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1. Introduction

Creative telescoping [49,50] is a powerful tool used to find closed form solutions for 
definite sums and definite integrals. The method constructs a recurrence (resp. differ-
ential) equation satisfied by the definite sum (resp. integral) with closed form solutions 
over a specified domain resulting in formulas for the sum or integral. Methods for find-
ing such closed form solutions are available for many special functions, with examples 
given in [2,44,4,9,12,30,19,33,6]. Even when no closed form exists the method of creative 
telescoping often remains useful. For example the resulting recurrence or differential 
equation enables one to determine asymptotic expansions and derive other interesting 
facts about the original sum or integral.

In the case of summation, specialized to the trivariate case, in order to compute a 
sum of the form

b1∑
y=a1

b2∑
z=a2

f(x, y, z),

the main task of creative telescoping consists in finding c0, . . . , cρ, rational functions (or 
polynomials) in x, not all zero, and two functions g(x, y, z), h(x, y, z) in the same class 
of functions as f(x, y, z) such that

c0f + c1Sx(f) + · · · + cρSρ
x(f) = (Sy(g) − g) + (Sz(h) − h), (1.1)

where Sx, Sy and Sz denote shift operators in x, y and z, respectively. The number 
ρ may or may not be part of the input. If c0, c1, . . . , cρ and g, h are as above, then 
L = c0 + c1Sx + · · · + cρSρ

x is called a telescoper for f and (g, h) is a certificate for L.
The utility of creative telescoping is best demonstrated by examples. Suppose we want 

to find a closed form of the following multiple sum

x∑
y=0

x∑
z=0

f(x, y, z) with f(x, y, z) = 2y − x

(x + y + 1)(−2x + y − 1)(x + z + 1) .

To this end, the method first constructs a telescoper L = Sx−1 for f and a corresponding 
certificate

(g, h) =
(

8x2−2xy−y2+19x−2y+11
(x+y+1)(−2x+y−3)(−2x+y−2)(x+z+1) ,

−x+2y−1
(x+y+2)(−2x+y−3)(x+z+1)

)

such that

L(f) = f(x + 1, y, z) − f(x, y, z) = g(x, y + 1, z) − g(x, y, z) + h(x, y, z + 1) − h(x, y, z).

Summing on both sides over y, z from zero to x, and applying the idea of telescoping to 
g for y and to h for z, respectively, yield
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x∑
y=0

x∑
z=0

f(x + 1, y, z) −
x∑

y=0

x∑
z=0

f(x, y, z)

=
x∑

z=0

(
g(x, x + 1, z) − g(x, 0, z)

)
+

x∑
y=0

(
h(x, y, x + 1) − h(x, y, 0)

)
.

Employing the notation F (x) =
∑x

y=0
∑x

z=0 f(x, y, z), along with a range match-up, one 
obtains

F (x + 1) − F (x) =
x∑

z=0

(
g(x, x + 1, z) − g(x, 0, z) + f(x + 1, x + 1, z)

)

+
x∑

y=0

(
h(x, y, x + 1) − h(x, y, 0) + f(x + 1, y, x + 1)

)
+ f(x + 1, x + 1, x + 1)

=
x∑

z=0

x + 1
(x + 2)(2x + 3)(x + z + 1)(x + z + 2)

+
x∑

y=0

x− 2y + 1
2(x + 1)(2x + 3)(x + y + 2)(−2x + y − 3) − x + 1

(x + 2)(2x + 3)2 ,

(1.2)

where the right-hand side merely involves single sums and thus the problem is now 
reduced to finding closed forms of these sums. Applying the method of creative tele-
scoping (specialized to the bivariate case) again, one finds that the first single sum is 
equal to 1/(2(x + 2)(2x + 3)), while the second sum admits a first-order linear recur-
rence equation, which yields the closed form −1/(2(x +2)(2x +3)2). A direct calculation 
confirms that the right-hand side of (1.2) collapses to zero after expansion, that is, 
F (x + 1) − F (x) = 0. Together with the initial value F (0) = 0, one then concludes that ∑x

y=0
∑x

z=0 f(x, y, z) = 0.
Over the past two decades, a number of generalizations and refinements of creative 

telescoping have been developed. At the present time the reduction-based approach has 
gained high support as it is both efficient in practice and has the important feature 
of being able to find a telescoper for a given function without necessarily computing a 
corresponding certificate. This is desirable in a typical situation where only the telescoper 
is of interest and its size is much smaller than the size of the certificate. Even when a 
certificate is needed, the approach also allows one to express it as an unnormalized sum 
so that the summands are concatenated symbolically without actually calculating the 
sum. Such an expression can be more easily specialized at end points of the summation 
range than the expanded certificate, and thus turns out to be useful in many applications.

The reduction-based approach was first developed in the differential case for bi-
variate rational functions [14], and later generalized to rational functions in several 
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variables [17], to hyperexponential functions [15], to algebraic functions [25] and to D-
finite functions [22,34,16]. In the shift case a reduction-based approach was developed 
for hypergeometric terms [24,36] and to multiple binomial sums [18] (a subclass of the 
sums of hypergeometric terms).

In the case of discrete functions having more than two variables no complete reduction-
based creative telescoping algorithm has been known so far. Having such an algorithm 
would allow us to tackle many multiple summations from applications more efficiently. 
However, it is quite challenging to develop an algorithm once for all. As a first step, in the 
present paper we address the most fundamental case, namely when f, g, h in (1.1) are all 
rational functions in x, y, z. This is also a natural follow up to the recent work [23,21,20]
on the existence problem of telescopers for rational functions in three variables.

The basic idea of the general reduction-based approach, formulated for the shift 
trivariate rational case, is as follows. Let K be a field of characteristic zero. Assume that 
there is a K(x)-linear map red(·) : K(x, y, z) → K(x, y, z) with the property that for all 
f ∈ K(x, y, z), there exist g, h ∈ K(x, y, z) such that f−red(f) = (Sy(g) −g) +(Sz(h) −h), 
that is, f − red(f) is summable with respect to y, z, and red(f) is minimal in certain 
sense. In other words, red(f) indicates the “minimum” adjustments needed for f to be-
come summable with respect to y, z, which apparently excludes the most trivial case of 
red(f) = f . Such a map is called a reduction with red(f) considered as a remainder of 
f with respect to the reduction red(·). Then in order to find a telescoper for f , we can 
iteratively compute red(f), red(Sx(f)), red(S2

x(f)), . . . until we find a nontrivial linear 
dependence over K(x). Once we have such a dependence, say

c0 red(f) + · · · + cρ red(Sρ
x(f)) = 0

for ci ∈ K(x) not all zero, then by linearity, red(c0f + · · · + cρSρ
x(f)) = 0, that is, 

c0f + · · · + cρSρ
x(f) = (Sy(g) − g) + (Sz(h) − h) for some g, h ∈ K(x, y, z). This yields a 

telescoper c0 + · · · + cρSρ
x for f .

To guarantee the termination of the above process, one possible way is to show that, for 
every summable function f , we have red(f) = 0. If this is the case and L = c0+ · · ·+cρSρ

x

is a telescoper for f , then L(f) is summable by the definition. So red(L(f)) = 0, and 
again by the linearity, red(f), . . . , red(Sρ

x(f)) are linearly dependent over K(x). This 
means that we will not miss any telescoper and that the method will terminate provided 
that a telescoper is known to exist. This approach was taken in [24]. It requires us to 
know exactly under what kind of conditions a telescoper exists, so-called the existence 
problem of telescopers, and, when these conditions are fulfilled, then it is guaranteed 
to find one of minimal order ρ. Such existence problems have been well studied in the 
case of bivariate hypergeometric terms [5] and more recently in the trivariate rational 
case [23,21,20].

A second, alternate way to ensure termination, used for example in [14,15], is to show 
that, for a given function f , the remainders red(f), red(Sx(f)), red(S2

x(f)), . . . form a 
finite-dimensional K(x)-vector space. Then, as soon as ρ exceeds this finite dimension, 
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one can be sure that a telescoper of order at most ρ will be found. This also implies 
that every bound for the dimension gives rise to an upper bound for the minimal order 
of telescopers. This approach provides an independent proof for the existence of a tele-
scoper. However, since such an upper order bound is only of theoretical interest and will 
not affect the practical efficiency of the algorithms, in this paper we will confine our-
selves with the first approach for termination and leave the second approach for future 
research.

Our starting point is thus to find a suitable reduction for trivariate rational functions. 
In particular we present a reduction red(·) which satisfies the following properties: (i) 
red(f) = 0 whenever f ∈ K(x, y, z) is summable and (ii) red(f) is minimal in certain 
sense. One issue with this reduction, similar to that encountered in the bivariate hyper-
geometric case [24], is the difficulty that red(·) is not a K(x)-linear map in general. To 
overcome this we follow the ideas of [24]. Namely, we introduce the idea of congruences 
modulo summable rational functions and show that red(·) becomes K(x)-linear when it is 
viewed as a residue class. Using the existence criterion of telescopers established in [23], 
we are then able to design a creative telescoping algorithm from red(·) as described in 
the previous paragraphs.

