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Abstract

We present a new algorithm to compute minimal telescopers for rational functions in two discrete
variables. As with recent reduction-based approaches, our algorithm has the important feature
that the computation of a telescoper is independent of its certificate. In addition, our algorithm
uses a compact representation of the certificate, which allows it to be easily manipulated and ana-
lyzed without knowing the precise expanded form. This representation hides potential expression
swell until the final (and optional) expansion, which can be accomplished in time polynomial in
the size of the expanded certificate. A complexity analysis, along with a Maple implementation,
indicates that our algorithm has better theoretical and practical performance than the reduction-
based approach in the rational case.

Keywords: Rational function, GGSZ reduction, Left scalar division with remainder, Telescoper

1. Introduction

Creative telescoping is a powerful method pioneered by Zeilberger (1990a,b, 1991) in the
1990s and has now become the cornerstone for finding closed forms for definite sums and definite
integrals in computer algebra. The method mainly constructs a recurrence (resp. differential)
equation admitting the prescribed definite sum (resp. integral) as a solution. Employing other
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algorithms applicable to the resulting recurrence or differential equation, it is then possible to
find closed form solutions or prove that there is no such solution. In the latter case, one can still
make use of creative telescoping for such operations as determining asymptotic expansions about
the sum or integral under investigation.

In the case of summation, in order to compute a sum of the form
∑b

y=a f (x, y), the main task of
creative telescoping consists of constructing polynomials c0, . . . , cρ in x, not all zero, and another
function g in the same domain as f such that

cρ(x) f (x + ρ, y) + · · · + c1(x) f (x + 1, y) + c0(x) f (x, y) = g(x, y + 1) − g(x, y). (1.1)

The number ρ may or may not be part of the input. If c0, . . . , cρ and g are as above, then we say
that L = cρS

ρ
x + · · · + c1Sx + c0 with Sx being the shift operator in x is a telescoper for f and g is

a certificate for L. If cρ , 0 then the integer ρ is the order of L. Finally, the maximum degree in
x among the polynomials c` is the degree of L.

The technique of creative telescoping has seen various generalizations and improvements
over the past two decades. At the present time, the so-called reduction-based approach origi-
nating from (Bostan et al., 2010) has drawn the most attention, as it is both efficient in practice
and equipped with the useful feature that it allows one to find a telescoper without necessarily
also computing the corresponding certificate. In other words, the computation of the c` in (1.1)
is separated from the computation of g. In a typical situation where the size of the c` is much
smaller than the size of g and the right-hand side of (1.1) collapses to zero when summing over
the defining interval, this approach enables one to merely compute the c` avoiding the costly yet
unnecessary computation of the certificate g. In applications where a certificate is required, the
approach also allows one to express the certificate as an unnormalized sum so that the summands
are concatenated symbolically without actually calculating the sum. These summands are often
of much smaller sizes than the original certificate. So far, the reduction-based approach has been
worked out for many special functions. We refer to (Chen, 2019) for an excellent exposition of
all these algorithms.

However, it is also the case that the unnormalized expression for the certificate returned
by the reduction-based approach can introduce superfluous terms which eventually cancel out
when normalized. These terms will not contribute to the final output but will increase sizes of
intermediate results and thus deteriorate the performance of the approach in these applications.
In order to illustrate this issue, let us consider a simple discrete rational function of the form

f (x, y) =
x

x + 3y + 3m
−

x
x + 3y + 3

+
x

x + 3y
, (1.2)

where m is an integer greater than one. Applying a reduction method, for example, in (Abramov,
1975), to the given rational function f yields

f (x, y) = g0(x, y + 1) − g0(x, y) + r0 with g0(x, y) =

m−1∑
k=1

x
x + 3y + 3k

and r0 =
x

x + 3y
, (1.3)

where r0 has the denominator of lowest possible degree in y. Based on the form (1.3), iteratively
applying the chosen reduction method to each f (x + `, y) for ` ≥ 0 gives

f (x + `, y) = g`(x, y + 1) − g`(x, y) + r` with r` =
x + `

x + 3y + ¯̀ ,
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where ¯̀ ∈ {0, 1, 2} is ` reduced modulo 3 and

g`(x, y) = g0(x + `, y) +

b`/3c∑
k=1

x + `

x + 3y + 3(k − 1) + ¯̀ .

Finding a linear dependency amongst the r` reduces to solving the following linear system

 9x 9x + 9 9x + 18 9x + 27
6x2 + 9x 6x2 + 12x + 6 6x2 + 15x + 6 6x2 + 27x + 27

x3 + 3x2 + 2x x3 + 3x2 + 2x x3 + 3x2 + 2x x3 + 6x2 + 11x + 6



c0
c1
c2
c3

 =

000
 . (1.4)

A nontrivial polynomial solution (c0, c1, c2, c3) = (−(x + 3), 0, 0, x) then gives

L = x S3
x − (x + 3), (1.5)

a telescoper for f of minimal order with a corresponding certificate

g(x, y) = x · g3(x, y) − (x + 3) · g0(x, y) =
x(x + 3)

x + 3y + 3m
−

x(x + 3)
x + 3y + 3

+
x(x + 3)
x + 3y

(1.6)

obtained by canceling out the common m−2 terms in the summation. As the m increases, the size
of each g` grows rapidly, whereas the expanded certificate g may still be small. In this particular
example, it is actually more reasonable to use the decomposition

f (x, y) = g0(x, y + 1) − g0(x, y) + r0, with g0(x, y) = −
x

x + 3y
and r0 =

x
x + 3y + 3m

,

instead of (1.3). This leads to an alternate choice of r` for each f (x+`, y), with the corresponding
g` having the denominator of much smaller degree in y. With this choice one gets the same
telescoper L and the same certificate g as before, but this time there is no cancellation happening
in (1.6). That is, the unnormalized sum gives the final size of the certificate. This suggests a
solution to the above issue. Namely, find an initial decomposition (1.3) with both r0 and g0
having denominators of lowest possible degrees in y using the method proposed in (Polyakov,
2011; Zima, 2011) to initiate the iterative process of the reduction-based approach. However this
process requires a full irreducible factorization of a polynomial.

Separate from the previously mentioned work, there is an alternate method developed by Le
(2003) which constructs telescopers in a direct fashion. This method was later used by Chen and
Kauers (2012) to obtain the best order-degree curve known so far for telescopers of bivariate ra-
tional functions. Currently, the method has only been worked out for bivariate rational functions
in the (q-)shift case. Nevertheless, the method is still interesting because it also has the feature
that the computation of a telescoper does not depend on its certificate. In order to demonstrate
its main idea, consider again the rational function f given in (1.2). As with the reduction-based
approach, this method first decomposes f as in (1.3). The difference is that it later decomposes
r0 as the sum of several simple fractions of numerators in x only, which in our example is merely
x
(

1
x+3y

)
. By viewing x = x S0

x as a recurrence operator of order zero and using the fact that
S3

x − 1 is a minimal telescoper for 1
x+3y with a corresponding certificate 1

x+3y , Le’s method then
computes the least common left multiple of x and S3

x − 1 with the left cofactor of x (resp. S3
x − 1)

giving rise to the same telescoper L as in (1.5) (resp. its certificate x(x+3)
x+3y ) for the simple fraction
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x
(

1
x+3y

)
= r0. In the more general case where there is more than one simple fraction in r0, one

finds a telescoper of minimal order for r0 by calculating the least common left multiple of all
telescopers for individual simple fractions. Together with (1.3), the method yields a telescoper
of minimal order for f , namely L, as well as its (optional) certificate of the form

g = L(g0) +
x(x + 3)
x + 3y

.

