying conditions (a)–(d) in the proposition. If ci = 0 then the leading row coefficient matrix of
L has the form

ℓcrow(Li) 0
∗ 0
∗ ∗


,

where ℓcrow(Li) denotes the leading row coefficient matrix of Li. This gives a full row rank matrix of
size ni−1× ni with ni < ni−1 (since L is row-reduced), a contradiction. A similar situation would occur
if ci was nonzero but less than ri and so ri ≤ ci. Repeating the argument using the fact L is column-
reduced gives ci ≤ ri and so ri = ci. Letting Li−1 denote the square matrix of size ni−1 gives us the next
submatrix of L satisfying (a)–(d). The process continues until rows and columns of lowest order are
reached. �

Example 3. Let L be the matrix of differential operators from Example 1. Then L is equivalent to the
column-reduced operator L(2) given by (3) which is not row-reduced. However continuing with the
procedure described in Proposition 2 we use the construction of Lemma 3 to obtain a unimodular
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matrix

U2 =

1 0 0
0 x 1
0 0 1


,

with

L(3)
= U2 L(2)

=

 2x 2∂2 x2 + x
2∂ 0 −x∂ + 2x3 + x+ 1

−x∂2
+ 2∂ x∂ 1

 . (5)

Now L(3) is simultaneously row and column reduced of order 2 < ord(L) = 3. Here, we have
U L V = L(3) with

U = U2 U1 =

1 0 0
0 x −x∂ + 1
0 0 1


and V = V1 =

 2 0 0
−∂ 1 0
0 0 1


.

Finally, by swapping the second and third row of L(3) given in (5), we can partition the resultingmatrix
into four blocks

L∗ =

 2x 2∂2 x2 + x
−x∂2

+ 2∂ x∂ 1
2∂ 0 −x∂ + 2x3 + x+ 1

 =
L11 L12

L21 L22

 , (6)

satisfying properties (a)–(d) of Proposition 3.

In order to describe our second algorithm for converting a matrix of differential operators L into
one which is simultaneously row and column reduced let us first take advantage of the previous
proposition. Namely, by doing column operations we can ensure that all zero columns are located
in the last columns. Furthermore, by Lemma 3 we can ensure that the nonzero columns are in row-
reduced form. The remaining nonzero matrix is square and nonsingular.

Proposition 4. Let L ∈ K[[x]][∂]m×m be row-reduced, nonsingular (i.e., of rank m) of order ℓ with rows
sorted by decreasing order. Then we can construct an invertible matrix V ∈ K[[x]]m×m such that

L V =

L11 · · · L1k
...

. . .
...

Lk1 · · · Lkk

 (7)

where Lii are block square matrices satisfying
(a) Lii is row and column reduced with the same row and column order,
(b) ord (Lii) > ord


Li+1,i+1


for all i,

(c) ord

Lij

≤ ord (Lii) for all j < i and ord


Lij


< ord (Lii) for all j > i.

Proof. Let ri, i = 0, . . . , ℓ denote the number of rows of order i, with ri = 0 if no such rows exist, and
ni = ri+1 + · · · + rℓ. For each nonzero ri, we will then construct a matrix of differential operators of
size ni−1(= ni + ri) by m of the form

Li =

Ai ∗ ∗

∗ Bi ∗


with Ai and Bi square row-reduced matrices of differential operators of size ni × ni and ri × ri,
respectively. Furthermore, for each i the leading row coefficient matrix of Li will be

ℓcrow(Ai) 0 0
∗ ℓc(Bi) 0


. (8)

The matrix Li is constructed as follows. Let Ai be the matrix composed of the first ni rows and columns
of L. Suppose that Ai is row-reduced. If ri ≠ 0 then the fact that L is row-reduced implies that the
strip of L composed of rows ni + 1 to ni−1 is row-reduced. Since L and Ai are both row-reduced, the
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matrix formed from columns ni + 1 to m of this strip is row-reduced as well, that is, its leading row
coefficient matrix is of full row rank. Using elementary column operations on L we can ensure that
the square submatrix in rows and columns ni+ 1 to ni−1 has a nonsingular leading coefficient matrix.
Using elementary column operations on L we can then ensure that the last m − ni−1 columns of this
strip have order at most i− 1. Let Bi be the square matrix in rows and columns ni + 1 to ni−1 and set

Ai−1 =


Ai ∗

∗ Bi


where the∗denotes the remaining elements in thematrix. The iteration,with initial valueAℓ an empty
matrix, ends when L = Lk for a particular k. Finally, we note that in all cases the column operations
given above only require elements from K[[x]] as we are always eliminating only by means of entries
from leading coefficient matrices. �

Remark 1. For a given strip of same row order, the procedure requires that we ensure that the ri × ri
matrix starting at row and column ni + 1 have nonsingular leading coefficient. This is accomplished
by converting the full rank leading row coefficient matrix of this strip from columns ni + 1 to m into
column echelon form.

