
Journal of Complexity 42 (2017) 44–71

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Fast, deterministic computation of the
Hermite normal form and determinant of a
polynomial matrix✩

George Labahn a,∗, Vincent Neiger b, Wei Zhou a

a David R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON, Canada N2L 3G1
b ENS de Lyon (Laboratoire LIP, CNRS, Inria, UCBL, Université de Lyon), Lyon, France

a r t i c l e i n f o

Article history:
Received 19 July 2016
Accepted 18 March 2017
Available online 12 April 2017

Keywords:
Hermite normal form
Determinant
Polynomial matrix

a b s t r a c t

Given a nonsingular n × n matrix of univariate polynomials over
a field K, we give fast and deterministic algorithms to compute
its determinant and its Hermite normal form. Our algorithms useO(nω

⌈s⌉) operations in K, where s is bounded from above by both
the average of the degrees of the rows and that of the columns
of the matrix and ω is the exponent of matrix multiplication. The
soft-O notation indicates that logarithmic factors in the big-O
are omitted while the ceiling function indicates that the cost isO(nω) when s = o(1). Our algorithms are based on a fast and
deterministic triangularizationmethod for computing the diagonal
entries of the Hermite form of a nonsingular matrix.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For a given nonsingular polynomial matrix A in K[x]n×n, one can find a unimodular matrix U ∈

K[x]n×n such that AU = H is triangular. Unimodular means that there is a polynomial inverse matrix,
or equivalently, the determinant is a nonzero constant from K. Triangularizing a matrix is useful for
solving linear systems and computingmatrix operations such as determinants or normal forms. In the

✩ Communicated by L. Pardo.

∗ Corresponding author.
E-mail addresses: glabahn@uwaterloo.ca (G. Labahn), vincent.neiger@ens-lyon.fr (V. Neiger), w2zhou@uwaterloo.ca

(W. Zhou).

http://dx.doi.org/10.1016/j.jco.2017.03.003
0885-064X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jco.2017.03.003
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jco.2017.03.003&domain=pdf
mailto:glabahn@uwaterloo.ca
mailto:vincent.neiger@ens-lyon.fr
mailto:w2zhou@uwaterloo.ca
http://dx.doi.org/10.1016/j.jco.2017.03.003

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 45

latter case, the best-known example is the Hermite normal form, first defined by Hermite in 1851 in
the context of triangularizing integer matrices [17]. Here,

H =


h11
h21 h22
...

...
. . .

hn1 · · · · · · hnn


with the added properties that each hii ismonic and deg(hij) < deg(hii) for all j < i. Classical variations
of this definition include specifying upper rather than lower triangular forms, and specifying row
rather than column forms. In the latter case, the unimodular matrix multiplies on the left rather than
the right, and the degree of the diagonal entries dominates that of their columns rather than their
rows.

The goal of this paper is the fast, deterministic computation of the determinant andHermite normal
form of a nonsingular polynomial matrix. The common ingredient in both algorithms is a method for
the fast computation of the diagonal entries of a matrix triangularization. The product of these entries
gives, at least up to a constant, the determinant while Hermite forms are determined from a given
triangularization by reducing the remaining entries modulo the diagonal entries.

In the case of determinant computation, there has been a number of efforts directed to obtaining
algorithmswhose complexities are given in terms of exponents ofmatrixmultiplication. Interestingly
enough, in the case ofmatrices over a field, Bunch andHopcroft [8] showed that if there exists an algo-
rithm which multiplies n × nmatrices in O(nω) field operations for some ω, then there also exists an
algorithm for computing the determinant with the same cost bound O(nω). In the case of an arbitrary
commutative ring or of the integers, fast determinant algorithms have been given by Kaltofen [21],
Abbott et al. [1] and Kaltofen and Villard [22]. We refer the reader to the last named paper and the
references therein for more details on efficient determinant computation of such matrices.

In the specific case of the determinant of a matrix of polynomials A with deg(A) = d, Storjo-
hann [28] gave a recursive deterministic algorithm making use of fraction-free Gaussian elimination
with a cost of O(nω+1d) operations. A deterministic O(n3d2) algorithm was later given by Mulders
and Storjohann [25], modifying their algorithm for weak Popov form computation. Using low rank
perturbations, Eberly et al. [11] gave a randomized determinant algorithm for integer matrices which
can be adapted to be used with polynomial matrices using O(n3.5d) field operations. Storjohann [29]
later used high order lifting to give a randomized algorithm which computes the determinant usingO(nωd) field operations. The algorithm of Giorgi et al. [12] has a similar cost but only works on a class
of generic input matrices, matrices that are well behaved in the computation.

Similarly there has been considerable progress in the efficient computation of the Hermite form
of a polynomial matrix. Hafner and McCurley [16] and Iliopoulos [18] give algorithms with a com-
plexity bound of O(n4d) operations from K where d = deg(A). They control the size of the matrices
encountered during the computation by working modulo the determinant. Using matrix multiplica-
tion the algorithms of Hafner and McCurley [16], Storjohann and Labahn [32] and Villard [35] reduce
the cost to O(nω+1d) operations where ω is the exponent of matrix multiplication. The algorithm of
Storjohann and Labahnworkedwith integermatrices but the results directly carry over to polynomial
matrices. Mulders and Storjohann [25] then gave an iterative algorithm having complexity O(n3d2),
thus reducing the exponent of n but at the cost of increasing the exponent of d.

During the past two decades, there has been a goal to design algorithms that perform various
K[x]-linear algebra operations in about the time that it takes to multiply two polynomial matrices
having the same dimension and degree as the input matrix, namely at a cost O(nωd). Randomized
algorithms with such a cost already exist for a number of polynomial matrix problems, for example
for linear system solving [29], Smith normal form computation [29], row reduction [12] and small
nullspace bases computation [33]. In the case of polynomial matrix inversion, the randomized
algorithm in [31] costs O(n3d), which is quasi-linear in the number of field elements used to represent
the inverse. For Hermite form computation, Gupta and Storjohann [15] gave a randomized algorithm
with expected cost O(n3d), later improved to O(nωd) in [13]. Their algorithm was the first to be both

46 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

softly cubic in n and softly linear in d. It is worth mentioning that all the algorithms cited in this
paragraph are of the Las Vegas type.

Recently, deterministic fast algorithms have been given for linear system solving and row reduc-
tion [14], minimal nullspace bases [41], and matrix inversion [42]. Having a deterministic algorithm
has advantages. As a simple but important example, this allows for use over a small finite fieldKwith-
out the need for resorting to field extensions. The previous fastest Hermite form algorithms [15,13]
do require such field extensions. In this paper, we give deterministic fast algorithms for computing
Hermite forms and determinants.

Our approach relies on an efficient method for determining the diagonal elements of a triangular-
ization of the input matrix A. We can do this recursively by determining, for each integer k, a partition

A · U =


Au
Ad

 
Uℓ Ur


=


B1 0
∗ B2


= B (1)

where Au has k rows, Uℓ has k columns and B1 is of size k× k. The subscripts for A and U are meant to
denote up, down, left and right. AsA is nonsingular,Au has full rank and hence one has thatUr is a basis
of the kernel of Au. Furthermore the matrix B1 is nonsingular and is therefore a column basis of Au.

However the recursion described above requires additional properties if it is to be efficient for
our applications. In the case of determinants, A · U being lower triangular implies that we need both
the product of the diagonals and also the determinant of the unimodular multiplier. For the case of
Hermite form computation a sensible approach would be to first determine a triangular form of A and
then reduce the lower triangular elements using the diagonal entries with unimodular operations. In
both applications it appears that we would need to know U = A−1H. However the degrees in such a
unimodular multiplier can be too large for efficient computation. Indeed there are examples where
the sum of the degrees in U is Θ(n3d) (see Section 3), in which case computing U is beyond our target
cost O(nωd).

In order to achieve the desired efficiency, our triangularization computations need to be done
without actually determining the entire unimodular matrix U. We accomplish this by making use
of shifted minimal kernel bases and column bases of polynomial matrices, whose computations can
be done efficiently using algorithms from [41,39]. Shifts are weightings of column degrees which
basically help us to control the computations using column degrees rather than the degree of the
polynomial matrix. Using the degree becomes an issue for efficiency when the degrees in the input
matrix vary considerably from column to column. We remark that shifted minimal kernel bases and
column bases, used in the context of fast block elimination, have also been used for deterministic
algorithms for inversion [42] and unimodular completion [40] of polynomial matrices.

Fast algorithms for computing shifted minimal kernel bases [41] and column bases [39] imply that
we can deterministically find the diagonals in O(nω

⌈s⌉) field operations, where s is the average of
the column degrees of A. We recall that the ceiling function indicates that for matrices with very low
average column degree s ∈ o(1), this cost is still O(nω). By modifying this algorithm slightly we can
also compute the determinant of the unimodular multiplier, giving our first contribution. In the next
theorem, D(A) is the so-called generic determinant bound as defined in [14] (see also Section 2.3). It
has the important property that D(A)/n is bounded from above by both the average of the degrees of
the columns of A and that of its rows.

Theorem 1.1. Let A be a nonsingular matrix in K[x]n×n. There is a deterministic algorithm which
computes the determinant of A using O(nω

⌈D(A)/n⌉) ⊆ O(nω
⌈s⌉) operations in K, with s being the

minimum of the average of the degrees of the columns of A and that of its rows.

Applying our fast diagonal entry algorithm for Hermite form computation has more technical
challenges. The difficulty comes from the unpredictability of the diagonal degrees ofH, which coincide
with its row degrees. Indeed, we know that the sum of the diagonal degrees inH is deg(det(A)) ≤ nd,
and so the sum of the degrees in H is O(n2d). Still, the best known a priori bound for the degree of the
ith diagonal entry is (n − i + 1)d and hence the sum of these bounds is O(n2d), a factor of n larger
than the actual sum. Determining the diagonal entries gives us the row degrees of H and thus solves
this issue. Still, it remains a second major task: that of computing the remaining entries of H.

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 47

The randomized algorithmof Gupta and Storjohann [15,13] solves theHermite formproblemusing
two steps, which both make use of the Smith normal form S of A and partial information on a left
multiplier V for this Smith form. The matrices S and V can be computed with a Las Vegas randomized
algorithm using an expected number of O(nωd) field operations [15,13], relying in particular on high-
order lifting [29, Section 17]. The first step of their algorithm consists of computing the diagonal
entries ofH by triangularization of a 2n× 2nmatrix involving S and V, a computation done in O(nωd)
operations [13]. The second step sets up a system of linear modular equations which admits A as a
basis of solutions: the matrix of the system is V and the moduli are the diagonal entries of S. The
degrees of the diagonal entries obtained in the first step are then used to find H as another basis of
solutions of this system, computed in O(nωd) [15] using in particular fast minimal approximant basis
and partial linearization techniques [30,38].

The algorithm presented here for Hermite forms follows a two-step process similar to the algo-
rithm of Gupta and Storjohann, but it avoids using the Smith form of A, whose deterministic compu-
tation in O(nωd) still remains an open problem. Instead, as explained above, we compute the diagonal
entries ofH deterministically via Eq. (1) using O(nω

⌈s⌉) field operations, where s is the average of the
column degrees of A. As for the second step, using the knowledge of the diagonal degrees of H com-
binedwith partial linearization techniques from [14, Section 6], we show thatH can then be computed
via a single call to fast deterministic column reduction [14] using O(nωd) field operations. This new
problem reduction illustrates the fact that knowing in advance the degree shape of reduced or normal
formsmakes their computationmuch easier, something already observed and exploited in [15,36,19].

