
A fast algorithm for computing the Smith normal form with
multipliers for a nonsingular integer matrix

Stavros Birmpilis

Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1

George Labahn

Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1

Arne Storjohann

Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1

Abstract

A Las Vegas randomized algorithm is given to compute the Smith multipliers for a nonsingular
integer matrix A, that is, unimodular matrices U and V such that AV = US , with S the Smith
normal form of A. The expected running time of the algorithm is about the same as required to
multiply together two matrices of the same dimension and size of entries as A. Explicit bounds
are given for the size of the entries in both unimodular multipliers. The main tool used by the
algorithm is the Smith massager, a relaxed version of V , the unimodular matrix specifying the
column operations of the Smith computation. From the perspective of efficiency, the main tools
used are fast linear system solving and partial linearization of integer matrices. As an application
of the Smith with multipliers algorithm, a fast algorithm is given to find the fractional part of the
inverse of the input matrix.

Keywords: Smith normal form; Unimodular matrices; Integer matrices

1. Introduction1

Let A ∈ Zn×n be a nonsingular integer matrix with

S := diag(s1, s2, . . . , sn) =


s1

s2
. . .

sn

 ∈ Zn×n

its Smith normal form. There are unimodular matrices U,V ∈ Zn×n which describe the set of2

invertible integer row and column operations which transform A into its Smith form S or vice3

Email addresses: sbirmpil@uwaterloo.ca (Stavros Birmpilis), glabahn@uwaterloo.ca (George Labahn),
astorjoh@uwaterloo.ca (Arne Storjohann)
Preprint submitted to Elsevier August 4, 2022

versa. These row and column operations are typically defined as satisfying matrix equations in4

the form UAV = S or A = US V . In our case, it will be convenient to specify these Smith form5

multipliers as unimodular matrices satisfying6

AV = US . (1)

Motivation. In some cases, just knowing the Smith form is all that is needed in applications.7

For example, to determine whether two integer matrices are equivalent up to unimodular row and8

column operations, it is enough to see if they have the same Smith form. Similarly, if A is the9

relation matrix for a finite abelian group G, then knowing its Smith form is enough to classify10

the group into a direct sum of cyclic groups (Cohen, 1996; Newman, 1972). Such a classification11

in turn is used, for example, to efficiently compute Gröbner bases of ideals invariant under the12

action of an abelian group (Faugère and Svartz, 2013).13

However there are applications where both the Smith form and its unimodular multipliers are14

needed. Consider for example the linear system solving problem15

xA = b, (2)

that is, given a row vector b ∈ Z1×n, find the unique row vector x ∈ Q1×n such that xA = b. Using
the representation (1), we can transform the linear system in (2) to

x̄S = b̄,

with x̄ = xU and b̄ = bV . Since S is in Smith form, the new system allows for easier deter-16

mination of possible properties of the solution. For example, the denominator of x, the smallest17

integer d ∈ Z>0 such that dx is integral, will be the same as the denominator of x̄ = b̄S −1.18

The above example gives one application where both the Smith form and its unimodular19

multipliers are needed. Smith multipliers are also needed in a number of other settings. For20

example, when one not only wants the classification of a finite abelian group into the direct sum21

of its cyclic components, but also the isomorphism which takes the group to the direct sum of22

cyclic factors. If x is a row vector whose entries are generators of an abelian group and matrix23

A represents the relations among the entries of x such that xA = 0, then x̄ = xU is a new set of24

generators with relations simply given by x̄S = 0. Both the Smith form and its multipliers are25

needed when one looks for possible rational symmetry by a finite abelian group action for a set of26

polynomial equations along with determining the rational invariants and rewrite rules of such an27

action (Hubert and Labahn, 2016). Other applications which make use of the Smith multipliers28

include determining lattice rules for quadrature formulas over the unit cube (Lyness and Keast,29

1995), its use in chip-firing for finite connected graphs in combinatorics (Stanley, 2016), and30

many more.31

Computation. Initial algorithms for Smith form computation such as Smith (1861); Bradley32

(1970) were modelled on Gaussian elimination where greatest common divisors and the associ-33

ated solutions of linear diophantine equations replaced division. These early algorithms encoun-34

tered rapid growth of intermediate computations. However, efficient computation of the Smith35

form could make use of the fact that the diagonal elements are the invariant factors of the matrix,36

factors which can be represented as ratios of greatest common divisors of minors of the matrix.37

As the Smith form is unique one can for example use homomorphic imaging techniques (Ged-38

des et al., 1992) for these computations. The first algorithm to compute the Smith form with39

2

multipliers in polynomial time originated with Kannan and Bachem (1979). The multipliers are40

not unique with Storjohann (2000) being the first to consider the problem of small unimodular41

multipliers for Smith computation.42

Let ω be a valid exponent of matrix multiplication: two n × n matrices can be multiplied in43

O(nω) operations from the domain of entries. Furthermore, let ‖A‖ denote the largest entry of A in44

absolute value. Recent fast methods include that of Kaltofen and Villard (2005) which combines45

a Las Vegas algorithm for computing the characteristic polynomial with ideas of Giesbrecht46

(2001), to obtain a Monte Carlo algorithm for the Smith form in time (n3.2 log ‖A‖)1+o(1) assuming47

ω = 3, and in time (n2.695591 log ‖A‖)1+o(1) assuming the currently best known upper bound ω <48

2.37286 for ω by Alman and Williams (2021) and the best known bound for rectangular matrix49

multiplication by Le Gall and Urrutia (2018).50

Our main contribution. An important long-term program in exact linear algebra with polyno-51

mial or integer matrices is to obtain algorithms whose cost is about the same as for multiplying52

two matrices of corresponding dimension and entry sizes. In the case of Smith form this was53

solved in (Birmpilis et al., 2020) which gave a Las Vegas algorithm for the Smith form in time54

(nω log ‖A‖)1+o(1). However it was not yet known how one can obtain both the Smith form and55

its multipliers in a similar complexity. A major difficulty is that the bitlength of the entries in56

U and V can be asymptotically larger than those in A. The previously fastest algorithm given in57

Storjohann (2000) recovers U and V in the form UAV = S in time (nω+1 log ‖A‖)1+o(1).58

The main contribution in this paper is a new Las Vegas algorithm which allows us to compute59

S , U and V satisfying (1) with approximately the same number of bit operations as required to60

multiply two matrices of the same dimension and size of entries as the input matrix. As we61

already have a fast way to compute the Smith form S , our goal in this paper is an efficient62

algorithm that also returns the unimodular matrices U and V . Previously, determining the Smith63

form alone had been considered easier than determining the Smith form and it’s multipliers. In64

this paper, we show that finding the multipliers can be done in the same time as computing the65

Smith form, at least in terms of asymptotic complexity. However, finding the multipliers requires66

some new, novel ideas.67

Our approach. The Las Vegas algorithm in Birmpilis et al. (2020) computes not only the Smith
form S but also returns a massager matrix M. This matrix satisfies the property that

AM ≡ 0 cmod S and WM ≡ In cmod S

for some integer matrix W. Here, cmod denotes working modulo columns: B ≡ C cmod S if
column j of B is congruent modulo s j to column j of C, 1 ≤ j ≤ n. On the one hand, a massager
M is in general not unimodular and thus is a relaxed version of V in the equations

AV = US and V−1V = In,

where V−1 is integral since V is unimodular. On the other hand, a Smith multiplier V is precisely68

a massager that is unimodular. Massagers were introduced by Birmpilis et al. (2019) and are69

the main tool used in this paper to efficiently compute the Smith multipliers. Our approach is to70

perturb a massager M by a random matrix R scaled by the Smith form, that is, a matrix of the71

form M̄ := M + RS . We show that the perturbed matrix M̄ remains a massager. Moreover, we72

prove that with high probability the perturbation has the effect that the submatrix comprised of73

3

the last n − 1 columns of M̄ will be primitive, that is, M̄ will be left equivalent to a nonsingular74

lower triangular matrix H̄ that has the shape75

H̄ =



| det M̄|
∗ 1
∗ 1
...

. . .

∗ 1


, (3)

with all ∗ entries nonnegative and reduced modulo | det M̄|. We remark that H̄ is the unique lower76

triangular row Hermite form of M̄. In case the perturbation is successful and H̄ is trivial, that77

is, has the shape shown in (3) with all off-diagonal entries except for possibly the first equal to78

one, then we give an algorithm to compute it quickly (or determine that it is not trivial and report79

Fail). Since H̄ is left equivalent to M̄, the matrix V := M̄H̄−1 will not only be integral but also80

unimodular. Based on the structure H̄ we can show that V is also a massager. The matrix V is81

then one of our Smith multipliers. Exploiting again the fact that H̄ is trivial, we show how to82

compute the product M̄H̄−1 efficiently. The other multiplier U is constructed using (1).83

Our approach allows us to establish explicit bounds on the size of the two unimodular mul-84

tipliers. For example, if we define the bitlength of an integer column vector to be bitlength85

of the maximum magnitude entry, then we can show that the average bitlength of the columns86

of either unimodular multiplier matrix is bounded by O(n(log n + log ‖A‖)). The overall size87

(the sum of the bitlengths of all of the entries) of either multiplier matrix is then bounded by88

O(n2(log n + log ‖A‖)).89

Additional contributions. In order to obtain the desired running time for our algorithm we need90

to extend a some previously known algorithms to a slightly more general setting.91

Our first additional contribution is to give extensions of subroutines for linear system solving92

and integrality certification. We briefly recall what these two problems are. Given an integer93

matrix B with the same number of rows as A, together with an integer lifting modulus X ∈ Z>094

that is relatively prime to det A, the linear system solving problem is to compute Rem(A−1B, Xd)95

for a given precision d. Here, Rem(a, X) for an integer a and positive integer X denotes the unique96

integer in the range [0, X − 1] that is congruent to a modulo X. If the first argument of Rem is97

a matrix or vector, the function applies element-wise. The integrality certification problem is to98

determine if A−1B is integral. Birmpilis et al. (2019) use the double-plus-one lifting approach of99

Pauderis and Storjohann (2012) to obtain a fast algorithm for the linear system solving problem.100

Birmpilis et al. (2020) follows this up with a fast algorithm for integrality certification. Both of101

the algorithms mentioned above were analyzed only in the special case when X is a power of102

2, thus requiring the hypothesis that det A is an odd integer. In Section 3 we extend the linear103

system solving and integrality certification algorithms in (Birmpilis et al., 2019, 2020) to the case104

where X is the power of a small prime, thus allowing to handle the case of input matrices A with105

arbitrary determinant.106

Our second additional contribution is to extend partial linearization techniques previously107

developed for polynomial matrices to the integer setting. The cost of algorithms on an integer108

matrix A are typically sensitive to log ||A||, the maximum bitlength of the entries. If only some109

entries have large bitlength, for example the average bitlength of the rows or columns is small,110

then for many problems partial linearization can be used to transform to a new problem on an in-111

put matrix that has maximum bitlength of entries the average bitlength of the rows or columns of112

4

the original. Section 4 extends the partial linearization technique of Gupta et al. (2012, Section 6)113

for polynomial matrices to the integer setting, and gives applications to a number of problems. In114

particular this includes the linear system solving and integrality certification problems discussed115

above.116

Our final contribution is to resolve an open question from Storjohann (2015), which asks if117

one can compute the proper fractional part of A−1 while avoiding any dependence on log ||A−1||.118

Note that log ‖A−1‖ is a measure of how much larger the bitlength of numerators in A−1 ∈ Qn×n
119

are compared to their respective denominators. (If log ‖A−1‖ < 0 then all entries in A−1 are proper120

fractions, but it is possible that log ‖A−1‖ ∈ Ω(n(log n+log ‖A‖)), for example if A is unimodular.)121

Recall the notion of the proper fractional part of A−1. Let s ∈ Z>0 be the largest entry in the Smith122

form of A. Then s is the minimal integer such that sA−1 is integral. The proper fractional part of123

A−1 is then Rem(sA−1, s)/s. To computing the proper fractional part of A it is thus sufficient to124

compute Rem(sA−1, s).125

Storjohann (2015) computes Rem(sA−1, s) by first computing an outer product adjoint for-126

mula for A: a triple of matrices (V̄ , S , Ū) such that127

Rem(sA−1, s) = Rem(V̄(sS −1)Ū, s).