The remainder of the paper proceeds as follows. The next section gives some prelim-
inary materials needed for this paper, particularly a review of a reduction method due 
to Abramov. In Section 3 we extend Abramov’s reduction method to the bivariate case 
by incorporating a primary reduction. In Section 4 we show that the reduction remain-
ders introduced in the previous section are well-behaved with respect to taking linear 
combinations, followed in Section 5 by a new algorithm for constructing telescopers for 
trivariate rational functions based on the bivariate extension of Abramov’s reduction 
method. In Section 6 we provide some experimental tests of our new algorithm. The 
paper ends with some topics for future research.

2. Preliminaries

Throughout the paper we let K denote a field of characteristic zero, with F = K(x) and 
F(y, z) being the field of rational functions in y, z over F . Choosing the pure lexicographic 
order y ≺ z, we say that a polynomial in F [y, z] is monic if its highest term with respect 
to y, z has coefficient one. For a nonzero polynomial p ∈ F [y, z], its degree and leading 
coefficient with respect to the variable v ∈ {y, z} are denoted by degv(p) and lcv(p), 
respectively. We will follow the convention that degv(0) = −∞.

We let σy and σz be the automorphisms over F(y, z), which, for any f ∈ F(y, z), are 
defined by

σy(f(x, y, z)) = f(x, y + 1, z) and σz(f(x, y, z)) = f(x, y, z + 1).

Let G = 〈σy, σz〉 be the free abelian multiplicative group generated by σy, σz. The 
application of an element τ = σα

y σ
β
z in G to a rational function f ∈ F(y, z) is defined as
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τ(f(x, y, z)) = σα
y σ

β
z (f(x, y, z)) = f(x, y + α, z + β).

For any τ ∈ G, we say that a polynomial p ∈ F [y, z] is τ -free if gcd(p, τ �(p)) = 1 for 
all nonzero � ∈ Z. A rational function f ∈ F(y, z) is called τ -summable if f = τ(g) − g

for some g ∈ F(y, z). The τ -summability problem is then to decide whether a given 
rational function in F(y, z) is τ -summable or not. Rather than merely giving a negative 
answer in case the function is not τ -summable, one could instead seek solutions for a 
more general problem, namely the τ -decomposition problem, with the intent to make 
the nonsummable part as small as possible. Precisely speaking, the τ -decomposition 
problem, for a given rational function f ∈ F(y, z), asks for an additive decomposition 
of the form f = τ(g) − g + r, where g, r ∈ F(y, z) and r is minimal in certain sense 
such that f would be τ -summable if and only if r = 0. It is readily seen that any 
solution to the decomposition problem tackles the corresponding summability problem 
as well.

In the case where τ = σy, the decomposition problem was first solved by Abramov 
in [1] with refined algorithms in [3,43,10,31,45]. All these algorithms can be viewed 
as discrete analogues of the Ostrogradsky-Hermite reduction for rational integration 
(and beyond). We refer to any of these algorithms restricted to the rational case as the 
Abramov reduction.

Theorem 2.1 (Abramov reduction). Let f be a rational function in F(y, z). Then the 
Abramov reduction finds g ∈ F(y, z) and a, b ∈ F [y, z] with degy(a) < degy(b) and b
being σy-free such that

f = σy(g) − g + a

b
.

Moreover, if f admits such a decomposition then

• f is σy-summable if and only if a = 0;
• b has the lowest possible degree in y when gcd(a, b) = 1. That is, if there exist 

a second g′ ∈ F(y, z) and a′, b′ ∈ F [y, z] such that f = σy(g′) − g′ + a′/b′, then 
degy(b′) ≥ degy(b).

In view of the above theorem, we introduce the following definition.

Definition 2.2. A rational function a/b ∈ F(y, z) with a, b ∈ F [y, z] and b 	= 0 is called a 
σy-remainder if degy(a) < degy(b) and b is σy-free.

It is evident from Theorem 2.1 that any nonzero σy-remainder is not σy-summable.
Generalizing to the bivariate case, we consider the (σy, σz)-summability problem of 

deciding whether a given rational function f ∈ F(y, z) can be written in the form f =
σy(g) − g + σz(h) − h for g, h ∈ F(y, z). If such a form exists, we say that f is (σy, σz)-
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summable, abbreviated as summable in certain instances. The (σy, σz)-decomposition 
problem is then to decompose a given rational function f ∈ F(y, z) into the form

f = σy(g) − g + σz(h) − h + r,

where g, h, r ∈ F(y, z) and r is minimal in certain sense. Moreover, f is (σy, σz)-summable 
if and only if r = 0.

Recall [7] that an irreducible polynomial f ∈ F [y, z] is called (y, z)-integer linear over 
the field F if it can be written in the form f = p(αy + βz) for a polynomial p(Z) ∈ F [Z]
and integers α, β ∈ Z. One may assume without loss of generality that β ≥ 0 and α, β are 
coprime. A polynomial in F [y, z] is called (y, z)-integer linear over F if all its irreducible 
factors are (y, z)-integer linear over F while a rational function in F(y, z) is called (y, z)-
integer linear over F if its numerator and denominator are both (y, z)-integer linear 
over F . For simplicity, we just say a rational function is (y, z)-integer linear over F of 
(α, β)-type if it is equal to p(αy+βz) for some p(Z) ∈ F(Z) and α, β are coprime integers 
with β ≥ 0. Algorithms for determining integer linearity can be found in [7,41,32].

In the context of creative telescoping, we will also need to consider the variable x and 
the automorphism σx, which for every f ∈ F(y, z) maps f(x, y, z) to f(x + 1, y, z). Two 
polynomials p, q ∈ K[x, y, z] are called (x, y, z)-shift equivalent, denoted by p ∼x,y,z q, 
if there exist three integers �, m, n such that p = σ�

xσ
m
y σn

z (q). We generalize this notion 
to the domain F [y, z] by saying that two polynomials p, q ∈ F [y, z] are (x, y, z)-shift 
equivalent if p = σ�

xσ
m
y σn

z (q) for integers �, m, n. When � = 0 then p is also called (y, z)-
shift equivalent to q, denoted by p ∼y,z q. Clearly, both ∼x,y,z and ∼y,z are equivalence 
relations.

Let F(y, z)[Sx, Sy, Sz] be the ring of linear recurrence operators in x, y, z over F(y, z). 
Here Sx, Sy, Sz commute with each other, and Svf = σv(f)Sv for any f ∈ F(y, z) and v ∈
{x, y, z}. The application of an operator P =

∑
i,j,k≥0 pijk Si

x Sj
y Sk

z in F(y, z)[Sx, Sy, Sz]
to a rational function f ∈ F(y, z) is then defined as

P (f) =
∑

i,j,k≥0

pijkσ
i
xσ

j
yσ

k
z (f).

Definition 2.3. Let f be a rational function in F(y, z). A nonzero linear recurrence oper-
ator L ∈ F [Sx] is called a telescoper for f if L(f) is (σy, σz)-summable, or equivalently, 
if there exist rational functions g, h ∈ F(y, z) such that

L(f) = (Sy − 1)(g) + (Sz − 1)(h),

where 1 denotes the identity map of F(y, z). We call (g, h) a corresponding certificate 
for L. The order of a telescoper is defined to be its degree in Sx. A telescoper of minimal 
order for f is called a minimal telescoper for f .
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3. Bivariate extension of the Abramov reduction

In this section, we demonstrate how to solve the bivariate decomposition problem 
(and thus also the bivariate summability problem) using the Abramov reduction. To 
this end, let us first recall some key results on the bivariate summability from [35].

Based on a theoretical criterion given in [26, Theorem 3.7], Hou and Wang [35] devel-
oped an algorithm for solving the (σy, σz)-summability problem. The proof found in [35, 
Lemma 3.1] contains a reduction algorithm with inputs and outputs specified as follows.

Primary reduction. Given a rational function f ∈ F(y, z), compute rational functions 
g, h, r ∈ F(y, z) such that

f = (Sy − 1)(g) + (Sz − 1)(h) + r (3.1)

and r is of the form

r =
m∑
i=1

ni∑
j=1

aij

bijd
j
i

(3.2)

with m, ni ∈ N, aij , di ∈ F [y, z] and bij ∈ F [y] satisfying that

• degz(aij) < degz(di),
• di is a monic irreducible factor of the denominator of r and of positive degree in z,
• di �y,z di′ whenever i 	= i′ for 1 ≤ i, i′ ≤ m.

Let f be a rational function in F(y, z) and assume that applying the primary reduc-
tion to f yields (3.1). Deciding if f is (σy, σz)-summable then amounts to checking the 
summability of r. By [35, Lemma 3.2], this is equivalent to checking the summability of 
each simple fraction aij/(bijdji ). Thus the bivariate summability problem for a general 
rational function is reduced to determining the summability of several simple fractions, 
which in turn can be addressed by the following.

Theorem 3.1 ([35, Theorem 3.3]). Let f = a/(b dj), where a, d ∈ F [y, z], b ∈ F [y], 
j ∈ N \ {0} with d irreducible and 0 ≤ degz(a) < degz(d). Then f is (σy, σz)-summable 
if and only if

(i) d is (y, z)-integer linear over F of (α, β)-type,
(ii) there exists q ∈ F(y)[z] with degz(q) < degz(d) so that

a

b
= σβ

yσ
−α
z (q) − q. (3.3)

Since d is irreducible, the first condition is easily recognized by comparing coefficients 
once d is known. In [35, §4], the second condition is checked by finding a polynomial 
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R2 σ2
R2

ψ

R1
σ1

R1

ψ

F(y, z)
σy

F(y, z)

φα,β

F(y, z)
τ = σβ

yσ
−α
z

F(y, z)

φα,β

Fig. 1. Commutative diagrams for difference homomorphisms/isomorphisms.

solution of a system of linear recurrence equations in one variable based on a universal 
denominator derived from the m-fold Gosper representation. Such a polynomial solution 
gives rise to a desired q for (3.3).