This approach results in a deterministic O(nωd) algorithm for Hermite form computation, which
is satisfactory for matrices A that have most entries of similar degree d = deg(A). However, inspired
from other contexts such as approximant and kernel basis computations [30,38,19,41] as well as
polynomial matrix inversion [42] and the determinant algorithm in this paper, one may hope for
algorithms that are even faster than O(nωd) when the degrees in A are non-uniform, for example, if
all high-degree entries are located in a few rows and columns of A. In the present paper we use ideas
in [14] to reduce the non-uniformity of the degrees in A in the context of Hermite form computation,
thus obtaining Theorem 1.2.

Theorem 1.2. Let A be a nonsingular matrix in K[x]n×n. There is a deterministic algorithm which
computes the Hermite form of A using O(nω

⌈D(A)/n⌉) ⊆ O(nω
⌈s⌉) operations in K, with s being the

minimum of the average of the degrees of the columns of A and that of its rows.

The remainder of this paper is organized as follows. In Section 2 we give preliminary information
on shifted degrees as well as kernel and column bases of polynomial matrices. We also recall why it
is interesting to have cost bounds involving the generic determinant bound rather than the degree
of the matrix; see in particular Remark 2.6. Section 3 contains the fast algorithm for finding the
diagonal entries of a triangular form. This is followed in Section 4 by our algorithm for finding the
determinant. The reduction of degrees of off diagonal entries in the Hermite form is then given in
Section 5. It computes the remaining entries by relying in particular on fast deterministic column
reduction. In Section 6 we then give the details about how to use partial linearization to decrease the
non-uniformity of the degrees in the inputmatrix for Hermite form computation. The paper endswith
a conclusion and topics for future research.

2. Preliminaries

In this section we first give the basic notations for column degrees and shifted degrees of vectors
and matrices of polynomials. We then present the building blocks used in our algorithms, namely the
concepts of kernel basis and column basis for a matrix of polynomials. Finally, we explain our interest
in having cost bounds involving the so-called generic determinant bound.

2.1. Shifted degrees

Our methods make use of the concept of shifted degrees of polynomial matrices [6], basically
shifting the importance of the degrees in some of the rows of a basis. For a column vector p =

48 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

[p1, . . . , pn]T of univariate polynomials over a field K, its column degree, denoted by cdeg(p), is the
maximum of the degrees of the entries of p, that is,

cdeg(p) = max
1≤i≤n

deg(pi).

The shifted column degree generalizes this standard column degree by taking the maximum after
shifting the degrees by a given integer vector that is known as a shift. More specifically, the shifted
column degree of p with respect to a shift s⃗ = (s1, . . . , sn) ∈ Zn, or the s⃗-column degree of p, is

cdegs⃗(p) = max
1≤i≤n

(deg(pi) + si) = deg(xs⃗ · p),

where

xs⃗ = Diag

xs1 , xs2 , . . . , xsn


.

For a matrix P, we use cdeg(P) and cdegs⃗(P) to denote respectively the list of its column degrees and
the list of its shifted s⃗-column degrees. For the uniform shift s⃗ = (0, . . . , 0), the shifted column degree
specializes to the standard column degree. Similarly, cdeg−s⃗(P) ≤ 0 is equivalent to deg(pij) ≤ si for
all i and j, that is, s⃗ bounds the row degrees of P.

The shifted row degree of a row vector q = [q1, . . . , qn] is defined similarly as

rdegs⃗(q) = max
1≤i≤n

[deg(qi) + si] = deg(q · xs⃗).

Shifted degrees have been used previously in polynomial matrix computations and in generalizations
of some matrix normal forms [7]. The shifted column degree is equivalent to the notion of defect
commonly used in the rational approximation literature.

Along with shifted degrees we also make use of the notion of a polynomial matrix being column
reduced. A full-rank polynomial matrix A = [aij]i,j is column reduced if its leading column coefficient
matrix, that is the matrix

lm(A) = [coeff(aij, x, dj)]1≤i,j≤n, with (d1, . . . , dn) = cdeg(A),

has full rank. Then, the polynomialmatrixA is s⃗-column reduced if xs⃗A is column reduced. The concept
of A being shifted row reduced is similar.

The usefulness of the shifted degrees can be seen from their applications in polynomial matrix
computation problems such as Hermite-Padé andM-Padé approximations [3,34,4,38], minimal kernel
bases [41], and shifted column reduction [7,26].

An essential fact needed in this paper, also based on the use of shifted degrees, is the efficient
multiplication of matrices with unbalanced degrees [41, Theorem 3.7].

Theorem 2.1. Let A ∈ K[x]m×n withm ≤ n, s⃗ ∈ Nn a shift with entries bounding the column degrees of A,
and ξ a bound on the sum of the entries of s⃗. Let B ∈ K[x]n×k with k ∈ O(m) and the sum θ of its s⃗-column
degrees satisfying θ ∈ O(ξ). Then we can multiply A and B with a cost of O(n2mω−2

⌈s⌉) ⊆ O(nω
⌈s⌉),

where s = ξ/n is the average of the entries of s⃗.

2.2. Shifted Kernel and column bases

The kernel of A ∈ K[x]m×n is the K[x]-module {p ∈ K[x]n×1
| Ap = 0}. Such a module is free and

of rank k ≤ n [10, Chapter 12, Theorem 4]; any of its bases is called a kernel basis of A. In other words:

Definition 2.2. Given A ∈ K[x]m×n, a polynomial matrix N ∈ K[x]n×k is a (right) kernel basis of A if
the following properties hold:

1. N has full rank,
2. N satisfies A · N = 0,
3. Any q ∈ K[x]n×1 satisfying Aq = 0 can be written as a linear combination of the columns of N,

that is, there exists p ∈ K[x]k×1 such that q = Np.

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 49

It is easy to show that any pair of kernel basesN andM ofA are unimodularly equivalent. An s⃗-minimal
kernel basis of A is a kernel basis that is s⃗-column reduced.

Definition 2.3. Given A ∈ K[x]m×n, a matrix N ∈ K[x]n×k is an s⃗-minimal (right) kernel basis of A if
N is a kernel basis of A and N is s⃗-column reduced.

A column basis of A is a basis of the K[x]-module {Ap, p ∈ K[x]n×1
}, which is free of rank r ≤ n.

Such a basis can be represented as a full rank matrix M ∈ K[x]m×r whose columns are the basis
elements. A column basis is not unique and indeed any column basis right multiplied by a unimodular
matrix gives another column basis.

Example 2.4. Let

A =


6x + 1 2x3 + x2 + 6x + 1 3

4x5 + 5x4 + 4x2 + x 6x5 + 5x4 + 2x3 + 4 x4 + 5x3 + 6x2 + 5x


be a 2 × 3 matrix over Z7[x] having column degree s⃗ = (5, 5, 4). Then a column basis B, and a kernel
basis N, of A are given by

B =


5x + 5 1

3 1


and N =

 6x6 + 4x5 + 5x4 + 3x3 + 4x2 + 1
4x4 + 5x3 + x2 + 6x

4x7 + 4x6 + 4x5 + 4x3 + 5x2 + 3x + 2

 .

For example, if b1 and b2 denote the columns of B then the third column of A, denoted by a3, is given
by

a3 = (4x3 + 3x2 + 6x + 5) b1 + (x4 + 4x2 + x + 6) b2.

Here cdegs⃗(N) = (11). In addition, the shifted leading coefficient matrix

lms⃗(N) =

6
0
4


has full rank, and hence we have that N is an s⃗-minimal kernel basis of A. �

Fast algorithms for kernel basis computation and column basis computation are given in [41] and
in [39], respectively. In both cases they make use of fast methods for order bases (often also referred
to as minimal approximant bases) [4,12,37,38]. In what follows, wewrite |⃗s| for the sum of the entries
of a tuple s⃗ ∈ Nn with nonnegative entries.

Theorem 2.5. Let A ∈ K[x]m×n with m ≤ n and m ∈ Θ(n), and let s⃗ ∈ Nn be such that cdeg(A) ≤ s⃗
componentwise. Then, there exist deterministic algorithms which compute

(i) an s⃗-minimal kernel basis of A using O(nω
⌈s⌉) field operations,

(ii) a column basis of A using O(nω
⌈s⌉) field operations,

where s = |⃗s|/n is the average column degree of A.

2.3. The generic determinant degree bound

For a nonsingular n × n matrix A ∈ K[x]n×n, the degree of the determinant of A provides a good
measure of the size of the output H in the case of Hermite form computation. Indeed, if we denote by
δ⃗ = (δ1, . . . , δn) the degrees of the diagonal entries of H, then we have deg(det(A)) = δ1 + · · · + δn.
Since the diagonal entries are those of largest degree in their respective rows, we directly obtain that
H can be represented using n2

+ n|δ⃗| = n2
+ n deg(det(A)) field elements.

The size of the input A can be measured by several quantities, which differ in how precisely they
account for the distribution of the degrees in A. It is interesting to relate these quantities to the degree
of the determinant of A, since the latter measures the size of the output H. A first, coarse bound is

50 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

given by the maximum degree of the entries of the matrix: A can be represented by n2
+ n2 deg(A)

field elements. On the other hand, by definition of the determinant we have that det(A) has degree at
most n deg(A). A second, finer bound can be obtained using the average of the row degrees and of the
column degrees: the size of A in terms of field elements is at most n2

+ nmin(|rdeg(A)|, |cdeg(A)|).
Again we have the related bound

deg(det(A)) ≤ min(|rdeg(A)|, |cdeg(A)|).

An even finer bound on the size of A is given by the generic determinant bound, introduced in
[14, Section 6]. For A = [aij] ∈ K[x]n×n, this is defined as

D(A) = max
π∈Sn


1≤i≤n

deg(ai,πi)

where Sn is the set of permutations of {1, . . . , n}, and where

deg(p) =


0 if p = 0

deg(p) if p ≠ 0.

By definition, we have the inequalities

deg(det(A)) ≤ D(A) ≤ min(|rdeg(A)|, |cdeg(A)|) ≤ n deg(A),

and it is easily checked that A can be represented using n2
+ 2nD(A) field elements.

Thus in Hermite form computation both the input and the output have average degree in
O(D(A)/n) and can be represented using O(n2

⌈D(A)/n⌉) field elements. Furthermore D(A) gives a
more precise account of the degrees in A than the average row and column degrees, and an algorithm
with cost bound O(nω

⌈D(A)/n⌉) is always faster, sometimes significantly, than an algorithmwith cost
bound O(nω

⌈s⌉)where s is the average columndegree or the average rowdegree, let alone s = deg(A).

Remark 2.6. Let us justify why this can sometimes be significantly faster.We have seen thatD(A)/n is
bounded from above by both the average column degree and the average row degree of A. It turns out
that, in some important cases D(A)/nmay be substantially smaller than these averages. For example,
consider A with one row and one column of uniformly large degree d and all other entries of degree
0:

A =


[d] [d] · · · [d]
[d] [0] · · · [0]
...

...
. . .

...
[d] [0] · · · [0]

 ∈ K[x]n×n.

Here, the average row degree and the average column degree are both exactly d while the generic
determinant bound is d as well. Thus, here D(A)/n = d/n is much smaller than d = deg(A) =

min(|rdeg(A)|/n, |cdeg(A)|/n). For similar examples, we refer the reader to [14, Example 4] and
[42, equation (8)]. �

3. Determining the diagonal entries of a triangular form

In this sectionwe show how to determine the diagonal entries of a triangular form of a nonsingular
matrix A ∈ K[x]n×n with A having column degrees s⃗. Our algorithm makes use of fast kernel and
column bases computations.

As mentioned in the introduction, we consider unimodularly transforming A to

AU = B =


B1 0
∗ B2


(2)

which eliminates a top right block and gives two square diagonal blocks B1 and B2 in B. After this block
triangularization step, the matrix is now closer to being in triangular form. Applying this procedure

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 51

recursively toB1 andB2, until thematrices reach dimension 1, gives the diagonal entries of a triangular
formofA. These entries are unique up tomultiplication by a nonzero constant fromK, and in particular
making them monic yields the diagonal entries of the Hermite form of A.

