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Abstract. Popov forms and weak Popov forms of matrices over non-
commutative valuation domains are defined and discussed. Two new al-
gorithms to construct these Popov forms are given, along with a descrip-
tion of some of their applications.

1 Introduction

Over the last decade, there have been significant advances in computing with
symbolic systems of linear recurrence and differential equations. At the core
of this new technology are computations with Ore polynomials, which provide
a unified algebraic structure for these different domains. The Ore polynomials
form a noncommutative polynomial ring which acts on a space of functions as a
differential or difference (recurrence) operator. Matrices of such polynomials de-
scribe linear differential and differential systems of equations, which are clearly
an important topic in computer algebra systems. Casting differential and recur-
rence operators as polynomial-like objects allows us to potentially employ the
now very well developed and very efficient algorithms for matrices of polynomi-
als in this new setting. This paper is a step towards efficient algorithms for such
systems.

It is well known that the Hermite normal form of a polynomial matrix has
degree bounds that can result in large row or column degree values. While this
is not a disadvantage for some applications (such as linear solving) it can be a
significant problem in such computations as matrix-polynomial GCDs. A second
normal form, now known as the Popov normal form, was introduced by Popov
[11] and has the property that row degrees are controlled. These normal forms
have been successfully applied in such applications as control theory and linear
systems (see for example, Kailath[8]).

Recently the Popov normal form and some variations (the shifted Popov
form and the weak Popov form) have attracted considerable interest in the com-
puter algebra community, for example, in Villard [13], Beckermann, Labahn
and Villard [4], and Mulders and Storjohann [9]. While the normal forms pre-
viously mentioned all deal with matrices of commutative polynomials, Popov
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normal forms and their variations also exist for some matrices of noncommu-
tative polynomials, particularly Ore polynomials. Ore domains were introduced
in the 1930’s as a unified way of capturing differential and recurrence opera-
tors (c.f., Ore [10], Jacobson [7]). In 1943 Jacobson [7] considered the Hermite
and Smith forms of matrices over skew polynomial rings. In the computer alge-
bra area, Abramov and Bronstein [1] gave a method to calculate the ranks of
matrices over skew polynomial rings using a type of normal form reduction of
these matrices. Recently Beckermann, Cheng and Labahn [3] used fraction-free
methods to compute weak Popov form of matrices over skew polynomial rings.

In this paper, we consider the more general problem of defining and com-
puting Popov and weak Popov forms for matrices over valuation rings. The
motivation for this question comes from several directions: Mulders and Storjo-
hann [9] extended the notion of weak Popov forms to the discrete valuation rings,
but failed to define Popov forms. Meanwhile, as they point out, their methods
have the problem that they do not necessarily terminate. We give a definition of
Popov forms of matrices over valuation Ore domains, and provide an algorithm
for such forms which is guaranteed to terminate. Our methods lead to a unified
treatment of many polynomial rings currently studied in Computer Algebra,
for example, commutative polynomial rings ([13], [4] and [9]), skew polynomial
rings ([3] and [1]) and multivariate polynomials ([6] and example 4). Finally,
we remark that our method can be used to extend the work on reduced bases
for matrices over commutative valuations rings by von zur Gathen [14] to some
noncommutative cases ([6]).

It is worth noting that in many cases valuation methods are quite different
from term ordering methods, which are the usual methods to deal with polyno-
mials. When using term ordering methods, one only considers the leading terms
at each reduction step. Valuation methods usually consider the whole polyno-
mial. In fact, any term ordering induces a valuation but the converse is not
true.

2 Valuations on Ore Domains

Noncommutative valuation theory dates back to the 1930’s with the work of
Artin, Noether and others. Presentations can be found in Schilling [12] and later
in Artin [2], with a more recent treatment given in Cohn [5]. In this paper, we
restrict such noncommutative valuations to the more practically motivated Ore
domain case.

Let us first recall some definitions and discuss some properties of valuations
on skew fields. Some results have already been discussed in different settings for
commutative cases.

Definition 1. An ordered group Γ is a (not necessarily commutative) group
with a total ordering α ≥ β, which is preserved by the group operation:

α ≥ β, α′ ≥ β′ ⇒ α + α′ ≥ β + β′ for all α, α′, β, β′ ∈ Γ.
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Usually, Γ will be augmented by a symbol ∞ to form a monoid with the operation

α + ∞ = ∞ + α = ∞ + ∞ = ∞ for all α ∈ Γ,

and the ordering ∞ > α for all α ∈ Γ .