In the rest of this section, we show how to detect the second condition via the Abramov 
reduction, without solving any auxiliary recurrence equations. As a result, we obtain an 
additive decomposition of the given rational function in F(y, z), from which one can 
not only read off the (σy, σz)-summability, but also gather useful descriptions on the 
possible “minimal” nonsummable part. This lays the foundation of our new algorithm 
in Section 5.

Let R be a ring (resp. field) and σ : R → R be an automorphism of R. The pair (R, σ)
is called a difference ring (resp. field). An element r ∈ R is called a constant of R with 
respect to σ if σ(r) = r. The set of all such constants forms a subring (resp. subfield) of 
R, called the constant subring (resp. subfield) of R with respect to σ. Let (R1, σ1) and 
(R2, σ2) be two difference rings. A homomorphism (resp. isomorphism) ψ : R1 → R2
is called a difference homomorphism (resp. isomorphism) from (R1, σ1) to (R2, σ2) if 
σ2 ◦ ψ = ψ ◦ σ1, that is, the left diagram in Fig. 1 commutes. Two difference rings are 
then said to be isomorphic if there exists a difference isomorphism between them.

Let α, β be two integers with β nonzero. We define an F -homomorphism φα,β :
F(y, z) → F(y, z) by

φα,β(y) = βy and φα,β(z) = β−1z − αy.

It is readily seen that φα,β is an F -isomorphism with inverse φ−1
α,β given by

φ−1
α,β(y) = β−1y and φ−1

α,β(z) = βz + αy.

We call φα,β the map for (α, β)-shift reduction.

Proposition 3.2. Let α, β ∈ Z with β 	= 0 and τ = σβ
yσ

−α
z . Then φα,β is a difference 

isomorphism from (F(y, z), τ) to (F(y, z), σy).

Proof. Since φα,β is an F -isomorphism, it remains to show that σy ◦ φα,β = φα,β ◦ τ , 
namely the right diagram in Fig. 1 commutes. This is confirmed by the observation that

σy(φα,β(f(y, z))) = σy(f(βy, β−1z − αy)) = f(βy + β, β−1z − αy − α)
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and

φα,β(τ(f(y, z))) = φα,β(f(y + β, z − α)) = f(βy + β, β−1z − αy − α)

for any f ∈ F(y, z). �
Corollary 3.3. Let f ∈ F(y, z) and assume the conditions of Proposition 3.2. Then f is 
τ -summable if and only if φα,β(f) is σy-summable.

Proof. By Proposition 3.2, φα,β is a difference isomorphism from (F(y, z), τ) to 
(F(y, z), σy). It follows that

f = τ(g) − g ⇐⇒ φα,β(f) = φα,β(τ(g) − g) = σy(φα,β(g)) − φα,β(g)

for any g ∈ F(y, z). The assertion follows. �
The problem of deciding whether a rational function f ∈ F(y)[z] satisfies the equa-

tion (3.3), that is, the σβ
yσ

−α
z -summability problem for f , is then equivalent to the 

σy-summability problem for φα,β(f). In fact, there is also a natural one-to-one corre-
spondence between additive decompositions of f with respect to σβ

yσ
−α
z and additive 

decompositions of φα,β(f) with respect to σy. Together with Definition 2.2, this mo-
tivates us to introduce the notions of remainder fractions and remainders, in order to 
characterize nonsummable rational functions concretely.

Definition 3.4. A fraction a/(b dj) with a, d ∈ F [y, z], b ∈ F [y] and j ∈ N \ {0} is called 
a remainder fraction if

• degz(a) < degz(d);
• d is monic, irreducible and of positive degree in z;
• φα,β(a/b) is a σy-remainder in case d is (y, z)-integer linear over F of (α, β)-type.

Definition 3.5. Let f be a rational function in F(y, z). Then r ∈ F(y, z) is called a 
(σy, σz)-remainder of f if f − r is (σy, σz)-summable and r can be written as

r =
m∑
i=1

ni∑
j=1

aij

bijd
j
i

, (3.4)

where m, ni ∈ N, aij , di ∈ F [y, z], bij ∈ F [y] with each aij/(bijdji ) being a remainder 
fraction, di being a factor of the denominator of r, and di �y,z di′ whenever i 	= i′ and 
1 ≤ i, i′ ≤ m. For brevity, we just say that r is a (σy, σz)-remainder if f is clear from the 
context. We refer to (3.4), along with the attached conditions, as the remainder form
of r.
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The uniqueness of partial fraction decompositions (in this case with respect to z) 
implies that the remainder form of a given (σy, σz)-remainder is unique up to reordering 
and multiplication by units of F . Evidently, every single remainder fraction, or part of 
summands in (3.4), is a (σy, σz)-remainder. Remainders not only help us to recognize 
summability, but also describe the “minimum” gap between a given rational function 
and summable rational functions, as shown in the next two propositions.

Proposition 3.6. Let r ∈ F(y, z) be a nonzero (σy, σz)-remainder with the form (3.4). 
Then each nonzero aij/(bijdji ) for 1 ≤ i ≤ m and 1 ≤ j ≤ ni, as well as r itself, is not 
(σy, σz)-summable.

Proof. Since r is a (σy, σz)-remainder, each aij/(bijdji ) is a remainder fraction. For a par-
ticular nonzero aij/(bijdji ), namely aij 	= 0, we claim that it is not (σy, σz)-summable. 
If di is not (y, z)-integer linear over F , then the claim follows by Theorem 3.1. Other-
wise, assume that di is (y, z)-integer linear over F of (α, β)-type. Since aij/(bijdji ) is a 
remainder fraction, Definition 3.4 reads that φα,β(aij/bij) is a σy-remainder and thus is 
not σy-summable. By Corollary 3.3, aij/bij is not σβ

yσ
−α
z -summable. The claim is then 

again assured by Theorem 3.1.
In either case, we have that aij/(bijdji ) is not (σy, σz)-summable. Since r is nonzero, 

at least one of the aij/(bijdji ) is nonzero. By [35, Lemma 3.2], r is therefore not (σy, σz)-
summable. �
Proposition 3.7. Let r ∈ F(y, z) be a nonzero (σy, σz)-remainder with the form (3.4), in 
which aij and bijd

j
i are further assumed to be coprime. Assume that there exists another 

r′ ∈ F(y, z) such that r′ − r is (σy, σz)-summable. Write r′ in the form

r′ = p′ +
m′∑
i=1

n′
i∑

j=1

a′ij

b′ijd
′
i
j
,

where m′, n′
i ∈ N, p′ ∈ F(y)[z], a′ij , d′i ∈ F [y, z] and b′ij ∈ F [y] with degz(a′ij) < degz(d′i)

and d′i being monic irreducible factor of the denominator of r′ and of positive degree in 
z. For each 1 ≤ i ≤ m, define

Λi = {i′ ∈ N | 1 ≤ i′ ≤ m′ and d′i′ = σλi′
y σμi′

z (di) for λi′ , μi′ ∈ Z}.

Then Λi is nonempty for any 1 ≤ i ≤ m. Moreover, m ≤ m′, ni ≤ n′
i′ for all i′ ∈ Λi, 

degy(bij) ≤
∑

i′∈Λi
degy(b′i′j) for each 1 ≤ i ≤ m and 1 ≤ j ≤ ni, and the degree in z of 

the denominator of r is no more than that of r′.

Proof. Since r′−r is (σy, σz)-summable, all the rational function 
∑

i′∈Λi
a′i′j/(b′i′jd′i′

j) −
aij/(bijdji ) are (σy, σz)-summable by [35, Lemma 3.2], and then so are the
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∑
i′∈Λi

σ
−λi′
y σ

−μi′
z (a′i′j)

σ
−λi′
y (b′i′j)d

j
i

− aij

bijd
j
i

. (3.5)

Since r is a nonzero (σy, σz)-remainder, we conclude from Proposition 3.6 that each 
nonzero aij/(bijdji ) is not (σy, σz)-summable. Notice that for each 1 ≤ i ≤ m, there 
is at least one integer j with 1 ≤ j ≤ ni such that aij 	= 0. It then follows from the 
summability of (3.5) that every Λi is nonempty, namely every di is (y, z)-shift equivalent 
to some d′i′ for 1 ≤ i′ ≤ m′, and that ni ≤ n′

i′ for any i′ ∈ Λi. Notice that the di are 
pairwise (y, z)-shift inequivalent. Thus the Λi are pairwise disjoint, which implies that 
m ≤ m′. Accordingly, the degree in z of the denominator of r is no more than that of r′.

It remains to show the inequality for the degree of each bij. For each 1 ≤ i ≤ m and 
1 ≤ j ≤ ni, by Theorem 3.1, the summability of (3.5) either yields

∑
i′∈Λi

σ
−λi′
y σ

−μi′
z (a′i′j)

σ
−λi′
y (b′i′j)

= σβ
yσ

−α
z (q) − q + aij

bij
for some q ∈ F(y)[z],

if di is (y, z)-integer linear over F of (α, β)-type or otherwise yields

∑
i′∈Λi

σ
−λi′
y σ

−μi′
z (a′ i′j)

σ
−λi′
y (b′i′j)

= aij
bij

.