Rather than leaving the certificate as a (potentially large) unnormalized sum as done by the
reduction-based approach, this method represents the certificate by recurrence operators. This
representation enables one to more easily manipulate the certificate or analyze its various prop-
erties such as the singularities without knowing its expanded form. However, the intermediate
expression swell which happens in the certificate is still unavoidable due to (1.3). A second
disadvantage is that this method requires the numerator of each simple fraction appearing in the
decomposition to be independent of y, often requiring one to work in algebraic extensions of the
base field.

1.1. Proposed new approach
Our new algorithm constructs a telescoper for a rational function in a similar fashion as

the reduction-based approach, but incorporating the idea from the method of Le (2003). As a
result, our algorithm completely avoids algebraic extensions of the base field and intermediate
expression swell in the certificate. In order to describe the main idea of our algorithm, let us
continue the example (1.2). Unlike the reduction-based approach and the method of Le, we first
find a recurrence operator M allowing us to rewrite f in the form

f = (x S3m
x − x S3

x + x)︸                ︷︷                ︸
M

(
1

x + 3y

)
.

Assume that we want to find a telescoper for f of order no more than ρ ∈ N, say ρ = 3. We
then make an ansatz L = c3S3

x + c2S2
x + c1Sx + c0 with c0, c1, c2, c3 to be determined. Using the

relation S3
x(x + 3y) = Sy(x + 3y) with Sy being the shift operator in y, we calculate the left scalar

remainder
R = (x + 2)c2S2

x + (x + 1)c1Sx + ((x + 3)c3 + xc0)

from a so-called left scalar division of L�M by Sy−1, where L�M is the multiplication of M by
L from the left-hand side modulo the left ideal generated by Sy − S3

x (see Section 3 for a precise
definition). We show that L is a telescoper if and only if R = 0. The problem is then reduced to
solving the following linear systemx 0 0 x + 3

0 0 x + 2 0
0 x + 1 0 0



c0
c1
c2
c3

 =

000
 . (1.7)

One immediately reads a nontrivial polynomial solution (c0, c1, c2, c3) = (−(x+3), 0, 0, x), which
yields the telescoper L given by (1.5). In terms of certificate, we either follow the idea from
(Gerhard et al., 2003) and use the compact representation

g = LSQ(L � M,Sy − 1)
(

1
x + 3y

)
,
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or expand it as (1.6) by noticing LSQ(L�M,Sy − 1) = x(x + 3)S3m
x − x(x + 3)S3

x + x(x + 3), where
LSQ denotes the left scalar quotient obtained from the left scalar division.

In the case where the induced linear system admits no nontrivial solutions, we then have
shown that there does not exist any telescoper of order no more than ρ for the given rational
function. In order to find a telescoper of minimal order, one can execute the above process
incrementally by letting ρ = 0, 1, 2, . . . . The termination of the new algorithm is guaranteed
by the existence criterion for telescopers of rational functions given in (Abramov and Le, 2002,
Theorem 1), which essentially boils down to the integer-linearity of polynomials. In the general
case, the operator Sx in M is replaced by a special recurrence operator acting particularly on
integer-linear rational functions of one type, and the given rational function is initially separated
into several simple fractions according to integer-linear types.

In summary, our main contribution is a new algorithm for computing minimal telescopers for
rational functions. As with the reduction-based approach and the method of Le, our algorithm
separates the computation of the telescoper from that of the certificate. When the certificate is
needed our algorithm computes it in a compact form, hiding potential expression swell until a
final, optional expansion. Compared to Le’s method, our algorithm avoids the need for algebraic
extensions. In addition, if an expanded form for the certificate is desired then it can be computed
easily in time polynomial in the size of the expanded certificate. Moreover, comparing (1.7) with
(1.4) suggests that our algorithm also has better control for the size of intermediate expressions
involved in the computation of the telescoper.

The arithmetic cost of our new algorithm, as well as that of the reduction-based approach
in the rational case, is analyzed in this paper. We note that, until recently, most complexity
analyses were done for the differential case (Bostan et al., 2010, 2013, 2018; van der Hoeven,
2020) whereas little has been known for the shift case. The complexity analysis shows that our
new algorithm is at least one order of magnitude faster than the reduction-based approach in the
rational case when the certificate is not expanded. A Maple implementation further confirms
that our approach outperforms the reduction-based approach when restricted to the rational case.
In addition, the new algorithm is easy to analyze and leads to a tight order-degree curve for
telescopers, a property shared with the method of Le.

The remainder of the paper proceeds as follows. Some basic notions and results are recalled
in the next section for later use. In particular, two important decompositions of polynomials in the
bivariate setting are reviewed. A kind of recurrence operators specifically working on integer-
linear rational functions of one type is introduced in Section 3. Based on basic arithmetic for
operators of this kind, Section 4 describes a new algorithm to construct a telescoper of minimal
order for bivariate rational functions. Section 5 provides a cost analysis of our new algorithm,
followed in Section 6 by a brief summary and a cost analysis of the reduction-based approach in
the rational case. Section 7 contains some experimental comparison among all above-mentioned
approaches. The paper ends with some topics for future research.

2. Preliminaries

Throughout the paperK denotes a field of characteristic zero withK(x, y) the field of rational
functions in x, y over K. We let σx and σy be the automorphisms over K(x, y), which, for any
f ∈ K(x, y), are defined by

σx( f (x, y)) = f (x + 1, y) and σy( f (x, y)) = f (x, y + 1).
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A rational function f ∈ K(x, y) is called summable with respect to y (or σy-summable for short)
if f = σy(g) − g for some g ∈ K(x, y). A nonzero polynomial f ∈ K[x, y] is called shift-free with
respect to y (or σy-free for short) if gcd( f , σ`y( f )) ∈ K[x] for all nonzero integers `.

Let f be a polynomial in K[x, y]. Throughout this paper, we will order terms using a pure
lexicographic order with x ≺ y. For this order, we let lcx,y( f ) denote the leading coefficient
of f over K with respect to x, y. We say that f is monic with respect to x, y if lcx,y( f ) = 1.
In the sequel, unless there is a danger of confusion, we will just say that f is monic, omitting
the variables. We also denote by degx( f ) and degy( f ) the degrees of f with respect to x and y,
respectively, following the convention that degx(0) = degy(0) = −∞.

Let K(x, y)[Sx,Sy] be the ring of linear recurrence operators in x, y over K(x, y), in which the
following commutation rules hold: SxSy = SySx and Sx f = σx( f )Sx, Sy f = σy( f )Sy for any
f ∈ K(x, y). The application of an operator L =

∑
i, j≥0 ai jSi

xS j
y in K(x, y)[Sx,Sy] to a rational

function f ∈ K(x, y) is then defined as L( f ) =
∑

i, j≥0 ai jσ
i
xσ

j
y( f ).

Definition 2.1. Let f be a rational function in K(x, y). A nonzero operator L ∈ K[x][Sx] is
called a telescoper for f if L( f ) is σy-summable, or equivalently, there exists a rational function
g ∈ K(x, y) such that

L( f ) = (Sy − 1)(g),

where 1 denotes the identity map ofK(x, y). We call g a corresponding certificate for L. The order
and degree of L are defined to be its degree in Sx and the maximum degree in x of its coefficients
with respect to Sx, respectively. A telescoper of minimal order is also called a minimal telescoper.