In this procedure, a major problem is that the degrees in the unimodular multiplier U can be too
large for efficient computation. For example, the matrix

A =


1 0 0 · · · 0

−xd 1 0 · · · 0
0 −xd 1 · · · 0
...

. . .
. . .

. . . 0
0 · · · 0 −xd 1

 ∈ K[x]n×n

of degree d > 0 is unimodular and hence its Hermite form is the identity. However the corresponding
unimodular multiplier is

U =


1 0 0 · · · 0
xd 1 0 · · · 0
x2d xd 1 · · · 0
...

. . .
. . .

. . . 0
x(n−1)d

· · · x2d xd 1

 ,

with the sum of the degrees in U being in Θ(n3d), beyond our target cost O(nωd).

3.1. Fast block elimination

Our approach is to make use of fast kernel and column basis methods to efficiently compute the
diagonal blocks B1 and B2 while at the same time avoiding the computation of all of U.

Partition A =


Au
Ad


, with Au and Ad consisting of the upper ⌈n/2⌉ and lower ⌊n/2⌋ rows of A,

respectively. Then both upper and lower parts have full-rank since A is assumed to be nonsingular.
By partitioning U =


Uℓ Ur


, where the column dimension of Uℓ matches the row dimension of Au,

then A · U = B becomes
Au
Ad

 
Uℓ Ur


=


B1 0
∗ B2


.

Notice that the matrix B1 is nonsingular and is therefore a column basis of Au. As such this can be
efficiently computed as mentioned in Theorem 2.5. In order to compute B2 = AdUr , notice that the
matrix Ur is a right kernel basis of Au, which makes the top right block of B zero.

The following lemma states that the kernel basis Ur can be replaced by any other kernel basis of
Au thus giving another unimodular matrix that also works.

Lemma 3.1. Partition A =


Au
Ad


and suppose B1 is a column basis of Au and N a kernel basis of Au. Then

there is a unimodular matrix U =

∗ N


such that

AU =


B1 0
∗ B2


,

where B2 = AdN. If A is square and nonsingular, then B1 and B2 are also square and nonsingular.

Proof. This follows from [39, Lemma 3.1]. �

Note that we do not compute the blocks represented by the symbol ∗. Thus Lemma 3.1 allows
us to determine B1 and B2 independently without computing the unimodular matrix. This procedure
for computing the diagonal entries is presented in Algorithm 1. Formally the cost of this algorithm is
given in Proposition 3.3.

52 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

Algorithm 1 HermiteDiagonal(A)

Input: A ∈ K[x]n×n nonsingular.
Output: d ∈ K[x]n the list of diagonal entries of the Hermite normal form of A.
1: if n = 1 then
2: write A = λd with λ ∈ K and d ∈ K[x] monic;
3: return d;
4: end if
5: Partition A :=


Au
Ad


, where Au consists of the top ⌈n/2⌉ rows of A;

6: B1 := ColumnBasis(Au);
7: N := MinimalKernelBasis(Au, cdeg(A));
8: B2 := AdN;
9: d1 := HermiteDiagonal(B1);

10: d2 := HermiteDiagonal(B2);
11: return [d1, d2];

3.2. Computational cost and example

Before giving a cost bound for our algorithm, let us observe its correctness on an example.

Example 3.2. Let

A =

 6x + 1 2x3 + x2 + 6x + 1 3
4x5 + 5x4 + 4x2 + x 6x5 + 5x4 + 2x3 + 4 x4 + 5x3 + 6x2 + 5x

2 2x5 + 5x4 + 5x3 + 6x2 6

 ,

working over Z7[x]. Considering the matrix Au formed by the top two rows of A, then a column basis
B1 and kernel basis N of Au were given in Example 2.4. If Ad denotes the bottom row of A, then this
gives diagonal blocks

B1 =


5x + 5 1

3 1


and

B2 = AdN =

x9 + 2x8 + x7 + 4x6 + 6x5 + 4x4 + 3x3 + 3x2 + 4x


.

Recursively computing with B1, we obtain a column basis and kernel basis of the top row B1,u of B1,
as

B̃1 =

1


and Ñ =


1

2x + 2


.

If B1,d denote the bottom row of B1, we get B̃2 = B1,d Ñ =

2x + 5


, which gives the second diagonal

block from B1. Thuswe have the diagonal entries of a triangular form of B1. On the other hand, since B2
is already a 1×1matrixwedonot need to do any extrawork. As a resultwehave thatA is unimodularly
equivalent to1

∗ 2x + 5
∗ ∗ x9 + 2x8 + x7 + 4x6 + 6x5 + 4x4 + 3x3 + 3x2 + 4x

 ,

giving, up to making them monic, the diagonal entries of the Hermite form of A. �

Proposition 3.3. Algorithm 1 costs O(nω
⌈s⌉) field operations to compute the diagonal entries of the

Hermite normal form of a nonsingular matrix A ∈ K[x]n×n, where s = |cdeg(A)|/n is the average column
degree of A.

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 53

Proof. The three main operations are computing a column basis of Au, computing a kernel basis N of
Au, and multiplying the matrices AdN. Let s⃗ denote the column degree of A and set ξ = |⃗s|, an integer
used to measure size for our problem.

For the column basis computation, by Theorem 2.5 (see also [39, Theorem 5.6]) we know that a
column basis B1 of Au can be computed with a cost of O(nω

⌈s⌉), where s = ξ/n. Furthermore, the
sum of the column degrees of the computed B1 is bounded by the sum of the column degrees of Au
(see [39], in particular the proof of Lemma 5.5 therein). Thus, since cdeg(Au) ≤ s⃗ componentwise, the
sum of the column degrees of B1 is at most ξ .

Similarly, according to Theorem 2.5 (see also [41, Theorem 4.1]), computing an s⃗-minimal kernel
basis N of Au costs O(nω

⌈s⌉) operations, and the sum of the s⃗-column degrees of the output kernel
basis N is bounded by ξ [41, Theorem 3.4].

For the matrix multiplication AdN, we have that the sum of the column degrees of Ad and the
sum of the s⃗-column degrees of N are both bounded by ξ . Therefore Theorem 2.1 applies and the
multiplication can be done with a cost of O(nω

⌈s⌉). Furthermore, since the entries of s⃗ bound the
corresponding column degrees of Ad, according to [41, Lemma 3.1], we have that the column degrees
of B2 = AdN are bounded by the s⃗-column degrees of N. In particular, the sum of the column degrees
of B2 is at most ξ .

If we let the cost of Algorithm 1 be g(n) for an input matrix of dimension n then

g(n) ∈ O(nω
⌈s⌉) + g(⌈n/2⌉) + g(⌊n/2⌋).

As s = ξ/n depends on n we use O(nω
⌈s⌉) = O(nω(s + 1)) = O(nω−1ξ + nω) with ξ not depending

on n. Then we solve the recurrence relation as

g(n) ∈ O(nω−1ξ + nω) + g(⌈n/2⌉) + g(⌊n/2⌋)

⊆ O(nω−1ξ + nω) + 2g(⌈n/2⌉)

⊆ O(nω−1ξ + nω) = O(nω
⌈s⌉). �

In this cost bound, we do not detail the logarithmic factors because it is not clear to us for the
moment how many logarithmic factors arise from the calls to the kernel basis and column basis
algorithms of [41,39], where they are not reported. Yet, from the recurrence relation above, it can be
observed that no extra logarithmic factorwill be introduced ifω > 2,while an extra factor logarithmic
in nwill be introduced if ω = 2.

4. Efficient determinant computation

In this section, we showhow to recursively and efficiently compute the determinant of a nonsingu-
lar matrix A ∈ K[x]n×n having column degrees s⃗. Our algorithm follows a strategy similar to the recur-
sive block triangularization in Section 3,making use of fast kernel basis and columnbasis computation.

Indeed, after unimodularly transforming A to

AU = B =


B1 0
∗ B2


as in Eq. (2), the determinant of A can be computed as

det(A) =
det(B)

det(U)
=

det(B1) det(B2)

det(U)
, (3)

which requires us to first compute det(B1), det(B2), and det(U). The same procedure can then be
applied to compute the determinant of B1 and the determinant of B2. However, as U is unimodular
we will handle its determinant differently. This can be repeated recursively until the dimension
becomes 1.

Onemajor obstacle for efficiency of this approach is that we do want to compute the scalar det(U),
and as noted in Section 3, the degrees of the unimodular matrix U can be too large for efficient
computation. To sidestep this issue, we will show that det(U) can be computed with only partial

54 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

knowledge of the matrix U. Combining this with the method of Section 3 to compute the matrices
B1 and B2 without computing all of B and U, we obtain an efficient recursive algorithm.

Remark 4.1. In some cases, the computation of the determinant is easily done from the diagonal
entries of a triangular form. Indeed, let A ∈ K[x]n×n be nonsingular and assume that we have
computed the diagonal entries h11, . . . , hnn of its Hermite form. Then, det(A) = λh11 · · · hnn
for some nonzero constant λ ∈ K. If the constant coefficient of h11 · · · hnn is nonzero, we can
retrieve λ by computing the constant coefficient of det(A), which is found by K-linear algebra
using O(nω) operations since det(A)(0) = det(A(0)). More generally, if we know α ∈ K such
that h11(α) · · · hnn(α) ≠ 0, then we can deduce det(A) efficiently. Yet, this does not lead to a fast
deterministic algorithm in general since it may happen that det(A)(α) = 0 for all field elements α, or
that finding α with h11(α) · · · hnn(α) ≠ 0 is a difficult task. �

We now focus on computing the determinant of U, or equivalently, the determinant of V = U−1.
The column basis computation from [39] for computing the m × m diagonal block B1 also gives Ur ,
the matrix consisting of the right (n − m) columns of U, which is a right kernel basis of Au. In fact,
this column basis computation also gives a right factor multiplied with the column basis B1 to give Au.
The following lemma shows that this right factor coincides with the matrix Vu consisting of the topm
rows of V. The column basis computation therefore gives both Ur and Vu with no additional work.

Lemma 4.2. Let m be the dimension of B1. The matrix Vu ∈ K[x]m×n satisfies B1Vu = Au if and only if
Vu is the submatrix of V = U−1 formed by its top m rows.
Proof. The proof follows directly from

BV =


B1 0
∗ B2

 
Vu
Vd


=


Au
Ad


= A. �

While the determinant of V or the determinant of U is needed to compute the determinant of A, a
major problem is that we do not know Uℓ or Vd, which may not be efficiently computed due to their
possibly large degrees. This means we need to compute the determinant of V or U without knowing
the complete matrix V or U. The following lemma shows how this can be done using just Ur and Vu,
which are obtained from the computation of the column basis B1.

Lemma 4.3. Let U =

Uℓ Ur


and A satisfy, as before,

AU =


Au
Ad

 
Uℓ Ur


=


B1 0
∗ B2


= B,

where the row dimension of Au, the column dimension of Uℓ, and the dimension of B1 arem. Let V =


Vu
Vd


be the inverse of U with m rows in Vu and U∗

ℓ ∈ K[x]n×m be a matrix such that U∗
=


U∗

ℓ Ur

is

unimodular. Then VuU∗

ℓ is unimodular and

det(A) =
det(B) det(VuU∗

ℓ)

det(U∗)
.

Proof. Since det(A) = det(B) det(V), we just need to show that det(V) = det(VuU∗

ℓ)/ det(U∗). This
follows from

det(V) det(U∗) = det(VU∗)

= det


Vu
Vd

 
U∗

ℓ Ur


= det


VuU∗

ℓ 0
∗ I


= det(VuU∗

ℓ).