Definition 2. Let R be a ring. Then a valuation on R with values in an ordered
group Γ (the value group) is a function ν on R with values in Γ ∪ {∞} which
satisfies:

(V.1) ν(a) ∈ Γ ∪ {∞} and ν assumes at least two values,
(V.2) ν(ab) = ν(a) + ν(b), and
(V.3) ν(a + b) ≥ min{ν(a), ν(b)}, for every pair of elements a, b ∈ R.

Lemma 1. ([5]) A valuation ν on a ring R has the following properties:

(a) ν(0) = ∞ so that ν(0) > γ for all γ ∈ Γ ( by (V.2) ).
(b) ker ν = {a ∈ R | ν(a) = ∞} is a proper ideal of R ( by (V.1) ). Therefore,

ker ν = 0 if R is a skew field or a simple ring. Furthermore, R/ker ν is an
integral domain.

(c) ν(1) = 0 and ν(a) = ν(−a).
(d) If ν(a) �= ν(b), then ν(a + b) = min{ν(a), ν(b)}. ��
Remark 1. Note that ker ν is different from the set {a ∈ R | ν(a) = 0}.

In the case of a skew field K with valuation ν, there are two important
properties of the valuation ring V := {a ∈ K | ν(a) ≥ 0}. First, the valuation
ring is total: for every k ∈ K, either k ∈ V , or k �= 0 and k−1 ∈ V . Second, the
valuation ring is invariant: for every a ∈ V and k ∈ K \{0}, k−1ak ∈ V . Usually
a total invariant subring of a skew field is called a valuation ring. Conversely,
given any skew field K and a valuation ring V in K, one can form a valuation
which gives rise to V . Moreover we also have the following properties:

Lemma 2. With our previous notation we have:

(a) Given a, b ∈ V , then a is a left (and right) multiple of b if and only if
ν(a) ≥ ν(b).

(b) The units set of V is U = {a ∈ V | ν(a) = 0}. Furthermore, the non-units
of V is M = {a ∈ V | ν(a) > 0}, a maximal ideal of V .
(i) ν(a) ≥ ν(b) ⇔ a = rb = br′ for some r, r′ ∈ V .
(ii) ν(a) = ν(b) ⇔ a = rb = br′ for some r, r′ ∈ U .
(iii) ν(a) > ν(b) ⇔ a = rb = br′ for some r, r′ ∈ M .

Proof.

(a) Assume that for some r, s ∈ V , we have a = br = sb. Then ν(a) = ν(b) +
ν(r) = ν(s) + ν(b) ≥ ν(b) follows from the definition, ν(s) ≥ 0 and ν(r) ≥ 0.
Conversely, if b = 0, then ν(b) = ∞ implies ν(a) = ∞. Therefore a = 0
so that a is both a left and right multiple of b. Now we can assume that
ν(a) ≥ ν(b), b �= 0. This implies that ν(ab−1) ≥ 0, ν(b−1a) ≥ 0, that is, both
ab−1 ∈ V and b−1a ∈ V . Therefore a = (ab−1)b = b(b−1a).
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(b) Part (i) follows by (a). For (ii) it is easy to see that ν(r) = 0 by the same
proof as in (a). Therefore r ∈ U and part (iii) follows from the definition of
M . ��

Example 1. (Cohn [5]) Let K be a skew field with a valuation ν and an auto-
morphism σ of K such that ν(aσ) = ν(a) for all a ∈ K. Let γ be in the value
group Γ (or in an ordered extension of Γ ) and define a valuation on the skew
polynomial K[x;σ] by the rule

w(
∑

aix
i) = mini{iγ + ν(ai)}.

Then w is a valuation on K[x;σ] and can be uniquely extended to a valuation
of the function field K(x;σ). If the residue-class skew field of K under ν is K̄
and the automorphism induced on K̄ by σ is σ̄, then the residue-class field of
K(x;σ) is either K̄(x;σ−j) (when jγ is the least multiple of γ which lies in Γ ,
that is, j = 1 if γ ∈ Γ or there may exist a j such that jγ ∈ Γ if γ /∈ Γ ) or K̄
(when no multiple of γ lies in Γ ).

The following lemma is well-known in the commutative case and gives the
division rule in the sense of valuations. Now we extend it to the noncommutative
case.