Example 4. We can show how the row orders are reduced with a matrix having block of orders 6, 4,
2 and 1 as in6 6 6 6

4 4 4 4
2 2 2 2
1 1 1 1

 .

Working top to bottom, we can ensure that the diagonal blocks have nonsingular leading coefficient
matrices and that the blocks to the right have lower order by computing the column echelon form
of the leading row coefficient matrix of each strip from columns ni + 1 to m. In the above case the
resulting orders would then become6 5 5 5

4 4 3 3
2 2 2 1
1 1 1 1

 .

Remark 2. Note that in fact we can also continue the process (again working top to bottom) by
eliminating the highest coefficients to obtain order bounds such that the blocks to the left of any
diagonal block are of smaller order, that is, condition (c) is replaced by

(c′) ord(Lij) < ord(Lii) for all j ≠ i.

Example 5. Continuingwith the previous example,we canuse the leading coefficient in each diagonal
block to reduce the orders in all blocks to the left. Thus, there are block column operations which
reduce the orders to6 5 5 5

3 4 3 3
1 1 2 1
0 0 0 1


if so desired.

Of course the construction in Proposition 4 does not necessarily result in a simultaneously row
and column reduced matrix. For this to hold we need to reduce the column orders. Fortunately,
Proposition 3 provides the required orders for a simultaneously row and column reduced matrix.

Definition 7. Let L =

Lij

1≤i,j≤k ∈ K[[x]][∂]m×m be a matrix of differential operators satisfying

conditions (a)–(c) of Proposition 4. The defect of each block row Li,∗ for i = 1, . . . , k− 1 is defined by

defect (L)i = max(ord(Lij)− ord(Ljj), j = i+ 1, . . . , k).
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Thus, a nonsingular row-reduced operator L =

Lij

1≤i,j≤k satisfying the conditions (a)–(c) of

Proposition 4 is simultaneously row and column reduced if and only if defect (L)i ≤ 0 for i =
1, . . . , k− 1.

Proposition 5. Let L =

Lij

1≤i,j≤k ∈ K[[x]][∂]m×m be a nonsingular row-reduced matrix of differential

operators satisfying the conditions (a)–(c) of Proposition 4. Then we can construct a unimodular matrix
U ∈ K[[x]][∂]m×m such that U L is simultaneously row and column reduced.

Proof. Since L already satisfies the conditions (a)–(c) of Proposition 4, it remains then to do row
operations in order that ord(Lij) ≤ ord(Ljj) for all i < j. We do this by reducing the positive defects to 0
proceeding from the bottom to the top block rows. Suppose that defect (L)i ≤ 0 for i = i0+1, . . . , k−1
and defect (L)i0 > 0. Let us explain how one lowers the defect of the i0th block row of L. Let j0 be the
smallest integer j for which ord(Li0j) − ord(Ljj) = defect (L)i0 . We first lower the order of the block
Li0j0 in the following way. Compute the adjoint (the transpose of the cofactor matrix) of ℓc(Lj0j0) that
we denote by adj(ℓc(Lj0j0)). Then replace the i0 th block row Li0,∗ of L by

det(ℓc(Lj0j0)) Li0,∗ − ℓc(Li0j0) adj(ℓc(Lj0j0))∂
αLj0,∗, (9)

where α = defect (L)i0 . This is achieved by multiplying L on the left by a unimodular matrix of
differential operators with coefficients in K[[x]]. LetL = Lij1≤i,j≤k denote the resulting matrix of
differential operators. Then one can check that

ord(Li0j)− ord(Ljj)< defect (L)i0 j ≤ j0
≤ defect (L)i0 j > j0,

and so, defect (L)i0 ≤ defect (L)i0 . Two cases then arise:

(1) defect (L)i0 < defect (L)i0 , (in which case we are done) or
(2) defect (L)i0 = defect (L)i0 .

For case (2) the smallest integer j for which ord(Li0j)−ord(Ljj) = defect (L)i0 is greater than j0. Hence,
the ‘‘value of j0’’ increases, and so after a finite number of iterations the defect will decrease. �

Remark 3. The elimination step in Eq. (9) can be viewed as the block row operations which replace
the i0th block row Li0,∗ of L by

Li0,∗ − ℓc(Li0j0) (ℓc(Lj0j0))
−1∂αLj0,∗.