There is a direct relationship between an outer product adjoint formula and the unimodular Smith128

multipliers U and V . Using this relationship, and as an application of our work, we show in129

Section 9 that an outer product formula can be computed in time (nω log ‖A‖)1+o(1) bit operations.130

This improves on the algorithm of (Storjohann, 2015) by incorporating fast matrix multiplication131

and removing any dependence of the complexity on log ‖A−1‖ in case ‖A−1‖ > 1.132

Organization of the paper. The remainder of this paper is organized as follows. Section 2133

defines our main tool, the Smith massager of a nonsingular integer matrix, and gives several134

important properties. Section 3 gathers together a collection of computational tools related to135

linear system solving which we will require for our main algorithm. Section 4 presents a partial136

linearization technique which, in many algorithms, helps us replace the dependency of the cost137

estimates on the bit length of the largest entry of the input with the average bit length. Section 5138

gives a high-level description of our main algorithm for computing Smith multipliers using an139

example. Section 6 proves the main probabilistic argument of our process, namely, the fact that a140

randomly perturbed Smith massager has an almost trivial Hermite form. Sections 7 and 8 present141

the main algorithm and rigorously prove the claimed time complexity along with bounds on the142

sizes of the multipliers. Section 9 shows how we can apply the Smith multiplier matrices in order143

to obtain an outer adjoint formula along with its complexity. The paper ends with a conclusion144

and topics for future research.145

Cost model. Following (von zur Gathen and Gerhard, 2013, Section 8.3), cost estimates are146

given using a function M(d) that bounds the number of bit operations required to multiply two147

integers bounded in magnitude by 2d. We use B(d) to bound the cost of integer gcd-related com-148

putations such as the extended euclidean algorithm. We can always take B(d) = O(M(d) log d).149

If M(d) ∈ Ω(d1+ε) for some ε > 0 then B(d) ∈ O(M(d)).150

As usual, we assume that M is superlinear and subquadratic. We also assume that M(ab) ∈151

O(M(a) M(b)) for a, b ≥ 1. We assume that ω > 2, and to simplify cost estimates we make the152

assumption that M(d) ∈ O(dω−1). This assumption simply stipulates that if fast matrix multipli-153

cation techniques are used, then fast integer multiplication techniques should also be used. The154

assumptions stated in this paragraph apply also to B.155

5

2. Smith massagers156

In this section we introduce our main tool, the Smith massager of a nonsingular integer matrix157

A ∈ Zn×n. We provide the definition and basic features and identify some matrix operations that158

keep the massager properties intact. In Subsection 2.1, we show how the Smith massager gives159

an alternative, compact representation of the lattice {vA | v ∈ Zn×n}, the set of all Z-linear160

combinations of the rows of A. Finally, in Subsection 2.2, we present additional properties of161

massagers which will help us to compute Smith multipliers.162

Definition 1. Let A ∈ Zn×n be a nonsingular integer matrix with Smith form S . A matrix M ∈163

Zn×n is a Smith massager for A if164

(i) it satisfies that165

AM ≡ 0 cmod S , and (4)

(ii) there exists a matrix W ∈ Zn×n such that166

WM ≡ In cmod S . (5)

Property (i) of a Smith massager M implies that the matrix AMS −1 is integral, while property167

(ii) implies that M is unimodular up to modulo the columns of S . Thus, matrix M acts like168

the multiplier matrix V in AV = US except that it relaxes the unimodularity property. Our169

objective will be to transform M to a new Smith massager that is in fact unimodular over the170

integers. Note that any Smith massager reduced column modulo S is still a Smith massager.171

If M = (M cmod S), then M is called a reduced Smith massager. We remark that a reduced172

massager can be be represented with only O(n2(log n + log ‖A‖)) bits.173

Example 2. The Smith form of174

A =


−6 3 −13 −15
−4 19 12 −1
−4 10 −6 17
−26 −13 1 −2


is S = diag(1, 1, 9, 29088). For175

M =


0 0 7 805
0 0 5 23668
0 0 3 6
0 0 4 10224

 ,
we have AM ≡ 0 cmod S , while setting176

W =


4 −19 −12 1
−306 3 133 0
5156 805 6332 0
12017 −403 11356 0


gives177

WM = I4 +


−1 0 −99 −436320
0 −1 −1728 −174528
0 0 59112 23241312
0 0 116172 203616




1
1

9
29088

 ,
implying that WM ≡ I4 cmod S . It follows that M is a Smith massager for A.178

6

It will be useful to notice that a Smith massager M for some matrix A remains a valid Smith179

massager under some specific columns operations.180

Lemma 3. Assume M ∈ Zn×n is a Smith massager for A. Then the matrix obtained from M by181

(i) adding any integer column vector multiplied by si to column i,182

(ii) adding any multiple of a latter to a former column, or183

(iii) multiplying (or dividing exactly) the ith column by an integer relatively prime to si184

is also a Smith massager for A.185

Proof. For each one of these operations, we need to show that the modified matrix M still satisfies186

properties (i) and (ii) of Definition 1.187

Let M̄ be the matrix obtained from M by performing operation (i). Then M̄ ≡ M cmod S and188

thus AM̄ ≡ 0 cmod S and WM̄ ≡ In cmod S still hold.189

For operation (ii), let 1 ≤ i1 < i2 ≤ n and c ∈ Z. Let M̄ be the matrix obtained from M by190

adding c times column i2 to column i1. Because si1 | si2 , AM̄ ≡ 0 cmod S still holds. Let W̄ be191

the matrix obtained from W by adding −c times row i1 to row i2. Then W̄M̄ ≡ In cmod S .192

For operations (iii), let c ∈ Z be relatively prime to si. Let M̄ be the matrix obtained from M193

by multiplying column i by c. Then AM̄ ≡ 0 cmod S still holds. Let W̄ be the matrix obtained194

from M by multiplying row i by Rem(1/c, sn) ∈ Z. Then W̄M̄ ≡ In cmod S . The case for 1/c is195

similar.196

2.1. Alternate characterizations of the lattice {vA | v ∈ Z1×n}197

Let A ∈ Zn×n be nonsingular. The set of all Z-linear combinations of the rows of A generates198

the integer lattice {vA | v ∈ Z1×n}. The following theorem gives alternate characterizations of199

the same lattice which will be useful in Section 7 to give an compact description of the Hermite200

form of A in terms of a Smith massager for A.201

Theorem 4. Let A ∈ Zn×n be nonsingular with Smith form S and Smith massager M. Let s be202

the largest invariant factor of S . The following lattices are all identical:203

• L1 = {vA | v ∈ Z1xn}204

• L2 = {v | vA−1 ∈ Z1×n}205

• L3 = {v | vMS −1 ∈ Z1×n}206

• L4 = {v | vM(sS −1) ≡ 01×n mod s}207

• L5 = {v | vM ≡ 01×n cmod S }208

Proof. It is straightforward to show that L1 = L2, L3 = L4 and L4 = L5 by verifying that each of209

these pairs of sets are subsets of each other. To complete the proof it will be sufficient to show210

that L2 = L3.211

Let212

B =

[
A

In

] [
In

−W In

] [
In M

In

] [
In

S −1

]
=

[
AMS −1 A

(In −WM)S −1 −W

]
.

7

By Definition 1 B is integral. Furthermore, since | det A| = det S , 0, B is unimodular. If we213

premultiply B by diag(A−1, In) and then restrict to the first n rows, we obtain214 [
A−1

]
B =

[
MS −1 In

]
. (6)

Since both B and B−1 are integral, we conclude that for any v ∈ Z1×n, vA−1 is integral if and only215

if vMS −1 is integral. It follows that L2 = L3.216

The following corollary follows from the equality of L2 and L3 in Theorem 4.217

Corollary 5. Let A ∈ Zn×n be nonsingular with Smith form S and Smith massager M. For any218

row vector v ∈ Z1×n, the denominator of vA−1 equals the denominator of vMS −1.219

As remarked earlier, if M is a reduced massager, then MS −1 can be represented with only220

O(n2(log n + log ‖A‖)) bits. This compares to O(n3(log n + log ‖A‖)) bits required for A−1.221

Example 6. Matrix222

A =


−6 3 −13 −15
−4 19 12 −1
−4 10 −6 17
−26 −13 1 −2

 ,
from Example 2, has Smith form S = diag(1, 1, 9, 29088) and Smith massager223

M =


0 0 7 805
0 0 5 23668
0 0 3 6
0 0 4 10224

 .
In this case,224

A−1 =
1

29088


−271 −402 −373 −937
580 920 524 −356
−1074 804 −870 258
−784 −352 1008 80

 ,
and from Corollary 5, for any row vector v ∈ Z1×n, the denominator of vA−1 equals the denomi-225

nator of226

v


7 805
5 23668
3 6
4 10224


[

1/9
1/29088

]
,

where the first two columns can be omitted because the corresponding invariant factors are 1.227

Equivalently, from the equality of L3 and L5 in Theorem 4, we have that228 
−271 −402 −373 −937
580 920 524 −356
−1074 804 −870 258
−784 −352 1008 80

 ≡R


7 805
5 23668
3 6
4 10224


[

3232
1

]
mod 29088.

Recall that a basis for the lattice L1 in Theorem 4 is any matrix that is left equivalent to A, for229

example A itself. The following theorem follows from the equality of L1 and L5 in Theorem 4.230

8

Theorem 7. Let A ∈ Zn×n be nonsingular with Smith form S and a Smith massager M. A matrix231

H ∈ Zn×n is left equivalent to A if and only if | det H| = det S and HM ≡ 0 cmod S .232

In other words, the Smith form S and a Smith massager M can be used to describe a left233

equivalent canonical form of a matrix A in a compact and fraction-free way. We will use Theo-234

rem 7 later in Section 7.235

2.2. Creating a unimodular Smith massager236

Let A ∈ Zn×n be nonsingular. In this subsection we give a high level overview of our al-237

gorithm to produce a Smith multiplier V such that AV = US . Recall that a Smith multiplier238

V is precisely a Smith massager that is unimodular. Once V has been found we recover U as239

U := AVS −1. Our approach to computing a unimodular V has four steps:240

1. Compute the Smith form S and a reduced Smith massager M for 2A.241

2. Choose a random perturbation matrix R ∈ Zn×n and let M̄ := M + 2RS .242

3. Compute the lower triangular row Hermite form H of M̄.243

4. Return V := M̄H−1.244

The reason, in step 1, for computing a Smith massager M for 2A instead of A is that matrix M̄245

produced in step 2 will be a nonsingular, independent of the choice of R. The purpose of the246

perturbation in step 2 is to ensure, with high probability, that M̄ has a trivial lower triangular247

Hermite form, that is, with all but possibly the first diagonal entry equal to 1. Knowing a priori248

that M̄ is nonsingular simplifies our deriviation of a lower bound on the probability the Hermite249

form H of M̄ has at most one non-trivial column. Having H be trivial is important for the250

efficiency of steps 3 and 4, and also to obtain good bounds on the size of entries of V .251

Filling in the details of how to choose R in step 2 and how to do each of the steps efficiently252

is the main topic of the rest of this article. Section 3 gathers together required subroutines related253

to linear system solving, and in particular shows that step 1 can be done efficiently. Section 4254

develops a partial linearization technique which allows to efficiently compute with matrices with255

entries of skewed bitlength, for example the matrix M̄ in step 2 which has columns of skewed256

bitlength. Section 5 then gives a worked example of the above four step algorithm and points to257

Sections 6–8 for algorithms to perform steps 3–4 efficiently.258

In the remainder of this subsection, our goal is only to establish that the above recipe is259

correct, namely, that the matrix V returned in step 4 will be a unimodular Smith massager, inde-260

pendent of the choice of R in step 2. To do this, we need to establish that: (a) M in step 1 is a261

nonsingular Smith massager of A even though it is computed to be a Smith massager for 2A; (b)262

M̄ in step 2 remains a nonsingular Smith massager for A, despite the additive perturbation +2RS ,263

and independent of choice of R; (c) the matrix V produced in step 4 is a Smith massager for A.264

On the on hand, the fact that V produced in step 4 is unimodular is straightforward: H is left265

equivalent to M̄ and so M̄H−1 will be integral with determinant ±1. On the other hand, what we266

need to prove in step 4 is that the column operations effected by the postmultiplication of H−1 in267

V := M̄H−1 always produces a V that is a Smith massager of A.268

Proposition 8. Let c ∈ Z>0 and A ∈ Zn×n. If M ∈ Zn×n is a Smith massager for cA, then for any269

matrix R ∈ Zn×n:270

(i) M + R(cS) is a Smith massager for A.271

9

(ii) The last i columns of M + R(cS) have full rank over Z/(p) for any prime p that divides272

(csn−i+1).273

An immediate corollary of Proposition 8 is that a Smith massager for 2A will be a nonsingular274

Smith massager of A. The proof of Proposition 8 follows directly from the next two lemmas and275

Definition 1.276

Lemma 9. Let c ∈ Z>0 and A ∈ Zn×n. If M ∈ Zn×n is a Smith massager for cA, then M is also a277

Smith massager for A.278

Proof. First note that if S ∈ Zn×n is the Smith form of A, then cS is the Smith form of cA. Since279

M is a Smith massager for cA, Definition 1 states that280

cAM ≡ 0 cmod cS , (7)

and that there exists a W ∈ Zn×n such that281

WM ≡ In cmod cS . (8)

It follows from (7) that AM ≡ 0 cmod S and from (8) that WM ≡ In cmod S , and thus by282

Definition 1, M is a Smith massager for A.283

Lemma 10. For any prime p that divides sn−i+1, the last i columns of a Smith massager M have284

full rank over Z/(p).285

Proof. The claim follows from Definition 1 of the Smith massager since

WM ≡ In cmod


s1

. . .
sn



≡ In cmod



s1
. . .

sn−i
p
. . .

p


.