Lemma 3. Let ν be a valuation on a skew field K with the valuation ring V , S
be a subskew field of K that lies in V and M = {a ∈ V | ν(a) > 0}. Assume that
S maps isomorphically to the residue class skew field of ν, or equivalently, that
V = S ⊕ M as abelian group. If 0 �= a, b ∈ K such that ν(a) ≥ ν(b), then there
exists a unique s ∈ S such that either a = sb or ν(a − sb) > ν(b). Equivalently,
there exists a unique s ∈ S such that a − sb = mb for some m ∈ M .

Proof. From Lemma 2, ν(a) ≥ ν(b) implies that a = rb for some r ∈ V . Since
V = S ⊕ M there exists a unique s ∈ S such that r = s + m for some m ∈ M .
Thus a = rb = (s + m)b = sb + mb, and so a − sb = mb. Clearly, m = 0 if
and only if a = sb. If m �= 0, then by Lemma 2 we have ν(mb) > ν(b) and so
ν(a − sb) > ν(b). ��

Definition 3. Let ν be a valuation on a skew field K with the valuation ring V .
For a, b ∈ V , we say that b right divides a with respect to ν, denoted b |ν a, if there
exists d ∈ V such that ν(a) = ν(db).The element d is called a right valuation
quotient of a by b with respect to ν if a = db, or if a �= db and ν(a− db) > ν(a).

It is easy to prove the following lemma.

Lemma 4. b |ν a if and only if there exists a right valuation quotient of a by b.

In the remainder of this paper we will assume that ν is a valuation on a skew
field K with the valuation ring V .
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3 Valuation Popov Forms

In this section we define Popov and weak Popov forms for matrices over valuation
domains. Unlike some papers discussing (weak) Popov forms, we consider the
row vectors as a left module over a base ring and define the Popov form by two
kinds of reductions. In this way the termination properties of reductions can be
easily obtained, and one can use previously existing algorithms to compute these
forms.

Definition 4. Let v = (v1, · · · , vm) ∈ V m. We define the pivot element piv(v) ∈
{v1, · · · , vm} as the rightmost element with minimum valuation in v.

Next we define two kinds of reductions which are used for constructing the
weak Popov form and the Popov form.

Definition 5. Given a, b, c ∈ V m, we say that

(a) a weakly reduces to c modulo b in one step with respect to ν if and only if
piv(b) and piv(a) have the same index, piv(b) |ν piv(a) and c = a − q1b,
where q1 ∈ V is a valuation quotient of piv(a) by piv(b).

(b) a reduces to c modulo b in one step with respect to ν if and only if piv(b) |ν d,
where d is an entry that appears in a with the same index of piv(b) and
c = a − q2b, where q2 ∈ V is a valuation quotient of d by piv(b).

Definition 6. A nonzero vector a in V m is ( resp. weakly) reduced with respect
to a set S = {s1, . . . , sl} of nonzero vectors in V m if a cannot be (resp. weakly)
reduced modulo any one of piv(si) with respect to ν, i = 1, . . . , l .

Furthermore, a set S = {s1, . . . , sl} of vectors is called a (resp. weakly) re-
duced set if any vector si is (weakly) reduced with respect to S \ {si}.

Definition 7. Let γ = {r1, . . . , rn} be the set of row vectors of matrix V n×m.

(a) V n×m is called in weak Popov form if γ is a weakly reduced set.
(b) V n×m is called in Popov form if

(i) γ is a reduced set.
(ii) Rows are in an ascending chain with respect to ν, that is, ν(piv(r1)) ≤

ν(piv(r2)) ≤ · · · ≤ ν(piv(rn)).

Note that our definition is the same as the usual one if we choose V as a
commutative polynomial ring with degree valuation. A Popov form is a weak
Popov form.

The following algorithm gives a method to construct a weak Popov form and
also a Popov form.



624 M. Giesbrecht, G. Labahn, and Y. Zhang

Algorithm: (resp. Weak) Popov form for V n×m

Input: � Row vectors r1, . . . , rn of matrix A ∈ V n×m;
Output: � Row vectors p1, . . . ,pn of a (resp. weak) Popov form of A ∈ V n×m;

Initialization: p1 := 0, . . . ,pn := 0;
(1) Check if {r1, . . . , rn} is in a (resp. weak) Popov form;
(2) If not
(3) Swap rows of A to make them into a ascending chain w.r.t. ν;
(4) For i = 2 to i = n do
(5) If ri is (resp. weakly) reducible modulo r1,
(6) ri := ri − qir1, where qi is the valuation quotient;
(8) end if
(9) goto (1);

(10) else return: p1 := r1, . . . ,pn := rn;

Theorem 1. If ν(V ) is well-defined, then the preceding two algorithms are cor-
rect.