However, for computational purposes it is better to work in the ring K[[x]] rather than in its quotient
field K((x)). Elimination in this case implies solving the linear system of equations

Xi0ℓc(Lj0j0) = ℓc(Li0j0)

for Xi0 amatrix of the same size as Li0j0 . We can solve such a system and remain in the domain K[[x]] by
using fraction-free Gaussian elimination (cf. Geddes et al. (1992, chapter 9)). However this produces
a solution for the system

det(ℓc(Lj0j0))Xi0 = ℓc(Li0j0) adj(ℓc(Lj0j0))

and hence replacing the i0th block row Li0,∗ of L is done via Eq. (9).We remark that in order tominimize
growth of coefficients for a given row– say row î of block i0 – one still needs to remove common factors
of the elimination terms, which in this case means removing the greatest common factor of the terms
in row î.

Example 6. Consider the matrix having order bounds6 5 5 5
4 4 3 3
2 2 2 1
1 1 1 1





56 M.A. Barkatou et al. / Journal of Symbolic Computation 49 (2013) 45–64

as in Example 4. Suppose that we have already reduced the defects of first the third and then the
second block rows to 0 and get the matrix having order bounds6 5 5 5

4 4 2 1
2 2 2 1
1 1 1 1

 .

Let us now reduce the defect of the first block row i0 = 1. Assuming all orders are attained, then the
defect is 4 and is attained for j0 = 4. In order to reduce the order in block (1, 4)we use the (invertible)
leading coefficient of the (4, 4) square blockmultiplied by ∂4 and obtain amatrix of orders of the form6 5 5 4

4 4 2 1
2 2 2 1
1 1 1 1

 .

The defect of the first block row is now 3with the defect attained for j = 3, 4.We repeat the reduction
process, first with block entry (1, 3) reduced by block (3, 3) and then block entry (1, 4) reduced by
block (4, 4) giving a matrix having order bounds6 5 4 3

4 4 2 1
2 2 2 1
1 1 1 1


and with the first block row now having defect 2. Continuing with the first block row, we end up
reducing to defect 0 giving order bounds6 4 2 1

4 4 2 1
2 2 2 1
1 1 1 1

 .

We summarize our result in the following theorem:

Theorem 1. Let L ∈ K[[x]][∂]m×n be a matrix of differential operators. We can construct two unimodular
matrices U ∈ K[[x]][∂]m×m and V ∈ K[[x]][∂]n×n such that U L V has the form (4)with conditions (a)–(d)
of Proposition 3 satisfied.

Definition 8. Let L ∈ K[[x]][∂]m×m of rankm. Then L is said to be in Two-Sided Block Popov form if

L =

L11 · · · L1k
...

. . .
...

Lk1 · · · Lkk

 (10)

where Lii are block square matrices satisfying

(a) Lii is row and column reduced with same row and column order,
(b) ord(Lii) > ord(Li+1,i+1) for all i,
(c) ord(Lij) < ord(Lii) for all j ≠ i,
(d) ord(Lij) < ord(Ljj) for all i ≠ j.

Corollary 1. Let L ∈ K[[x]][∂]m×m be a nonsingular matrix of differential operators. Then there exist
unimodular matrices U ∈ K[[x]][∂]m×m and V ∈ K[[x]]m×m such that U L V is in Two-Sided Block Popov
form.

Proof. From Remark 2 we can ensure that all blocks before a diagonal block have lower order using
only column operations. The procedure in the proof of Proposition 5 can be extended to reduce the
orders of the entries in the upper triangular part and hence ensure that the column of block rows
before a diagonal block have lower orders. �
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Example 7. If our starting point was the matrix in Example 5 and we repeated the row operations of
Example 6 then we would have a matrix of orders bounded by6 4 2 1

3 4 2 1
1 1 2 1
0 0 0 1

 .

If our procedure produced defects of−1 rather than 0 at every block row then we would get6 3 1 0
3 4 1 0
1 1 2 0
0 0 0 1


which is in Two-Sided Block Popov form.

4. Algorithms and complexity

In this section we give the algorithmic descriptions of themethods described in Propositions 4 and
5 along with their complexities.

Algorithm : Block Reduced Form

Input: L ∈ K[[x]][∂]m×m a nonsingular row-reduced matrix of differential operators
of order ℓ.

Output: An invertible matrix V ∈ K[[x]]m×m (over K((x))) and a matrix of differential
operatorsL such thatL = LV andL can be partitioned into blocksLij
for 1 ≤ i, j ≤ k satisfying the conditions (a)–(c) of Proposition 4.

Initialization: Let V = Im andL = L.
Let ri, for i = 0, . . . , ℓ, denote the number of rows ofL of order i
with ri = 0 if no such rows exist.
Define nℓ = 0 and ni =

ℓ
j=i+1 rj for i = −1, . . . , ℓ− 1.