If the last i columns of WM mod p have full rank, then the last i columns of M mod p also have286

full rank.287

Now consider steps 3 and 4 of the recipe. The lower triangular row Hermite form of a288

nonsingular matrix A ∈ Zn×n is the unique matrix289

H :=


h1
∗ h2
...

...
. . .

∗ ∗ · · · hn

 ∈ Zn×n

that is left equivalent to A, has positive diagonal entries, and has off-diagonal entries in each col-290

umn reduced by the diagonal entry in the same column. Lemma 12 provides the final ingredient291

to establish the correctness of our recipe by proving that a nonsingular Smith massager for A,292

post-multiplied by the inverse of its lower triangular row Hermite form, is still a Smith massager293

for A. Lemma 11 is an intermediate result.294

10

Lemma 11. Let M ∈ Zn×n be a nonsingular Smith massager and S the corresponding Smith295

form. If hi is the ith diagonal entry of the lower row Hermite form H of M, then gcd(hi, si) = 1.296

Proof. The lemma follows from the fact that a matrix and its row Hermite form share the same297

column rank profile. Therefore, since, by Lemma 10, the last i columns of M have full rank298

over Z/(p) for any p | sn−i+1, then the last i columns of H have full rank over Z/(p), and thus,299

p - hn−i+1.300

Lemma 12. Let M ∈ Zn×n be a nonsingular Smith massager for a matrix A, and let H ∈ Zn×n be301

the lower triangular row Hermite form of M. Then, MH−1 is a unimodular Smith massager for302

A.303

Proof. Since H is unimodularly left equivalent to M, we have that matrix MH−1 is integral with304

det MH−1 = ±1. It follows that MH−1 is unimodular. It remains to establish that MH−1 is a305

Smith massager for A. To this end, note that the inverse of any lower triangular matrix can be306

decomposed as the product of n pairs of matrices as follows.307

H−1 =

n−1∏
i=0



I
1

−hn−i+1,n−i 1
...

. . .

−hn,n−i 1





I
1/hn−i

1
. . .

1


(9)

Thus multiplying M with H−1 can be represented as a series of n products, where each multipli-308

cation first applies an operation of the type as described in Lemma 3(ii), and second applies one309

of the type as in Lemma 3(iii) as certified by Lemma 11. Therefore, MH−1 is a Smith massager310

for A.311

3. Computational tools312

An efficient algorithm for computing a Smith massager is given by Birmpilis et al. (2020).313

However, this relied on some subroutines for linear system solving that were restricted to input314

matrices A with 2 ⊥ det A. In this section, we give simple extensions of these subroutines,315

enabling us to extend the Smith massager algorithm of Birmpilis et al. (2020) to input matrices316

with arbitrary nonzero determinant.317

The first subroutine we need is for nonsingular system solving. Given a nonsingular A ∈ Zn×n
318

and matrix B ∈ Zn×m, together with a lifting modulus X ∈ Z>0 that satisfies X ⊥ det A and319

log X ∈ O(log n + log ‖A‖), the linear system solving problem is to compute Rem(A−1B, Xd) for320

a given precision d. The second problem is integrality certification. Given an s ∈ Z>0 in addition321

to B, determine whether sA−1B is integral, and, if so, return the matrix Rem(sA−1B, s). Provided322

the “dimension × precision ≤ invariant” compromises m × d ∈ O(n) and m × (log ‖B‖ + log s) ∈323

O(n log X) hold, our target complexity for solving these problems is324

O(nω M(log n + log ‖A‖) log n) (10)

bit operations. The algorithm supporting (Birmpilis et al., 2019, Corollary 7) solves the first325

problem in time (10) but was analyzed only when X is a power of 2. The algorithm for integrality326

certification by (Birmpilis et al., 2020, Section 2.2) has the same constraint since it relies on the327

11

algorithm supporting (Birmpilis et al., 2019, Corollary 7). The analysis in (Birmpilis et al.,328

2019, Corollary 7) exploited the fact that radix conversions to go between the X-adic and binary329

representation of intermediate integers were not required since X was a power of 2. Here, we330

extend the the linear system solving algorithm of Birmpilis et al. (2019) by showing how to331

choose X to be the power of a small prime. Even though radix conversions are now required,332

we show how to maintain the cost (10) by keeping intermediate results in X-adic form and only333

doing radix conversions at the beginning and end of the process.334

Subsection 3.1 shows how to choose X as the power of a small random prime. Subsection 3.2335

recalls the double-plus-one lifting algorithm of Pauderis and Storjohann (2012) which forms336

the basis of the linear system solving and integrality certification algorithms. Subsections 3.3337

and 3.4 extend the linear system solving and integrality certification algorithms, respectively,338

to work with an X as chosen in Subsection 3.1. Subsection 3.5 uses the results developed in339

the previous subsections to extend the Smith massager algorithm of (Birmpilis et al., 2020) to340

arbitrary nonsingular matrices.341

3.1. Lifting initialization342

Let C be an upper bound for | det A|. von zur Gathen and Gerhard (2013, Theorem 18.10)343

show how to produce an integer p the range 6 log C < p < 12 log C that is both prime and satisfies344

p ⊥ det A with probability at least 1/2. If p is prime, we can check if p ⊥ det A by trying to345

compute an LUP decomposition of A mod p over Z/(p). If p ⊥ det A, then we can choose346

our lifting modulus X to be a power of p. In the following lemma, conditions (iii) and (iv) are347

included because they are preconditions of the double-plus-one lifting algorithm described in the348

next subsection.349

Lemma 13. There exists a Las Vegas algorithm that takes as input a nonsingular A ∈ Zn×n, and350

returns as output an odd integer X that satisfies351

(i) X is the power of a prime p with log p ∈ Θ(log n + loglog ‖A‖),352

(ii) X ⊥ det A,353

(iii) X ≥ max(10000, 3.61n2‖A‖), and354

(iv) log X ∈ O(log n + log ||A||).355

The cost of the algorithm is O(nω M(log n + log ‖A‖)) bit operations. The algorithm returns FAIL356

with probability at most 1/2.357

Proof. By Hadamard’s bound we have C := nn/2‖A‖n ≥ | det A|. By von zur Gathen and Gerhard358

(2013, Theorem 18.10), producing an integer p in the range 6 log C < p < 12 log C that is both359

prime and does not divide det A with probability at least 1/2 can be done within the allotted time.360

Proving that p is prime can be done within the allotted time using the algorithm of Agrawal et al.361

(2004). If it is determined that p is not prime, then report Fail. Working over Z/(p), we use362

O(nω M(log p) + n B(log p)) bit operations to compute an LUP decomposition (Aho et al., 1974,363

§6.4) of Rem(A, p). The n B(log p) term in this cost estimate is for inverting the n nonzero pivots364

arising during the elimination. Computing Rem(A, p) and then its LUP decomposition is within365

our target cost since log p ∈ O(log n + loglog ‖A‖) and B(log p) ∈ O(M(log p)(loglog p)). If,366

during the course of the LUP decomposition, it is determined that A is singular modulo p, then367

return Fail. Otherwise, let X be the smallest power of p which satisfies the third requirement of368

the lemma. Then, X also satisfies the fourth requirement.369

12

Corollary 14. If X is a lifting modulus as in Lemma 13, then Rem(A−1, X) can be computed in370

time O(nω M(log n + log ‖A‖)).371

Proof. Let p and LUP be as in the proof of Lemma 13. Compute Rem(A−1, p) = Rem(PT U−1L−1, p),372

and use O(loglog X) steps of algebraic Newton iteration (von zur Gathen and Gerhard, 2013, Al-373

gorithm 9.3) to lift Rem(A−1, p) to Rem(A−1, X). The running time is dominated by the last step374

of the lifting, which is within the claimed cost.375

3.2. Double-plus-one lifting376

Let X be a lifting modulus as in Lemma 13. Given a k ∈ Z>0, the double-plus-one lifting377

of Pauderis and Storjohann (2012, Section 3) computes a straight line formula that is congruent378

modulo Xk to the X-adic expansion379

A−1 ≡ ∗ + ∗X + ∗X2 + · · · + ∗Xk−1 mod Xk. (11)

The straight line formula consists of only O(log k) matrices instead of k as in (11). More pre-380

cisely, given a k ∈ Z>0 that is one less than a power of 2, double-plus-one lifting computes a381

residue R ∈ Zn×n such that382

A−1 = D + A−1RXk, (12)

where D ∈ Zn×n satisfies ||D|| ≤ 0.6Xk. Note that D ≡ A−1 mod Xk. Instead of computing D383

explicitly, double-plus-one lifting computes a formula384

D = (· · · ((∗(I + ∗X) + ∗X2)(I + ∗X3) + ∗X6)(I + ∗X7) + ∗X14) · · ·), (13)

where each ∗ is an n × n integer matrix with ‖ ∗ ‖ < X. The following result is (Pauderis and385

Storjohann, 2012, Corollary 6) except that we use Corollary 14 to compute Rem(A−1, X) in the386

allotted time.387

Lemma 15. (Pauderis and Storjohann, 2012, Corollary 6) Assume we have a lifting modulus388

X as in Lemma 13. Let k ∈ Z>0 be one less than a power of two. If log k ∈ O(log n), then a389

residue R as in (12) and a straight line formula for D as shown in (13) can be computed in time390

O(nω M(log n + log ‖A‖) log n).391

3.3. System solving392

Let X be a lifting modulus as in Lemma 13. Consider equations (12) and (13). If k ≥ d,393

then given a B ∈ Zn×m, we can compute Rem(A−1B, Xd) by premultiplying B by the straight line394

formula for D ≡ A−1 mod Xk on the right hand side of (13), keeping intermediate expressions395

reduced modulo Xd. Applying the formula requires doing the following operation O(log k) times:396

premultiplying an n×m matrix with entries reduced modulo Xd by an n×n matrix ∗with ‖∗‖ < X.397

When X is a power of 2, and m× d ∈ O(n), Birmpilis et al. (2019, Corollary 7) show that this can398

be done within our target cost (10).399

When X is not a power of 2, we need to use radix conversion to go between the binary and400

X-adic representation of integers. To avoid unnecessary radix conversions, we can compute the401

X-adic expansion of B once at the beginning, and then keep intermediate results in X-adic form.402

The following result is a corollary of Storjohann (2005, Theorem 33).403

13

Lemma 16. Let X ∈ Z>0 satisfy log X ∈ O(log n + log ‖A‖). Let C ∈ Zn×n with ‖C‖ < X and404

B ∈ Zn×m with B = Rem(B, Xd). If m × d ∈ O(n), then Rem(CB, Xd) can be computed in time405

O(nω M(log n + log ‖A‖)), assuming the input parameter B and output Rem(CB, Xd) are given as406

X-adic expansions.407

The following extends (Birmpilis et al., 2019, Corollary 7) using Lemmas 15 and 16.408

Theorem 17. Assume we have a lifting modulus X as in Lemma 13. If entries in B ∈ Zn×m
409

are reduced modulo Xd and m × d ∈ O(n), then Rem(A−1B, Xd) can be computed in time410

O(nω M(log n + log ‖A‖) log n).411

Proof. Using the radix conversion of (von zur Gathen and Gerhard, 2013, Theorem 9.17), com-412

pute the X-adic expansion of B in time O(nm M(d log X) log d). Simplifying this cost estimate413

using M(d log X) ∈ O(dω−1 M(log X)) and d ∈ O(n/m) shows that this is within the allotted414

time. Compute a straight line formula congruent to A−1 mod xd using Lemma 15. Applying415

the straight line formula to B mod Xd to compute the X-adic expansion of Rem(A−1B, Xd) now416

requires O(log n) applications of Lemma 16, plus some matrix additions which do not dominate417

the cost. Note that the multiplications with powers of X are free since we are working with X-418

adic expansions throughout. Finally, compute Rem(A−1B, Xd) from its X-adic expansion using419

another radix conversion.420

3.4. Integrality certification421

Any rational number can be written as an integer and a proper fraction. For example,

9622976468279041913
21341

= 450914974381661 +
14512
21341

,

where 450914974381661 is the quotient and 14512 is the remainder of the numerator with422

respect to the denominator. Similarly, a rational system solution A−1B can have entries with423

large numerators compared to denominators. In some situations only the information contain-424

ing the proper fractional part of the system solutions is required. Given an s ∈ Z>0, integral-425

ity certification can be used to determine whether sA−1B is integral in a cost that depends on426

log ‖A‖+ log s + log ‖B‖ instead of log ‖A−1‖+ log s + log ‖B‖. If sA−1B is integral, the version of427

integrality certification developed by Birmpilis et al. (2020, Section 2.2) also returns the proper428

fractional part Rem(sA−1B, s)/s of A−1B, but required that 2 ⊥ det A. Using the tools developed429

in the previous subsections the algorithm extends easily to handle the case of an A with arbitrary430

nonzero determinant. For completeness, we give the recipe here.431

1. Using Lemma 15 compute a high-order residue R ∈ Zn×n such that A−1 = D + A−1R × Xh
432

for an h ∈ Z>0 such that Xh > 2snn/2‖A‖n−1‖B‖.433

2. Using Theorem 17, compute the system solution Rem(A−1(sRB), X`) for some ` ∈ Z>0434

such that X` > 2n‖A‖(0.6sn‖B‖).435

3. Let C be the matrix that is congruent to Rem(A−1(sRB), X`) but with entries reduced in the436

symmetric range modulo X`.437

if ‖C‖ < 0.6sn‖B‖ then438

return Rem(C × Xh, s)439

else440

return NotIntegral441

14

Theorem 18. Assume we have a lifting modulus X as in Lemma 13. Let s ∈ Z>0 and B ∈ Zn×m
442

be given. There exists an algorithm that determines whether sA−1B is integral, and, if so, returns443