In the rest of this section, we introduce two important decompositions of polynomials, both
of which will play crucial roles in our later algorithms.

2.1. Shift-homogeneous decomposition and GGSZ reduction

Recall that two polynomials f , g ∈ K[x, y] are called shift-equivalent with respect to y (or
σy-equivalent for short), denoted by f ∼y g, if f = σm

y (g) for some m ∈ Z. Clearly, ∼y is
an equivalence relation. The σy-equivalence of two polynomials can be easily recognized by
comparing coefficients.

By grouping together its σy-equivalent irreducible factors, any polynomial g ∈ K[x, y] can
be written in the form

g = c
m∏

i=1

ni∏
j=1

σ
νi j
y (gi)ei j , (2.1)

where c ∈ K[x], m, ni, νi j, ei j ∈ N with 0 = νi1 < νi2 < · · · < νini and ei j > 0, gi ∈ K[x, y]
is monic, irreducible and of positive degree in y, and the gi are pairwise σy-inequivalent. Since
K[x, y] is a unique factorization domain, the decomposition (2.1) is unique up to the order of
factors. In view of this, we call (2.1) the shift-homogeneous decomposition of g with respect to y.

We note that in the context of univariate polynomials, the shift-homogeneous decomposition
is equivalent to the most refined shiftless decomposition defined in (Gerhard et al., 2003). In
the same paper, based on shiftless decompositions, a reduction algorithm for univariate rational
functions, named RatSum, was developed. This algorithm can be carried over to the case of
bivariate rational functions in a straightforward manner, to which we will refer as the GGSZ
reduction later for convenience, named after the authors. The input and output of the GGSZ
reduction are given below.
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GGSZReduction. Given a rational function f ∈ K(x, y), compute two rational functions h, r in
K(x, y) with r = a/b, a, b ∈ K[x, y], degy(a) < degy(b) and b being σy-free such that

f = (Sy − 1)(h) + r. (2.2)

Such a reduction algorithm is vital for many creative telescoping approaches, including the
reduction-based one in (Chen et al., 2015), the method of Le (2003) and the algorithm introduced
in this paper. Unlike previous reduction algorithms as given in (Abramov, 1975; Paule, 1995),
the GGSZ reduction uses a compact representation of h in (2.2) in terms of left quotients (see
Example 2.2 for an illustration), and hence works in polynomial-time of the size of the input
without the final expansion.

Example 2.2. Let g be a polynomial of the form

(xy+1)(x(y+1)+1)(x(y+29)+1)(x(y+30)+1)((−5x+2y)2+1)((−5x+2y+1)2+1)((3x+10y)3+1).

Then by grouping together σy-equivalent irreducible factors, we obtain

g = g0σy(g0)σ29
y (g0)σ30

y (g0)g1g2g3g4,

where g0 = xy + 1, g1 = (−5x + 2y)2 + 1, g2 = (−5x + 2y + 1)2 + 1, g3 = (3x + 10y) + 1 and
g4 = (3x + 10y)2 − (3x + 10y) + 1. Up to making g1, g2, g3, g4 monic, the above equation gives
the shift-homogeneous decomposition of g with respect to y.

Let f be a rational function of denominator g and admit the following decomposition

2x + 3
σ30

y (g0)
−

2x + 3
σ29

y (g0)
−

1
σy(g0)

+
1
g0

+
2x2 + 1

(−5x + 2y)2 + 1
+

x − 1
(−5x + 2y + 1)2 + 1

+
xy + 1

(3x + 10y)3 + 1
.

We remark that all decomposed forms given in our examples are for readability only. Applying
the GGSZ reduction to f then yields (2.2) with

h = LQ((2x + 3)S30
y − (2x + 3)S29

y − Sy + 1,Sy − 1)
(

1
g0

)
= ((2x + 3)S29

y − 1)
(

1
g0

)
and r =

2x2 + 1
(−5x + 2y)2 + 1

+
x − 1

(−5x + 2y + 1)2 + 1
+

xy + 1
(3x + 10y)3 + 1

, (2.3)

where LQ denotes the left quotient in the ring Q(x, y)[Sy]. Note that, in this example, the left
quotient in h is a sparse operator although it is of relatively high order 29. Hence the expanded
form of h is small. Since r , 0, then f is not σy-summable by (Gerhard et al., 2003, Theorem 12).
We will use f as a running example in this paper.

2.2. Integer-linear decomposition and its refinement
Recall that an irreducible polynomial g ∈ K[x, y] is called integer-linear (over K) if it is of

the form p(λx + µy) for some integers λ, µ and a univariate polynomial p ∈ K[z]. Note that λ, µ
cannot both be zero since g is irreducible and thus nonunit. By pulling out a common factor
and absorbing it into p, one may assume without loss of generality that λ, µ are coprime and
that µ ≥ 0. Such a pair (λ, µ) is unique and is called the integer-linear type of g. For the sake
of completeness, we let a constant polynomial be integer-linear of type (0, 0). A polynomial
in K[x, y] is then called integer-linear (over K) if all its irreducible factors are integer-linear,
possibly with different integer-linear types. A rational function in K(x, y) is called integer-linear
(over K) if its denominator and numerator are both integer-linear.
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Definition 2.3. Let g ∈ K[x, y] be a polynomial admitting the decomposition

g = p0(x, y)
m∏

i=1

pi(λix + µiy), (2.4)

where p0 ∈ K[x, y], m ∈ N, λi, µi ∈ Z and pi ∈ K[z] for 1 ≤ i ≤ m. Then (2.4) is called the
integer-linear decomposition of g if

• none of irreducible factors of p0 is integer-linear;

• p1, . . . , pm are monic and of positive degrees in z;

• each (λi, µi) satisfies gcd(λi, µi) = 1 and µi ≥ 0;

• any two pairs of the (λi, µi) are distinct.

The (λi, µi) are called integer-linear types of g. If g is clear from the context, we will simply say
that the (λi, µi) are integer-linear types.

Clearly, g is integer-linear if and only if p0 ∈ K in (2.4). By the uniqueness of full fac-
torization and integer-linear types, we see that every polynomial admits a unique integer-linear
decomposition up to the order of the factors.

In terms of computation, an efficient algorithm for finding integer-linear decompositions of
general multivariate polynomials was recently proposed by authors (Giesbrecht et al., 2019).
Compared with previous known approaches (Abramov and Le, 2002; Li and Zhang, 2013), this
algorithm performs better both in theory and in practice.

Recall that two polynomials f , g ∈ K[x, y] are called shift-equivalent with respect to x, y (or
(σx, σy)-equivalent for short), denoted by f ∼x,y g, if there exist `,m ∈ Z such that f = σ`xσ

m
y (g).

Clearly, ∼x,y is an equivalence relation and contains the relation ∼y. Suppose that f , g are integer-
linear of the forms f (x, y) = p1(λ1x + µ1y) and g(x, y) = p2(λ2x + µ2y) for pi ∈ K[z] and
λi, µi ∈ Z with µi ≥ 0 and gcd(λi, µi) = 1. Then f ∼x,y g implies that (λ1, µ1) = (λ2, µ2) and
p1(z) = p2(z + `) for some ` ∈ Z, and conversely. This indicates that for any two integer-linear
polynomials of single types, testing their (σx, σy)-equivalence amounts to checking the equality
of the integer-linear types and the shift-equivalence of univariate polynomials.