1. Sort rows ofL in decreasing order;

2. For i from ℓ by−1 to 0 do

2.1. DefineL0 as the leading row coefficient matrix ofL;
2.2. Let Bi denote the submatrix ofL composed of rows ni + 1 to ni−1 and

columns ni + 1 tom;

2.3. Compute an invertible matrix Vi ∈ K[[x]](m−ni)×(m−ni) such that BiVi
is in column echelon form;

2.4. LetL =L diag(Ini , Vi) and V = V diag(Ini , Vi);

end do;

3. Return V andL;
Proposition 6. Algorithm Block Reduced Form costs at most O(m3ℓ3) operations in K[[x]].

Proof. We first consider the cost of one passage of the for loop, say at index i ∈ {0, . . . , ℓ}. In this case
Step 2.3 requires at most O


ri(m− ni)

2

operations in K[[x]]. In Step 2.4, the product V diag(Ini , Vi)
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can be done in at most O

m (m− ni)

2

operations in K[[x]]. In order to determine the cost of the

productL diag(Ini , Vi) we can write the operatorL asL =aℓ(x) ∂ℓ
+aℓ−1(x) ∂ℓ−1

+ · · · +a0(x),
whereaj(x) ∈ K[[x]]m×m for j = 0, . . . , ℓ, and then observe that

∂ j diag(Ini , Vi) = diag


Ini∂

j,

j
s=0


j
s


∂ s(Vi) ∂ j−s


.

Thus the cost of one product of the formaj(x) ∂ j diag(Ini , Vi) is equal to the cost of j+ 1 products of an
m × (m − ni) matrix by an (m − ni) × (m − ni) matrix. Therefore, the productL diag(Ini , Vi) can be

done in at most O
ℓ

j=0(j+ 1)m (m− ni)
2

= O


m ℓ2 (m− ni)

2

operations in K[[x]]. Hence, one

passage of the for loop can be done in atmostO

m ℓ2 (m− ni)

2

operations in K[[x]]. Sincem−ni ≤ m

and the for loop is repeated ℓ + 1 times, the above algorithm returns V andL after at most O(m3ℓ3)
operations in K[[x]]. �

Algorithm Simultaneously Row and Column Reduced Form

Input: L =

Lij

1≤i,j≤k ∈ K[[x]][∂]m×m a nonsingular matrix of differential operators

of order ℓ where the blocks Lij ∈ K[[x]][∂]mi×mj satisfy conditions (a)–(c)
of Proposition 4.

Output: A simultaneously row and column reduced matrix of differential operatorsL ∈ K[[x]][∂]m×m and a unimodular matrix of differential operators
U ∈ K[[x]][∂]m×m such thatL = UL.

Initialization: LetL = L, respectively U = Im, partitioned into blocks
Lij1≤i,j≤k,

respectively

Uij

1≤i,j≤k, of the same partition as L.

For i from k− 1 by−1 to 1 do

1. Define defect (L)i = max(ord(Lij)− ord(Ljj), j = i+ 1, . . . , k);

2. LetW = Im partitioned into blocks

Wij

1≤i,j≤k of the same partition asL;

3.While defect (L)i > 0 do

3.1. Define j0 = min

j ∈ {i+ 1, . . . , k} ; ord(Lij)− ord(Ljj) = defect (L)i ;

3.2. Define α = defect (L)i;
Comment: We avoid fractions in elimination Steps 3.3 and 3.4

3.3. ReplaceLi,∗ ←− det(ℓc(Lj0j0))Li,∗ − ℓc(Lij0) adj(ℓc(Lj0j0))∂αLj0,∗;
3.4. ReplaceWi,∗ ←− det(ℓc(Lj0j0))Wi,∗ − ℓc(Lij0) adj(ℓc(Lj0j0))∂αWj0,∗;

3.5. Update defect (L)i;
end do;

4. Replace Ui,∗ ←−
k

j=i Wij Uj,∗;

end do;

ReturnL and U;
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Proposition 7. Algorithm Simultaneously Row and Column Reduced Form costs at most O

k3 m3 ℓ2


operations in K[[x]] with k ≤ min(m, ℓ+ 1).

Proof. During the algorithm, the leading coefficients of the diagonal blocksLjj for j = 1, . . . , k remain
unchanged. Therefore, we need only compute once for all the determinants and the adjoints (and
hence the inverses) of the matrices ℓc(Ljj) for j = 2, . . . , k. The blocksLjj are of size mj × mj and so

computing the determinants and adjoints can be done in at most O
k

j=2 m
3
j


= O


m3

operations

in K[[x]] since
k

j=2 mj ≤ m. Let us now study the cost of the while loop, starting with the cost of

Step 3.3. Multiplying ℓc(Lij0) by adj(ℓc(Lj0j0)) can be done in at most O

mi m2

j0


operations in K[[x]].