The assertion is evident in the latter case. For the former case, because aij/(bijdji ) is a 
remainder fraction, the assertion follows by the minimality of φα,β(bij) (and thus bij) 
from Theorem 2.1. �

With everything in place, we now present a bivariate extension of the Abramov re-
duction, which addresses the (σy, σz)-decomposition problem.

Bivariate Abramov reduction. Given a rational function f ∈ F(y, z), compute three 
rational functions g, h, r ∈ F(y, z) such that r is a (σy, σz)-remainder of f and

f = (Sy − 1)(g) + (Sz − 1)(h) + r. (3.6)

1. Apply the primary reduction to f to find g, h ∈ F(y, z), m, ni ∈ N, aij , di ∈ F [y, z]
and bij ∈ F [y] such that (3.1) holds.

2. For i = 1, . . . , m do
If di is (y, z)-integer linear over F of (αi, βi)-type then

2.1 Compute ãij/b̃ij = φαi,βj
(aij/bij) with φαi,βi

being the map for (αi, βi)-shift 
reduction;

2.2 For j = 1, . . . , ni do
2.2.1 Apply the Abramov reduction to ãij/b̃ij with respect to y to get q̃ij , ̃rij ∈

F(y)[z] such that
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ãij

b̃ij
= σy(q̃ij) − q̃ij + r̃ij .

2.2.2 Apply φ−1
αi,βi

to both sides of the previous equation to get

aij
bij

= σβi
y σ−αi

z (qij) − qij + rij , (3.7)

where qij = φ−1
αi,βi

(q̃ij) and rij = φ−1
αi,βi

(r̃ij).
2.2.3 Update aij and bij to be the numerator and denominator of rij, respec-

tively.
2.3 Update

g = g+
ni∑
j=1

βi−1∑
k=0

σk
yσ

−αi
z

(
qij

dji

)
and h = h+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ni∑
j=1

αi∑
k=1

σ−k
z

(
−qij

dji

)
αi ≥ 0

ni∑
j=1

−αi−1∑
k=0

σk
z

(
qij

dji

)
αi < 0

.

(3.8)
3. Update r =

∑m
i=1

∑ni

j=1 aij/(bijd
j
i ), and return g, h, r.

Theorem 3.8. Let f be a rational function in F(y, z). Then the bivariate Abramov reduc-
tion computes two rational functions g, h ∈ F(y, z) and a (σy, σz)-remainder r ∈ F(y, z)
such that (3.6) holds. Moreover, f is (σy, σz)-summable if and only if r = 0.

Proof. Applying the primary reduction to f yields (3.1). For any nonzero aij/(bijdji ) ob-
tained in step 1, if di is not (y, z)-integer linear over F then we know from Theorem 3.1
that aij/(bijdji ) is not (σy, σz)-summable and is thus already a remainder fraction. Oth-
erwise, there exist coprime integers αi, βi with βi > 0 so that di = pi(αiy+βiz) for some 
pi(Z) ∈ F [Z]. By Theorem 2.1 and Definition 3.4, for each 1 ≤ j ≤ ni, steps 2.2.1-2.2.2 
correctly find qij and rij such that (3.7) holds and rij/d

j
i is a remainder fraction. After 

step 2.2, plugging all (3.7) into (3.1) then gives (with a slight abuse of notation):

f = (Sy − 1)(g) + (Sz − 1)(h) +
∑

i: di=pi(αiy+βiz)

ni∑
j=1

σβi
y σ−αi

z (qij) − qij

dji
+ r,

where the index i runs through all (y, z)-integer linear di’s and r =
∑m

i=1
∑ni

j=1 aij/(bijd
j
i )

is a (σy, σz)-remainder by Definition 3.5. The assertions then follow from Proposition 3.6
and the observation that

σβi
y σ−αi

z (qij) − qij

dj
= (Sy − 1)

(
βi−1∑

σk
yσ

−αi
z

(
qij

dj

))

i k=0 i
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+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Sz − 1)
(

αi∑
k=1

σ−k
z

(
−qij

dji

))
if αi ≥ 0

(Sz − 1)
(−αi−1∑

k=0

σk
z

(
qij

dji

))
if αi < 0

(3.9)

for any di = pi(αiy + βiz). �
Example 3.9. Consider the rational function f admitting the partial fraction decompo-
sition f = f1 + f2 + f3 with

f1 = x2z + 1
(x + y)(x + z)2 + 1︸ ︷︷ ︸

d1

, f2 = (x2 + xy + 3x− 3)z − x− y + 3
(x + y)(x + y + 3)((x + 2y + 3z)2 + 1︸ ︷︷ ︸

d2

)

and f3 = 1
x− y + z︸ ︷︷ ︸

d3

.

Note that d1, d2, d3 are (y, z)-shift inequivalent to each other. Hence f remains unchanged 
after applying the primary reduction. Since d1 is not (y, z)-integer linear, we leave f1

untouched and proceed to deal with f2. Notice that d2 is (y, z)-integer linear of (2, 3)-
type. Then applying the Abramov reduction to φ2,3(f2d2) with φ2,3 being the map for 
(2, 3)-shift reduction yields

φ2,3(f2d2) = (Sy − 1)
(
z − 6xy2 − 2x2y + 2x

3(x + 3y)

)
+

1
3xz + 2

3x
2 + 1

x + 3y ,

which, when applied by φ−1
2,3, leads to

f2d2 = (S3
yS

−2
z − 1)(q2) +

1
3x(2y + 3z) + 2

3x
2 + 1

x + y
with

q2 = 3(2y + 3z) − 2xy2 − 2x2y + 6x
9(x + y) .

Using (3.9), we decompose f2 as

f2 = (Sy − 1)
( 2∑

k=0

σk
yσ

−2
z

( q2
d2

))
+ (Sz − 1)

( 2∑
k=1

σ−k
z

(
− q2

d2

))

+
1
3x(2y + 3z) + 2

3x
2 + 1

(x + y)((x + 2y + 3z)2 + 1)︸ ︷︷ ︸ .

r
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One sees that r is a (σy, σz)-remainder of f2, and thus f2 is not (σy, σz)-summable by 
Theorem 3.8. Along the same lines as above, we have

f3 = (Sy − 1)
(

y

x− y + z + 1

)
+ (Sz − 1)

(
y

x− y + z

)
,

implying that f3 is (σy, σz)-summable. Combining everything together, f is finally de-
composed as

f = (Sy − 1)(g) + (Sz − 1)(h) + f1 + r

with g =
∑2

k=0 σ
k
yσ

−2
z (q2/d2) +y/(x −y+z+1) and h =

∑2
k=1 σ

−k
z (−q2/d2) +y/(x −y+z). 

Thus f is not (σy, σz)-summable by Theorem 3.8. We will use f as a running example 
in this paper.

4. Linearity of remainders

As mentioned in the introduction, we expect our reduction algorithm to induce a 
linear map, that is, the sum of two remainders was expected to also be a remainder. 
Unfortunately, this is not always the case in our setting, because some requirements in 
Definition 3.5 may be broken by the addition among (σy, σz)-remainders, as seen in the 
following examples. This prevents us from applying the bivariate Abramov reduction 
developed in the previous section to construct a telescoper in a direct way as was done 
in the differential case. However, observe that a rational function in F(y, z) may have 
more than one (σy, σz)-remainder and any two of them differ by a (σy, σz)-summable 
rational function. This suggests a possible way to circumvent the above difficulty. That 
is, choosing proper members from the residue class modulo summable rational functions 
of the given (σy, σz)-remainders so as to make the linearity become true. The goal of 
this section is to show that this direction always works and it can be accomplished 
algorithmically. We note that a similar idea was used in the bivariate hypergeometric 
case [24, §5].

Example 4.1. Let r = f1 and s = σx(f1) with f1 being given in Example 3.9. Then 
r and s are both (σy, σz)-remainders since both denominators d1 and σx(d1) are not 
(y, z)-integer linear. However their sum is not a (σy, σz)-remainder since d1 is (y, z)-shift 
equivalent to σx(d1), namely d1 = σ−1

y σ−1
z σx(d1). Nevertheless, we can find another 

(σy, σz)-remainder t of s such that r + t has this property. For example, let

t = (Sy − 1)
(
−σ−1

y (s)
)

+ (Sz − 1)
(
−σ−1

y σ−1
z (s)

)
+ s = (x + 1)2(z − 1) + 1

(x + y)(x + z)2 + 1 ,

and then
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r + t = (2x2 + 2x + 1)z − x2 − 2x + 1
(x + y)(x + z)2 + 1

is a (σy, σz)-remainder by definition. Alternatively, one can compute a (σy, σz)-remainder 
t̃ of r, say

t̃ = (Sy − 1) (r) + (Sz − 1) (σy(r)) + r = x2(z + 1) + 1
(x + y + 1)(x + z + 1)2 + 1

so that

t̃ + s = (2x2 + 2x + 1)z + x2 + 2
(x + y + 1)(x + z + 1)2 + 1

is a (σy, σz)-remainder.

Example 4.2. Let

r =
1
3x(2y + 3z) + 2

3x
2 + 1

(x + y)((x + 2y + 3z)2 + 1) and s =
(1
3x + 1)(2y + 3z) + 2

3 (x + 1)2 + 2x + 13
3

(x + y + 5)((x + 2y + 3z + 1)2 + 1) .