Let p ∈ K[z] be a monic polynomial of positive degree in z, and let (λ, µ) be an integer-linear
type with µ > 0. By computing the shift-homogeneous decomposition of p with respect to z,
we obtain p =

∏m
i=1

∏ni
j=1 σ

νi j
y (pi)ei j , where m, ni, νi j, ei j ∈ N with 0 = νi1 < νi2 < · · · < νini and

ei j > 0, pi ∈ K[z] is monic and irreducible, and the pi are pairwise shift-inequivalent with respect
to z. It then follows that

p(λx + µy) =

m∏
i=1

ni∏
j=1

pi(λx + µy + νi j)ei j ,

where the pi(λx + µy) are pairwise (σx, σy)-inequivalent.
Consider now a polynomial g ∈ K[x, y] with the integer-linear decomposition (2.4). For each

factor pi(λix + µiy) with 1 ≤ i ≤ m in (2.4), if µi = 0 we then absorb it into p0; otherwise
we further split it into distinct (σx, σy)-equivalence classes using the procedure described in
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the preceding paragraph. By relabeling all the resulting factors, we finally derive the following
decomposition (with a slight abuse of notation)

g = p0(x, y)
m∏

i=1

ni∏
j=1

pi(λix + µiy + νi j)ei j , (2.5)

where p0 ∈ K[x, y], m, ni, νi j, ei j ∈ N, λi, µi ∈ Z and p1, . . . , pm ∈ K[z] satisfying

• none of irreducible factors of p0 of positive degree in y is integer-linear;

• p1, . . . , pm are monic and irreducible;

• each (λi, µi) is an integer-linear type with µi > 0;

• pi(λix+µiy) �x,y p j(λ jx+µ jy) for any two integers i, j with 1 ≤ i < j ≤ m; or equivalently,
either (λi, µi) , (λ j, µ j) or pi is shift-inequivalent with p j with respect to z;

• 0 = νi1 < · · · < νini and ei j > 0.

Evidently, the above decomposition is unique up to the order of factors. We will call (2.5) the
refined integer-linear decomposition of the polynomial g.

Example 2.4. Let g be the same polynomial as given in Example 2.2. By definition, it is easy to
see that g possesses the integer-linear decomposition

g = p0(x, y) p̃1(−5x + 2y) p̃2(3x + 10y),

where p0 = g0σy(g0)σ29
y (g0)σ30

y (g0) with g0 = xy + 1, p̃1(z) = (z2 + 1)((z + 1)2 + 1) and p̃2(z) =

z3 + 1. Computing the shift-homogeneous decompositions of p̃1 and p̃2 with respect to z then
yields the refined integer-linear decomposition

g = p0(x, y)p1(−5x + 2y)p1(−5x + 2y + 1)p2(3x + 10y)p3(3x + 10y) (2.6)

with p1(z) = z2 + 1, p2(z) = z + 1 and p3(z) = z2 − z + 1.

3. Integer-linear operators

In this section, we introduce another vital ingredient of our algorithms, in this case a special
recurrence operator specifically acting on integer-linear rational functions of a single type.

By a standard localization at a left Ore set (see (Cohn, 1985, §0.9) or (Rowen, 1988, §3.1)),
the ring K(x, y)[Sx,Sy] can be extended to

A := K(x, y)[Sx,Sy,S−1
x ,S

−1
y ].

Here S−1
x f = σ−1

x ( f )S−1
x and S−1

y f = σ−1
y ( f )S−1

y for all f ∈ K(x, y) with σ−1
x , σ

−1
y denoting the

inverse maps of the automorphisms σx, σy, respectively. For an operator L ∈ A, there exist
unique rational functions ai j ∈ K(x, y), finitely many nonzero, such that L =

∑
i, j∈Z ai jSi

xS j
y.

In the rest of this section, we fix a pair (λ, µ) of coprime integers with µ > 0. Then there exist
unique integers α, β such that

αλ + βµ = 1, (3.1)
9



with the constraints 0 ≤ α < µ and |β| ≤ |λ| if λ , 0, or α = 0 and β = 1 otherwise. Set Sλ,µ to be
the product Sαx Sβy . Then

Aλ,µ := K(x, y)[Sλ,µ,S−1
λ,µ]

is a subring ofA, which consists of all integer-linear operators of type (λ, µ).
We can viewAλ,µ as a left module overA as follows. Define the left K(x, y)-linear map

φλ,µ : A −→ Aλ,µ∑
i, j∈Z ai jSi

xS j
y 7→

∑
i, j∈Z ai jS

iλ+ jµ
λ,µ .

The image and kernel of φλ,µ are determined below.

Proposition 3.1. The restriction of φλ,µ onAλ,µ is the identity. Consequently, φλ,µ is surjective.

Proof. By (3.1), φλ,µ(Si
λ,µ) = Si

λ,µ for all i ∈ Z, which, together with the definition of φλ,µ, implies
the assertion.

Lemma 3.2. For every L ∈ A and k, ` ∈ Z, we have φλ,µ(LSk
xS`y) = φλ,µ(L)φλ,µ(Sk

xS`y).

Proof. A straightforward calculation based on the definition of φλ,µ implies that

φλ,µ((Si
xS j

y)(Sk
xS`y)) = φλ,µ(Si

xS j
y)φλ,µ(Sk

xS`y) for all i, j ∈ Z.

The lemma then follows from the linearity of φλ,µ.

The above lemma does not imply that φλ,µ is a ring homomorphism. In fact, one can easily
verify that φλ,µ(Syy) , φλ,µ(Sy)φλ,µ(y) provided that βµ , 1.

Proposition 3.3. The kernel of φλ,µ is the left ideal generated by Sx − Sλλ,µ and Sy − Sµλ,µ inA.

Proof. Let I be the left ideal generated by Sx − Sλλ,µ and Sy − Sµλ,µ inA. For any L ∈ I, there are
P,Q ∈ A such that L = P(Sx − Sλλ,µ) + Q(Sy − Sµλ,µ). By Lemma 3.2, φλ,µ(L) = φλ,µ(P)φλ,µ(Sx −

Sλλ,µ) + φλ,µ(Q)φλ,µ(Sy − Sµλ,µ). It follows from the definition of φλ,µ and Proposition 3.1 that
φλ,µ(Sx − Sλλ,µ) = φλ,µ(Sy − Sµλ,µ) = 0, and so also φλ,µ(L) = 0. We have that I ⊂ ker(φλ,µ).

Conversely, we first observe that every L ∈ A can be decomposed as L = M + R for some
M ∈ I and R ∈ Aλ,µ. This is because every monomial Si

xS j
y in L with i, j ∈ Z can be rewritten as

(Sx −Sλλ,µ + Sλλ,µ)i(Sy −Sµλ,µ + Sµλ,µ) j and (Sx −Sλλ,µ),Sλλ,µ, (Sy −Sµλ,µ),Sµλ,µ multiplicatively commute
with each other, so expanding the powers yields the desired result. Then φλ,µ(L) = φλ,µ(R) since
M ∈ I ⊂ ker(φλ,µ). Moreover, φλ,µ(L) = R by Proposition 3.1. We see that L ∈ ker(φλ,µ) implies
R = 0. Hence ker(φλ,µ) ⊂ I.

According to Proposition 3.1,A/ ker(φλ,µ) is isomorphic toAλ,µ as additive groups. Further-
more, A/ ker(φλ,µ) is a left module over A by Proposition 3.3. Hence, Aλ,µ can be viewed as
a left module over A as well. Its left scalar multiplication is defined via φλ,µ as follows. For
all L ∈ A and M ∈ Aλ,µ, the result obtained by multiplying L from the left-hand side to M is
φλ,µ(LM), which is denoted by L � M when the pair (λ, µ) is clear from context.