Consider now the cost to multiply the operator ∂αLj0,∗ on the left by the matrix ℓc(Lij0) adj(ℓc(Lj0j0)).
Note that, since ord(Lj0,∗) = ord(Lj0j0), we have

ord(∂αLj0,∗) = α + ord(Lj0,∗) = ord(Lij0)− ord(Lj0j0)+ ord(Lj0,∗) = ord(Lij0).
Thus, the order of the operator ∂αLj0,∗ is at most ℓ. Therefore, the cost of multiplying ∂αLj0,∗ on the left
by ℓc(Lij0) adj(ℓc(Lj0j0)) is equivalent to the cost of at most ℓ+ 1 products of anmi×mj0 matrix by an
mj0×mmatrixwith entries in K[[x]], resulting inO


mi mj0 m ℓ


operations in K[[x]]. Since the order ofLi,∗ is always bounded by ℓ, multiplying the block rowLi,∗ by det(ℓc(Lj0j0)) in Step 3.3 can be done in at

most O (mi m ℓ) operations in K[[x]]. Thus, Step 3.3 can be done in at most O

mi mj0 m ℓ


= O


m3 ℓ


operations in K[[x]]. The cost of Step 3.4 is seen to be the cost of multiplying Wi,∗ by det(ℓc(Lj0j0))
since the block rowWj0,∗ is always equal to

Wj0,∗ =

0 · · · 0 Imj0

0 · · · 0

,

where Imj0
comes at the j0th position. Let α0

i ≤ ℓ denote the defect of the block row Li,∗. It is easy to
check that the order ofWi,∗ is always bounded byα0

i . Thus, Step 3.4 costs atmostO (mi m ℓ) operations
in K[[x]]. One passage of the while loop can then be done in at most O


m3 ℓ


operations in K[[x]]. To

reduce the defect of the ith block row to zero, Steps 3.1–3.5 are repeated at most (k − i) α0
i times.

Since (k − i) α0
i ≤ k ℓ, Step 3 can be done in at most O


km3 ℓ2


operations in K[[x]]. It remains to

determine the cost of Step 4. Note that the kth block row of U is always of the form

Uk,∗ =

0 · · · 0 0 0 · · · Imk


,

and so by induction we can show that for j = i+ 1, . . . , k− 1, we have ord(Uj,∗) ≤
k−1

s=j α0
s where

α0
s denotes the defect of the block row Ls,∗. Consider now the cost of multiplying operatorWij by Uj,∗.

SinceWij ∈ K[[x]][∂]mi×mj is of order bounded byα0
i ≤ ℓ andUj,∗ ∈ K[[x]][∂]mj×m is of order bounded

by
k−1

s=j α0
s ≤ k ℓ, one product of the formWij Uj,∗ costs at most O


km3 ℓ2


operations in K[[x]]. Step

4 can thus be done in at most O

k2 m3 ℓ2


operations in K[[x]]. As Steps 3 and 4 are repeated k − 1

times, the algorithm returns a simultaneously row and column reduced operator equivalent to the
input L after at most O


k3 m3 ℓ2


operations in K[[x]]. �

5. First-order matrices of differential operators

Linear differential–algebraic equations (DAEs) of first-order are equations of the form

L · y⃗(x) = a(x)y⃗ ′(x)+ b(x)y⃗(x) = f⃗ (x), (11)

where a(x), b(x) ∈ K[[x]]m×n and f⃗ (x) ∈ K[[x]]m. These have been the subject of interest of many
papers. For example, in the square case (where m = n) Harris et al. (1968) develop an algorithm by
which the existence of solutions of (11) can be decided and constructed through solutions of algebraic
systems or solutions of a first-order system of ordinary differential equations (ODEs). This algorithm,
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reviewed in Barkatou et al. (2010) can be viewed as an application of a series of elementary row
operations and elementary column operations on L.

In our case computing a simultaneously rowand column reduced operator equivalent to L allows us
to reduce system (11) into an algebraic system or a first-order system of ODEs and so one can deduce
the existence of the solutions of (11) and compute them when they exist (cf. Barkatou et al. (2010)).
The purpose of this section is to review this method and show that, when dealing with a matrix of
differential operators of the first-order, we are assured of getting a simultaneously row and column
reduced operator after at most the second application of row-reduction.

Let s ≤ min(m, n) denote the rank of L given by (11) and L(1) the operator obtained after applying
row-reduction to L. Then L(1) can be written as

L(1)
=

A11∂ + B11

B21

0


where A11 and B21 are of respective sizes r (1)

1 × n and (s− r (1)
1 )× n and

rank

A11

B21


= s.