In particular det(VuU∗

ℓ) is a nonzero constant and thus VuU∗

ℓ is unimodular. �

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 55

Lemma 4.3 shows that the determinant of V can be computed using Vu, Ur , and a unimodular
completion U∗ of Ur . In fact, this can be mademore efficient still by noticing that since we are looking
for a constant determinant, the higher degree parts of the matrices do not affect the computation.
Indeed, if U ∈ K[x]n×n is unimodular, then one has

det(U) = det(U mod x) = det(U(0)) (4)

since

det(U mod x) = det(U(0)) = det(U)(0) = det(U) mod x = det(U).

Eq. (4) allows us to use just the degree zero coefficient matrices in the computation. Hence
Lemma 4.3 can be improved as follows.

Lemma 4.4. Let A, U =

Uℓ Ur


, and V =


Vu
Vd


be as before. Let Ur = Ur mod x and Vu = Vu mod x

be the constant matrices of Ur and Vu, respectively. Let U∗

ℓ ∈ Kn×m be a matrix such that U∗
=


U∗

ℓ Ur


is nonsingular. Then

det(A) =
det(B) det(VuU∗

ℓ)

det(U∗)
.

Proof. Suppose U∗

ℓ ∈ K[x]n×m is such that U∗

ℓ = U∗

ℓ mod x and U∗
=


U∗

ℓ Ur

is unimodular. Using

Lemma 4.3 and Eq. (4), we have that VuU∗

ℓ is unimodular with VuU∗

ℓ = VuU∗

ℓ mod x and thus

det(A) = det(B) det(VuU∗

ℓ)/ det(U∗) = det(B) det(VuU∗

ℓ)/ det(U∗).

Let us now show how to construct such a matrix U∗

ℓ . Let W
∗

ℓ ∈ K[x]n×m be any matrix such that
W∗

=

W∗

ℓ Ur

is unimodular and let W ∗

ℓ denote its constant term W ∗

ℓ = W∗

ℓ mod x. It is easily
checked that

W ∗

ℓ Ur
−1 

U∗

ℓ Ur


=


Tu 0
Td I


for some nonsingular Tu ∈ Km×m and some Td ∈ Kn−m×m. Define thematrixU∗

ℓ = W∗

ℓ


Tu
Td


in K[x]n×m.

On the one hand, we have that the matrix U∗
=


U∗

ℓ Ur


= W∗


Tu 0
Td I


is unimodular. On the other

hand, by construction we have that U∗

ℓ mod x = W ∗

ℓ


Tu
Td


= U∗

ℓ . �

Thus Lemma 4.4 requires us to compute U∗

ℓ ∈ Kn×m a matrix such that U∗
=


U∗

ℓ Ur

is

nonsingular. This can be obtained from the nonsingular matrix that transforms Vu to its reduced
column echelon form computed using the Gauss Jordan transform algorithm from [28] with a cost
of O(nmω−1) field operations.

We nowhave all the ingredients needed for computing the determinant ofA. A recursive algorithm
is given in Algorithm 2, which computes the determinant of A as the product of the determinant
of V and the determinant of B. The determinant of B is computed by recursively computing the
determinants of its diagonal blocks B1 and B2.

Proposition 4.5. Algorithm 2 costs O(nω
⌈s⌉) field operations to compute the determinant of a

nonsingular matrix A ∈ K[x]n×n, where s is the average column degree of A.

Proof. From Lemma 3.1 and Proposition 3.3 the computation of the two diagonal blocks B1 and
B2 costs O(nω

⌈s⌉) field operations. As mentioned above, computing U∗

l at Step 6 of the algorithm
costs O(nω) operations. Step 7 involves only constant matrices so that dV can be computed O(nω).
Finally, det(B1) and det(B2) are computed recursively and multiplied. Since these are two univariate
polynomials of degree at most deg(det(A)) ≤ ξ = ns, their product dB is obtained in O(ξ) ⊂O(nω

⌈s⌉) operations.
Therefore, the recurrence relation for the cost of the Algorithm 2 is the same as that in the proof of

Proposition 3.3, and the total cost is O(nω
⌈s⌉). �

56 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

Algorithm 2 determinant(A)

Input: A ∈ K[x]n×n, nonsingular.
Output: the determinant of A.
1: if n = 1 then
2: return A;
3: end if
4:


Au
Ad


:= A, with Au consisting of the top ⌈n/2⌉ rows of A;

5: B1,Ur ,Vu := ColumnBasis(Au);
Note: Here ColumnBasis() also returns the kernel basis Ur
and the right factor Vu such that Au = B1Vu.

6: B2 := AdUr ;
7: Ur := Ur mod x; Vu := Vu mod x;
8: Compute a matrix U∗

ℓ ∈ Kn×⌈n/2⌉ such that U∗
=


U∗

ℓ Ur

is nonsingular;

9: dV := det(VuU∗

ℓ)/ det(U∗) (element of K);
10: dB := determinant(B1)determinant(B2);
11: return dVdB;

Proposition 4.5 can be further improved using the following result from [14, Corollary 3].

Proposition 4.6. Let A ∈ K[x]n×n be nonsingular. Using no operation in K, one can build a matrix
Â ∈ K[x]n̂×n̂ such that

(i) n ≤ n̂ < 3n and deg(Â) ≤ ⌈D(A)/n⌉,
(ii) the determinant of A is equal to the determinant of Â.

This reduction, combined with our result in Proposition 4.5, proves Theorem 1.1.

Example 4.7. In order to observe the correctness of the algorithm, let

A =


−x + 2 −2x − 3 3x3 + x2 −x + 2 −3x5 − x4

−x −2 3x3 −x −3x5

−2 x + 3 2 −2 −2x2

0 1 −3x2 − 2 −2x2 − 1 x4 + x2

0 2 3 −3x2 −2x4 − 3x2 + 3


working over Z7[x]. If Au denotes the top three rows of A, then we have a column basis

B1 =

−x + 2 −2x − 3 3x3 + x2

−x −2 3x3

−2 x + 3 2


and a minimal kernel basis

Ur =


3 0
0 0
0 x2

−3 0
0 1


for Au. The second block diagonal is then given by

AdUr =


x2 − 3 −2x4 − x2

−2x2 −2x4 + 3


.

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 57

The computation of the column basis B1 also gives the right factor

Vu =

1 0 0 1 0
0 1 0 0 0
0 0 1 0 −x2


and so the constant term matrices are then

Ur =


3 0
0 0
0 0

−3 0
0 1

 and Vu =

1 0 0 1 0
0 1 0 0 0
0 0 1 0 0



with Gaussian–Jordan elimination used to find a nonsingular completion of Ur as

U∗

ℓ =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 .

The determinant of U is then computed as

dV =
det(VuU∗

ℓ)

det(U∗)
= −

1
3

= 2

where we recall that U∗
= [U∗

ℓ Ur]. The determinants of B1 and B2 are then computed recursively. In
the case of B1 a minimal kernel basis and column basis are given by

Ur,1 =

3x2

0
1

 , B1,1 =


−x + 2 0

−x 2x − 2


, and Vu,1 =


1 2 −3x2

0 1 0


.

This gives the remaining diagonal block as B1,2 =

x2 + 2


. The corresponding constant termmatrices

Ur,1 and Vu,1 and nonsingular completion U∗

ℓ,1 are then given by

Ur,1 =

0
0
1


, Vu,1 =


1 2 0
0 1 0


, and U∗

ℓ,1 =

1 0
0 1
0 0


,

which gives dV1 = 1. Hence det(B1) = (−x + 2)(2x − 2)(x2 + 2). A similar argument gives
det(B2) = (x2 − 3)(x4 + 3) and hence

det(A) = dV det(B1) det(B2) = 3x10 − 2x9 + 3x8 + 2x7 − x6 − x5 + x4 − x3 − 2x2 + x − 3. �

5. Fast computation of the Hermite form

In Section 3, we have shown how to efficiently determine the diagonal entries of the Hermite
normal form of a nonsingular input matrix A ∈ K[x]n×n. One then still needs to determine the
remaining entries for the complete Hermite form H of A.

Here, we observe that knowing the diagonal degrees of H allows us to use partial linearization
techniques [14, Section 6] to reduce to the case of computing a column reduced form of A for an
almost uniform shift. Along with the algorithm in Section 3, this gives an algorithm to compute the
Hermite form of A in O(nω deg(A)) field operations using fast deterministic column reduction [14].

58 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

5.1. Hermite form via shifted column reduction

It is known that the Hermite form H of A is a shifted reduced form of A for a whole range of shifts.
Without further information on the degrees in H, one appropriate shift is

h⃗ = (n(n − 1)d, n(n − 2)d, . . . , nd, 0) (5)

where d = deg(A) (cf. [7, Lemma 2.6]). Note that this shift has a large amplitude, namely max(h⃗) −

min(h⃗) ∈ Θ(n2d). Unfortunately we are not aware of a deterministic shifted reduction algorithm that
would compute an h⃗-reduced form of A in O(nωd) field operations.

Now, let us consider the degrees δ⃗ = (δ1, . . . , δn) of the diagonal entries ofH. Thenwe have thatH
is a−δ⃗-column reduced formofA and, in addition, thatH can be easily recovered fromany−δ⃗-column
reduced form of A. More precisely, suppose that we know δ⃗, for example thanks to the algorithm in
Section 3. Then,we claim thatH can be computed as follows,where µ⃗ = (max(δ⃗), . . . ,max(δ⃗)) ∈ Nn:

xµ⃗−δ⃗ A reduction
−−−−→ xµ⃗−δ⃗ R normalization

−−−−−−−→ H = R · lm
−δ⃗(R)−1

whereR is any−δ⃗-column reduced form ofA. To show this, wewill rely on the following consequence
of [27, Lemma 17].

Lemma 5.1. Let A and B be column reduced matrices in K[x]n×n with uniform column degree (d, . . . , d),
for some d ∈ N. If A and B are right-unimodularly equivalent then

A · lm(A)−1
= B · lm(B)−1.

Proof. ThematrixA is column reducedwith uniform column degree (d, . . . , d). As suchA ·lm(A)−1 is
its Popov form according to [27, Lemma17] (i.e. its leading coefficientmatrix is the identity). Similarly,
B · lm(B)−1 is the Popov form of B in this case.We recall that the Popov form is a canonical form under
right-unimodular equivalence for nonsingular matrices in K[x]n×n; for a general definition we refer
the reader to [20]. Thus, since A and B are right-unimodularly equivalent, the uniqueness of the Popov
form implies A · lm(A)−1

= B · lm(B)−1. �

As we often wish to apply Lemma 5.1 with shifts we also include the following.

Lemma 5.2. Let s⃗ ∈ Zn be a shift, and let A and B be s⃗-column reduced matrices in K[x]n×n with uniform
s⃗-column degree (d, . . . , d), for some d ∈ Z. If A and B are right-unimodularly equivalent then

A · lms⃗(A)−1
= B · lms⃗(B)−1.

Proof. We simply replace A and B by xs⃗ A and xs⃗ B in the previous proof. �

In addition, since the Hermite form of A is the shifted Popov form of A for the shift h⃗ in Eq. (5), we
can state the following specific case of [19, Lemma 4.1].

Corollary 5.3. Let A ∈ K[x]n×n be nonsingular and δ⃗ ∈ Nn denote the degrees of the diagonal entries
of the Hermite form H of A. If R is a −δ⃗-column reduced form of A, then R has −δ⃗-column degree
cdeg

−δ⃗(R) = 0⃗, row degree rdeg(R) = δ⃗, and H = R · lm
−δ⃗(R)−1.