Then both r and s are (σy, σz)-remainders, but again their sum is not since (x + 2y +
3z)2 + 1 is (y, z)-shift equivalent to (x + 2y + 3z + 1)2 + 1. As in Example 4.1, we find a 
(σy, σz)-remainder

s̃ = a/b

(x + 2y + 3z)2 + 1 with a

b
=

(1
3x + 1)(2y + 3z) + 2

3x
2 + 3x + 4

x + y + 6

such that s − s̃ is (σy, σz)-summable. However, the sum r + s̃ is still not a (σy, σz)-
remainder since φ2,3

(
(1
3x(2y+3z) + 2

3x
2 +1)/(x +y) +a/b

)
is not a σy-remainder, where 

φ2,3 denotes the map for (2, 3)-shift reduction. Notice that

a

b
= (S3

yS−2
z − 1)

( 2∑
k=1

σ−3k
y σ2k

z

(a
b

))
+

(1
3x + 1)(2y + 3z) + 2

3x
2 + 3x + 4

x + y
,

so (3.9) enables us to find a new (σy, σz)-remainder

t =
(1
3x + 1)(2y + 3z) + 2

3x
2 + 3x + 4

(x + y)((x + 2y + 3z)2 + 1)

such that s − t is (σy, σz)-summable and

r + t =
(2
3x + 1)(2y + 3z) + 4

3x
2 + 3x + 5

(x + y)((x + 2y + 3z)2 + 1)

is a (σy, σz)-remainder. Another possible choice is to find a (σy, σz)-remainder r̃ of r

such that r̃ + s is a (σy, σz)-remainder.
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In order to achieve the linearity of (σy, σz)-remainders, we need to develop two lemmas. 
The first one mimics the idea of Lemma 5.5 in [24] in the bivariate setting.

Lemma 4.3. Let a, d ∈ F [y, z], b ∈ F [y] \ {0} and j ∈ N \ {0}. Let λ, μ be two integers. 
Then one finds g, h ∈ F(y, z) such that

a

b dj
= (Sy − 1)(g) + (Sz − 1)(h) +

σλ
yσ

μ
z (a)

σλ
y (b)σλ

yσ
μ
z (d)j . (4.1)

Moreover, assume that d is not (y, z)-integer linear over F . If a/(b dj) is a remainder 
fraction, then so is σλ

yσ
μ
z (a)/(σλ

y (b)σλ
yσ

μ
z (d)j).

Proof. A direct calculation shows that

s

t
= (Sv − 1)

⎛
⎝−

i−1∑
j=0

σj
v

(s
t

)⎞⎠ + σi
v(s)

σi
v(t)

= (Sv − 1)

⎛
⎝ i∑

j=1
σ−j
v

(s
t

)⎞⎠ + σ−i
v (s)

σ−i
v (t)

for any s, t ∈ F [y, z], i ∈ N and v ∈ {y, z}. By iteratively applying the above formulas, 
one readily computes g, h ∈ F(y, z) such that (4.1) holds.

Moreover, if d is not (y, z)-integer linear over F , then neither is σλ
yσ

μ
z (d). Since a/(b dj)

is a remainder fraction, by Definition 3.4, degz(a) < degz(d) and d is monic, irreducible 
and of positive degree in z. Shifting polynomials in F [y, z] with respect to y or z preserves 
these properties. It follows from definition that σλ

yσ
μ
z (a)/(σλ

y (b)σλ
yσ

μ
z (d)j) is a remainder 

fraction. �
The next lemma is an immediate result of Theorem 5.6 in [24].

Lemma 4.4. Let α, β ∈ Z with β 	= 0 and let φα,β denote the map for (α, β)-shift reduc-
tion. Let a, ̄a ∈ F [y, z] and b, ̄b ∈ F [y] \{0} be such that both φα,β(a/b) and φα,β(ā/b̄) are 
σy-remainders. Then one finds q ∈ F(y)[z], a′ ∈ F [y, z] and b′ ∈ F [y] with φα,β(a′/b′)
being a σy-remainder such that

a

b
= (Sβ

yS−α
z − 1)(q) + a′

b′
,

and φα,β(c1ā/b̄ + c2a
′/b′) is a σy-remainder for all c1, c2 ∈ F .

Proof. By [24, Theorem 5.6] and [36, Proposition 3.2], there exist q̃ ∈ F(y)[z], ã ∈ F [y, z]
and b̃ ∈ F [y] with ã/b̃ being a σy-remainder such that

φα,β

(a) = σy(q̃) − q̃ + ã
,

b b̃
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and c1φα,β(ā/b̄) + c2ã/b̃ is a σy-remainder for all c1, c2 ∈ F . Notice that φα,β is an F -
isomorphism and σy ◦ φα,β = φα,β ◦ τ with τ = σβ

yσ
−α
z . So φ−1

α,β ◦ σy = τ ◦ φ−1
α,β . Letting 

q = φ−1
α,β(q̃), a′ = φ−1

α,β(ã) and b′ = φ−1
α,β(b̃) concludes the lemma. �

We are now ready to give an algorithm that provides a feasible way to obtain the 
linearity.

Remainder linearization. Given two (σy, σz)-remainders r, s ∈ F(y, z), compute g, h ∈
F(y, z) and a (σy, σz)-remainder t ∈ F(y, z) such that

s = (Sy − 1)(g) + (Sz − 1)(h) + t (4.2)

and c1r + c2t is a (σy, σz)-remainder for all c1, c2 ∈ F .

1. Write r and s in the remainder forms

r =
m̄∑
i=1

n̄i∑
j=1

āij

b̄ij d̄
j
i

and s =
m∑
i=1

ni∑
j=1

aij

bijd
j
i

. (4.3)

2. Set g = h = 0.
For i = 1, . . . , m do

If there exists k ∈ {1, 2, . . . , m̄} such that d̄k = σλ
yσ

μ
z (di) for some λ, μ ∈ Z, then

2.1 For j = 1, . . . , ni do
2.1.1 Apply Lemma 4.3 to aij/(bijdji ) to find gij , hij ∈ F(y, z) such that

aij

bijd
j
i

= (Sy − 1)(gij) + (Sz − 1)(hij) +
σλ
yσ

μ
z (aij)

σλ
y (bij)d̄jk

. (4.4)

2.1.2 If di is (y, z)-integer linear over F of (αi, βi)-type then
Apply Lemma 4.4 to σλ

yσ
μ
z (aij)/σλ

y (bij) to find qij ∈ F(y)[z], a′ij ∈
F [y, z] and b′ij ∈ F [y] with φαi,βi

(a′ij/b′ij) being a σy-remainder such 
that

σλ
yσ

μ
z (aij)

σλ
y (bij)

= (Sβi
y S−αi

z − 1)(qij) +
a′ij
b′ij

, (4.5)

and φαi,βi
(c1ākj/b̄kj + c2a

′
ij/b

′
ij) is a σy-remainder for all c1, c2 ∈ F ; 

update aij , bij to be a′ij , b
′
ij , respectively, and update g, h by (3.8).

Else update aij , bij to be σλ
yσ

μ
z (aij), σλ

y (bij), respectively.
2.2 Update di to be d̄k, and update g = g +

∑ni

j=1 gij , h = h +
∑ni

j=1 hij .
3. Set t =

∑m
i=1

∑ni

j=1 aij/(bijd
j
i ), and return g, h, t.
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Theorem 4.5. Let r and s be two (σy, σz)-remainders. Then the remainder linearization 
correctly finds two rational functions g, h ∈ F(y, z) and a (σy, σz)-remainder t ∈ F(y, z)
such that (4.2) holds and c1r + c2t is a (σy, σz)-remainder for all c1, c2 ∈ F .

Proof. Since both r and s are (σy, σz)-remainders, they admit the remainder forms 
(4.3). For any di from s, if there exists some d̄k from r such that d̄k = σλ

yσ
μ
z (di) for some 

λ, μ ∈ Z, then for each integer j with 1 ≤ j ≤ ni, one sees from Lemma 4.3 that step 2.1.1 
correctly finds the gij , hij such that (4.4) holds. Moreover, σλ

yσ
μ
z (aij)/(σλ

y (bij)d̄jk) is a 
remainder fraction if di is not (y, z)-integer linear over F . When di is (y, z)-integer linear 
over F of (αi, βi)-type, Lemma 4.4 assures that (4.5) holds and a′ij/(b′ij d̄

j
k) is a remainder 

fraction. Note that d1, . . . , dm are pairwise (y, z)-shift inequivalent since s is a (σy, σz)-
remainder. Also note that each di can only be replaced by some d̄k which is (y, z)-shift 
equivalent to di every time the algorithm passes through step 2.2. Thus the updated 
di after step 2 remain to be (y, z)-shift inequivalent to each other. It then follows from 
Definition 3.5 that t =

∑m
i=1

∑ni

j=1 aij/(bijdi
j) in step 3 (with a slight abuse of notations) 

is a (σy, σz)-remainder. Substituting all equations (4.4)-(4.5) into (4.3), together with 
(3.9), immediately yields (4.2).