Using the scalar multiplication, we introduce a left division, which will allows us to charac-
terize telescopers and represent certificates in a compact form. To this end, we need to define
the notion of orders in Aλ,µ. Let M =

∑n
i=m aiSi

λ,µ ∈ Aλ,µ, where m, n ∈ Z with m ≤ n and
ai ∈ K(x, y) with aman , 0. We say that m and n are the lowest and highest orders of M, and
denote them by lord(M) and hord(M), respectively.
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Lemma 3.4. Let L ∈ K(x, y)[Sy,S−1
y ] and M ∈ Aλ,µ be two nonzero operators. Then L � M is

nonzero. Moreover,

lord(L � M) = lord(φλ,µ(L)) + lord(M) and hord(L � M) = hord(φλ,µ(L)) + hord(M).

Proof. Let

L =
∑̀
i=k

aiSi
y ∈ K(x, y)[Sy, S−1

y ] and M =

n∑
j=m

b jS
j
λ,µ ∈ Aλ,µ, (3.2)

where k, `,m, n ∈ Z with k ≤ ` and m ≤ n, and ai, b j ∈ K(x, y) with aka`bmbn , 0. Then
φλ,µ(L) =

∑`
i=k aiS

iµ
λ,µ, which is nonzero. Hence, lord(φλ,µ(L)) = kµ and hord(φλ,µ(L)) = `µ.

Observe that Si
y � ( f S j

λ,µ) = σi
y( f )S j+iµ

λ,µ for all f ∈ K(x, y) and i, j ∈ Z. Since aka`bmbn , 0, then
L � M , 0, and thus lord(L � M) = kµ + m and hord(L � M) = `µ + n.

Lemma 3.5. Let L ∈ K(x, y)[Sy] with L , 0 and M ∈ Aλ,µ. Then there exist Q,R ∈ Aλ,µ such
that M = L � Q + R, and R is either zero or satisfies 0 ≤ lord(R) ≤ hord(R) < hord(φλ,µ(L)).

Proof. If M = 0, then we set Q = 0 and R = 0. Otherwise, let L and M be the same as in (3.2)
with k ≥ 0. Then hord(φλ,µ(L)) = `µ.
Case 1. Assume that m ≥ 0. If n < `µ, then we set Q = 0 and R = M. Otherwise, let
f = σ−`y (bn/a`). By Lemma 3.4,

N := M − L � ( f Sn−`µ
λ,µ ) = M − (bnSn

λ,µ + lower terms in Sλ,µ).

Thus either N = 0 or 0 ≤ lord(N) ≤ hord(N) < n. If N = 0 or hord(N) < `µ, then we are done.
Otherwise, we recursively apply the same reduction on N. The conclusion will be reached in a
finite number of steps.
Case 2. Assume that m < 0. We reduce M to an integer-linear operator which is either zero or
of nonnegative lowest order. Let g = σ−k

y (bm/ak). Again, by Lemma 3.4, M − L � (gSm−kµ
λ,µ ) =

M−(bmSm
λ,µ+higher terms in Sλ,µ), which is either zero or of lower order higher than m. Repeating

the above reduction finitely many times, we will obtain Q1,R1 ∈ Aλ,µ such that M = L�Q1 + R1
and either R1 = 0 or lord(R1) ≥ 0. If R1 = 0, then we are done. Otherwise, applying the argument
in the first case to R1 yields the lemma.

Theorem 3.6. Let L ∈ K(x, y)[Sy,S−1
y ] with L , 0 and M ∈ Aλ,µ. Then there exist unique

Q,R ∈ Aλ,µ such that M = L � Q + R, and R is either zero or satisfies

lord(φλ,µ(L)) ≤ lord(R) ≤ hord(R) < hord(φλ,µ(L)).

Proof. Let L be given as in (3.2). If k ≥ 0, then the existence of Q and R follows from Lemma 3.5.
Assume that k < 0. The same lemma implies that there exist Q̃, R̃ ∈ Aλ,µ such that S−k

y � M =

(S−k
y L)� Q̃ + R̃. In addition, either R̃ = 0 or 0 ≤ lord(R̃) ≤ hord(R̃) < hord(φλ,µ(S−k

y L)). It follows
that M = L � Q̃ + Sk

y � R̃. Assume that R̃ is nonzero. Then lord(Sk
y � R̃) ≥ lord(φλ,µ(L)) by

Lemma 3.4 and the fact that lord(R̃) ≥ 0. Moreover, hord(Sk
y � R̃) < hord(φλ,µ(L)) by Lemma 3.4

and the fact that hord(R̃) < hord(φλ,µ(S−k
y L)). Setting Q = Q̃ and R = Sk

y � R̃ establishes the
existence of Q and R.

To show the uniqueness, we let Q̃, R̃ ∈ Aλ,µ be such that M = L�Q̃+R̃, and R̃ is either zero or
satisfies lord(φλ,µ(L)) ≤ lord(R̃) ≤ hord(R̃) < hord(φλ,µ(L)). Then L � (Q − Q̃) = R̃ − R. Suppose
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that Q , Q̃. Then R̃ , R by Lemma 3.4. Suppose that hord(Q − Q̃) ≥ 0. By Lemma 3.4 and the
fact that hord(φλ,µ(L)) > hord(R̃−R), we have hord(L� (Q− Q̃)) > hord(R̃−R), a contradiction.
Otherwise, a similar argument yields lord(L � (Q − Q̃)) < lord(R̃ − R), a contradiction. Hence
Q = Q̃ and then R = R̃.

In view of the above theorem, we call Q the left scalar quotient and R the left scalar remain-
der of M by L, and denote them by LSQ(M, L) and LSR(M, L), respectively.

Remark 3.7. It is possible to extend Theorem 3.6 to the general case when the scalar divisor
L is an arbitrary nonzero operator in A. However, as doing this extension is somewhat tedious
and as this extension is not used in the paper we do not investigate this aspect further.

Remark 3.8. We are particularly interested in the case where the difference operator Sy − 1
plays the part of a scalar divisor. For later reference, we collect below explicit formulas for left
scalar remainders, as well as for left scalar quotients, in this case.

Let M =
∑n

i=m aiSi
λ,µ ∈ Aλ,µ, where m, n ∈ Z with m ≤ n and ai ∈ K(x, y). Then

LSR(M,Sy − 1) =

µ−1∑
r=0

∑
ir

σ
−qir
y (air )

 Sr
λ,µ, (3.3)

where the inner summation runs over all integers ir with m ≤ ir ≤ n such that ir = µqir + r for
some integer qir , and

LSQ(M,Sy − 1) = −

−1∑
j=m

∑
i j

σ
−qi j
y (ai j )

 S j
λ,µ +

n−µ∑
j=0

∑
i j

σ
−qi j
y (ai j )

 S j
λ,µ,

where the first inner summation runs over all integers i j with m ≤ i j ≤ n such that i j = µqi j + j
for some nonpositive integer qi j , while the second inner summation runs over all integers i j with
m ≤ i j ≤ n such that i j = µqi j + j for some positive integer qi j .