Proof. Note that lm
−δ⃗(H) is the identity matrix, so that H is a −δ⃗-reduced form of A. Furthermore,

H has −δ⃗-column degree (0, . . . , 0) which implies that cdeg
−δ⃗(R) = 0⃗ and thus rdeg(R) ≤ δ⃗

componentwise. By Lemma 5.2 we obtainH = R · lm
−δ⃗(R)−1. In addition, wemust have rdeg(R) = δ⃗,

since otherwise lm
−δ⃗(R) would have a zero row. �

Thus we can start with the matrix xµ⃗−δ⃗ A, column reduce this matrix and then normalize it to
get our normal form. However xµ⃗−δ⃗ A may have some entries of large degree. Indeed, max(δ⃗) may
be as large as deg(det(A)) while having min(δ⃗) = 0, in which case the degree of xµ⃗−δ⃗ A is at least
deg(det(A)). For efficient deterministic shifted column reduction wewould need the degree of xµ⃗−δ⃗ A
to be in O(deg(A)).

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 59

5.2. Reducing the amplitude of δ⃗ using partial linearization

In the strategy presented in the previous subsection, the main obstacle to obtaining an efficient
algorithm is that the diagonal degrees of H might have a large amplitude. In this subsection, we will
showhow partial linearization techniques allow us to build amatrixLδ⃗(A) such thatH can be obtained
from a −d⃗-reduced form of Lδ⃗(A) for a shift d⃗ that has a small amplitude.

A key fact is that the average of the degrees δ⃗ is controlled. Namely, denoting by δ the average of
δ⃗, we have that δ ≤ deg(A). Indeed, the product of the diagonal entries of H is det(H) which, up to a
constant multiplier, is the same as det(A) and thus the degree of this product is

nδ = δ1 + · · · + δn = deg(det(A)) ≤ n deg(A).

In order to reduce the amplitude of δ⃗, one can split the entries that are larger than δ into several entries
each at most δ. From this we obtain another tuple d⃗ = (d1, . . . , dn) with max(d⃗) − min(d⃗) ≤ δ ≤

deg(A) and having lengthn less than 2n.
Most importantly for our purpose, there is a corresponding transformation of matrices which

behaves well with regards to shifted reduction. Namely, this transformation is a type of row partial
linearization [14, Section 6]. Let us consider the case of the Hermite formH ofA. For each i, we consider
the row i ofH. If its degree δi is larger than δ then the row is expanded into αi rows of degree atmost δ.
This yields an×nmatrixH of degree atmost δ. Furthermore, certain elementary columns are inserted
into H resulting in a square nonsingular matrix Lδ⃗(H) which preserves fundamental properties of H
(for example, its Smith factors and its determinant). ThematrixLδ⃗(H) has dimensionn×n and degree
at most δ, which in this case is the average row degree of H.

Consider for example a 4 × 4 matrix H in Hermite form with diagonal entries having degrees
(2, 37, 7, 18). Such a matrix has degree profile

H =

 (2)
[36] (37)
[6] [6] (7)
[17] [17] [17] (18)

 ,

where [d] stands for an entry of degree at most d and (d) stands for a monic entry of degree exactly d.
Here H has row degree δ⃗ = (2, 37, 7, 18).

Let us now construct the row partial linearization Lδ⃗(H). Considering the upper bound δ =

1+⌊(2+37+7+18)/4⌋ = 17 on the average row degree ofH, we will split the high-degree rows of
H in several rows having degree less than δ. The first row is unchanged; the second row is expanded
into two rows of degree 16 and one row of degree 3; the third row is unchanged; and finally the last
row is expanded into one row of degree 16 and one row of degree 1. The matrix with expanded rows
is then

H =



(2)
[16] [16]
[16] [16]
[2] (3)
[6] [6] (7)
[16] [16] [16] [16]
[0] [0] [0] (1)

 .

Note that H andH are related by E δ⃗ ·H = H, where E δ⃗ is the so-called expansion–compressionmatrix

E δ⃗ =


1 0 0 0 0 0 0
0 1 x17 x34 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 x17

 .

60 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

We can insert elementary columns inH by

Lδ⃗(H) =



(2)
[16] x17 [16]
[16] −1 x17 [16]
[2] −1 (3)
[6] [6] (7)
[16] [16] [16] x17 [16]
[0] [0] [0] −1 (1)


which indicate the row operations needed to keep track of the structure of the original rows ofH. Now
the reduced tuple of row degrees d⃗ = (2, 17, 17, 3, 7, 17, 1) has as its largest entry the average row
degree δ = 17 of H. Furthermore, H can be reconstructed from Lδ⃗(H), without field operations, as a
submatrix of E δ⃗ · Lδ⃗(H).

Remark 5.4. This partial linearization differs from that of [14, Theorem 10] in that

• it operates on the rows rather than the columns,
• it scales the inserted elementary columns by −1 compared to the elementary rows in [14], and
• it keeps the linearized rows together. This reflects the fact that the expansion–compressionmatrix

E δ⃗ is a column permutation of the one in the construction of [14], which would be
1 0 0 0 0 0 0
0 1 0 0 x17 x34 0
0 0 1 0 0 0 0
0 0 0 1 0 0 x17


in the example above.

Our motivation for these changes is that the partial row linearization we use here preserves shifted
reduced and shifted Popov forms. This will be detailed below. �

Formally we define the partial linearization for a matrix A and a tuple δ⃗, with the latter not
necessarily related to rdeg(A). Indeed, we will apply this in a situation where the tuple δ⃗ is formed by
the diagonal degrees of the Hermite form of A.

Definition 5.5. Let A ∈ K[x]n×n, δ⃗ = (δ1, . . . , δn) ∈ Nn and set

δ = 1 +


(δ1 + · · · + δn)

n


.

For any i ∈ {1, . . . , n} write δi = (αi − 1)δ + βi with αi = ⌈δi/δ⌉ and 1 ≤ βi ≤ δ if δi > 0, while
αi = 1 and βi = 0 if δi = 0. Setn = α1 + · · · + αn and define d⃗ ∈ Nn as

d⃗ = (δ, . . . , δ, β1  
α1

, . . . , δ, . . . , δ, βn  
αn

) (6)

as well as the row expansion–compression matrix E δ⃗ ∈ K[x]n×n as

E δ⃗ =

1 xδ
· · · x(α1−1)δ

. . .

1 xδ
· · · x(αn−1)δ

 . (7)

LetA ∈ K[x]n×n be such that A = E δ⃗ ·Awith all the rows ofA having degree at most δ except possibly
at indices {α1 + · · · + αi, 1 ≤ i ≤ n}. Define Lδ⃗(A) ∈ K[x]n×n as:

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 61

(i) for 1 ≤ i ≤ n, the column α1 + · · · + αi of Lδ⃗(A) is the column i ofA;
(ii) for 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ αi+1 − 1, the column α1 + · · · + αi + j of Lδ⃗(A) is the column

[0, . . . , 0, xδ, −1, 0, . . . , 0]T ∈ K[x]n×1

with the entry xδ at row index α1 + · · · + αi + j.

It follows from this construction that anymatrixA ∈ K[x]n×n is the submatrix ofE δ⃗ · Lδ⃗(A) formed
by its columns at indices {α1 + · · · + αi, 1 ≤ i ≤ n}.

It is important to note that this transformation has good properties regarding the computation of
−δ⃗-shifted reduced forms of A, where δ⃗ is the tuple of diagonal degrees of the Hermite form of A.
Indeed, it transforms any −δ⃗-reduced form R of A into a −d⃗-reduced form Lδ⃗(R) of the transformed
Lδ⃗(A). In other words, we have the following diagram:

xµ⃗−δ⃗ A reduction
−−−−−−→ −δ⃗-reduced form of A

| |

partial linearization partial linearization
↓ ↓

xm⃗−d⃗ Lδ⃗(A)
reduction

−−−−−−→ −d⃗-reduced form of Lδ⃗(A)

,

where m⃗ is the uniform tuple (max(d⃗), . . . ,max(d⃗)) of length n. In terms of efficiency, it is more
interesting to perform the reduction step on xm⃗−d⃗ Lδ⃗(A) with the shift −d⃗, rather than on A with
the shift −δ⃗. Indeed, using the fastest known deterministic reduction algorithm [14], the latter
computation uses O(nω(deg(A) + max(δ⃗))) field operations. On the other hand, the former is inO(nω(deg(A) + δ)), since max(d⃗) ≤ δ and deg(Lδ⃗(A)) ≤ deg(A). We recall that δ is close to the
average of δ⃗.

We state this formally in the following lemma. For the sake of presentation we postpone the proof
until later in Section 5.4.

Lemma 5.6. Let δ⃗ = (δ1, . . . , δn) ∈ Nn, and define d⃗ as in Eq. (6).

(i) If a matrix R ∈ K[x]n×n is −δ⃗-reduced with −δ⃗-column degree 0⃗, then Lδ⃗(R) is −d⃗-reduced with
−d⃗-column degree 0⃗.

(ii) If two matrices A and B in K[x]n×n are right unimodularly equivalent, then Lδ⃗(A) and Lδ⃗(B) are also
right unimodularly equivalent.

(iii) If A ∈ K[x]n×n is nonsingular, R is a −δ⃗-reduced form of A, and R has −δ⃗-column degree 0⃗, then
Lδ⃗(R) is a −d⃗-reduced form of Lδ⃗(A) with −d⃗-column degree 0⃗.

Our algorithm will first build Lδ⃗(A) and then find a −d⃗-reduced form R̂ for this new matrix. We
note that, for any −δ⃗-reduced form R of A, the matrix R̂ = Lδ⃗(R) is a suitable reduced form and, as
remarked earlier, has the property that it is easy to recover R. However, it is not the case that any R̂
computed by shifted reduction from Lδ⃗(A) will have the form R̂ = Lδ⃗(R). In order to solve this issue,
we will rely on normalization as in Lemma 5.2. This allows us to deduce Lδ⃗(H) from R̂, and then the
entries of H can be read off from those of Lδ⃗(H). Diagrammatically we have

xµ⃗−δ⃗ A reduction
−−−−−−→ xµ⃗−δ⃗ R normalization

−−−−−−−−→ H = R · lm
−δ⃗(R)−1

| |

partial linearization partial linearization
↓ ↓

xm⃗−d⃗ Lδ⃗(A)
reduction

−−−−−−→ xm⃗−d⃗ R̂ normalization
−−−−−−−−→ Lδ⃗(H) = R̂ · lm

−d⃗(R̂)−1

.

Corollary 5.7. Let A ∈ K[x]n×n be nonsingular and let δ⃗ = (δ1, . . . , δn) ∈ Nn denote the degrees of the
diagonal entries of the Hermite form H of A. Using the notation from Definition 5.5, we have that

62 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

(i) lm
−d⃗(Lδ⃗(H)) is the identity matrix,

(ii) if R̂ ∈ K[x]n×n is a −d⃗-reduced form of Lδ⃗(A), then Lδ⃗(H) = R̂ · lm
−d⃗(R̂)−1.

Proof. (i) follows from the construction of Lδ⃗(H). From Lemma 5.6 we have that Lδ⃗(H) is a
−d⃗-reduced form of A, so that (ii) follows from (i) and Lemma 5.2. �

In particular,H can be recovered as being the submatrix of E δ⃗ · R̂ lm
−d⃗(R̂)−1 formed by its columns

{α1 + · · · + αi, 1 ≤ i ≤ n}.

Example 5.8 (Reducing the Diagonal Degrees). Consider a matrix A ∈ K[x]4×4 such that its Hermite
form H has diagonal degrees δ⃗ = (2, 37, 7, 18). As shown earlier,

Lδ⃗(H) =



(2)
[16] x17 [16]
[16] −1 x17 [16]
[2] −1 (3)
[6] [6] (7)
[16] [16] [16] x17 [16]
[0] [0] [0] −1 (1)

 .