Here r (1)
1 ≤ s. If s = n and either r (1)

1 = 0 or r (1)
1 = s then we are in simultaneously row and column

reduced form and so we are done. Otherwise, we apply column-reduction to L(1) and get a column-
reduced operator of the form

L(2)
=

A∗11∂ + B∗11 B∗12 0
B∗21 B∗22 0
0 0 0


where A∗11 and B∗22 are of respective sizes r (2)

1 × c(2)
1 and (s − r (2)

1 ) × (s − c(2)
1 ) (with r (2)

1 ≤ r (1)
1 ) and

the matrix
A∗11 B∗12
0 B∗22


(12)

is invertible since it is square and of full column rank (L(2) is column-reduced). This implies that
c(2)
1 ≤ r (2)

1 ≤ s and B∗22 is of full row rank.
If c(2)

1 = s then r (2)
1 = s and L(2) is simultaneously row and column reduced since it is of the form

L(2)
=


A∗11∂ + B∗11 0

0 0


with invertible matrix A∗11.

If c(2)
1 = 0 then r (2)

1 = 0 (recall that r (2)
1 is the number of rows of L(2) of order 1). Thus, L(2) is of

order 0 and of the form

L(2)
=


B∗22 0
0 0


with invertible matrix B∗22. Then L(2) is simultaneously row and column reduced and we are done.

Otherwise, if 0 ≠ c(2)
1 = r (2)

1 ≠ s then A∗11 is invertible and B∗22 is square. Since B∗22 is of full
row rank then B∗22 is also invertible and so L(2) is simultaneously row and column reduced. If now
0 ≠ c(2)

1 < r (2)
1 , then the rank of the leading row coefficient matrix of L(2)A∗11 0 0

B∗12 B∗22 0
0 0 0


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is less than swhich means that L(2) is not row-reduced. Consequently, we now apply a row-reduction
to L(2).

In this instance we will find that a unimodular multiplier U such that U L(2) is row-reduced is of
order 0, that is, U ∈ K[[x]]m×m. Indeed, let (v1, v2, 0) ∈ K[[x]]m×1, with v1 and v2 of sizes r

(2)
1 × 1 and

(s− r (2)
1 )× 1, respectively, such that

(v1, v2, 0)

A∗11 0 0
B∗12 B∗22 0
0 0 0

 = 0.

This implies that v2B∗22 = 0 which, since B∗22 is of full row rank implies v2 = 0. Thus, we construct an
invertible matrix U1 ∈ K[[x]]m×m such that the new operator L(3)

= U1L(2) is of the form

L(3)
=

 A11∂ +B11 B12 0B21 B22 0
0 0 0


with invertible matrixA11. As L(2) is column-reduced the following lemma implies that L(3) is also
column-reduced.

Lemma 4. Let L ∈ K[[x]][∂]m×n be a matrix of differential operators with A its leading column coefficient
matrix. Let U ∈ K[[x]]m×m be an invertible matrix over K((x)). Then, the leading column coefficient matrix
of U L is U A. Thus, if L is column-reduced then so is UL.

Proof. Without any loss of generality we can assume that all the columns of L are nonzero. Recall
that the jth column of the leading column coefficient matrix of U L is the leading coefficient of the jth
column of UL. Thus, it is sufficient to prove that the leading coefficient of the jth column of U L is equal
to U multiplied by the leading coefficient of the jth column of L, that is, ℓc((U L)∗,j) = U ℓc(L∗,j). The
jth column of U L is indeed equal to U multiplied by the jth column of L, i.e.,

(U L)∗,j = U L∗,j.

Let γj = ord(L∗,j) ≥ 0. Then L∗,j can be written as

L∗,j = ℓc(L∗,j) ∂γj + terms of lower order,

with ℓc(L∗,j) ≠ 0 (since all columns of L are assumed to be nonzero). Therefore,

(UL)∗,j = UL∗,j = U ℓc(L∗,j) ∂γj + terms of lower order,

with U ℓc(L∗,j) ≠ 0 since ℓc(L∗,j) ≠ 0 and U is invertible. Thus ℓc((U L)∗,j) = U ℓc(L∗,j). �

Now, L(3) is column-reduced with invertible matrixA11 and consequently,B22 is also invertible.
Thus, L(3) is simultaneously row and column reduced and we have used at most 3 row–column–row
reduction steps.

6. Reducing higher-order systems

In this sectionwe let Lbe a simultaneously rowand column reducedmatrix of differential operators
and assume that it is partitioned into blocks Lij for i, j = 1, . . . , k satisfying the conditions (a)–(d) of
Proposition 3. We are interested in the case where Lkk has order 0. In particular, we will show that
when applied to linear differential systems of the form (1) then the problem can be decoupled into
separate purely differential and purely algebraic problems.