Example 3.9. Let M = (x − 1)S−5,2 + (2x2 + 1) with S−5,2 = SxS3
y . Let L be an operator in

Q[x][Sx] of the form L = c2S2
x + c1Sx + c0 for some c0, c1, c2 ∈ Q[x]. Multiplying L from the

left-hand side to M yields

L � M = c0(x − 1)S−5,2 + c0 (2x2 + 1) + c1 σx(x − 1)S−4
−5,2 + c1 σx(2x2 + 1)S−5

−5,2

+ c2 σ
2
x(x − 1)S−9

−5,2 + c2 σ
2
x(2x2 + 1)S−10

−5,2. (3.4)

A direct calculation based on Remark 3.7 then delivers

LSR(L � M,Sy − 1) = a1S−5,2 + a0, (3.5)

where

a1 = c0(x − 1) + c1(σ3
yσx(2x2 + 1)) + c2(σ5

yσ
2
x(x − 1))

and a0 = c0(2x2 + 1) + c1(σ2
yσx(x − 1)) + c2(σ5

yσ
2
x(2x2 + 1)).

We note that L � M is a sparse operator by (3.4); the left scalar quotient LSQ(L � M,Sy − 1),
however, is a dense operator with exponents in S−5,2 ranging consecutively from −10 to −1.
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4. Telescoping with compact certificates

In this section, we demonstrate how to construct a telescoper for a given rational function,
along with its certificate in a compact form, using left scalar divisions of integer-linear operators
introduced in the preceding section.

For an operator L =
∑

i, j∈Z ai jSi
xS j

y ∈ A and a rational function f ∈ K(x, y), the application of
L to f is defined to be

L( f ) =
∑
i, j∈Z

ai jσ
i
x( f )σ j

y( f ).

Let (λ, µ) be a pair of coprime integers with µ > 0, and g ∈ K(x, y) of the form g = p(λx + µy)
with p ∈ K(z). Then

Si
λ,µ(g) = p(λx + µy + i) for all i ∈ Z.

It follows that Sx(g) = Sλλ,µ(g) and Sy(g) = Sµλ,µ(g). Thus, for all L ∈ A, we have that L(g) =

φλ,µ(L)(g). Assume further that M ∈ Aλ,µ. Then

LM(g) = (L � M)(g), (4.1)

which allows us to describe telescopers and their corresponding certificates in terms of module-
theoretic language.

Let f ∈ K(x, y) be a rational function with denominator g ∈ K[x, y]. Based on the refined
integer-linear decomposition (2.5) of g, there is a unique partial fraction decomposition of f with
respect to y, that is, there exist unique a0, ai jk ∈ K(x)[y] with degy(ai jk) < degz(pi) such that

f =
a0

p0
+

m∑
i=1

ni∑
j=1

ei j∑
k=1

ai jk

pi(λix + µiy + νi j)k . (4.2)

Let di = max1≤ j≤ni {ei j} and specify that ai jk = 0 in case k > ei j. Interchanging the order of
summations in (4.2) and introducing the operator Mik =

∑ni
j=1 ai jkSνi j

λi,µi
then gives

f =
a0

p0
+

m∑
i=1

di∑
k=1

Mik

(
1

pi(λix + µiy)k

)
. (4.3)

Note that Mik ∈ K(x)[y,Sλi,µi ] and degy(Mik) < degz(pi) for all i = 1, . . . ,m and k = 1, . . . , di.
Using the above argument in the opposite direction, one can easily derive the partial fraction
decomposition (4.2) from (4.3). It thus follows from the uniqueness of (4.2) that (4.3) is unique.
In particular, the operators Mik are uniquely determined by the given rational function f . We will
refer to (4.3) as the RILD-based partial fraction decomposition of f .

4.1. The basic case
In order to illustrate the main idea of our algorithm in a concise way, we first focus on the

simpler yet important subcase when the given rational function f ∈ K(x, y) possesses the form

f =
∑
i∈Z

ai

p(λx + µy + i)k = M
(

1
p(λx + µy)k

)
, (4.4)

where λ, µ, k ∈ Zwith gcd(λ, µ) = 1 and µ, k > 0, p ∈ K[z] is monic and irreducible, ai ∈ K(x)[y],
finitely many nonzero, with degy(ai) < degz(p), and M =

∑
i∈Z aiSi

λ,µ ∈ K(x)[y,Sλ,µ,S−1
λ,µ]. Note

that such a function f has a telescoper by the criterion of Abramov and Le (2002, Theorem 1).
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Proposition 4.1. Let f ∈ K(x, y) be of the form (4.4), and let L ∈ K[x][Sx] be a nonzero operator.
Then L is a telescoper for f if and only if there exists Q ∈ Aλ,µ such that L � M = (Sy − 1) � Q.
When this is the case, a certificate corresponding to L is given by

Q
(

1
p(λx + µy)k

)
.

Proof. Assume that L is a telescoper for f . Then there exists h ∈ K(x, y) such that

L( f ) = (L � M)
(

1
p(λx + µy)k

)
= (Sy − 1)(h),

where the first equality follows by (4.1). From the uniqueness of the RILD-based partial fraction
decomposition we have that there exists Q ∈ K(x)[y,Sλ,µ,S−1

λ,µ] with degy(Q) < degz(p) such that

h = Q
(

1
p(λx + µy)k

)
.

It thus follows that

(L � M)
(

1
p(λx + µy)k

)
=

(
(Sy − 1) � Q

) ( 1
p(λx + µy)k

)
.

Again, by the uniqueness of the RILD-based partial fraction decomposition, we find that L�M =

(Sy − 1) � Q. Applying both sides of this equality to 1/p(λx + µy)k proves the converse.

Based on Proposition 4.1, we can compute a telescoper for a rational function f ∈ K(x, y)
of the form (4.4) as follows. Assume that we want to find a telescoper of order no more than
ρ ∈ N. Making an ansatz L = cρS

ρ
x + · · · + c0 with c0, . . . , cρ ∈ K[x] to be determined, we first

compute the left scalar remainder R of L�M by Sy−1. Note that R ∈ K(x)[y,Sλ,µ,S−1
λ,µ]. Sending

R to zero, we then obtain a linear homogeneous system in c0, . . . , cρ over K(x). Any nontrivial
solution of this system over K[x] will give rise to a desired telescoper. If no such solutions can
be found, then there does not exist any telescoper of order no more than ρ. In order to compute
a minimal telescoper for f , one may apply the above procedure incrementally with ρ = 0, 1, . . . .
The termination of this process is assured by the existence of telescopers for such an f . With
a telescoper L for the given rational function f at hand, by Proposition 4.1, a corresponding
certificate can be formally represented as LSQ(L � M,Sy − 1)

(
1

p(λx+µy)k

)
.

Example 4.2. Consider the rational function f of the form

f =
2x2 + 1

(−5x + 2y)2 + 1
+

x − 1
(−5x + 2y + 1)2 + 1

.

A simple calculation shows that the RILD-based partial fraction decomposition of f is given by

f = ((x − 1)S−5,2 + 2x2 + 1)︸                        ︷︷                        ︸
M

(
1

p(−5x + 2y)

)
with S−5,2 = SxS3

y and p(z) = z2 + 1.

Let L = c2S2
x + c1Sx + c0 with c0, c1, c2 ∈ Q[x] to be determined. By Example 3.9, we know that

the left scalar remainder R of L � M by Sy − 1 is given by (3.5). Sending R to zero then delivers
14



the following linear homogeneous system x − 1 σ3
yσx(2x2 + 1) σ5

yσ
2
x(x − 1)

2x2 + 1 σ2
yσx(x − 1) σ5

yσ
2
x(2x2 + 1)


c0
c1
c2

 =

0
0

 . (4.5)

Solving this system over Q[x] gives a telescoper

L = (4x4 + 8x3 + 7x2 + 5x + 3)S2
x + 2(2x2 − 5)Sx − (4x4 + 24x3 + 55x2 + 59x + 27)

and then a corresponding certificate

h = LSQ(L � M,Sy − 1)
(

1
p(−5x + 2y)

)
.