Proof. We only need to prove the algorithms terminate. Note that every reduc-
tion increases the valuation, and forms an ascending chain. Therefore the algo-
rithms will terminate after a finite number of steps since ν(V ) is well-defined. ��

The following gives a second method to construct (resp. weak) Popov forms:

Algorithm: Constructing (resp. weak) Popov form for V n×m

Input: � row vectors γ := {r1, . . . , rn} of a matrix A ∈ V n×m;
Output: � row vectors ρ := {p1, . . . ,pn} of (resp. weak) Popov form of A ∈

V n×m;
(1) Initialization: p1 := 0, . . . ,pn := 0;
(2) For i = 1 to i = n do
(3) pi := ri (resp. weakly) reduced modulo γ := {γ \ {ri}} ∪ {pi};

end do;
(4) Swap rows such that they are in an ascending chain with respect to ν if

Popov form required;

Theorem 2. If ν(V ) is well-defined, then the above algorithm is correct.

Proof. The above algorithm terminates after a finite number of steps since ν(V )
being well-defined implies that the steps in (3) terminate.

We only need to check that ρ is a (weakly) reduced set with respect to ν.
The first two steps produce ρ = {p1, r2, · · · , rn} and ρ = {p1,p2, r3, · · · , rn}.
Therefore we have to prove p1 cannot be (weakly) reduced modulo p2. If this
was the case, then p1 could be (weakly) reduced modulo r2, a contradiction. By
induction, it is easy to prove that ρ is a (weakly) reduced set. ��
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4 Applications and Examples of Valuation Popov Forms

In the rest of this paper we mention some applications of valuation Popov forms.
First, recall that the definition of the rank of a matrix over an Ore domain is
different from the usual definition of rank (for example, see [5]). Given a matrix
A ∈ V n×m, let M be the row space of A and M ′ be the reduced form with
respect to (weak) reduction. From the previous algorithms, M and M ′ generate
the same row space. Therefore we have the following.

Proposition 1. The rank of M generated by the row space of A ∈ V n×m is
invariant under (weak) reduction with respect to any valuation.

Proposition 2. The rank of a (weak) Popov form equals its number of nonzero
rows.

Proof. This follows from the row set of (weak) Popov form being a (weakly)
reduced set. ��

Example 2. The following example given in [9] is used to show that their proce-
dures do not necessarily terminate. Using our algorithms one can easily obtain
a Popov form as follows.

Let A be a matrix over a power series F [[x]], where F is a field, that is,

A =
[

x + x2 + x3 + · · ·
1

]
∈ F [[x]]2×1.

Assume that ν is the usual valuation on the power series domain F [[x]].
Then ν(x + x2 + x3 + · · · ) = 1 and ν(1) = 0. Therefore the valuation quotient is
x+x2 +x3 + · · · . Note that ν(0) = ∞. Our algorithm then computes the Popov

form as
[

1
0

]
.

Example 3. Different valuations on polynomial rings may induce different Popov
forms. For example, let R be a ring with a discrete valuation function ν(x). To
extend the valuation ν(x) from R to the polynomial ring R[t] we define, for an
element f [t] = a0 + a1t + · · · + antn,

ν(f [t]) = mini{ν(ai) + i} (1)

It is well-known that ν defines a valuation function on R[t] which extends ν(x).
The algorithm for valuation Popov forms produces a Popov form which is dif-
ferent from the ones discussed in [4], [8] and [9].

Example 4. In some cases our algorithms can be used for multivariate domains.
For example, let L be a finite dimensional Lie algebra over a commutative field
K and let U(L) be its universal envelope. It is well-known that U(L) has a
filtration

U−1 = 0; U i = K + L + L2 + · · · + Li
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whose associated graded algebra is a polynomial algebra. This filtration then
defines a valuation function ν(x) by the following rule:

ν(0) = ∞, ν(x) = −i if x ∈ U i \ U i−1. (2)

Therefore, given any matrix over U(L), we can use our algorithms to get
Popov and weak Popov forms, and hence also easily obtain ranks.

5 Conclusion

In this paper we discuss some properties of valuations in noncommutative do-
mains and define reductions for vectors in terms of valuations. For matrices over
Ore domains we define and describe Popov and weak Popov forms in terms of
valuations. Algorithms to construct these Popov forms are given and are shown
to terminate. Further discussion and properties of these forms will appear in a
forthcoming paper [6].
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