Let c1, c2 ∈ F . Then it remains to prove that c1r+ c2t is a (σy, σz)-remainder. Notice 
that for any two remainder fractions: ākj/(b̄kj d̄jk) from r and aij/(bijdji ) from t with 
d̄k �y,z di, it is readily seen from definition that their any linear combination over F is 
again a remainder fraction. Thus it amounts to showing that c1ākj/(b̄kj d̄jk) +c2aij/(bijdji )
is a remainder fraction in the case when d̄k ∼y,z di. We know from step 2 that in this 
case di = d̄k, and φαi,βi

(c1ākj/b̄kj + c2aij/bij) is a σy-remainder if di is (y, z)-integer 
linear over F of (αi, βi)-type. Therefore, the theorem is concluded by definition. �
5. Telescoping via reduction

Recall that a telescoper L, for a given rational function f ∈ F(y, z), is a nonzero 
operator in F [Sx] such that L(f) is (σy, σz)-summable. For discrete trivariate rational 
functions, telescopers do not always exist. Recently, a criterion for determining the ex-
istence of telescopers in this case was presented in the work [23]. In order to adapt it 
into our setting, we will consider primitive parts of polynomials in F [y]. Let p ∈ F [y]
be of the form p =

∑d
i=0(ai/b)yi for d ∈ N and ai, b ∈ K[x] with b 	= 0. Then the con-

tent conty(p) of p with respect to y is defined as conty(p) = gcd(a0, . . . , ad)/b ∈ F , 
and the corresponding primitive part primy(p) = p/ conty(p). For example, by let-
ting p = 3xy − 9x/(x + 1) ∈ F [y], we have conty(p) = 3x/(x + 1) ∈ F and 
primy(p) = (x + 1)y − 3 ∈ K[x, y]. Evidently, primy(p) is a polynomial in K[x, y] whose 
coefficients with respect to y have no nonconstant common divisors in K[x].

We summarize the existence criterion for telescopers from [23] in the following

Theorem 5.1 (Existence criterion). Let f be a rational function in F(y, z). Assume that 
applying the bivariate Abramov reduction to f yields (3.6), where g, h, r ∈ F(y, z) and r
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is a (σy, σz)-remainder with the remainder form (3.4). Then f has a telescoper if and 
only if for each 1 ≤ i ≤ m and 1 ≤ j ≤ ni,

(i) there exists a positive integer ξi such that σξi
x (di) = σζi

y σηi
z (di) for some integers 

ζi, ηi,
(ii) and bij is (x, y)-integer linear over K, in particular, σξi

x (primy(bij))=σζi
y (primy(bij))

if di is not (y, z)-integer linear over F .

Algorithms for checking the conditions (i)-(ii) were also described in the same paper 
[23]. With termination guaranteed by the above criterion, we now use the bivariate 
Abramov reduction to develop a creative telescoping algorithm in the spirit of the general 
reduction-based approach.

Algorithm ReductionCT. Given a rational function f ∈ F(y, z), compute a minimal tele-
scoper L ∈ F [Sx] for f and a corresponding certificate (g, h) ∈ F(y, z)2 when telescopers 
exist.

1. Apply the bivariate Abramov reduction to f to find g0, h0 ∈ F(y, z) and a (σy, σz)-
remainder r0 ∈ F(y, z) such that

f = (Sy − 1)(g0) + (Sz − 1)(h0) + r0. (5.1)

2. If r0 = 0 then set L = 1, (g, h) = (g0, h0) and return.
3. If conditions (i)-(ii) in Theorem 5.1 are not satisfied, then return “No telescopers 

exist”.
4. Set R = u0r0, where u0 is an indeterminate.

For � = 1, 2, . . . do
4.1 Apply the remainder linearization to σx(r�−1) with respect to R to find g�, h� ∈

F(y, z) and a (σy, σz)-remainder r� ∈ F(y, z) such that

σx(r�−1) = (Sy − 1)(g�) + (Sz − 1)(h�) + r�, (5.2)

and that R + u�r� is a (σy, σz)-remainder, where u� is an indeterminate.
4.2 Update R = R + u�r� and update g� = g� + σx(g�−1), h� = h� + σx(h�) so that

σ�
x(f) = (Sy − 1)(g�) + (Sz − 1)(h�) + r�. (5.3)

4.3 If there exist nontrivial c0, . . . , c� ∈ F such that R |ui=ci= 0, then set L =∑�
i=0 ciS

i
x and (g, h) = (

∑�
i=0 cigi, 

∑�
i=0 cihi), and return.

Theorem 5.2. Let f be a rational function in F(y, z). Then the algorithm ReductionCT 
terminates and returns a minimal telescoper for f when such a telescoper exists.
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Proof. By Theorems 3.8 and 5.1, steps 2-3 are correct. Because r0 is a (σy, σz)-remainder, 
so is its shift σx(r0). By Theorem 4.5, step 4.1 correctly finds g1, h1 ∈ F(y, z) and a 
(σy, σz)-remainder r1 ∈ F(y, z) such that (5.2) holds for � = 1 and R+u1r1 = u0r0+u1r1
is a (σy, σz)-remainder for all u0, u1 ∈ F . Applying σx to both sides of (5.1), together 
with step 4.1, one sees that step 4.2 gives (5.3) for � = 1. The correctness of step 4.2 for 
each iteration of the loop in step 4 then follows by induction on �.

If f does not have a telescoper then the algorithm halts after step 3. Otherwise, 
telescopers for f exist by Theorem 5.1. Let L =

∑ρ
�=0 c�S

�
x ∈ F [Sx] be a telescoper for f

of minimal order. Then cρ 	= 0 and by (5.3), applying L to f gives

L(f) =
ρ∑

�=0

c�σ
�
x(f) = (Sy − 1)

(
ρ∑

�=0

c�g�

)
+ (Sz − 1)

(
ρ∑

�=0

c�h�

)
+

ρ∑
�=0

c�r�.

Notice that 
∑ρ

�=0 c�r� is a (σy, σz)-remainder by step 4.1. It follows from Theorem 3.8
that L(f) is (σy, σz)-summable, namely L is a telescoper for f , if and only if 

∑ρ
�=0 c�r� =

0. This implies that the linear system over F with unknowns u� obtained by equating ∑ρ
�=0 u�r� to zero has a nontrivial solution, which yields a telescoper of minimal order. 

The algorithm thus terminates. �
In what follows, we describe an alternative way, in addition to the above algorithm, 

for creative telescoping in our trivariate rational setting. As such, we need the notion of 
least common left multiples. Recall that an operator L ∈ F [Sx] is a common left multiple
of operators L1, . . . , Lm ∈ F [Sx] if there exist operators L′

1, . . . , L
′
m ∈ F [Sx] such that 

L = L′
1L1 = · · · = L′

mLm. Amongst all such common left multiples, the monic one 
of lowest possible degree with respect to Sx is called the least common left multiple. 
Many efficient algorithms for computing the least common left multiple of operators are 
available; see [8] and the references therein.

The following lemma is an immediate extension of [40, Theorem 2] to the trivariate 
case, and thus we omit the proof.

Lemma 5.3. Let r = r1 + · · · + rm with ri ∈ F(y, z) and let L1, . . . , Lm ∈ F [Sx] be the 
respective minimal telescopers for r1, . . . , rm. Then the least common left multiple L of 
the Li is a telescoper for r. Moreover, if any telescoper for r is also a telescoper for each 
ri with 1 ≤ i ≤ m, then L is a minimal telescoper for r.

The following proposition shows that the least common multiple gives a minimal 
telescoper for the given sum provided that the denominators of distinct summands are 
comprised of distinct (x, y, z)-shift equivalence classes.

Proposition 5.4. Let r ∈ F(y, z) be a rational function of the form

r = r1 + r2 + · · · + rm,



22 S. Chen et al. / Advances in Applied Mathematics 141 (2022) 102389
where ri = ai/di with ai, di ∈ F [y, z] satisfying the conditions

(i) degz(ai) < degz(di);
(ii) any monic irreducible factor of di of positive degree in z is (x, y, z)-shift inequivalent 

to all factors of di′ whenever 1 ≤ i, i′ ≤ m and i 	= i′.

Let L1, . . . , Lm ∈ F [Sx] be the respective minimal telescopers for r1, . . . , rm. Then the 
least common left multiple L of the Li is a minimal telescoper for r. Moreover, for each 
1 ≤ i ≤ m, let (gi, hi) be a corresponding certificate for Li and let L′

i ∈ F [Sx] be the 
cofactor of Li so that L = L′

iLi. Then

(
m∑
i=1

L′
i(gi),

m∑
i=1

L′
i(hi)

)

is a corresponding certificate for L.

Proof. Let L̃ ∈ F [Sx] be a telescoper for r. In order to show the first assertion, by 
Lemma 5.3, it suffices to verify that L̃ is also a telescoper for each ri with 1 ≤ i ≤ m. 
Notice that the application of a nonzero operator from F [Sx] does not change the (x, y, z)-
shift equivalence classes, with representatives being monic irreducible polynomials of 
positive degrees in z, that appear in a given polynomial in F [y, z]. Hence condition (ii) 
remains valid when di and di′ are replaced by L̃(di) and L̃(di′), respectively. It then 
follows that any two monic irreducible factors of positive degrees in z from distinct 
di are (y, z)-shift inequivalent to each other. By the definition of telescopers, L̃(r) is 
(σy, σz)-summable, and then so is each L̃(ri) according to [35, Lemma 3.2]. This implies 
that L̃ is indeed a telescoper for each ri. The second assertion follows by observing that 
(Sy − 1) and (Sz − 1) both commute with operators from F [Sx]. �

The above proposition suggests a natural approach to construct a minimal telescoper 
for a given rational function. More precisely, let f ∈ F(y, z) and assume that applying 
the bivariate Abramov reduction to f yields (3.6) with r admitting the remainder form 
(3.4). The approach proceeds by separately taking each 

∑ni

j=1 aij/(bijd
j
i ) in (3.4) as the 

basic case and computes its own minimal telescoper Li ∈ F [Sx] using the algorithm
ReductionCT, and then returns the least common left multiple L of all Li as the output. 
By Proposition 5.4, such an L gives a minimal telescoper for r (and thus for f). We refer 
to this approach as the LCLM version of our algorithm ReductionCT.