We note that L is actually a telescoper for f of minimal order.

4.2. The general case
We now turn our attention to the general case, namely the case when the input is an arbitrary

rational function in K(x, y). Let f ∈ K(x, y) be a rational function admitting the RILD-based
partial fraction decomposition (4.3). By (Abramov and Le, 2002, Theorem 1), f has a telescoper
if and only if a0/p0 in (4.3) is σy-summable. Thus it suffices to construct a telescoper for r :=
f − a0/p0, which possesses the following form

r =

m∑
i=1

di∑
k=1

Mik

(
1

pi(λix + µiy)k

)
, (4.6)

where each (λi, µi) is a pair of coprime integers with µi > 0, each pi ∈ K[z] is monic and
irreducible, the pi(λix + µiy) are pairwise (σx, σy)-inequivalent, and each Mik ∈ K(x)[y,Sλi,µi ]
with degy(Mik) < degz(pi).

There are two natural ways to proceed. The first method separately takes each simple fraction
Mik

(
1

pi(λi x+µiy)k

)
in (4.6) as the basic case and computes its own minimal telescoper Lik ∈ K[x][Sx]

using the approach presented in the preceding subsection, and then returns the least common left
multiple of all these Lik as the output. By taking use of (Le, 2003, Theorem 2), one can show that
this least common left multiple gives a minimal telescoper for r (and thus for f ). Preliminary
experiments, however, suggest that in practice this method does not perform as well as expected.
In fact, it is often less efficient than the second method which we are going to explore shortly.

This second method shares exactly the same spirit as the basic case given in the preced-
ing subsection, in the sense that it also reduces the problem of constructing a telescoper to the
problem of computing left scalar remainders of integer-linear operators.

Theorem 4.3. Let r ∈ K(x, y) be a rational function possessing the decomposition (4.6), and let
L ∈ K[x][Sy] be a nonzero operator. Then L is a telescoper for r if and only if, for all i = 1, . . . ,m
and k = 1, . . . , di, there exist operators Qik ∈ Aλi,µi such that L�Mik = (Sy − 1)�Qik. When this
is the case, a corresponding certificate of L is given by

m∑
i=1

di∑
k=1

Qik

(
1

pi(λix + µiy)k

)
. (4.7)
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Proof. Assume that L is a telescoper for r. Then there exists h ∈ K(x, y) such that L(r) =

(Sy − 1)(h). By (4.1) and (4.6), we have

m∑
i=1

di∑
k=1

(L � Mik)
(

1
pi(λix + µiy)k

)
= (Sy − 1)(h).

The RILD-based partial fraction decomposition of the left-hand side in the above equality implies
that the same decomposition of h is of the form (4.7), in which Qik ∈ K(x)[y,Sλi,µi ,S

−1
λi,µi

] with
degy(Qik) < degz(pi). The uniqueness of the RILD-based partial fraction decomposition then
forces

L � Mik = (Sy − 1) � Qik for all i = 1, . . . ,m and k = 1, . . . , di.

Conversely, we apply L to r. By (4.1) and (4.6),

L(r) =

m∑
i=1

di∑
k=1

(L � Mik)
(

1
pi(λix + µiy)k

)
=

m∑
i=1

di∑
k=1

(
(Sy − 1) � Qik

) ( 1
pi(λix + µiy)k

)
.

It follows that L(r) = (Sy − 1)(h), where h is given by the formula (4.7).

In analogy to the basic case, the above theorem induces an iterative strategy to compute a
telescoper for a given rational function.

Putting this all together, we obtain a new creative telescoping algorithm for rational functions.
RationalCT. Given a rational function f ∈ K(x, y), compute a minimal telescoper L ∈ K[x][Sx]
for f and a corresponding certificate h ∈ K(x, y) if telescopers exist. The steps are:

1. Compute the RILD-based partial fraction decomposition of f to get (4.3).
2. Apply the GGSZ reduction to a0/p0 in (4.3) to find h, r ∈ K(x, y) with h being of a compact

form such that a0

p0
= (Sy − 1)(h) + r. (4.8)

3. If r , 0 then return “No telescoper exists!”.
4. For i = 1, . . . ,m and k = 1, . . . , di set Rik = 0.

For ` = 0, 1, 2, . . . do

4.1 For i = 1, . . . ,m and k = 1, . . . , di do

4.1.1 Compute the left scalar remainder R̄ of S`x � Mik by Sy − 1.
4.1.2 Update Rik to be Rik + c`R̄, where c` is an indeterminate.

4.2 Find c0, . . . , c` ∈ K[x] such that Rik = 0 for all i = 1, . . . ,m and k = 1, . . . , di, by
solving a linear system in c0, . . . , c` over K[x]. If there is a nontrivial solution, set
L =

∑`
j=0 c jS

j
x and returnL, L(h) +

m∑
i=1

di∑
k=1

LSQ(L � Mik,Sy − 1)
(

1
pi(λix + µiy)k

) .
Theorem 4.4. Let f be a rational function inK(x, y). Then the algorithm RationalCT terminates
and correctly finds a minimal telescoper for f and a corresponding certificate in a compact form
when such telescopers exist.
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Proof. By (Abramov and Le, 2002, Theorem 1), f has a telescoper if and only if a0/p0 in (4.3)
is σy-summable, which, according to (Gerhard et al., 2003, Theorem 12), is equivalent to the
condition that r = 0 in (4.8). Thus steps 1-3 are correct.

For ` = 0, It is evident that Rik obtained in step 4.1 is equal to LSR(c0 � Mik,Sy − 1) for all
i = 1, . . . ,m and k = 1, . . . , di. By a direct induction on `, we see that in the outer loop of step 4,
Rik = LSR((c`S`x + · · · + c0) � Mik,Sy − 1) holds for all i = 1, . . . ,m and k = 1, . . . , di every time
the algorithm passes through step 4.1.

Assume that L =
∑ρ
`=0 c̃`S`x with c̃` ∈ K[x] and c̃ρ , 0 is a minimal telescoper for f . By

Theorem 4.3, the left scalar remainders R̃ik of the L � Mik by Sy − 1 are all zero. Thus, the linear
homogeneous system over K[x] obtained by equating all the Rik at the ρth iteration of the outer
loop in step 4 to zero has a nontrivial solution, which gives rise to a telescoper of minimal order.
The compact representation for a corresponding certificate follows by Theorem 4.3.