We see that d⃗ = (2, 17, 17, 3, 7, 17, 1) corresponds to the row degree of Lδ⃗(H), that this matrix has
−d⃗-column degree 0⃗ and that its −d⃗-leading matrix is the identity. In particular, it is −d⃗-reduced.
In addition, from (ii) of Lemma 5.6, Lδ⃗(H) and Lδ⃗(A) are right-unimodularly equivalent. As a result,
Lδ⃗(H) is a −d⃗-reduced form of Lδ⃗(A).

Let R̂ be any−d⃗-reduced formofLδ⃗(A). Then R̂ also has−d⃗-columndegree 0⃗, its−d⃗-leadingmatrix
is invertible, and its degree profile is

R̂ =



[2] [2] [2] [2] [2] [2] [2]
[17] [17] [17] [17] [17] [17] [17]
[17] [17] [17] [17] [17] [17] [17]
[3] [3] [3] [3] [3] [3] [3]
[7] [7] [7] [7] [7] [7] [7]
[17] [17] [17] [17] [17] [17] [17]
[1] [1] [1] [1] [1] [1] [1]

 .

While R̂ is generally not of the form Lδ⃗(R) for R some −δ⃗-reduced form of A, it still follows from
Lemma 5.2 that Lδ⃗(H) = R̂ · lm

−d⃗(R̂)−1. �

5.3. Algorithm and computational cost

The results in the previous subsection lead to Algorithm 3 for the computation of the Hermite
form H from A and δ⃗. Its main computational task is to compute a column reduced form of a matrix
of dimension O(n) and degree O(deg(A)) (Step 12). This can be done efficiently and deterministically
with the algorithm in [14, Section 8].

Proposition 5.9. Let A ∈ K[x]n×n be nonsingular, and let δ⃗ ∈ Nn be the degrees of the diagonal entries of
the Hermite form of A. On input A and δ⃗, Algorithm 3 computes the Hermite form of A using O(nω deg(A))
field operations.

Proof. The correctness of the algorithm follows directly from Corollary 5.7 and from the remark that
a matrix R ∈ K[x]n×n is −d⃗-column reduced if and only if D · R is column reduced (for the uniform
shift), where D is the diagonal matrix at Step 11.

Furthermore, we have deg(D) ≤ δ and deg(Lδ⃗(A)) ≤ max(deg(A), δ). Since δ = 1 + ⌊|δ⃗|/n⌋, and
as H is in Hermite form and δ⃗ are the degrees of its diagonal entries, we have |δ⃗| = deg(det(H)) =

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 63

Algorithm 3 HermiteKnownDegree(A, s⃗, δ⃗)

Input: A ∈ K[x]n×n a nonsingular matrix, δ⃗ = (δ1, . . . , δn) ∈ Nn the degrees of the diagonal entries
of the Hermite form of A.

Output: the Hermite form of A.
1: δ := 1 + ⌊(δ1 + · · · + δn)/n⌋;
2: for i ∈ {1, . . . , n} do
3: if δi > 0 then
4: αi := ⌈δ/δi⌉; βi := δi − (αi − 1)δ;
5: else
6: αi := 1; βi = 0;
7: end if
8: end for
9: n := α1 + · · · + αn and E δ⃗ ∈ Kn×n as in Eq. (7);

10: d⃗ = (d1, . . . , dn) as in Eq. (6);
11: D := Diag(xδ−d1 , . . . , xδ−dn);
12: DR̂ := column reduced form of D · Lδ⃗(A); {using the algorithm in [15]}
13: Ĥ := E δ⃗ · R̂ · lm

−d⃗(R̂)−1;
14: H := the submatrix of Ĥ formed by its columns {α1 + · · · + αi, 1 ≤ i ≤ n}
15: return H;

deg(det(A)) ≤ n deg(A). Thus, δ ≤ 1 + deg(A) and the degrees of D and Lδ⃗(A) are both at most
1 + deg(A). Their product D · Lδ⃗(A) therefore has degree at most 2 + 2 deg(A). On the other hand,
these matrices have dimension

n =

n
i=1

αi ≤

n
i=1

(1 + δi/δ) = n +
|δ⃗|

1 + ⌊|δ⃗|/n⌋
< 2n.

As a result, Step 12 uses O(nω deg(A)) field operations [14, Theorem 18].
Concerning Step 13, from Corollary 5.7 the matrix R̂ has row degree d⃗, and lm

−d⃗(R̂)−1 is a constant
matrix. Thus the computation of R̂ · lm

−d⃗(R̂)−1 can be performed via complete linearization of the
rows of R̂, using O(nω

⌈|d⃗|/n⌉) operations. This concludes the proof since |d⃗| = |δ⃗| = deg(det(H)) =

deg(det(A)) ≤ n deg(A). �

Combining Algorithms 1 and 3 results in a deterministic algorithm for computing theHermite form
of A in O(nω deg(A)) field operations.

Example 5.10. Let K = Z7 be the field with 7 elements, and consider the matrix A ∈ K[x]3×3 from
Example 3.2:

A =

 6x + 1 2x3 + x2 + 6x + 1 3
4x5 + 5x4 + 4x2 + x 6x5 + 5x4 + 2x3 + 4 x4 + 5x3 + 6x2 + 5x

2 2x5 + 5x4 + 5x3 + 6x2 6

 .

According to Example 3.2 the diagonal entries of the Hermite form of A have degrees δ⃗ = (0, 1, 9).
Note that δ⃗ is non-uniform, and max(δ⃗) − min(δ⃗) = deg(det(A)) − 1.

Using the column reduction algorithm in [14] to compute a −δ⃗-reduced form of A would imply
working on the matrix xµ⃗−δ⃗ A = x(9,8,0) A, which has degree 13 = deg(det(A)) + deg(A) − 2. In this
case partial linearization gives us a 5 × 5 matrix Lδ⃗(A) and a shift d⃗ such that deg(Lδ⃗(A)) ≤ deg(A)

and max(d⃗) − min(d⃗) ≤ deg(A). In particular, the matrix xm⃗−d⃗ Lδ⃗(A) to be reduced has degree
8 ≤ 2 deg(A).

64 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

To see this, Definition 5.5 gives the parameters δ = 4, α⃗ = (1, 1, 3), β⃗ = (0, 1, 1), d⃗ =

(0, 1, 4, 4, 1), the expansion–compression matrix

E δ⃗ =

1 0 0 0 0
0 1 0 0 0
0 0 1 x4 x8

 ,

and finally

Lδ⃗(A) =


6x + 1 2x3 + x2 + 6x + 1 0 0 3

4x5 + 5x4 + 4x2 + x 6x5 + 5x4 + 2x3 + 4 0 0 x4 + 5x3 + 6x2 + 5x
2 5x3 + 6x2 x4 0 6
0 2x + 5 6 x4 0
0 0 0 6 0

 .

Computing a −d⃗-reduced form for Lδ⃗(A) gives

R̂ =


5 1 0 1 2
5 4x + 4 0 3x + 5 6x + 3

x3 + 6x2 + 4 3x4 + x3 + 6x2 x4 x3 + 5x2 + 4x + 3 6x4 + 2x3 + 3x2 + x + 6
3x3 + 4x2 + 6 4x4 + 4x3 + 4x + 5 6 x3 + 2x + 4 5x4 + 2x3 + 4x + 2

6 x 0 6 0

 .

Note that rdeg(R) = d⃗, and more precisely,

lm
−d⃗(R) =


5 1 0 1 2
0 4 0 3 6
0 3 1 0 6
0 4 0 0 5
0 1 0 0 0

 .

Normalizing R̂ via R̂ · lm
−d⃗(R)−1 gives

Lδ⃗(H) =


1 0 0 0 0
1 x + 6 0 0 0

3x3 + 4x2 + 5 4x3 + 5x2 + 6x + 4 x4 0 3x3 + 3x2 + 4x
2x3 + 5x2 + 4 2x3 + 3x2 + 3x 6 x4 x3 + 4x2 + 6x + 4

4 3 0 6 x + 2

 .

Performing the inverse linearization, by taking columns (1, 2, 5)ofE δ⃗·Lδ⃗(H), directly gives the entries
in the Hermite form of A:

H =

 1 0 0
1 x + 6 0
h31 h32 x9 + 2x8 + x7 + 4x6 + 6x5 + 4x4 + 3x3 + 3x2 + 4x


with

h31 = 4x8 + 2x7 + 5x6 + 4x4 + 3x3 + 4x2 + 5,

h32 = 3x8 + 2x7 + 3x6 + 3x5 + 4x3 + 5x2 + 6x + 4. �

5.4. Proof of Lemma 5.6

Let us now give the detailed proof of Lemma 5.6.
(i) Since R ∈ K[x]n×n is−δ⃗-reducedwith−δ⃗-column degree 0⃗, it has row degree δ⃗ since otherwise

the invertible matrix lm
−δ⃗(R) would have a zero row. We show that lm

−d⃗(Lδ⃗(R)) is a permutation of

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 65

the rows and columns of

lm

−δ⃗
(R) 0

0 I


∈ Kn×n. In particular, lm

−d⃗(Lδ⃗(R)) is invertible and thusLδ⃗(R)

is −d⃗-reduced.
Let us first observe it on an example. We consider the case δ⃗ = (2, 37, 7, 18). Then R has the

following degree profile,

R =

 [2] [2] [2] [2]
[37] [37] [37] [37]
[7] [7] [7] [7]
[18] [18] [18] [18]


with invertible −δ⃗-leading matrix. Following the construction in Definition 5.5, we have d⃗ =

(2, 17, 17, 3, 7, 17, 1) and

Lδ⃗(R) =



[2] [2] [2] [2]
[16] x17 [16] [16] [16]
[16] −1 x17 [16] [16] [16]
[3] −1 [3] [3] [3]
[7] [7] [7] [7]
[16] [16] [16] x17 [16]
[1] [1] [1] −1 [1]

 .

Observe that R has −d⃗-column degree at most 0⃗ componentwise, and that its −d⃗-leading matrix is

lm
−d⃗(Lδ⃗(R)) =



ℓ11 ℓ12 ℓ13 ℓ14
1

1
ℓ21 ℓ22 ℓ23 ℓ24
ℓ31 ℓ32 ℓ33 ℓ34

1
ℓ41 ℓ42 ℓ42 ℓ42

 ,

where (ℓij)1≤i,j≤4 = lm
−δ⃗(R). Since lm

−δ⃗(R) is invertible, lm
−d⃗(Lδ⃗(R)) is invertible as well.

Furthermore Lδ⃗(R) is −d⃗-reduced and that it has −d⃗-column degree 0⃗.

In the general case, by construction of Lδ⃗(R) one can check that lm
−d⃗(Lδ⃗(R)) is a matrix in Kn×n

such that

(a) its n×n submatrix with row and column indices in {α1 +· · ·+αi, 1 ≤ i ≤ n} is equal to lm
−δ⃗(R),

(b) its (n−n)×(n−n) submatrixwith rowand column indices in {1, . . . ,n}−{α1+· · ·+αi, 1 ≤ i ≤ n}
is equal to the identity matrix,

(c) its other entries are all zero.

This directly implies that lm
−d⃗(Lδ⃗(R)) is invertible. In addition by constructionLδ⃗(R) has−d⃗-column

degree at most 0⃗ componentwise. The fact that lm
−d⃗(Lδ⃗(R)) is invertible also implies that Lδ⃗(R) has

−d⃗-column degree exactly 0⃗.
(ii) Denote byT δ⃗ ∈ K[x]n×n−n the submatrix ofLδ⃗(A) formed by its columns at indices {α1+· · ·+

αi + j, 1 ≤ j ≤ αi+1 − 1, 0 ≤ i ≤ n − 1}. Up to a permutation of its columns, Lδ⃗(A) is then [T δ⃗
A].