5.1. Examples

Example 5.5. Consider the rational function f1 given in Example 3.9. Note that f1 is a 
remainder fraction and satisfies conditions (i)-(ii) in Theorem 5.1. So telescopers for f1
exist. Applying the algorithm ReductionCT to f1, we obtain in step 4 that



S. Chen et al. / Advances in Applied Mathematics 141 (2022) 102389 23
σ�
x(f1) = (Sy − 1)(g�) + (Sz − 1)(h�) + r� for � = 0, 1, 2,

where

r0 = f1, r1 = (x + 1)2(z − 1) + 1
(x + y)(x + z)2 + 1 , r2 = (x + 2)2(z − 2) + 1

(x + y)(x + z)2 + 1

and g�, h� ∈ F(y, z) are not displayed here to keep things neat. By finding an F -linear 
dependency among r0, r1, r2, we see that

L1 = (x4 + 2x3 + x2 + 2x + 1)S2
x − 2(x4 + 4x3 + 4x2 + 2x + 2)Sx

+ (x4 + 6x3 + 13x2 + 14x + 7)

is a minimal telescoper for f1.

Example 5.6. Consider the rational function f2 given in Example 3.9, which can be 
decomposed as

f2 = (Sy−1)(g0)+(Sz−1)(h0)+
1
3x(2y + 3z) + 2

3x
2 + 1

(x + y)((x + 2y + 3z)2 + 1)︸ ︷︷ ︸
r0

for some g0, h0 ∈ F(y, z).

Note that r0 is a remainder fraction and satisfies conditions (i)-(ii) in Theorem 5.1. Thus 
telescopers for f2 exist. Applying the algorithm ReductionCT to f2, we obtain in step 4 
that

σ�
x(f2) = (Sy − 1)(g�) + (Sz − 1)(h�) + r� for � = 0, 1, . . . , 6,

where g�, h� ∈ F(y, z) are again not displayed due to the large sizes, and

r1 = ( 1
3x+1)(2y+3z)+ 2

3x
2+x+ 4

3
(x+y+2)((x+2y+3z)2+1) , r2 = ( 1

3x+ 2
3 )(2y+3z)+ 2

3x
2+2x+ 7

3
(x+y+4)((x+2y+3z)2+1) ,

r3 = ( 1
3x+1)(2y+3z)+ 2

3x
2+4

(x+y)((x+2y+3z)2+1) , r4 = ( 1
3x+ 4

3 )(2y+3z)+ 2
3x

2+4x+ 19
3

(x+y+2)((x+2y+3z)2+1) ,

r5 = ( 1
3x+ 5

3 )(2y+3z)+ 2
3x

2+5x+ 28
3

(x+y+4)((x+2y+3z)2+1) , r6 = ( 1
3x+2)(2y+3z)+ 2

3x
2+6x+13

(x+y)((x+2y+3z)2+1) .

Then one finds an F -linear dependency among r0, r3, r6 which yields a minimal telescoper

L2 = (x2 + 3x− 3)S6
x − 2(x2 + 6x− 3)S3

x + x2 + 9x + 15.

The following illustrates the result of Proposition 5.4.

Example 5.7. Consider the same rational function f as in Example 3.9. Then we know 
that f3 is (σy, σz)-summable. Thus L3 = 1 is a minimal telescoper for f3. Let L1, L2 ∈
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F [Sx] be the operators computed in Examples 5.5-5.6. It then follows that the least 
common left multiple L of {L1, L2, L3}, given by

L = S8
x − 2(x2+5x+1)(3x2+24x+31)

(x2+7x+7)(3x2+21x+19) S7
x + (x2+3x−3)(3x2+27x+43)

(x2+7x+7)(3x2+21x+19)S
6
x − 2(x2+10x+13)

x2+7x+7 S5
x

+ 4(3x2+24x+31)(x2+8x+4)
(x2+7x+7)(3x2+21x+19) S4

x − 2(x2+6x−3)(3x2+27x+43)
(x2+7x+7)(3x2+21x+19) S3

x + x2+13x+37
x2+7x+7 S2

x

− 2(x2+11x+25)(3x2+24x+31)
(x2+7x+7)(3x2+21x+19) Sx + (x2+9x+15)(3x2+27x+43)

(x2+7x+7)(3x2+21x+19) ,

is a telescoper for f . On the other hand, by directly applying the algorithm ReductionCT
to f , one sees that L is in fact a minimal telescoper for f .

5.2. Efficiency considerations

The efficiency of Algorithm ReductionCT can be enhanced by incorporating two mod-
ifications in the algorithm.

Simplification of step 4.1

For each iteration of the loop in step 4, rather than using the overall (σy, σz)-remainder 
R =

∑�−1
k=0 ukrk in step 4.1, we can apply the remainder linearization to the shift value 

σx(r�−1) with respect to the initial (σy, σz)-remainder r0 only. This is sufficient as, for 
any (σy, σz)-remainder r� of σx(r�−1) with � ≥ 1, if r0 + r� is a (σy, σz)-remainder then 
so is R + u�r�, provided that the algorithm proceeds in the described iterative fashion.

The intuition for this simplification is as follows. Notice that if the algorithm continues 
after passing through step 3 then r0 	= 0. Since distinct (y, z)-shift equivalence classes 
can be tackled separately, we restrict ourselves to the case where the denominator of r0
is of the form

d σi1
x (d) · · ·σim

x (d)

with d ∈ F [y, z] being monic, irreducible and of positive degree in z, i1, . . . , im being 
distinct positive integers such that d, σi1

x (d), . . . , σim
x (d) are (y, z)-shift inequivalent to 

each other. For simplicity, we call (0, i1, . . . , im) the x-shift exponent sequence of d in r0. 
By Theorem 5.1, there exists a positive integer ξ such that σξ

x(d) ∼y,z d and so we let ξ be 
the smallest one with such a property. Then there are only ξ many (y, z)-shift equivalence 
classes produced by shifting d with respect to x, with d, σx(d), . . . , σξ−1

x (d) as respective 
representatives. Without loss of generality, we further assume that 0 < i1 < · · · < im < ξ. 
For � ≥ 1, let r� be the output of the remainder linearization when applied to σx(r�−1)
with respect to r0. By induction on �, one sees that the x-shift exponent sequence of d
in r� is given by

(�, i1 + �, . . . , im + �) mod ξ,
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whose entries form an (m +1)-subset of {0, 1, . . . , ξ−1}. It thus follows from Definition 3.5
that R + u�r� is also a (σy, σz)-remainder.

Simplification of step 4.3

Our second modification is in step 4.3, where we first derive from R = 0 the individual 
equation for each remainder fraction a/(b dj) appearing in the remainder form of R, and 
then build a linear system over F from the coefficients of the numerator of the equation 
with respect to y and Z = αy+βz, instead of y and z, in the case where d is (y, z)-integer 
linear of (α, β)-type. Notice that R = u0r0 + u1r1 + · · · + u�r� at the stage of step 4.3. 
Let d1, . . . , dm be all monic irreducible polynomials of positive degrees in z that appear 
in the denominator of R, with multiplicities n1, . . . , nm, respectively. For 1 ≤ i ≤ m, 
1 ≤ j ≤ ni and 0 ≤ k ≤ �, let a(k)

ij ∈ F [y, z] and b(k)
ij ∈ F [y] be such that a(k)

ij /(b(k)
ij dji ) is 

a remainder fraction appearing in the remainder form of rk. By coprimeness among the 
di, one gets that

R = 0 ⇐⇒
�∑

k=0

uk ·
a
(k)
ij

b
(k)
ij

= 0 for all i = 1, . . . ,m and j = 1, . . . , ni.

If di is (y, z)-integer linear of (αi, βi)-type, then φαi,βi
(a(k)

ij /b
(k)
ij ) is a σy-remainder with 

φαi,βi
being the map for (αi, βi)-shift reduction. By letting ã(k)

ij = φαi,βi
(a(k)

ij ) ∈ F [y, z], 
one sees from definition that degy(ã

(k)
ij ) < degy(φαi,βi

(b(k)
ij )) = degy(b

(k)
ij ) and a(k)

ij =
φ−1
αi,βi

(ã(k)
ij ) = ã

(k)
ij (β−1

i y, βiz+αiy). It follows that every a(k)
ij can be viewed as a polyno-

mial in Zi = αiy+βiz with coefficients all having degrees in y less than degy(b
(k)
ij ). In this 

case, rather than naively considering the coefficients with respect to y and z, we instead 
force all the coefficients with respect to y and Zi of the numerator of 

∑�
k=0 uk ·(a(k)

ij /b
(k)
ij )

to zero. This way ensures that the resulting linear system over F typically has smaller 
size than the naive one.