Inspired by the definition of simple transformations on matrix polynomials given in Mulders and
Storjohann (2003, page 379), we give the following definition:

Definition 9. Let L be a matrix of differential operators partitioned into blocks Lij for i, j = 1, . . . , k
with k ≥ 2. Suppose that there exists 1 ≤ d ≤ k such that the block Ldd is square and has an invertible
leading coefficient ℓc(Ldd).
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• For any l ≠ d such that ord(Lld) ≥ ord(Ldd) the block row operation consisting in replacing Ll,∗ by

Ll,∗ − ℓc(Lld)(ℓc(Ldd))−1∂αLd,∗

where α = ord(Lld)− ord(Ldd) is called a simple row transformation of Ld,∗ onto Ll,∗.
• For any l ≠ d such that ord(Ldl) ≥ ord(Ldd) the block column operation consisting in replacing L∗,l

by

L∗,l − L∗,d(ℓc(Ldd))−1ℓc(Ldl)∂β

where β = ord(Ldl)− ord(Ldd) is called a simple column transformation of L∗,d onto L∗,l.

Lemma 5. Let N be the matrix of differential operators obtained after applying to L =

Lij

the simple row

transformation of Ld,∗ onto Ll,∗ (resp. the simple column transformation of L∗,d onto L∗,l). If N is partitioned
as L then Ni,∗ = Li,∗ for i ≠ l and ord(Nld) < ord(Lld) (resp. N∗,j = L∗,j for j ≠ l and ord(Ndl) < ord(Lld)).
Proof. From Definition 9, the block rows Li,∗ for i ≠ l remain unchanged and hence Ni,∗ = Li,∗ for
i ≠ l. The inequality ord(Nld) < ord(Lld) follows from the relation Nld = Lld−ℓc(Lld)(ℓc(Ldd))−1∂αLdd.
A similar argument can be used for the case of simple column transformations. �

Assume now that ord(Lkk) = 0. Then, using the next proposition, we can use simple row and
column transformations to eliminate all the blocks above and before Lkk.
Proposition 8. Assume that L is a simultaneously row and column reduced operator partitioned into
blocks Lij for i, j = 1, . . . , k satisfying the conditions (a)–(d) of Proposition 3 with ord(Lkk) = 0. For any
l < k such that ord(Llk) = 0, let N denote the matrix of differential operators obtained by applying to L the
simple transformation of Lk,∗ onto Ll,∗. Then, N is simultaneously row and column reduced, with a block
partitioning into blocks Nij with Nlk = 0 and ∀ i = 1, . . . , k, ord(Nii) = ord(Lii) and ℓc(Nii) = ℓc(Lii).
Proof. From Lemma 5, we have that Ni,∗ = Li,∗ for i ≠ l and ord(Nlk) < ord(Llk) = 0. Thus
ord(Nii) = ord(Lii) and ℓc(Nii) = ℓc(Lii) for i ≠ l and Nlk = 0. To see that N remains simultaneously
row and column reduced, it is sufficient to show that the blocks Nij satisfy conditions (a)–(d) of
Proposition 3. Since Ni,∗ = Li,∗ for i ≠ l, we thus need to show that
(1) ord(Nll) = ord(Lll) and ℓc(Nll) = ℓc(Lll);
(2) for j < l, ord(Nlj) ≤ ord(Nll) and for j > l, ord(Nlj) ≤ ord(Njj).

For any j < k we have
Nlj = Llj − Llk(Lkk)−1Lkj, (13)

with ord(Llk(Lkk)−1Lkj) ≤ 0. Therefore when j = l then since ord(Lll) > ord(Lkk) = 0 and
ord(Llk(Lkk)−1Lkl) ≤ 0 we get ord(Nll) = ord(Lll) and ℓc(Nll) = ℓc(Lll). On the other hand, when
j ≠ l then

ord(Nlj) ≤ max(ord(Llj), ord(Llk(Lkk)−1Lkj)) ≤ max(ord(Llj), 0).
Therefore, for j < l, then ord(Nlj) ≤ ord(Lll) = ord(Nll) since ord(Lll) > 0 and ord(Llj) ≤ ord(Lll).
For j > l, we have ord(Ljj) ≥ ord(Lkk) = 0 and ord(Llj) ≤ ord(Ljj) and so ord(Nlj) ≤ ord(Ljj) =
ord(Njj). �

An analogous result can be stated when working with columns. Consequently, we derive the
following corollary:
Corollary 2. Let L be a simultaneously rowand column reducedmatrix of differential operators partitioned
into blocks Lij with 1 ≤ i, j ≤ k and k ≥ 2 satisfying the conditions (a)–(d) of Proposition 3 and
ord(Lkk) = 0. Then we can compute two unimodular matrices U and V with coefficients in K((x)) such
that U L V is a simultaneously row and column reduced matrix of differential operators of the form


L∗ 0
0 Lkk


=


L∗11 · · · L∗1 k−1 0
...

...
...