In particular, E δ⃗ · Lδ⃗(A) is right-unimodularly equivalent to E δ⃗ [T δ⃗
A] = [0 A]. For the remainder

of this proof we will use the shorthand notation E δ⃗ · Lδ⃗(A) ≡ [0 A].

66 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

Define the matrix E ∈ K(n−n)×n whose row α1 + · · · + αi + j − i is the coordinate vector with 1 at
index α1 + · · · + αi + j + 1, for all 1 ≤ j ≤ αi+1 − 1 and 0 ≤ i ≤ n − 1. That is, we have


E
E δ⃗


=



0 1
. . .

1
. . .

0 1
. . .

1
1 xδ

· · · x(α1−1)δ

. . .

1 xδ
· · · x(αn−1)δ



.

By construction, the matrix U := E · T δ⃗ is upper triangular with diagonal entries −1, and thus
unimodular. As a result,

E
E δ⃗


Lδ⃗(A) ≡


E
E δ⃗

 
T δ⃗

A
=


U ∗

0 A


≡


I 0
0 A


.

Similarly, we have that


E
E

δ⃗


Lδ⃗(B) ≡


I 0
0 B


.

Since A ≡ B by assumption, we obtain


E
E

δ⃗


Lδ⃗(A) ≡


E
E

δ⃗


Lδ⃗(B). This implies thatLδ⃗(A) ≡ Lδ⃗(B)

since the matrix


E
E

δ⃗


is invertible (more precisely, its determinant is 1).

(iii) is a direct consequence of (i) and (ii).

6. Reduction to almost uniform degrees in Hermite form computation

Asmentioned in Section 2.3,we aimat a cost boundwhich involves the generic determinant bound.
In Section 3 we showed how to compute the diagonal entries of H in O(nω

⌈s⌉) operations, with s the
average column degree of the input matrix. However, this does not take into account the fact that the
degrees of its rows are possibly unbalanced. In Section 5, we were only able to obtain the cost boundO(nω deg(A)) for computing the remaining entries of H.

The goal of this section is to show that, applying results from [14, Section 6], one can give a
reduction from the general case of Hermite form computation to the case where the degree of the
input matrix A is in O(⌈D(A)/n⌉). This is stated formally in Proposition 6.1, after what we give two
complete examples to illustrate this reduction (Examples 6.2 and 6.3).

To get a rough idea of how the partial linearization in [14, Section 6] works and how it benefits
Hermite form computation, consider the matrix

A =


1 x39 + x
x x41 + 1


.

In this case the columndegrees of thematrix are quite unbalanced as 1 and 41 have an average column
degree of 21. However we can create a second matrix, of slightly larger dimension, as

B =

 1 0 −x22

x17 1 x
x19 x 1


which shares some nice properties with A. This matrix is constructed by dividing the third column
into its two x22-adic coefficients (rows 2 and 3) and then including an additional row (row 1) which

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 67

provides the single columnoperationwhichwould undo the division. Thus by construction thismatrix
is unimodularly equivalent to 1 0 0

x17 1 x39 + x
x19 x x41 + 1


and it is easily seen that the Hermite form of A will be given by the 2 × 2 trailing submatrix of the
Hermite form of B. As such we rely on the computation of the Hermite form of a matrix, not much
larger than the originalmatrix, but having the nice property that the degrees aremuchmore uniformly
distributed.

Proposition 6.1. Let A ∈ K[x]n×n be nonsingular. Using no operation in K, one can build a nonsingular
matrix B ∈ K[x]m×m such that

(i) n ≤ m < 3n and deg(B) ≤ ⌈D(A)/n⌉,
(ii) the Hermite form of A is the trailing principal n × n submatrix of the Hermite form of B.

Proof. The partial linearization used in [14, Corollary 3] takes A and constructs a matrix C ∈ K[x]m×m

with smoothed degrees having the properties: (a) C is a nonsingular matrix with m < 3n, (b)
deg(C) ≤ ⌈D(A)/n⌉ and (c) the principal n × n submatrix of C−1 is equal to A−1. Permuting the rows
and columns of this matrix C into

B =


0 Im−n
In 0


C


0 In

Im−n 0


∈ K[x]m×m,

we see that A−1 appears as the trailing n × n submatrix of B−1. We will prove that the Hermite form
of B has the shape


I 0
∗ H


, where H is the Hermite form of A.

Let T =


H1 0
∗ H2


be the Hermite form of B, where H1 ∈ K[x](m−n)×(m−n) and H2 ∈ K[x]n×n. We

can write H2 = AD, where the matrix D = A−1H2 has entries in K[x]. Indeed, by construction,

B−1T =


∗ ∗

∗ A−1

 
H1 0
∗ H2


=


∗ ∗

∗ A−1H2


is a (unimodular) matrix in K[x]m×m. On the other hand, according to [14, Corollary 5] we have
det(B) = det(A), and therefore

det(A) = λ det(T) = λ det(H1) det(H2) = λ det(H1) det(A) det(D)

where λ = det(B−1T)−1 is a nonzero constant fromK. Thus,H1 andD are both unimodular. Therefore,
since H1 is in Hermite form, it must be the identity matrix and, since H2 is in Hermite form and right-
unimodularly equivalent to A, it must be equal to H. �

For the details of how to build the matrix C using row and column partial linearization, we refer
the reader to [14, Section 6]. We give here two detailed examples (see also [14, Example 4]), written
with the help of our prototype implementation of the algorithms described in this paper.

Example 6.2. LetK be the finite fieldwith 997 elements. Using a computer algebra system,we choose
A ∈ K[x]4×4 with prescribed degrees and random coefficients from K. Instead of showing the entire
matrix let us only consider the degree profile which in this case is

A =

 [2] [10] [63] [5]
[75] [51] [95] [69]
[4] [5] [48] [7]
[10] [54] [75] [6]

 ,

where [d] indicates an entry of degree d. For the sake of presentation, we note that D(A) = 199 =

75 + 54 + 63 + 7; however, this quantity is not computed by our algorithm. Instead, to find which

68 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

degreeswewill use to partially linearize the columns ofA, we permute its rows and columns to ensure
that the diagonal degrees dominate the degrees in the trailing principal submatrices:0 1 0 0

0 0 0 1
0 0 1 0
1 0 0 0


 [2] [10] [63] [5]

[75] [51] [95] [69]
[4] [5] [48] [7]
[10] [54] [75] [6]


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0


  

π

=

[95] [51] [69] [75]
[75] [54] [6] [10]
[48] [5] [7] [4]
[63] [10] [5] [2]

 . (8)

Then, the diagonal degrees 95, 54, 7, 2 are used for column partial linearization; we remark that
95 + 54 + 7 + 2 = 158 ≤ D(A). Permuting back the rows and columns of A, we will partially
linearize its columns with respect to the degrees (2, 54, 95, 7) = (95, 54, 7, 2)π−1. Since the average
of these degrees is ⌈158/4⌉ = 40, the columns are linearized into (1, 2, 3, 1) columns, respectively.
That is, columns 1 and 4 of Awill not be affected, column 2 of Awill be expanded into 2 columns, and
column 3 of A will be expanded into 3 columns. Elementary rows are inserted at the same time to
reflect these column linearizations. Thus, we obtain a column linearized version of A as

Â =



[2] [10] [39] [5] 0 [23] 0
[75] [39] [39] [69] [11] [39] [15]
[4] [5] [39] [7] 0 [8] 0
[10] [39] [39] [6] [14] [35] 0
0 −x40 0 0 1 0 0
0 0 −x40 0 0 1 0
0 0 0 0 0 −x40 1

 .

In particular, we have

rdeg(Â) = (39, 75, 39, 39, 40, 40, 40),

whose average is ⌈312/7⌉ = 45. Now, we perform a partial linearization on the rows with respect
to their row degree. Only the second row has degree 75 > 45, and is therefore split into two rows;
inserting an elementary column accordingly, we obtain

C =



[2] [10] [39] [5] 0 [23] 0 0
[44] [39] [39] [44] [11] [39] [15] −x45

[4] [5] [39] [7] 0 [8] 0 0
[10] [39] [39] [6] [14] [35] 0 0
0 −x40 0 0 1 0 0 0
0 0 −x40 0 0 1 0 0
0 0 0 0 0 −x40 1 0

[30] 0 0 [24] 0 0 0 1


whose degree is 45. Finally, we verify that the Hermite form of


0 I4
I4 0


C


0 I4
I4 0


is


I4 0
∗ H


, with H

the Hermite form of A. Thus, we have transformed a Hermite form problem in dimensions 4 × 4 and
degree 95 into one in dimensions 8 × 8 but degree less than 50 = ⌈D(A)/4⌉. �

Example 6.3. Let K be the field with 7 elements, and consider the matrix from Example 3.2:

A =

 6x + 1 2x3 + x2 + 6x + 1 3
4x5 + 5x4 + 4x2 + x 6x5 + 5x4 + 2x3 + 4 x4 + 5x3 + 6x2 + 5x

2 2x5 + 5x4 + 5x3 + 6x2 6

 .

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 69

Here, D(A) = deg(det(A)) = 1 + 5 + 4 = 10. We consider a row- and column-permuted version of
the matrix A ensuring that the diagonal degrees are dominant, as we did in Example 6.2:0 1 0

1 0 0
0 0 1


A

0 1 0
1 0 0
0 0 1


  

π

=

 6x5 + 5x4 + 2x3 + 4 4x5 + 5x4 + 4x2 + x x4 + 5x3 + 6x2 + 5x
2x3 + x2 + 6x + 1 6x + 1 3

2x5 + 5x4 + 5x3 + 6x2 2 6

 .

This gives us the linearization degrees (1, 5, 0) = (5, 1, 0)π−1, which have average ⌈6/3⌉ = 2, so the
partial column linearization results in

Â =


6x + 1 6x + 1 3 2x + 1 0

4x5 + 5x4 + 4x2 + x 4 x4 + 5x3 + 6x2 + 5x 2x 6x + 5
2 0 6 5x + 6 2x + 5
0 6x2 0 1 0
0 0 0 6x2 1

 .

Then,we perform rowpartial linearization of thismatrixwith respect to its rowdegrees (1, 5, 1, 2, 2),
whose average is ⌈11/5⌉ = 3, giving

C =


6x + 1 6x + 1 3 2x + 1 0 0
4x2 + x 4 6x2 + 5x 2x 6x + 5 6x3

2 0 6 5x + 6 2x + 5 0
0 6x2 0 1 0 0
0 0 0 6x2 1 0

4x2 + 5x 0 x + 5 0 0 1

 .

Using the algorithm in Section 3, we obtain the degrees (0, 0, 0, 0, 1, 9) of the diagonal entries of
the Hermite form of the permuted matrix

B =


0 I3
I3 0


C


0 I3
I3 0


.

Proceeding then as in Section 5, we can compute the complete Hermite form of B using the knowledge
of these degrees, giving

I3 0
R H


where H is the Hermite form of A as given in Example 5.10, and the transpose of R is

RT
=

0 6 4x7 + 6x6 + x5 + 4x4 + 2x3 + 6x2 + 4
0 3 6x8 + 4x7 + 4x5 + 3x4 + 3x3 + 2x + 6
0 4 3x8 + 2x7 + 3x6 + 3x5 + 4x3 + 5x2 + x + 2

 . �

7. Conclusion

In this paperwe have given new, deterministic algorithms for computing the Hermite normal form
and the determinant of a nonsingular polynomial matrix. Our methods are based on the efficient,
deterministic computation of the diagonal elements of the Hermite form. While our algorithms are
fast in terms of the number of operations in an abstract field K, they do not take into consideration
the possible growth of coefficients in the field, an issue when working over certain fields such as Q,

70 G. Labahn et al. / Journal of Complexity 42 (2017) 44–71

the rational numbers. Kannan [23] was the first to show that computing Hermite normal forms over
Q[x] can be done in polynomial time. Fraction-free algorithms for Hermite form computation which
take into consideration coefficient growth have been given in [7] (using a shifted Popov algorithm)
and [24] (where the problem is converted into a large linear system). We plan to investigate exact
algorithms for Hermite and determinant computation based on the fraction-free approach used in [5]
and also the use of Chinese remaindering. In the latter case the reduced domains (e.g. Zp[x]) do not
encounter coefficient growth which allows for effective use of the algorithms in this paper. The issue
in this case is the reconstruction of the images, where we expect the techniques used in [9] will be
helpful.