Rem(sA−1B, s). If m × (log s + log ‖B‖) ∈ O(n log X) and m ∈ O(n), then the running time is444

O(nω M(log n + log ‖A‖) log n).445

3.5. Computing a Smith massager for any A446

Finally, we show how to generalize the Smith massager algorithm of Birmpilis et al. (2020)447

to arbitrary nonsingular input matrices by using the results developed in the previous subsec-448

tions. We remark that the cost estimate of the following theorem uses B instead of M because449

the algorithm for computing a massager makes extensive use of gcd computations to compute450

intermediate Smith forms.451

Theorem 19. There exists a Las Vegas algorithm that takes as input a nonsingular A ∈ Zn×n,452

and returns as output the Smith form S ∈ Zn×n of A together with a reduced Smith massager453

M ∈ Zn×n. The cost of the algorithm is O(nω B(log n + log ‖A‖)(log n)2) bit operations. The454

algorithm returns FAIL with probability at most 1/2.455

Proof. Birmpilis et al. (2020, Algorithm SmithMassager) returns a so-called index-(0, n) Smith456

massager. This is a 4-tuple (U,M,T, S) of matrices from Zn×n, such that T is unit upper triangu-457

lar, S is the Smith form, and the matrix458

B =

[
A AMS −1

U (UM + T)S −1

]
∈ Z2n×2n (14)

is unimodular. From (14) and the fact that B is integral, we have that459

AM ≡ 0 cmod S and UM + T ≡ 0 cmod S . (15)

The second equation in (15) is equivalent to460

(−T−1U)M ≡ In cmod S , (16)

implying that the matrix M is a Smith massager for A.461

To apply (Birmpilis et al., 2020, Algorithm SmithMassager) in the case where A may not462

satisfy 2 ⊥ det A, we first use the Las Vegas algorithm of Lemma 13 (at most twice) to compute a463

lifting modulus X with probability at least 1/4. Then we can directly use (Birmpilis et al., 2020,464

Algorithm SmithMassager) but with the following changes: in the proof of (Birmpilis et al.,465

2020, Theorem 12) we appeal to Theorem 18 instead of (Birmpilis et al., 2020, Theorem 2); in466

the proof of (Birmpilis et al., 2020, Theorem 21) we appeal to Theorem 17 instead of (Birmpilis467

et al., 2019, Corollary 7). By running this generalization of (Birmpilis et al., 2020, Algorithm468

SmithMassager) just described (at most twice) we can compute S and M with probability at469

least 1/4.470

By running the Las Vegas algorithm of Theorem 19 at most three times, we obtain the fol-471

lowing result, which will be useful in subsequent sections.472

Corollary 20. There exists a Las Vegas algorithm SmithMassager(A) with the input/output473

specification and the running time stated in Theorem 19. The algorithm returns FAIL with prob-474

ability at most 1/8.475

15

4. Partial linearization476

The cost of algorithms that take as input an integer matrix A ∈ Zn×m are typically expressed
in terms of the dimensions n and m, and log ‖A‖, which is proportional to the bitlength of the
largest entry of A in absolute value. More precisely, let us define length(a) for an integer a to be
the number of bits in its binary representation, that is,

length(a) :=
{

1 if a = 0
1 + blog2 |a|c otherwise .

By extension, for a matrix we define length(A) := length(||A||), so length(A) is the length of the477

largest entry of A in absolute value.478

But consider decomposing A into columns as

A =
[

v1 · · · vm

]
∈ Zn×m.

For some inputs, the lengths of the columns vi can be skewed, that is, the average column length

d =


m∑

i=1

length(vi)/m


can be asymptomatically smaller than length(A) = maxi length(vi). Even length(A) ≈ md is479

possible in the case of one column of large length. For such inputs, being able to replace the term480

length(A) with the average length d can give significantly improved cost estimates.481

Example 21. For the identity matrix Im, we have length(A) = 1 and the average column length482

is also d = 1. Now let I′m be equal to Im but with the last column multiplied by 2m+1 − 1. Then483

length(I′) = m + 1 but the average column length is only d = 2.484

In this section, we adapt the partial linearization technique for polynomial matrices given by485

Gupta et al. (2012, Section 6) to the case of integer matrices. The main motivation is to extend486

the algorithms from Section 3 so that their cost estimates depend on the average length d and not487

length(A).488

The technique transforms the input matrix A into a new matrix D which can be used in place489

of A for all of the algorithms presented in Section 3, and many more (see below and also the490

remarks at the end of Subsection 4.2). Matrix D will satisfy that length(D) ≤ d + 1, at the cost of491

D having at most m more rows and columns than A ∈ Zn×m.492

More importantly, the constructed matrix D will “imitate” A in a way such that the output of493

the routines with D as input includes the original output in a direct way. Specifically, matrix D494

will satisfy the following two fundamental properties with respect to A:495

(i) D can be obtained from diag(A, I) using unimodular row and column operations.496

(ii) The principal n × n submatrix of the adjoint of D equals the adjoint of A (for square497

matrices).498

Property (i) establishes that the rank, the determinant (for square matrices) and the Smith499

form of matrix A can be trivially deduced from the same objects for matrix D. In Subsection 4.3500

we show that computing the Smith massager of a nonsingular A can also be directly reduced to501

computing the Smith massager of D.502

16

Property (ii) provides us with a direct extension of system solving. If A ∈ Zn×n is nonsingular,
then for any matrix B ∈ Zn×∗, we have that the first n rows of

D−1
[

B
0

]
are equal to A−1B. Finally, because det D = det A and using property (ii), it follows that the503

principal n×n submatrix of the lower row Hermite form of D equals the lower row Hermite form504

of A.505

Example 22. Let506

A =


2 4 44199 3061969404
4 8 19644 765492351
7 8 44199 5358446457
7 5 9822 765492351

 ∈ Z4×4,

a matrix with skewed column lengths. In this case length(A) = 33 and average column length is507

d = 14. The partial linearization of A constructed later in this section will be508

D =



2 4 11431 12796 2 6663 11
4 8 3260 15487 1 13953 2
7 8 11431 10105 2 15757 19
7 5 9822 15487 0 13953 2

−16384 1
−16384 1

−16384 1


∈ Z7×7.

Notice that ‖D‖ ≤ 2d = 16384.509

4.1. The partial linearization construction510

Let e ∈ Z≥0 and d ∈ Z≥1 be given and assume for the moment that a column vector v ∈ Zn×1
≥0511

contains only nonnegative entries. Then, we define Ce,d(v) to be the unique n× e matrix over Z≥0512

that satisfies513

Quo(v, 2d) = Ce,d(v)


1
2d

...
2(e−1)d

 , (17)

with all but possibly the last column (if e > 0) of magnitude strictly less than 2d. If e = 0 then514

Ce,d(v) is the n × 0 matrix, while for e ≥ 1,515

v = Rem(v, 2d) + Col(Ce,d(v), 1)2d + · · · + Col(Ce,d(v), e)2ed (18)

is the 2d-adic series expansion of v, except that the coefficient Col(Ce,d(v), e) of 2ed may have516

magnitude greater than or equal to 2d.517

Example 23. For v =
[

29821
]
, Rem(v, 23) = 5 and C3,3(v) =

[
7 1 58

]
.518

17

We can extend the definition of Ce,d to an arbitrary vector v ∈ Zn×1 in the following way. Let519

v(+) denote the vector v but with all negative entries zeroed out, and v(−) := v − v(+) denote the520

vector v but with all but the positive entries zeroed out. Then, v(+) and −v(−) are over Z≥0, and521

v = v(+) − (−v(−)). Finally we let522

C∗e,d(v) := Ce,d(v(+)) −Ce,d(−v(−)),

which still satisfies equations (17) and (18) if we replace Rem and Quo by523

Rem∗(v, 2d) := Rem(v(+), 2d) − Rem(−v(−), 2d),
524

Quo∗(v, 2d) := Quo(v(+), 2d) − Quo(−v(−), 2d).

We define structured matrices Ed and Fd by

Ed := −2d Col(I, 1) =


−2d  and Fd :=



1
−2d 1

−2d . . .

. . . 1
−2d 1


,

with the dimensions of Ed and Fd to be determined by the context. We remark that F−1
d will be525

the unit lower triangular Toeplitz matrix with 2id on the ith subdiagonal. The next lemma follows526

from the definition of Ed and Fd and equations (17) and (18).527

Lemma 24. Given v ∈ Zn×1, e ∈ Z≥0 and d ∈ Z≥1, let528

c :=
{

v if e = 0
Rem∗(v, 2d) if e > 0 ,

and529

Qe,d(v) =
[

Quo∗(v, 2d) · · · Quo∗(v, 2ed)
]
.

Then,530 [
c C∗e,d(v)

Ed Fd

]
=

[
In Qe,d(v)

Ie

] [
v

Ie

] [
1

Ed Fd

]
. (19)

By replacing the single column vector v with a matrix A =
[

v1 · · · vm

]
of m column531

vectors vi, we obtain:532

Corollary 25. Given A =
[

v1 · · · vm

]
∈ Zn×m, ē = (e1, . . . , em) ∈ Zm

≥0 and d ∈ Z≥1. Let533

ci :=
{

vi if ei = 0
Rem∗(vi, 2d) if ei > 0 ,

for 1 ≤ i ≤ m, and define the matrix

D = Dē,d(A) :=


c1 · · · cm C∗e1,d

(v1) · · · C∗em,d
(vm)

Ed Fd

. . .
. . .

Ed Fd

 ∈ Z
n̄×m̄,

18

with n̄ = n + e[m] and m̄ = m + e[m], where e[m] = e1 + · · · + em. Then, matrix D satisfies534

D =

[
In Q

Ie[m]

] [
A

Ie[m]

] [
Im

E F

]
, (20)

where Q =
[

Qe1,d(v1) · · · Qem,d(vm)
]
∈ Zn×e[m] , E = diag(Ed, . . . , Ed) ∈ Ze[m]×m and F =535

diag(Fd, . . . , Fd) ∈ Ze[m]×e[m] .536

From equation (20), it is apparent that D enjoys the following properties:537

Corollary 26. Given A ∈ Zn×m, ē = (e1, . . . , em) ∈ Zm
≥0 and d ∈ Z≥1. Let D = Dē,d(A) as in538

Corollary 25. Then539

(i) rank(D) = rank(A) + e[m].540

(ii) D has the same Smith form as A up to additional trivial invariant factors.541

Furthermore, if n = m, then:542

(iii) det D = det A.543

(iv) The principal n × n submatrix of the adjoint of D equals the adjoint of A.544

Notice that Corollary 25 does not make any assumptions on the parameters ē and d. The545

properties of matrix D = Dē,d(A) corresponding to the original matrix A are true for any ē and546

d. However, the partial linearization technique is particularly useful if we pick ē and d in a way547

such that m̄ ∈ O(m) and log ‖D‖ corresponds to the the average length of the columns of A. The548

following is the main result of this section.549

Theorem 27. Given matrix A =
[

v1 · · · vm

]
∈ Zn×m, let550

d :=


m∑

i=1

length(vi)/m

 ,
ē = (e1, . . . , em) ∈ Zm

≥0 where each ei ∈ Z≥0 is chosen minimal such that length(vi) ≤ (ei + 1)d,551

and D = Dē,d(A). Then:552

• ||D|| ≤ 2d,553

• n̄ < n + m and m̄ < 2m.554

Proof. The choice of ei ensures that, for each vi, the expansion in (18) is the 2d-adic expansion555

of v. This shows that the length of all entries in the first n rows of D are bounded by d. Since the556

entries in the last n̄ − n rows of D are bounded in magnitude by 2d, the claimed bound for ||D||557

follows.558

To prove our upper bounds for n̄ and m̄ we show that
∑m

i=1 ei < m. Note that ei is precisely559

defined as560

ei =

⌈
length(vi)

d
− 1

⌉
<

length(vi)
d

,

and so561
m∑

i=1

ei <

m∑
i=1

length(vi)
d

≤ m.

562

19

Example 28. Let563

A =


2 4 44199 3061969404
4 8 19644 765492351
7 8 44199 5358446457
7 5 9822 765492351

 ,
be the matrix from Example 22. Then, with the average (column) length d = 14 and ē =564

(0, 0, 1, 2) we get565

D =



2 4 11431 12796 2 6663 11
4 8 3260 15487 1 13953 2
7 8 11431 10105 2 15757 19
7 5 9822 15487 0 13953 2

−16384 1
−16384 1

−16384 1


.