6. Implementation and timings

We have implemented our new algorithm ReductionCT in the computer algebra 
system Maple 2018. Our implementation includes the two enhancements to step 4 
discussed in the previous subsection. In order to get an idea about the efficiency of 
our algorithm, we applied our implementation to certain examples and tabulated their 
runtime in this section. All timings were measured in seconds on a Linux computer 
with 128 GB RAM and fifteen 1.2 GHz Dual core processors. The computations for the 
experiments did not use any parallelism.

We considered trivariate rational functions of the form

f(x, y, z) = a(x, y, z)
, (6.1)
d1(x, y, z) · d2(x, y, z)
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Table 1
Timings for four variants of the algorithm ReductionCT.

(m,n, ξ, ζ) RCT1 RCT2 RCTLM1 RCTLM2 order
(1, 1, 1, 1) 0.196 0.098 0.220 0.110 1
(1, 1, 1, 5) 7.319 0.123 9.483 0.123 1
(1, 1, 1, 9) 105.548 0.121 104.514 0.125 1
(1, 1, 1, 13) 2586.295 0.136 3078.043 0.126 1
(1, 1, 1, 3) 0.574 0.097 0.712 0.104 1
(1, 2, 1, 3) 17.812 0.256 17.299 0.263 1
(1, 3, 1, 3) 266.206 1.999 220.209 1.997 1
(1, 4, 1, 3) 2838.827 37.358 3039.199 30.547 1
(1, 5, 1, 3) 19403.916 1074.295 18309.000 1119.393 1
(2, 3, 1, 3) 31678.706 2.540 15825.876 2.224 3
(3, 3, 1, 3) 44243.254 5.378 16869.097 4.295 3
(3, 2, 1, 3) 710.810 0.492 670.501 0.487 3
(3, 2, 2, 3) 1314.809 0.701 941.009 0.756 6
(3, 2, 4, 3) 1558.440 1.525 1121.624 1.550 12
(3, 2, 8, 3) 1878.424 4.215 986.017 4.245 24
(3, 2, 16, 3) 2800.050 21.136 1317.603 38.504 48

where

• a ∈ Z[x, y, z] of total degree m ≥ 0 and max-norm ||a||∞ ≤ 5, in other words, the 
maximal absolute value of the coefficients of a with respect to x, y, z are no more 
than 5;

• di = pi · σξ
x(pi) with p1 = P1(ξy − ζx, ξz + ζx) and p2 = P2(ζx + ξy + 2ξz) for two 

nonzero integers ξ, ζ and two integer polynomials P1(y, z) ∈ Z[y, z], P2(z) ∈ Z[z], 
both of which have total degree n > 0 and max-norm no more than 5.

For a selection of random rational functions of this type for different choices of 
(m, n, ξ, ζ), Table 1 collects the timings of four variants of the algorithm ReductionCT
from Section 5. For the column RCT1, we computed both the telescoper and the certifi-
cate, and for the column RCT2 only the telescoper is computed. The difference between 
these two variants mainly lies in the time used to bring the certificate to a common 
denominator. When it is acceptable to keep the certificate as an unnormalized linear 
combination of rational functions, the timings are virtually the same as for RCT2. For 
columns RCTLM1 and RCTLM2, we perform the same functionality as RCT1 and RCT2

but using the LCLM version of the algorithm ReductionCT. Note that the computation 
of the least common left multiples therein was accomplished by the built-in Maple com-
mand OreTools[LCM][’left’]. We remark that the performance of the LCLM version of 
the algorithm ReductionCT deteriorates for larger examples, especially when there are 
many shift equivalence classes in the denominator of the input rational function or the 
order of a minimal telescoper is relatively high.



S. Chen et al. / Advances in Applied Mathematics 141 (2022) 102389 27
We have also compared our procedures with the two Mathematica packages: Holo-
nomicFunctions by Koutschan [39] and MultiSum1 by Wegschaider (substantially im-
proved by Riese) [47,42]. The HolonomicFunctions, to our best knowledge, is the most 
comprehensive implementation in terms of creative telescoping for holonomic functions 
(cf. [37, §2.2]) in more than two variables. There are two commands available in the 
package for our purpose. One is called CreativeTelescoping, which implements Chyzak’s 
algorithm [28] for single sums and can be applied iteratively to compute telescopers for 
trivariate rational functions. The other is called FindCreativeTelescoping, which is based 
on Koutschan’s heuristic approach [38] and constructs the telescoper directly by guess-
ing the denominators of the certificate, as well as their numerator degrees, and solving 
a linear system. The MultiSum extends the multivariate version of “Sister Celine’s tech-
nique” developed by Wilf and Zeilberger [48]. The available command in the package 
is called FindRecurrence, which finds a telescoper and a corresponding certificate for 
a given summand only if the structure set, which is usually not known in advance, is 
chosen in a clever way. The idea employed in the package is to use random parameter 
substitutions to quickly rule out useless structure sets, which however requires a priori 
bounds for the shifts involved (see [42] for further details). We remark that2 it would be 
interesting to see in the future if our fully automatic method could provide these extra 
bounds also automatically, and then the combination of the two methods might yield 
even a new fully automatic (and efficient) method.

Experiments suggest a better performance of our algorithm. For example, for the 
rational function

f = 4x + 2
(45x + 5y + 10z + 47)(45x + 5y + 10z + 2)(63x− 5y + 2z + 58)(63x− 5y + 2z − 5)

which was constructed using (6.1) with parameter (m, n, ξ, ζ) = (1, 1, 1, 9), our algorithm 
found a minimal telescoper for f along with its corresponding certificate in about 3 min-
utes; while the command FindRecurrence, along with a priori bounds 1, 9, 9 for the shifts 
in x, y, z, respectively, accomplished the same job using about 7 minutes, the command
CreativeTelescoping took about 4 hours, and the command FindCreativeTelescoping
did not finish in reasonable time, which happens because the guessed denominators are 
wrong/insufficient, and therefore the command finds nothing and runs forever. The same 
phenomenon was observed for larger examples.

7. Conclusion and future work

In this paper, we presented a new creative telescoping algorithm for the class of trivari-
ate rational functions. The procedure is based on a bivariate extension of Abramov’s 
reduction method initiated in [1]. Our algorithm finds a minimal telescoper for a given 

1 We thank the anonymous referee for bringing this package to our attention.
2 We thank the anonymous referee for pointing this out.
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trivariate rational function without also needing to compute an associated certificate. 
A Maple implementation indicates the efficiency of our algorithm. As a next step, we 
are going to investigate the theoretical complexity of our algorithm to see if it matches 
with the practical performance, something briefly alluded to in the introduction.

We are interested in the more general and important problem of computing hyper-
geometric multiple summations or proving identities which involve such summations. 
A function f(x, y1, . . . , yn) is called a multivariate hypergeometric term if the quotients

f(x + 1, y1, . . . , yn)
f(x, y1, . . . , yn) ,

f(x, y1 + 1, . . . , yn)
f(x, y1, . . . , yn) , . . . ,

f(x, y1, . . . , yn + 1)
f(x, y1, . . . , yn)

are all rational functions in x, y1, . . . , yn. The problem of hypergeometric multiple sum-
mations tends to appear more often than the rational case, particularly in combinatorics 
[11,18], and it is also more challenging.

Since a large percent of hypergeometric terms falls into the class of holonomic func-
tions, the problem of hypergeometric multiple summations can also be considered in 
a more general framework of multivariate holonomic functions. In this context, several 
creative telescoping approaches have already been developed in [49,46,29,28,38,13]. The 
algorithms in the first three papers are based on elimination and suffer from the disadvan-
tage of inefficiency in practice. The algorithm in [28], also known as Chyzak’s algorithm, 
deals with single sums (and single integrals) and can only be used to solve multiple 
ones in an iterative manner. A fast but heuristic approach was given in [38] in order to 
eliminate the bottleneck in Chyzak’s algorithm of solving a coupled first-order system. 
This approach generalizes to multiple sums (and multiple integrals). We refer to [37] for 
a detailed and excellent exposition of these approaches. The work in [13] describes even 
a general framework that unities the difference ring and the holonomic approach. We 
remark that all these approaches find the telescoper and the certificate simultaneously, 
with the exception of Takayama’s algorithm in [46] where natural boundaries have to be 
assured a priori. Note also that holonomicity is a sufficient but not necessary condition 
for the applicability of creative telescoping applied to hypergeometric terms (cf. [5,23]).

Restricted to the hypergeometric setting, partial solutions for the problem of multiple 
summations were proposed in [27] and [18]. In the former paper, the authors presented a 
heuristic method to find telescopers for trivariate hypergeometric terms, through which 
they also managed to prove certain famous hypergeometric double summation identi-
ties. In the latter paper, the authors mainly focused on a subclass of hypergeometric 
summations – multiple binomial sums. They first showed that the generating function 
of a given multiple binomial sum is always the diagonal of a rational function and vice 
versa. They then constructed a differential equation for the diagonal by a reduction-
based telescoping approach. Finally the differential equation is translated back into a 
recurrence relation satisfied by the given binomial sum. In the future, we hope to ex-
plore this topic further and aim at developing a complete reduction-based telescoping 
algorithm for hypergeometric terms in three or more variables.
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