In terms of additional future research we are interested in the still open problem of reducing
computation of the Hermite form over the integers [32] to the complexity of integer matrix
multiplication. In addition, we are interested in finding efficient, deterministic algorithms for other
normal forms of polynomial matrices, such as the Popov normal form, or more generally the shifted
Popov normal forms. In addition we are interested in fast normal form algorithms where the entries
are differential operators rather than polynomials. Such algorithms are useful for reducing systems of
linear differential equations to solvable first order systems [2].

Acknowledgments

The authors would like to thank Arne Storjohann and an anonymous referee for suggestions on
simplifying the presentation of Section 6 and about the alternative determinant algorithm in the
Appendix. G. Labahn was supported by a grant from NSERC while V. Neiger was supported by the
international mobility grants from Projet Avenir Lyon Saint-Étienne, Mitacs Globalink—Inria, and
Explo’ra Doc from Région Rhône-Alpes.

Appendix. Another fast and deterministic algorithm for the determinant

In this appendix, we describe an alternative to our determinant Algorithm 2, kindly suggested by
a reviewer. The main idea is to rely on x-Smith decomposition [14] in order to make sure that the
determinant can be easily retrieved from the diagonal entries of a triangular form computed with
Algorithm 1. This is thus a way to overcome the obstacle mentioned in Remark 4.1.

Let A ∈ K[x]n×n be a nonsingular polynomial matrix. Then, [14, Corollary 1] states that we can
compute a triangular x-Smith decomposition of A using O(nω deg(A)) field operations. This yields
matrices π,U,H such that Aπ = UH, where

• π ∈ Kn×n is a permutation matrix,
• H ∈ K[x]n×n is triangular with det(H) = xα for some α ∈ N,
• U ∈ K[x]n×n is such that det(U mod x) ≠ 0 and deg(U) ≤ deg(A).

Then, we have det(A) = det(U) det(H) det(π)−1, and the cost of finding det(H) and det(π) is
negligible. It remains to compute det(U), which can be done in O(nω deg(U)) ⊆ O(nω deg(A))
operations. Indeed, since det(U mod x) ≠ 0, determining the diagonal entries of a triangular form of
U allows us to deduce its determinant as explained in Remark 4.1.

Thus, we obtain det(A) in O(nω deg(A)) field operations; with Proposition 4.6, this gives another
proof of Theorem 1.1.

References

[1] J. Abbott, M. Bronstein, T. Mulders, Fast deterministic computation of determinants of dense matrices, in: Proceedings of
the International Symposium on Symbolic and Algebraic Computation, ISSAC’99, ACM Press, 1999, pp. 197–204.

[2] M. Barkatou, C. El Bacha, G. Labahn, E. Pflügel, On simultaneous row and column reduction of higher-order linear
differential systems, J. Symbolic Comput. 49 (1) (2013) 45–64.

[3] B. Beckermann, A reliable method for computing M-Padé approximants on arbitrary staircases, J. Comput. Appl. Math. 40
(1992) 19–42.

[4] B. Beckermann, G. Labahn, A uniform approach for the fast computation of matrix-type Padé approximants, SIAM J. Matrix
Anal. Appl. 15 (3) (1994) 804–823.

http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref1
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref2
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref3
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref4

G. Labahn et al. / Journal of Complexity 42 (2017) 44–71 71

[5] B. Beckermann, G. Labahn, Fraction-free computation ofmatrix rational interpolants andmatrix GCDs, SIAM J.Matrix Anal.
Appl. 22 (1) (2000) 114–144.

[6] B. Beckermann, G. Labahn, G. Villard, Shifted normal forms of polynomial matrices, in: Proceedings of the International
Symposium on Symbolic and Algebraic Computation, ISSAC’99, 1999, pp. 189–196.

[7] B. Beckermann, G. Labahn, G. Villard, Normal forms for general polynomial matrices, J. Symbolic Comput. 41 (6) (2006)
708–737.

[8] J. Bunch, J. Hopcroft, Triangular factorization and inversion by fast matrix multiplication, Math. Comp. 28 (1974) 231–236.
[9] H. Cheng, G. Labahn, Modular computation for matrices of Ore polynomials, in: Proceedings of WSPC (In Honor of the

60-th birthday of Sergei Abramov), 2007, pp. 43–66.
[10] D.S. Dummit, R.M. Foote, Abstract Algebra, John Wiley & Sons, 2004.
[11] W. Eberly, M. Giesbrecht, G. Villard, On computing the determinant and Smith normal form of an integer matrix, in:

Proceedings of 41st IEEE Symposium on Foundations of Computer Science (FOCS’2000), 2000, pp. 675–687.
[12] P. Giorgi, C.-P. Jeannerod, G. Villard, On the complexity of polynomial matrix computations, in: Proceedings of the

International Symposium on Symbolic and Algebraic Computation, Philadelphia, Pennsylvania, USA, ISSAC’03, ACM Press,
2003, pp. 135–142.

[13] S. Gupta, Hermite forms of polynomial matrices (Master’s thesis), University of Waterloo, 2011.
[14] S. Gupta, S. Sarkar, A. Storjohann, J. Valeriote, Triangular x-basis decompositions and derandomization of linear algebra

algorithms over K[x], J. Symbolic Comput. 47 (4) (2012) 422–453.
[15] S. Gupta, A. Storjohann, ComputingHermite forms of polynomialmatrices, in: Proceedings of the International Symposium

on Symbolic and Algebraic Computation, ISSAC’11, 2011, pp. 155–162.
[16] J. Hafner, K. McCurley, Asyptotically fast triangularization of matrices over rings, SIAM J. Comput. 20 (1991) 1068–1083.
[17] C. Hermite, Sur l’introduction des variables continues dans la théorie des nombres, J. Reine Angew. Math. 41 (1851)

191–216.
[18] C. Iliopoulos, Worst-case complexity bounds on algorithms for computing the canonical structure of finite abelian groups

and the Hermite and Smith normal forms of integer matrices, SIAM J. Comput. 18 (1986) 658–669.
[19] C.-P. Jeannerod, V. Neiger, E. Schost, G. Villard, Fast computation ofminimal interpolation bases in Popov form for arbitrary

shifts, in: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC’16, ACM, 2016,
pp. 295–302.

[20] T. Kailath, Linear Systems, Prentice-Hall, 1980.
[21] E. Kaltofen, On computing determinants of matrices without divisions, in: Proceedings of the International Symposium

on Symbolic and Algebraic Computation, ISSAC’92, ACM, 1992, pp. 342–349.
[22] E. Kaltofen, G. Villard, On the complexity of computing determinants, Comput. Complexity 13 (2004) 91–130.
[23] R. Kannan, Polynomial-time algorithms for solving systems of linear equations over polynomials, Theoret. Comput. Sci. 39

(1985) 69–88.
[24] S.E. Labhalla, H. Lombardi, R. Marlin, Algorithmes de calcul de la réduction d’Hermite d’une matrice à coefficients

polynmiaux, in: Comptes-Rendus de MEGA92, Nice, France, 1992.
[25] T. Mulders, A. Storjohann, On lattice reduction for polynomial matrices, J. Symbolic Comput. 35 (4) (2003) 377–401.
[26] V. Neiger, Fast computation of shifted Popov forms of polynomial matrices via systems of modular polynomial

equations, in: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC’16, ACM, 2016,
pp. 365–372.

[27] S. Sarkar, A. Storjohann, Normalization of row reduced matrices, in: Proceedings of the International Symposium on
Symbolic and Algebraic Computation, ISSAC’11, 2011, pp. 297–304.

[28] A. Storjohann, Algorithms for Matrix Canonical Forms (Ph.D. thesis), Department of Computer Science, Swiss Federal
Institute of Technology—ETH, 2000.

[29] A. Storjohann, High-order lifting and integrality certification, J. Symbolic Comput. 36 (2003) 613–648.
[30] A. Storjohann, Notes on computingminimal approximant bases, in: Dagstuhl Seminar Proceedings, ISSN:1862–4405, 2006.
[31] A. Storjohann, On the complexity of inverting integer and polynomial matrices, Adv. Comput. Complex 24 (2015) 777.
[32] A. Storjohann, G. Labahn, Asymptotically fast computation of Hermite forms of integer matrices, in: International

Symposium on Symbolic and Algebraic Computation, ISSAC’96, 1996, pp. 259–266.
[33] A. Storjohann, G. Villard, Computing the rank and a small nullspace basis of a polynomial matrix, in: Proceedings of the

International Symposium on Symbolic and Algebraic Computation, ISSAC’05, 2005, pp. 309–316.
[34] M. Van Barel, A. Bultheel, A general module theoretic framework for vector M-Padé and matrix rational interpolation,

Numer. Algorithms 3 (1992) 451–462.
[35] G. Villard, Computing Popov and Hermite forms of polynomial matrices, in: International Symposium on Symbolic and

Algebraic Computation, ISSAC’96, 1996, pp. 250–258,.
[36] W. Zhou, Fast order basis and kernel basis computation and related problems (Ph.D. thesis), University of Waterloo, 2012.
[37] W. Zhou, G. Labahn, Efficient computation of order bases, in: Proceedings of the International Symposium on Symbolic

and Algebraic Computation, ISSAC’09, ACM, 2009, pp. 375–382.
[38] W. Zhou, G. Labahn, Efficient algorithms for order basis computation, J. Symbolic Comput. 47 (7) (2012) 793–819.
[39] W. Zhou, G. Labahn, Computing column bases of polynomial matrices, in: Proceedings of the International Symposium on

Symbolic and Algebraic Computation, ISSAC’13, ACM, 2013, pp. 379–387.
[40] W. Zhou, G. Labahn, Unimodular completion of polynomial matrices, in: Proceedings of the International Symposium on

Symbolic and Algebraic Computation, ISSAC’14, ACM, 2014, pp. 413–420.
[41] W. Zhou, G. Labahn, A. Storjohann, Computing minimal nullspace bases, in: Proceedings of the International Symposium

on Symbolic and Algebraic Computation, ISSAC’12, ACM, 2012, pp. 375–382.
[42] W. Zhou, G. Labahn, A. Storjohann, A deterministic algorithm for inverting a polynomialmatrix, J. Complexity 31 (2) (2015)

162–173.

http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref5
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref7
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref8
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref10
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref12
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref13
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref14
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref16
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref17
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref18
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref19
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref20
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref21
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref22
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref23
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref25
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref26
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref28
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref29
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref31
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref34
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref36
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref37
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref38
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref39
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref40
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref41
http://refhub.elsevier.com/S0885-064X(17)30043-2/sbref42

	Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix
	Introduction
	Preliminaries
	Shifted degrees
	Shifted Kernel and column bases
	The generic determinant degree bound

	Determining the diagonal entries of a triangular form
	Fast block elimination
	Computational cost and example

	Efficient determinant computation
	Fast computation of the Hermite form
	Hermite form via shifted column reduction
	Reducing the amplitude of vecδ using partial linearization
	Algorithm and computational cost
	Proof of Lemma 5.6

	Reduction to almost uniform degrees in Hermite form computation
	Conclusion
	Acknowledgments
	Another fast and deterministic algorithm for the determinant
	References