One can easily verify that the adjoint of A lies in the principal 4 × 4 sub-matrix of the adjoint of566

D, and that the Smith form of A lies in the trailing 4 × 4 sub-matrix of the Smith form of D.567

The approach of Corollary 25 can also be used to partially linearize the rows of a matrix A. If568

we transpose a matrix A with skewed row lengths, then it has skewed column lengths. Then, by569

transposing the linearization of AT , it satisfies all the properties given in Corollary 26. We can570

see that from the row linearization equivalent of equation (20), which is571

Dē,d(AT)T =

[
I ET

BT

] [
A

I

] [
I

QT I

]
. (21)

Corollary 29. Let A ∈ Zm×n, and consider the matrix D = Dē,d(AT)T . The magnitude of the572

entries in D will then be bounded by 2d where d is the average length over the rows of A, and D573

will enjoy all the properties following from Corollary 25 and Theorem 27.574

4.2. The permutation bound575

Our approach so far is particularly effective for matrices A ∈ Zn×n where the average of576

the sum of the lengths of the columns (or rows) is small compared to length(A). However, the577

technique is not useful for input matrices that have, simultaneously, some columns and rows of578

large length. For this reason, as in the case of polynomial matrices (Gupta et al., 2012, Section 6),579

we develop an approach to handle such inputs based on the following a priori upper bound for580

| det A|.581

By definition, det A =
∑
σ∈S n

sign(σ)
∏n

i=1 Ai,σi , where S n is the set of all permutations of582

(1, 2, . . . , n). Therefore,583

det A ≤ n! max
σ∈S n

n∏
i=1

|Ai,σi |,

and so, we define584

PermutBnd(A) := max
σ∈S n

n∑
i=1

length(Ai,σi).

20

As in the polynomial case, up to a row and column permutation, we may assume that di :=585

length(Ai,i) bounds the length of the submatrix Ai...n,i...n, for 1 ≤ i ≤ n. Such a row and column586

permutation can be found by sorting the set of triples {(i, j, |Ai, j|)}1≤i, j≤n into nonincreasing order587

according to their third component. Then, by definition, d1 + · · · + dn ≤ PermutBnd(A).588

Let d :=
⌈∑n

i=1 di/n
⌉

and ē = (e1, . . . , en) with ei ∈ Z≥0 minimal such that di ≤ (ei + 1)d.589

Then, due to the choice of di, row i of matrix Dē,d(A) will have length bounded by di + 1 for590

1 ≤ i ≤ n, and all the extra rows will have length bounded by d + 1. Furthermore, let ē′ contain ē591

augmented with
∑n

i=1 ei zeros. We have the following corollary for matrix D := Dē′,d(Dē,d(A)T)T .592

Corollary 30. Let A ∈ Zn×n be given. Using the choices for d, ē and ē′ as specified above, the593

matrix D := Dē′,d(Dē,d(A)T)T ∈ Zn̄′×n̄′ satisfies594

(i) ‖D‖ ≤ 2d with d ≤ dPermutBnd(A)/ne, and595

(ii) n̄′ < 3n,596

along with all the properties from Corollary 26.597

Remark 31 (Application to system solving). The fact that the principal n × n submatrix of
the adjoint of the partially linearized matrix D is equal to the adjoint of the original matrix A
provides us with a direct extension to system solving. For any matrix B ∈ Zn×m, we have that the
first n rows of

D−1
[

B
0

]
are equal to A−1B. Therefore, Theorem 17 can have cost which depends on the average bitlength598

d of A and not the bitlength of the largest entry. The average bitlength d can assume any of the599

three definitions given by Theorem 27, Corollary 29 and Corollary 30.600

Remark 32 (Application to integrality certification). Suppose D is a partial linearization of A.
For any s ∈ Z>0 and B ∈ Zn×m, it follows from equations (20) and (21) that

sD−1
[

B
0

]
will be integral if and only if sA−1B is integral. Therefore, Theorem 18 can have cost which601

depends on the average bitlength d of A and not the bitlength of the largest entry. The average602

bitlength d can assume any of the three definitions given by Theorem 27, Corollary 29 and603

Corollary 30.604

Remark 33 (Application to inverting unimodular matrices). Suppose D is a partial linearization
of a unimodular matrix A. A straight line formula for A−1 is given by[

In 0
]

T
[

In

0

]
where T is a straight line formula for the inverse of a partial linearization of A. Such a straight605

line formula for A−1 can thus be computed deterministically in O(nω M(log n + d) log n) bit op-606

erations by (Pauderis and Storjohann, 2012, Section 3), where d is the average bitlength of A607

according to any of the three definitions given by Theorem 27, Corollary 29 and Corollary 30.608

21

Remark 34 (Application to computing the Hermite form). If A ∈ Zn×n is nonsingular, then the609

lower triangular row Hermite form of A shows up as the principal n×n submatrix of the Hermite610

form of the partially linearized matrix D.611

Example 35. The lower triangular row Hermite form of the matrix D from Example 28 is

777
401 1
174 0 4911
762 0 0 765492351
696 0 3260 0 1
762 0 0 765475967 1
762 0 0 497056895 1


with the 4 × 4 principal sub-matrix being the corresponding lower triangular row Hermite form612

of A.613

4.3. Smith massagers and partial linearization614

We can also employ the partial linearization technique to replace the log ‖A‖ term in Theo-615

rem 19 with the average bitlength d of the columns (or rows) in A.616

Theorem 36. Let A ∈ Zn×n and D ∈ Zn̄×n̄ be the partially linearized version of A from Theo-617

rem 27. If618 ([
In̄−n

S

]
,

[
0 M1
0 M2

])
(22)

is a Smith massager for D, where S ∈ Zn×n, M1 ∈ Zn×n and M2 ∈ Z(n̄−n)×n, then (S ,M1) is a619

Smith massager for A.620

Proof. We will show that S ,M1 ∈ Zn×n satisfy Definition 1 for A.621

From Theorem 27, we have that

D
[

0 M1
0 M2

]
=

[
In Q

In̄−n

] [
A

In̄−n

] [
In

E F

] [
0 M1
0 M2

]
=

[
In Q

In̄−n

] [
0 AM1
0 EM1 + FM2

]
.

Since (22) is a Smith massager for D, it follows from Definition 1.(i) that622

D
[

0 M1
0 M2

]
≡ 0 cmod

[
In̄−n

S

]
,

it follows that623 [
0 AM1
0 EM1 + FM2

]
≡ 0 cmod

[
In̄−n

S

]
,

and that624

AM1 ≡ 0 cmod S .

Moreover, since B is unit lower triangular, we see that625

M2 ≡ −F−1EM1 cmod S .
22

Finally, by Definition 1.(ii), there exist a matrix WD ∈ Zn̄×n̄ such that626

WD

[
0 M1
0 M2

]
≡

[
In̄−n

In

]
cmod

[
In̄−n

S

]
.

The last equation can be transformed to627 (
WD

[
In

−F−1E In̄−n

]) [
0 M1
0 0

]
≡

[
In̄−n

In

]
cmod

[
In̄−n

S

]
,

from which it directly follows that there exists a matrix W ∈ Zn×n such that628

WM1 ≡ In cmod S .

629

Furthermore, by equation (21) and by following the same steps as in the proof Theorem 36,630

we obtain the following corollary.631

Corollary 37. Let A ∈ Zn×n and D ∈ Zn̄×n̄ be the partially linearized version of A from Corol-632

lary 29 or Corollary 30. If633 ([
In̄−n

S

]
,

[
0 M1
0 M2

])
is a Smith massager for D, where S ∈ Zn×n, M1 ∈ Zn×n and M2 ∈ Z(n̄−n)×n, then (S ,M1) is a634

Smith massager for A.635

5. Example636

In this section, we illustrate our Smith form with multipliers algorithm using the follow-637

ing example. We have already discussed the algorithm in Section 2.2, and we will rigorously638

establish it in Sections 6–8.639

Example 38. Let our input matrix be640

A :=



1 0 0 0 0 0 0
1 1 1 1 1 1 1
1 2 4 1 2 4 1
1 3 2 6 4 5 1
1 4 2 1 4 2 1
1 5 4 6 2 3 1
1 6 1 6 1 6 1


.

Given as input 2A, the algorithm supporting Theorem 19 returns the Smith form 2S and a Smith641

massager M for 2A:642

2S :=



2
2

2
2

2
16

160


, M :=



1 0 1 1 2 8 0
0 1 1 0 2 11 65
1 0 1 1 1 12 15
0 1 1 1 3 6 98
0 0 0 0 0 12 155
1 1 1 1 1 7 125
1 1 1 1 1 0 2


.

23

We always take M to be reduced column modulo 2S , that is, it should be a reduced Smith mas-643

sager.644

The next step is to pick a random matrix645

R :=



0 0 1 1 1 0 1
1 1 0 0 1 0 1
0 0 0 0 0 0 0
1 1 1 1 0 0 0
0 1 0 1 0 1 0
0 1 1 1 1 1 0
1 1 0 0 1 1 0


,

where each entry is chosen independently and uniformly from a set [0, λ − 1] of λ ∈ O(n‖A‖)646

consecutive integers. (For the example, we let λ := 2.)647

By perturbing M by the random choice of R post-multiplied with 2S , we obtain648

B := M + 2RS =



1 0 3 3 6 8 160
2 3 1 0 6 11 225
1 0 1 1 1 12 15
2 3 3 3 3 6 98
0 2 0 2 0 28 155
1 3 3 3 5 23 125
3 3 1 1 5 16 22


,

which, by Proposition 8, is a Smith massager for A.649

Computing the lower triangular row Hermite form of the random matrix B, gives650

H :=



830295
547348 1
602711 1
592450 1
540934 1
350043 1
323815 1


.

Our aim is for H to have only the first diagonal entry non-trivial. If B is not left equivalent to651

such a matrix H, then the algorithm fails. This happens, for example, if the random R has the652

entry in row 1 and column 6 equal to 1 rather than 0. Showing that the Hermite form of B is653

almost trivial with high probability is the main focus of Section 6. Then, in Section 7, we give an654

algorithm to assay if the Hermite form of B has the desired structure, and if so, to compute the655

Hermite form itself.656

To obtain a unimodular Smith massager, we simply extract H from B by post-multiplying with657

H−1.658

V := BH−1 =



−74 0 3 3 6 8 160
−99 3 1 0 6 11 225
−13 0 1 1 1 12 15
−49 3 3 3 3 6 98
−75 2 0 2 0 28 155
−68 3 3 3 5 23 125
−22 3 1 1 5 16 22


.

24

By construction, the matrix V is integral and unimodular. In addition, and as proven by Lemma 12,659

V is a Smith massager for A.660

The fact that H has only one non-trivial column allows us to easily establish a nice bound661

on the size of matrix V. Notice that the columns of V have the same bitlength as the columns662

of B except for only the first column. In addition, the bitlength of the columns of B equals the663

bitlength of the columns of the Smith massager M plus the bitlength of λ. In Section 8, we give664

the overall algorithm for computing the Smith multipliers and establish explicit bounds on the665

size of their entries.666

Finally, since V is a unimodular Smith massager for A, this makes the matrix667

U := AVS −1 =



−74 0 3 3 3 1 2
−400 14 12 13 13 13 10
−817 28 25 27 25 31 20
−1353 53 42 47 37 43 34
−1003 32 19 23 25 32 26
−1291 49 40 39 39 36 33
−1480 59 47 43 48 38 38


also integral and unimodular. By construction, the two unimodular matrices V,U ∈ Zn×n satisfy668

AV = US .669

6. Random perturbations of Smith massagers670

Let A ∈ Zn×n be nonsingular with Smith form S . In this section, we show how to perturb a671

Smith massager M for A into a unimodular Smith massager V . The first step will be to obtain a672

Smith massager B := M + RS that is left equivalent (over Z) to a lower triangular row Hermite673

form with the shape674 

| det B|
∗ 1
∗ 1
...

. . .