L∗k−1 1 · · · L∗k−1 k−1 0
0 · · · 0 Lk k

 ,

where for 1 ≤ i ≤ k− 1, ord(L∗ii) = ord(Lii) > 0 and ℓc(L∗ii) = ℓc(Lii).
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In the case of a linear differential system given by

L · y⃗(x) = f⃗ (x)

we can separate such systems into purely differential and purely algebraic systems. Indeed, using
Corollary 2, we see that the system can be transformed as

L∗ · w⃗1(x) = h⃗1(x)
Lkk w⃗2(x) = h⃗2(x),

where
w⃗1(x)
w⃗2(x)


= V−1y⃗(x) and


h⃗1(x)
h⃗2(x)


= U f⃗ (x).

Additionally, system L∗ · w⃗1(x) = h⃗1(x) can be converted into a first-order system of ordinary
differential equations as it is stated by the following proposition.

Proposition 9. Let L be a simultaneously row and column reduced matrix of differential operators
partitioned into blocks Lij with 1 ≤ i, j ≤ k and k ≥ 2 satisfying the conditions (a)–(d) of Proposition 3
and ord(Lkk) > 0. For i = 1, . . . , k, let mi denote the dimension of the block Lii. Then the differential
system L · y⃗(x) = f⃗ (x) can be converted into a first-order system of ordinary differential equations of sizek

i=1 mi ord(Lii)×
k

i=1 mi ord(Lii) having an invertible leading coefficient.

Example 8. Suppose that L is a simultaneously row and column reduced matrix of differential
operators of the form

L =

a11∂3

+ b11∂2
+ c11∂ + d11 b12∂2

+ c12∂ + d12
b21∂2

+ c21∂ + d21 b22∂2
+ c22∂ + d22


where a11 and b22 are invertible matrices of sizes m1 × m1 and m2 × m2, respectively. Consider the
differential system L · y⃗(x) = f⃗ (x) with y⃗(x) and f⃗ (x) partitioned into blocks of the same partition of
L, that is,

y⃗(x) =

y⃗1(x)
y⃗2(x)


and f⃗ (x) =


f⃗1(x)
f⃗2(x)


.

Then L · y⃗(x) = f⃗ (x) can be converted into a system of ordinary differential equations of first-order
and size 3m1 + 2m2 of the form


I 0 0 0 0
0 I 0 0 0
0 0 a11 0 b12
0 0 0 I 0
0 0 0 0 b22

 ∂ +


0 −I 0 0 0
0 0 −I 0 0
d11 c11 b11 d12 c12
0 0 0 0 −I
d21 c21 b21 d22 c22


 ·


y⃗1(x)
y⃗1 ′(x)
y⃗1 ′′(x)
y⃗2(x)
y⃗2 ′(x)

 =


0
0

f⃗1(x)
0

f⃗2(x)

 .

7. Conclusion

In this paper,wehavedeveloped anew two-sided rowand column reduction algorithm for amatrix
of differential operators. When applied to a linear system of differential–algebraic equations such
a reduction decouples this into separate differential and algebraic system. Our algorithm leads to a
complete mastering of the first-order differential–algebraic case. Our methods are entirely algebraic
and easily extend to matrices of Ore operators having rational function coefficients.

The simultaneously row and column reduced form allows for both conversion to a first-order
system and the extraction of algebraic constraints. As such it is an alternative to the Popov-form. We
have presented two algorithms for the computation of a simultaneous row and column reduced form.
The first, given in Section 2.2, does a series of row, then column, reductions. However, the result of
any row reduction and then column operation reduction can undo a row reduction. Similarly a column
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reduction followed by a row reduction can undo a column reduction. Thus, while this approach seems
simpler in concept, it has the drawback that we were unable to determine a polynomial complexity
for the algorithm. In practice, this approach does appear to be reasonably efficient for small problems.
Our second method, algorithm Simultaneous Row and Column Reduced Form given in Section 4, does
have polynomial time complexity and is inspired by techniques used for computing Popov-forms. It
is of interest to see if the first algorithm has polynomial complexity.

All our algorithms are defined on power series coefficients since we want to use them for the
analysis of singular systems. At present the only methods for characterizing singularities are for the
case of a first-order system. Ultimately our goal is to be able to do a local analysis for higher-order
systems directly without the need for conversion to first-order. In order to accomplish this goal
we will need a generalization of the concepts of Moser-reduction and super-reduction to higher-
order systems. At present this remains an open problem. We expect that the first step in such a
direction would be a generalization of Moser-reduction to differential–algebraic systems of the form
Ay⃗ ′(x) = By⃗(x) where A is not necessarily invertible.

Our methods have been implemented in the Computer Algebra systemMaple. However a number
of implementation-related details still need to be clarified. As an example, it is likely the case that one
would want to use lazy evaluation in such computations.
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