∗ 1


∈ Zn×n. (23)

The property that the last n − 1 diagonal entries of B are equal to 1 coincides with the property675

that the last n − 1 columns of B mod p are linearly independent over Z/(p) for all primes p.676

Our approach is inspired by and follows that of Eberly et al. (2000, Section 6), where the fol-677

lowing general result is established: for λ ≥ 2, a matrix R ∈ Zn×n with entries chosen uniformly678

and randomly from [0, λ − 1] will have an expected number of O(logλ n) nontrivial invariant679

factors.680

Theorem 39. Let A ∈ Zn×n be nonsingular with Smith form S . Let M be a reduced Smith681

massager for 2A. For any R ∈ Zn×n,682

(i) the matrix B := M + 2RS is a Smith massager for A, and683

(ii) if entries in R are chosen chosen uniformly and randomly from [0, λ − 1], where

λ = 105 max(n,
⌈
(det 2S)1/n

⌉
),

then the probability that there exists a prime p such that the last n− 1 columns of B mod p684

are linearly dependent over Z/(p) is less than 1/2.685

25

Part (i) of Theorem 39 follows directly from Proposition 8, so it remains only to prove part686

(ii). This will be done using a sequence of lemmas. For the rest of this section, we let A, S , M,687

R, λ and B = M + 2RS be as defined in Theorem 39.688

We start by defining a set of probabilistic events that will facilitate the proofs in this sec-689

tion. For a prime p and 1 ≤ m ≤ n − 1, let Depp
m denote the event that the last m columns690

of B are linearly dependent modulo p. To complete the proof of Theorem 39 we show that691

Pr[∨pDepp
n−1] < 0.5, where ∨p means ranging over all primes. We begin with Lemmas 40 and 41692

that hold for all primes p. Then, following Eberly et al. (2000, Section 6), we will separately693

consider the small primes p < λ in Subsection 6.1, and the large primes p ≥ λ in Subsection 6.2.694

Lemma 40. For any prime p we have695

Pr[Depp
1] ≤

(
1
λ

⌈
λ

p

⌉)n

, (24)

and for any 2 ≤ m ≤ n − 1,696

Pr[Depp
m | ¬Depp

m−1] ≤
(

1
λ

⌈
λ

p

⌉)n−m+1

. (25)

Proof. We have Depp
1 precisely when the last column of B is zero modulo p. By Lemma 10, for697

any prime p that divides 2sn we have Pr[Depp
1] = 0. For a prime p that does not divide 2sn, Depp

1698

is equivalent to the vector699

(2sn)−1M1..n,n

fixed

+R1..n,n mod p ∈ Z/(p)n×1 (26)

being zero modulo p. Each random entry Ri,n is equal to −(2sn)−1Mi,n modulo p with probability
at most

1
λ

⌈
λ

p

⌉
.

The bound (24) now follows by noting that vector in (26) has n entries.700

Now consider the case 2 ≤ m ≤ n − 1. By Lemma 10, we have that Pr[Depp
m] = 0 for

any prime p that divides 2sn−m+1. Assume henceforth that p does not divide 2sn−m+1. Given
¬Depp

m−1, there is an (m − 1) × (m − 1) submatrix D in the last m − 1 columns of B that is
nonsingular modulo p. Assume, without loss of generality, up to a row permutation of B, that D
is the trailing (m − 1) × (m − 1) submatrix of B. Decompose the last m columns of B as follows:[

v C
w D

]
∈ Zn×m.

Then C and D are fixed at this point and vectors v and w still depend on the random choice of
column n − m + 1 of R. Fix the choice of w also. Note that[

In−m+1 −CD−1

D−1

] [
v C
w D

]
=

[
a
∗ Im−1

]
mod p ∈ Z/(p)n×m.

Then Depp
m is equivalent to the vector

(2sn−m+1)−1a = (2sn−m+1)−1M1..n−m+1,n−m+1 −CD−1w

fixed

+R1..n−m+1,n−m+1 mod p ∈ Z/(p)(n−m+1)×1

26

being zero modulo p. By a similar argument as before, the probability of this happening is701

bounded by (25).702

The next lemma follows simply from the union bound on the set of events for 1 ≤ i ≤ n − 1703

that happen when the ith column from the end is the first that is linearly dependent.704

Lemma 41. For any prime p we have

Pr[Depp
n−1] ≤ Pr[Depp

1] +

n−1∑
i=2

Pr[Depp
i | ¬Depp

i−1].

6.1. Small primes705

We first deal with the specific small primes {3, 5, 7}. Notice that from Proposition 8, we know706

that Pr[Dep2
n−1] = 0.707

Lemma 42. Pr[∨p∈{3,5,7}Depp
n−1] < 0.23.708

Proof. We exploit the fact that λ is a multiple of 105 = 3 × 5 × 7. Let p ∈ {3, 5, 7}. Since p | λ,
the bound of Lemma 40 simplifies to

Pr[Depp
m | ¬Depp

m−1] ≤
(

1
p

)n−m+1

,

and Lemma 41 gives709

Pr[Depp
n−1] ≤

n−1∑
i=1

(
1
p

)i+1

<
1
p

∞∑
i=1

(
1
p

)i

=
1

p(p − 1)
. (27)

Since the events Dep3
n−1, Dep5

n−1 and Dep7
n−1 are independent,710

Pr[∨p∈{3,5,7}Depp
n−1] = 1 −

∏
p∈{3,5,7}

(1 − Pr[Depp
n−1]). (28)

The result now follows by bounding from above the probabilities on the right hand size of (28)711

using (27).712

Next we handle the small primes in the range 7 < p < λ.713

Lemma 43. Pr[∨7<p<λDepp
n−1] < 0.23714

Proof. Let 7 < p < λ. Since p < λ,

1
λ

⌈
λ

p

⌉
<

1
λ

(
λ

p
+ 1

)
=

1
p

+
1
λ
<

2
p

=
1

p/2
,

and the bound of Lemma 40 simplifies to715

Pr[Depp
m | ¬Depp

m−1] ≤
(

1
p/2

)n−m+1

. (29)

27

Lemma 41 together with (29) gives716

Pr[Depp
n−1] ≤

1
(p/2)(p/2 − 1)

<
1

((p − 1)/2)2 . (30)

Using the union bound and then (30) gives717

Pr[∨7<p<λDepp
n−1] ≤

∑
7<p<λ

Pr[Depp
n−1]

<
∑

7<p<λ

1
((p − 1)/2)2

<
∑

x≥11, odd

1
((x − 1)/2)2

=
∑
x≥5

1
x2

= ζ(2) −
4∑

x=1

1
x2

=
π2

6
−

205
144

< 0.23.

718

6.2. Large primes719

Consider now the large primes p ≥ λ. Although it follows from Lemmas 40 and 41 that720

Pr[Depp
n−1] ≤ (1/(λ(λ − 1)) for any particular prime p ≥ λ, this doesn’t help us to bound721

Pr[∨p≥λDepp
n−1] using the union bound since there exist an infinite number of such primes. In-722

stead, we follow the approach of Eberly et al. (2000, Section 6) and show that we only need to723

consider those primes which divide some necessarily nonzero minors of B.724

Lemma 44. Any minor of B is bounded in magnitude by λ2.5n.725

Proof. It will suffice to bound | det B| using Hadamard’s inequality, which states that | det B| is726

bounded by the product of the Euclidean norms of the columns of B. Recall that B = M + 2RS727

where M = M cmod 2S and entries in R are chosen from [0, λ− 1], with λ ≥ max((det 2S)1/n, n).728

Then729

| det B| ≤
n∏

j=1

∥∥∥B1...n, j
∥∥∥

2

=

n∏
j=1

∥∥∥M1...n, j + 2s jR1...n, j
∥∥∥

2

≤

n∏
j=1

n1/2(2s j − 1 + 2s j(λ − 1))

< (det 2S)nn/2λn

≤ λ2.5n.
28

730

Next we develop the following analogue of Lemma 40.731

Lemma 45. We have

Pr[∨p≥λDepp
1] ≤ 2.53n

(
1
λ

)n−1

and for any 2 ≤ m ≤ n − 1,

Pr[∨p≥λDepp
m | ¬ ∨p≥λ Depp

m−1] ≤ 2.53n
(

1
λ

)n−m

.

Proof. By Proposition 8, B = M + R(2S) is nonsingular modulo 2, independent of the choice of732

R. Thus, up to an initial row permutation of M, we may assume that the trailing j × j submatrix733

of B mod 2 is nonsingular over Z/(2) for every 1 ≤ j ≤ n.734

First consider the case for m = 1. Decompose the last column of B as[
v
w

]
∈ Zn×1,

where v ∈ Z(n−1)×1 and w ∈ Z. Fix the choice of w, that is, fix the last entry in the last column735

of R. By assumption, w , 0 mod 2 and thus w , 0 over Z. For every prime p - w we have736

Pr[Depp
1] = 0, and since there are n − 1 entries in v that are still free to be chosen, the union737

bound gives738

Pr[∨p≥λDepp
1] = Pr[∨p≥λ,p|wDepp

1]

≤ (logλ |w|)
(

1
λ

)n−1

.

Lemma 44 gives logλ |w| ≤ 2.5n < 2.53n, establishing the first part of the lemma.739

Now consider 2 ≤ m ≤ n − 1. Decompose the last m columns of B as follows:[
v C
w D

]
∈ Zn×m,

where D ∈ Z(m−1)×(m−1). Then C and D are fixed at this point and vectors v and w still depend on740

the random choice of column n−m+1 of R. Let d = det D, which we know to be nonzero. There741

are at most logλ |d| primes p ≥ λ that divide d. Using Lemma 40 with the union bound gives742

∑
p≥λ,p|d

Pr[Depp
m | ¬Depp

m−1] ≤ (logλ |d|)
(

1
λ

)n−m+1

. (31)

Next we consider the primes p - d. Note that

[
dIn−m+1 −dCD−1

dD−1

] [
v C
w D

]
=



a1
...

an−m

an−m+1

∗ dIm−1


∈ Zn×m,

29

where, by Cramer’s rule, an−m+1 is the determinant of the trailing m × m submatrix of B. Since743

p - d, event Depp
m holds if and only if the vector744 

a1
...

an−m

an−m+1

 = d


v1
...

vn−m

vn−m+1

 − dCD−1w. (32)

is zero modulo p. Fix the choice of w and vn−m+1. Then an−m+1 , 0 is also fixed, and for every745

prime p - an−m+1 we have Pr[Depp
m | ¬Depp

m−1] = 0. Since there can be at most logλ |an−m+1|746

primes p ≥ λ that divide an−m+1, and since v1, . . . , vn−m are still free to be chosen, we have747 ∑
p≥λ,p-d

Pr[Depp
m | ¬Depp

m−1] ≤ (logλ |an−m+1|)
(

1
λ

)n−m

. (33)

Combining the bounds (31) and (33) and using the estimate of Lemma 44 for |d| and |an−m+1|, we748

obtain749

Pr[∨p≥λDepp
m | ¬ ∨p≥λ Depp

m−1] ≤ 2.5n

(1
λ

)n−m+1

+

(
1
λ

)n−m
= 2.5n

(
1
λ

)n−m (
1
λ

+ 1
)

< 2.53n
(

1
λ

)n−m

. (34)

Here, (34) follows using λ ≥ 105.750

Lemma 46. Pr[∨p≥λDepp
n−1] < 0.03.751

Proof. Analogous to Lemma 41, we have

Pr[∨p≥λDepp
n−1] ≤ Pr[∨p≥λDepp

1] +

n−1∑
i=2

Pr[∨p≥λDepp
i | ¬ ∨p≥λ Depp

i−1].

Using the estimates of Lemma 45 now gives752

Pr[∨p≥λDepp
n−1] ≤ 2.53n

(
1
λ

)n−1

+ 2.53n
n−1∑
i=2

(
1
λ

)n−i

< 2.53n
(

1
λ − 1

)
.

Simplifying the last bound using the assumption λ ≥ 105n gives the result.753

Proof of Theorem 39. The probability defined by Theorem 39 is bounded by the sum of proba-
bilities in Lemmas 42, 43 and 46, that is,

Pr[Depn−1] ≤ Pr[∨p∈{3,5,7}Depp
n−1] + Pr[∨7<p<λDepp

n−1] + Pr[∨p≥λDepp
n−1]

< 0.23 + 0.23 + 0.03
< 0.5.

754

30

7. Almost trivial Hermite form certification755

In this section, we show how to verify whether the last n − 1 columns of the matrix B ∈ Zn×n
756

from Theorem 39 are linearly independent for any prime p ∈ Z. As we have already mentioned,757

this means that B is left equivalent to a lower triangular row Hermite form with the shape758

H =


| det B|
∗ 1
...

. . .

∗ 1

 ∈ Zn×n. (35)

Our main tool will once more be the Smith form and a Smith massager for B.759

Theorem 47. Let A ∈ Zn×n be nonsingular with Smith form S and a Smith massager M. If760

H ∈ Zn×n is a matrix in Hermite form which satisfies that det H = det S and HM ≡ 0 cmod S ,761

then H is the row Hermite form of A.762

Proof. The statement follows from Theorem 7 and the uniqueness of the Hermite form of A.763

We plan to use the description of Theorem 47 here in order to check whether the lower764

triangular row Hermite form H of the matrix B has n−1 trailing trivial columns, and, if yes, then765

also compute the first non-trivial column. For this section, matrices S and M refer to the Smith766

form and Smith massager of matrix B.767

First of all, we need to ensure that the Smith form S := diag(s1, . . . , sn) of B also has only768

one non-trivial invariant factor. If otherwise, then H does not have the desired structure. Let769

h1, h2, . . . , hn be the diagonal entries of H. The product h2 · · · hn equals the gcd of all the (n−1)×770

(n − 1) minors in the last n − 1 columns of B. On the other hand, the product s1 · · · sn−1 equals771

the gcd of all the (n − 1) × (n − 1) minors of B, which means that (s1 · · · sn−1) | (h2 · · · hn). So, if772

s1 · · · sn−1 , 1, then h2 · · · hn , 1.773

Now, assuming that S := diag(1, . . . , 1, sn), we are looking to see whether there exists a774

vector h̄ ∈ Z(n−1)×1 such that775 [
sn

h̄ In−1

]
M1..n,n ≡ 0 mod sn,

which is equivalent to776

M1,nh̄ + M2..n,n ≡ 0 mod sn. (36)

Since the Hermite form H must be unique, equation (36) must have exactly one solution, which777

is true if and only if gcd(M1,n, sn) = 1.778

The algorithm follows.779

31

TrivialLowerHermiteForm(B)
Input: A nonsingular matrix B ∈ Zn×n.
Output: The lower triangular Hermite form H ∈ Zn×n of B if only the first column is
non-trivial, otherwise NotTrivial.
Note: Fail might be returned with probability less than 1/8.

1. [Compute a Smith massager for B.]
(If SmithMassager fails, return Fail)
S ,M := SmithMassager(B)

2. [Certify that B is left equivalent to a matrix H as in (35).]
if S n−1,n−1 , 1 then return NotTrivial
if gcd(S n,n,M1,n) , 1 then return NotTrivial

3. [Compute matrix H and return.]

H :=
[

h1
h̄ In−1

]
where h1 := S n,n and h̄ := Rem(−M−1

1,nM2..n,n, S n,n).
return H

Figure 1: Algorithm TrivialLowerHermiteForm

Theorem 48. Algorithm TrivialLowerHermiteForm is correct and runs in time780

O(nω B(d + log n) (log n)2),

where d is the average bitlength of the columns of B ∈ Zn×n.781

Proof. The correctness follows from the preceding discussion.782

Regarding the time complexity, the computation of the Smith form S ∈ Zn×n of B along with a783

Smith massager M ∈ Zn×n dominates the rest of the operations. Let DB be the partially linearized784

version of matrix B as specified by Theorem 27. Then, by Theorem 36, we can obtain S and M785

from the Smith form and a Smith massager for DB without any extra computation. Therefore,786

the complexity of step 1 is bounded by the complexity of computing a Smith massager for DB,787

which is O(nω B(d + log n) (log n)2) by Theorem 19.788

The probability of the algorithm failing follows from Corollary 20.789

8. A Las Vegas algorithm for Smith form and multipliers790

In this section, we combine all of the previous results established so far in order to develop our791

multiplier algorithm. In particular, we show that there exists a Las Vegas probabilistic algorithm792

that computes the Smith form S ∈ Zn×n of a nonsingular A ∈ Zn×n along with two unimodular793

matrices V,U ∈ Zn×n such that794

AV = US ,

using O(nω B(log n+log ‖A‖) (log n)2) bit operations. The algorithm will return the correct output795

with probability at least 1/4 or Fail otherwise.796

32

SmithFormMultipliers(A)
Input: A nonsingular matrix A ∈ Zn×n.
Output: The Smith form S ∈ Zn×n of A and two unimodular matrices U,V ∈ Zn×n such
that AV = US .
Note: Fail will be returned with probability less than 3/4.

1. [Compute the Smith form and a Smith massager for 2A.]
(If SmithMassager fails, return Fail)
(2S ,M) := SmithMassager(2A)

2. [Perturb the Smith massager M by a random matrix.]
Pick a uniformly random matrix R ∈ Z/(λ)n×n for
λ := 105 max(n,

⌈
(det 2S)1/n

⌉
) as in Theorem 39.

B := M + R(2S)

3. [Certify that B is left equivalent to a matrix H as in (35) and return it.]
(If TrivialLowerHermiteForm fails, return Fail)
H := TrivialLowerHermiteForm(B)
if H is NotTrivial then return Fail

4. [Compute a unimodular Smith massager.]
V := BH−1

5. [Compute matrix U and return.]
U := AVS −1

return (S ,V,U)

Figure 2: Algorithm SmithFormMultipliers

Theorem 49. Algorithm SmithFormMultipliers is correct and runs in time797

O(nω B(log n + log ||A||) (log n)2).

Proof. Step 1 of the algorithm computes the Smith form and a Smith massager for matrix 2A.798

From the Smith form of matrix 2A we can trivially obtain the Smith form S of A. Further-799

more, a Smith massager M for 2A is also a Smith massager for A by Lemma 9. Step 1 runs in800

O(nω B(log n + log ‖A‖) (log n)2) by Theorem 19, and it will return Fail with probability at most801

1/8 as stated in Corollary 20.802

In step 2, we are perturbing the Smith massager M by a random matrix R ∈ Zn×n multiplied803

with the Smith form 2S . By Proposition 8, matrix B = M + R(2S) is also a Smith massager804

for A, and it is nonsingular. Moreover, by Theorem 39, the last n − 1 columns of B are linearly805

independent over Z/(p) for every prime p with probability greater than 1/2. As we already806

mentioned in Section 6, this is equivalent to B being left equivalent to a matrix807

H =

[
h1
h̄ In−1

]
, (37)

where h1 = | det B|. The runtime of step 2 is dominated by the claimed complexity.808

33

Algorithm TrivialLowerHermiteForm called in step 3 then certifies that B has the desired809

structure and returns matrix H. The complexity of the subroutine depends on the average length810

of the columns of B, for which811

1
n

n∑
j=1

length(B1..n, j) ≤
1
n

log

 n∏
j=1

‖B1..n, j‖

 + n

 ≤ 2.5 log λ + 1,

as per Lemma 44. Since λ ∈ O(n‖A‖), the complexity of step 3 is also O(nω B(log n+log ‖A‖) (log n)2).812

Algorithm TrivialLowerHermiteForm itself might return Fail with probability at most813

1/8. In addition, if it does not fail, the output of the subroutine will be NotTrivial with probabil-814

ity at most 1/2. This makes the probability of success of Algorithm SmithFormMultipliers815

to be at least 1 − (1/8 + 1/2 + 1/8) = 1/4 as claimed.816

Now, since we know that B ≡L H, the matrix V := BH−1 in step 4 must be integral and817

unimodular. The evaluation of the product818

BH−1 = B
[

1
−h̄ In−1

] [
1/h1

In−1

]
is covered exactly under Lemma 52 and can be computed, for d = n(2.5 log λ + 1), in time819

O(nω M(log n + log ‖A‖)). Furthermore, by Lemma 12, V is a unimodular Smith massager for A.820

Finally, by the properties of the Smith massager, matrix U := AVS −1 is integral, and unimod-821

ular since V is unimodular. By Lemma 53, matrix U can be computed in O(nωM(log n+ log ‖A‖))822

bit operations.823

8.1. Sizes of V and U824

It will be important to have good bounds on the magnitude of entries in matrices V and U, in825

order to facilitate the complexity analysis of operations that may use V and U in general.826

Lemma 50. The Smith multiplier matrices V,U ∈ Zn×n returned by Algorithm SmithFormMultipliers827

satisfy that:828

(i) ‖V1..n, j‖ ≤ cn‖A‖ ·
{
| det A| + n if j = 1

s j otherwise ,829

(ii) ‖U1..n, j‖ ≤ cn2‖A‖2 ·
{
| det A| + n if j = 1

1 otherwise .830

for c = 420.831

Proof. First of all, for λ := 105 max(n,
⌈
(det 2S)1/n

⌉
), we have, by Hadamard’s bound, that λ ≤832

210n‖A‖.833

By construction, we know that ‖B1..n, j‖ ≤ 2λs j for every j = 1, . . . , n. Then, multiplying834

B with H−1 alters only the first column of B. The magnitude of the first column of V = BH−1
835

satisfies that836

‖V1..n,1‖ ≤

2λh1

n∑
j=1

s j

 /h1 ≤ 2λ(| det A| + n).

Furthermore, since U = AVS −1, the magnitude of every column of U is bounded by837

‖U1..n, j‖ ≤ n‖A‖‖V1..n, j‖/s j.

By replacing λ with 210n‖A‖, the claimed bounds follow.838

34

Corollary 51. The average bitlength of the columns of both V and U is bounded by O(log n +839

log ‖A‖).840

8.2. Unbalanced multiplication reduced to balanced841

The remaining tools needed for our algorithm involves reducing unbalanced matrix multipli-842

cations to balanced multiplications. The two lemmas given in this section are used in the proof843

of Theorem 49. The following lemma is based on Birmpilis et al. (2019, Theorem 20).844

Lemma 52. Let M ∈ Zn×n and w ∈ Zn×1. If
∑n

j=1 length(M1..n, j) ≤ d and length(w) ≤ d for some845

d ∈ Z≥0, then the product Mw can be computed in time O(nω M(d/n + log n)).846

Proof. Choose X := 2dd/ne and let847

M = M0 + M1X + · · · + Mn−1Xn−1

848

w = w0 + w1X + · · · + wn−1Xn−1

be the X-adic expansions of M and w, respectively. (The coefficients are computed in the sym-849

metric range modulo X.) Our approach is to compute the product850

M̄︷ ︸︸ ︷[
M0 M1 · · · Mn−1

]
W̄︷ ︸︸ ︷

w0 w1 · · · wn−1
w0 · · · wn−2 wn−1

. . .
...

...
. . .

w0 w1 · · · wn−1

,
from which Mw can be recovered fast. (Notice that the operations to compute the X-adic expan-851

sion from a matrix or the matrix from an X-adic expansion take linear time on the number of852

entries when X is a power of 2.)853

Now, the column dimension of M̄ and row dimension of W̄ is n2 which is too large to fit854

within our target complexity. However, because of the assumption that
∑n

j=1 length(M1..n, j) ≤ d855

and the fact that log(X) = dd/ne, matrix M̄ must contain many zero columns. More specifically,856

the number of non-zero columns in M̄ cannot exceed857

n∑
j=1

⌈
length(M1..n, j)
dd/ne

⌉
≤

n∑
j=1

(
n

length(M1..n, j)
d

+ 1
)
≤ 2n.

Therefore, let M̃ ∈ Zn×2n be the matrix obtained from M̄ by omitting n2 − 2n zero columns,858

and let W̃ ∈ Z2n×2n−1 be the matrix obtained from W̄ by omitting n2 − 2n rows corresponding859

to the columns that were omitted in M̄. This transformation reduces the multiplication of M̄W̄860

to the multiplication of M̃W̃ which can be done in time O(nω M(d/n + log n)) since log ‖M̃W̃‖ ∈861

O(d/n + log n).862

Moreover, the following lemma uses a similar proof technique and is based on Birmpilis et al.863

(2020, Lemma 19).864

Lemma 53. Let A,M ∈ Zn×n. If length(A) ≤ d and
∑n

j=1 length(M1..n, j) ≤ nd for some d ∈ Z≥0,865

then we can compute the product AM in time O(nω M(d + log n)).866

35

Proof. Choose X := 2d and let867

M = M0 + M1X + · · · + Mn−1Xn−1

be the X-adic expansion of M. (The coefficients are computed in the symmetric range modulo868

X.) Our approach is to compute the product869

A

M̄︷ ︸︸ ︷[
M0 M1 · · · Mn−1

]
,

from which AM can be recovered fast. (Notice that the operations to compute the X-adic expan-870

sion from a matrix or the matrix from an X-adic expansion take linear time on the number of871

entries when X is a power of 2.)872

Now, the column dimension of M̄ is n2 which is too large to fit within our target complexity.873

However, because of the assumption that
∑n

j=1 length(M1..n, j) ≤ nd and the fact that log(X) = d,874

matrix M̄ must contain many zero columns. More specifically, the number of non-zero columns875

in M̄ cannot exceed876

n∑
j=1

⌈
length(M1..n, j)

d

⌉
≤

n∑
j=1

(
length(M1..n, j)

d
+ 1

)
≤ 2n.

Therefore, let M̃ ∈ Zn×2n be the matrix obtained from M̄ by omitting n2 − 2n zero columns.877

This transformation reduces the multiplication of AM̄ to the multiplication of AM̃ which can be878

done in time O(nωM(d + log n)) since log ‖AM̃‖ ∈ O(d + log n).879

Remark 54. Lemma 53 can be also stated with matrix A ∈ Zn×n replaced by a matrix U ∈ Zn×n
880

that satisfies
∑m

j=1 length(U1..n, j) ≤ nd.881

9. Application: Computing an outer product adjoint formula for A882

In this section, we mention an application of the Smith form with the multiplier matrices. Let883

A ∈ Zn×n be nonsingular and assume that we have precomputed the Smith form S of A, together884

with unimodular matrices U and V such that AV = US .885

Let s := S n,n be the largest invariant factor of A. Recall that s is the minimal positive integer886

that clears the denominators in A−1 ∈ Qn×n, that is, if entries in A−1 are expressed as reduced887

fractions, then s is the least common multiple of the denominators of the entries. The inverse888

of A can thus be recovered by computing the integer matrix sA−1 and dividing by s. As a tool889

to compute A−1, Storjohann (2015) developed an algorithm to compute an outer product adjoint890

formula for A: a triple of matrices (V̄ , S , Ū) such that891

Rem(sA−1, s) = Rem(V̄(sS −1)Ū, s).

Moreover, V̄ = (V̄ cmod S) and Ū = (Ū rmod S), where Ū rmod S means reduction of the rows892

modulo the corresponding diagonal entries of S . While a tight upper bound for the number893

of bits required to represent Rem(sA−1, s) explicitly in the worst case is O(n3(log n + log ‖A‖)),894

an outer product adjoint formula (V̄ , S , Ū) requires only O(n2(log n + log ‖A‖)) bits. Note that895

Rem(sA−1, s)/s corresponds to only the fractional part of A−1, that is, if C is the matrix obtained896

from Rem(sA−1, s) by reducing entries in the symmetric range modulo s, then A−1 −C/s ∈ Zn×n
897

may be nonzero. However, if ‖A−1‖ < 1/2, then C will be identically equal to sA−1.898

36

Example 55. Matrix

A =


−6 3 −13 −15
−4 19 12 −1
−4 10 −6 17
−26 −13 1 −2


has Smith form S := Diag(s1, s2, s3, s4) = Diag(1, 1, 9, 29088) and

s4A−1 =


−271 −402 −373 −937
580 920 524 −356
−1074 804 −870 258
−784 −352 1008 80

 .
An outer product adjoint formula for A is given by (V̄ , S , Ū) where

V̄ =


0 0 7 805
0 0 5 23668
0 0 3 6
0 0 4 10224

 and Ū =


0 0 0 0
0 0 0 0
2 2 0 2

20829 1750 28943 16203

 .
For this particular A, which satisfies ||A−1|| < 1/2, multiplying out V̄(s4S −1)Ū and reducing
entries in the symmetric range modulo s4 gives s4A−1. Because s1 = s2 = 1 the first two columns
of V and first two rows of U can be omitted, giving

7 805
5 23668
3 6
4 10224


[

3232
1

] [
2 2 0 2

20829 1750 28943 16203

]
≡ s4A−1 mod s4.

There is a direct relationship between an outer product adjoint formula and the unimodular899

Smith multipliers U and V .900

Lemma 56. Let U,V ∈ Zn×n be unimodular matrices such that AV = US . Then, the triple901

(V cmod S , S ,U−1 rmod S) gives an outer product adjoint formula for A.902

Proof. We have that sA−1 = V(sS −1)U−1. Furthermore, V(sS −1) = (V cmod S)(sS −1) mod s903

and (sS −1)U−1 = (sS −1)(U−1 rmod S) mod s, and so904

Rem(sA−1, s) = Rem((V cmod S)(sS −1)(U−1 rmod S), s).

905

Storjohann (2015) gives a randomized algorithm to compute an outer product adjoint formula906

in907

O(n2(log n)B(n(log n + log ‖A‖)) (38)

plus908

O(n3 max(log n, log ‖A−1‖) B(log n + log ‖A‖)) (39)

bit operations. Note that (38) implies that fast (pseudo-linear) integer arithmetic needs to be used909

to achieve a cost that is softly cubic in n, while (39) reveals a sensitivity to ‖A−1‖. Indeed, we910

37

may have log ‖A−1‖ ∈ Ω(n(log n + log ‖A‖)), in which case the upper bound in (39) becomes911

quartic in n. It was left as an open question if an outer product adjoint formula can be computed912

in time (nω log ‖A‖)1+o(1) bit operations. Here, we can resolve this question by using the approach913

of Lemma 56.914

Theorem 57. Assume we have the output (S ,V,U) of Algorithm SmithFormMultipliers(A).915

Then, an outer product adjoint formula for A can be computed in time O(nω M(log n+log ‖A‖) log n).916

Proof. First compute V̄ := V cmod S . This can be done in time O(n
∑n

i=1 M(length(V1...n,i)). By917

Corollary 51,
∑n

i=1 length(V1...n,i) ∈ O(n(log n + log ‖A‖)), which shows that the matrix V̄ can be918

computed in time O(n M(n(log n + log ‖A‖)).919

It remains to compute Ū := U−1 rmod S . Let D ∈ Zm×m be the partial column linearization920

of U as in Theorem 27. It will be that m ∈ O(n), and again by Corollary 51, log ‖D‖ ∈ O(log n +921

log ‖A‖). Therefore, by Lemma 15, we can compute a straight line formula for D−1 in time922

O(nω M(log n + log ‖A‖) log n). The formula consists of O(log n) integer matrices of dimension923

m and bitlength bounded by O(log n + log ‖A‖).924

Finally, we can compute U−1 rmod S by evaluating D−1 rmod diag(S , Im−n) using the straight925

line formula. The evaluation of the formula requires O(log n) matrix multiplications where the926

first operand is an m × m integer matrix reduced rmod diag(S , I) and the second operand is927

an m × m integer matrix with bitlength bounded by O(log n + log ‖A‖). This type of matrix928

multiplication falls exactly under Lemma 53 by simply transposing the operation. Therefore, we929

can compute U−1 rmod S in time O(nω M(log n + log ‖A‖) log n).930

An application of the outer product adjoint formula is to compute the proper fractional part
of a linear system solution. Let b ∈ Zn×1 satisfy log ||b|| ∈ (n log ||A||)1+o(1). Then

A−1b =

∈ Zn︷ ︸︸ ︷
A−1b − Rem(sA−1b, s)/s +Rem(sA−1b, s)/s,

where Rem(sA−1b, s)/s is a vector of proper fractions. By Lemma 17, A−1b ∈ Qn×1 can be931

computed in a Las Vegas fashion in (nω log ||A||)1+o(1) bit operations, or (n3 log ||A||)1+o(1) bit op-932

erations if ω = 3. If an outer product adjoint formula for A is known, then the proper fractional933

part of A−1b can be computed in only (n2 log ||A||)1+o(1) bit operations. The following result is a934

corollary of (Storjohann, 2015, Lemma 4.11).935

Lemma 58. Assume we have an outer product adjoint formula (V̄ , S , Ū) for a nonsingular A ∈936

Zn×n, and let s = S n,n. Given a vector b ∈ Zn×1 with log ‖b‖ ∈ O(log s), we can compute937

Rem(sA−1b, s) in time O(n M(log s)).938

Example 59. Let A ∈ Zn×n be the matrix of Example 55 and

b =


25
94
12
−2

 .

38

Then

V̄(29088S −1)Ūb ≡



11011

20716

8682

17424


mod 29088.

Indeed, we have

A−1b =



−2

3

1

−2


+



11011

20716

8682

17424


1

29088
.

Applying Lemma 58 with b = In gives the following corollary of Theorems 49 and 57.939

Corollary 60. Given a nonsingular integer input matrix A ∈ Zn×n, the largest invariant factor s
of A, together with Rem(sA−1, s), can be computed in a Las Vegas fashion in

O(nω B(log n + log ||A||)(log n)2 + n2 M(log s))

bit operations. This is bounded by (n3 log ||A||)1+o(1) bit operations.940

10. Conclusion and topics for future research941

In this paper we have presented a new, Las Vegas probabilistic algorithm for determining942

the unimodular Smith multipliers for a nonsingular integer matrix. Combining this with our943

previous results in (Birmpilis et al., 2020), implies that we can determine the Smith form and a944

pair of unimodular multipliers in time (nω log ‖A‖)1+o(1), approximately about same number of945

bit operations as required to multiply two matrices of the same dimension and size of entries as946

the input matrix. We have also given explicit bounds on the sizes of our multipliers and made use947

of such bounds to efficiently determine an outer adjoint formula for an integer matrix. We also948

include computational tools and partial linearization sections which should be of independent949

interest.950

In terms of future directions, a natural direction is to find a deterministic algorithm for both951

the Smith form and the Smith form with multipliers problems. In the case of integer matrices we952

have already seen that linear system solving can be derandomized within the desired cost. An953

easier problem than to derandomize Smith form computation would be to first find a deterministic954

algorithm for finding only the largest invariant factor sn, a problem that has a solution in the case955

of polynomial matrices (Zhou et al., 2014).956

Another problem which arises naturally is that of finding algorithms for the computation of957

other integer matrix forms, in particular the Hermite normal form, with the target complexity958

being the number of bit operations required to multiply two matrices of the same dimension and959

size of entries as the input matrix. We expect that our primary tool, the Smith massager can also960

play an important intermediate role here.961

Finally, our algorithms and tools all assume that the input matrix is nonsingular, unlike for962

example the procedure from Kaltofen and Villard (2005). It is of interest to extend the present963

work to singular integer matrices, likely through compression techniques to reduce the problem964

to a smaller nonsingular matrix.965

39

11. Acknowledgements966

We would like to thank the anonymous referees for their suggestions on making the paper967

more readable. This research was partly supported by the Natural Sciences and Engineering968

Research Council (NSERC) Canada.969

References970

M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics, 160:781–793, 2004.971

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.972

J. Alman and V. V. Williams. A refined laser method and faster matrix multiplication. In Proceedings of the 2021973

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 522–539, 2021. doi: 10.1137/1.9781611976465.32.974

S. Birmpilis, G. Labahn, and A. Storjohann. Deterministic reduction of integer nonsingular linear system solving to975

matrix multiplication. In Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’19, page 58–65, New976

York, NY, USA, 2019. ACM. ISBN 9781450360845. doi: 10.1145/3326229.3326263.977

S. Birmpilis, G. Labahn, and A. Storjohann. A Las Vegas algorithm for computing the Smith form of a nonsingular978

integer matrix. In Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’20, page 38–45, New York,979

NY, USA, 2020. ACM. ISBN 9781450371001. doi: 10.1145/3373207.3404022.980

G. H. Bradley. Algorithm and bound for the greatest common divisor of n integers. Communications of the ACM, 13(7):981

433–436, July 1970.982

H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, 1996.983

W. Eberly, M. Giesbrecht, and G. Villard. Computing the determinant and Smith form of an integer matrix. In Proc. 31st984

Ann. IEEE Symp. Foundations of Computer Science, pages 675–685, 2000.985

J.-C. Faugère and J. Svartz. Gröbner bases of ideals invariant under a commutative group: The non-modular case. In986

Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’13, pages 347–354. ACM Press, New York, 2013.987

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 3rd edition, 2013.988

K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer, Boston, MA, 1992.989

M. Giesbrecht. Fast computation of the Smith form of a sparse integer matrix. Computational Complexity, 10(1):41–69,990

11 2001.991

S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. Triangular x-basis decompositions and derandomization of lin-992

ear algebra algorithms over K[x]. Journal of Symbolic Computation, 47(4), 2012. doi: 10.1016/j.jsc.2011.09.006.993

Festschrift for the 60th Birthday of Joachim von zur Gathen.994

E. Hubert and G. Labahn. Computation of invariants of finite abelian groups. Mathematics of Computation, 85:3029–995

3050, 2016.996

E. Kaltofen and G. Villard. On the complexity of computing determinants. Computational Complexity, 13(3–4):91–130,997

2005.998

R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Hermite normal forms of an integer999

matrix. SIAM Journal of Computing, 8(4):499–507, November 1979.1000

F. Le Gall and F. Urrutia. Improved rectangular matrix multiplication using powers of the Coppersmith-Winograd1001

tensor. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New1002

Orleans, LA, USA, January 7-10, 2018, pages 1029–1046, 2018. doi: 10.1137/1.9781611975031.67.1003

J. N. Lyness and P. Keast. Application of the Smith Normal Form to the structure of lattice rules. SIAM J. Matrix Anal.1004

Appl., 16(1):218–231, 1995.1005

M. Newman. Integral Matrices. Academic Press, 1972.1006

C. Pauderis and A. Storjohann. Deterministic unimodularity certification. In Proc. Int’l. Symp. on Symbolic and Algebraic1007

Computation: ISSAC’12, page 281–288. ACM Press, New York, 2012. ISBN 9781450312691. doi: 10.1145/2442829.1008

2442870.1009

H. J. S. Smith. On systems of linear indeterminate equations and congruences. Phil. Trans. Roy. Soc. London, 151:1010

293–326, 1861.1011

R. Stanley. Smith normal form in combinatorics. Journal of Combinatorial Theory, Series A, pages 476–495, 2016.1012

A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal Institute of Technology, ETH–Zurich,1013

2000.1014

A. Storjohann. The shifted number system for fast linear algebra on integer matrices. Journal of Complexity, 21(4):1015

609–650, 2005. Festschrift for the 70th Birthday of Arnold Schönhage.1016

A. Storjohann. On the complexity of inverting integer and polynomial matrices. Computational Complexity, 24:777–821,1017

2015. doi: http://dx.doi.org/10.1007/s00037-015-0106-7.1018

W. Zhou, G. Labahn, and A. Storjohann. A deterministic algorithm for inverting a polynomial matrix. Journal of1019

Complexity, 2014.1020

40

	Introduction
	Smith massagers
	Alternate characterizations of the lattice { vA v Z1 n }
	Creating a unimodular Smith massager

	Computational tools
	Lifting initialization
	Double-plus-one lifting
	System solving
	Integrality certification
	Computing a Smith massager for any A

	Partial linearization
	The partial linearization construction
	The permutation bound
	Smith massagers and partial linearization

	Example
	Random perturbations of Smith massagers
	 Small primes
	Large primes

	Almost trivial Hermite form certification
	A Las Vegas algorithm for Smith form and multipliers
	Sizes of V and U
	Unbalanced multiplication reduced to balanced

	Application: Computing an outer product adjoint formula for A
	 Conclusion and topics for future research
	Acknowledgements