Example 4.5. Consider the same rational function f as in Example 2.2. By Example 2.4, the
refined integer-linear decomposition of the denominator g is given by (2.6). Then in step 1, we
obtain the RILD-based partial fraction decomposition

f =
a0

p0
+ ((x − 1)S−5,2 + 2x2 + 1)︸                        ︷︷                        ︸

M1

(
1

p1(−5x + 2y)

)
+ 1

30 (−3x2 − x + 10)S0
3,10︸                       ︷︷                       ︸

M2

(
1

p2(3x + 10y)

)
,

+ 1
30 (9x3 + 30x2y − 3x2 + 10xy − 29x − 100y + 20)S0

3,10︸                                                                  ︷︷                                                                  ︸
M3

(
1

p3(3x + 10y)

)
,

where S−5,2 = SxS3
y , S3,10 = S7

xS−2
y and

a0

p0
=

2x + 3
σ30

y (g0)
−

2x + 3
σ29

y (g0)
−

1
σy(g0)

+
1
g0
, (4.9)

to which subsequently applying the GGSZ reduction in step 2 yields (4.8) with h represented by
the compact form given in (2.3) and r = 0. In step 4, we execute the outer loop for ` = 0, 1, . . . , 22
and iteratively compute the left scalar remainder Ri of (c22S22

x + · · · + c0) � Mi by Sy − 1 for
i = 1, 2, 3, where c0, . . . , c22 are indeterminates. By equating R1,R2,R3 to zero, we set up an
overdetermined system of 32 linear equations in unknowns c0, . . . , c22 over Q[x], in which each
linear equation is of degree in x at most 3. Solving this linear system over Q[x] gives a minimal
telescoper

L = (3x2 + 42x + 82)S22
x − (3x2 + 30x + 10)S20

x − 2(3x2 + 72x + 142)S12
x

+ 2(3x2 + 60x + 10)S10
x + (3x2 + 102x + 802)S2

x − (3x2 + 90x + 610), (4.10)

along with a corresponding certificate in the compact expression

L(h) + LSQ(L � M1,Sy − 1)
(

1
p1(−5x + 2y)

)
+ LSQ(L � M2,Sy − 1)

(
1

p2(3x + 10y)

)
+ LSQ(L � M3,Sy − 1)

(
1

p3(3x + 10y)

)
.
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4.3. Efficiency considerations
The efficiency of the algorithm RationalCT can be enhanced by incorporating the following

modifications in the algorithm.
(i) Modification in step 1.

In step 1, we employ the shift-homogeneous decomposition to obtain the refined integer-
linear decomposition of the denominator of f , which leads to the RILD-based partial fraction
decomposition of f . In fact, the role of the shift-homogeneous decomposition can be played by
any shiftless decomposition introduced in (Gerhard et al., 2003, Definition 1). In particular, the
coarsest shiftless decomposition, namely the one which groups all irreducible factors gi having
the same tuples (νi1, . . . , νini ) and (ei1, . . . , eini ) in (2.1), can be used. Such a decomposition can
be computed via GCD computation (see (Gerhard et al., 2003, §3)). In this way, we avoid the
need of full factorization while maintaining the uniqueness of the induced RILD-based partial
fraction decomposition, which in turn ensures the correctness of the algorithm.
(ii) Modification in step 2.

In step 2, with ã0 ∈ K[x, y] and u0 ∈ K[x] denoting the numerator and denominator of a0,
respectively, it actually suffices to apply the GGSZ reduction to ã0/p0 (instead of a0/p0) since
ã0/p0 = (Sy − 1)(hu0) + ru0 and ru0 = 0 if and only if r = 0. This reduces the cost of this step.
(iii) Modification in step 4.

Let u ∈ K[x] be the common denominator of the Mik and write each Mik as Mik = 1
u M̃ik for

some M̃ik ∈ K[x, y,Sλi,µi ]. Inspired by the proof of (Chen and Kauers, 2012, Theorem 10), it
actually amounts to looking for a telescoper of the form L =

∑ρ
`=0 c`σ`x(u)S`x. As such, for all

i = 1, . . . ,m and k = 1, . . . , di, we have

L � Mik =

 ρ∑
`=0

c`σ`x(u)S`x
1
u

 � M̃ik =

 ρ∑
`=0

c`S`x

 � M̃ik =

ρ∑
`=0

c`
(
S`x � M̃ik

)
, (4.11)

and thus L � Mik ∈ K[x, y,Sλi,µi ,S
−1
λi,µi

], so that operations in step 4 only induce arithmetic with
polynomial coefficients. For doing so, we compute in step 4.1.1 the left scalar remainder of
R̃ of S`x � M̃ik (instead of S`x � Mik) by Sy − 1 and return in step 4.2 a telescoper of the form
L =

∑`
j=0 c jσ

j
x(u)S j

x once a nontrivial solution is found.
We note that looking for a telescoper of the specified form in fact does not lose any generality

because, for a telescoper L̃ =
∑ρ
`=0 c̃`S`x ∈ K[x][Sx], multiplying from the left the least common

multiple uρ of u, σx(u), . . . , σρx(u) gives

uρL̃ =

ρ∑
`=0

c` σ`x(u)S`x with c` =
c̃`uρ
σ`x(u)

,

which is again a telescoper with the same order as L̃ and of the required form. On the other hand,
it is often observed in experiments that taking such a special form for telescopers actually helps
to decrease sizes of the c` to be determined, which might deserve further investigation.
(iv) Further modification in step 4.

Following the preceding modification, before executing the outer loop of step 4, we can first
compute the left scalar remainder Nik of each M̃ik by Sy − 1; then we let Nik play the role of
M̃ik in step 4.1.1. This is because any operator in K[x][Sx] commutes with Sy − 1 and then
LSR(S`x � M̃ik,Sy − 1) = LSR(S`x � Nik,Sy − 1) for any ` ∈ N. Note that every nonzero Nik has
highest order no more than µi − 1 and typically can be handled more easily than M̃ik.

Let us now reconsider Example 4.5 in the light of the above modifications.
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Example 4.6. Consider the same rational function f as Example 2.2. Using the coarsest shiftless
decomposition instead of the shift-homogeneous decomposition as described in modification (i),
we obtain the following refined integer-linear decomposition

g = p0(x, y)p1(−5x + 2y)p1(−5x + 2y + 1)p2(3x + 10y), (4.12)

where p0 = g0σy(g0)σ29
y (g0)σ30

y (g0) with g0 = xy + 1, p1(z) = z2 + 1 and p2(z) = z3 + 1. Based
on (4.12), we find in step 1 the partial fraction decomposition

f =
a0

p0
+ ((x − 1)S−5,2 + 2x2 + 1)︸                        ︷︷                        ︸

M1

(
1

p1(−5x + 2y)

)
+ (xy + 1)S0

3,10︸         ︷︷         ︸
M2

(
1

p2(3x + 10y)

)
,

where a0/p0 is given by (4.9), S−5,2 = SxS3
y and S3,10 = S7

xS−2
y . Again, in step 2, we apply the

GGSZ reduction to a0/p0 which yields (4.8) with h represented by the compact form given in
(2.3) and r = 0. In step 4, the loop will be executed for ` = 0, . . . , 22. The final, induced linear
system contains 22 equations in unknowns c0, . . . , c22 overQ[x] and each equation has degree in
x at most 2. This compares to Example 4.5 which involves a linear system of 32 linear equations
of degree in x at most 2. The basis to the nullspace of the linear system overQ(x) gives rise to the
same minimal telescoper L in (4.10). Note that modifications (ii)-(iv) are trivial in this example.

5. Arithmetic cost for the new algorithm

In this section, we give a complexity analysis of the new algorithm described in the preceding
section. For this purpose, we first collect some classical complexity notations and facts needed
in this paper. More background on these can be found in (von zur Gathen and Gerhard, 2013).

5.1. Complexity background
In this paper, costs of algorithms will be counted by the number of arithmetic operations in the

field K. All costs are analyzed in terms of O-estimates for classical arithmetic and O∼-estimates
for fast arithmetic, where the soft-Oh notation “O∼” is basically “O” but suppressing logarithmic
factors (see (von zur Gathen and Gerhard, 2013, Definition 25.8) for a precise definition).

We summarize the facts needed for our analysis below and will freely use them later. For
proofs, we refer to (von zur Gathen and Gerhard, 2013), (Gerhard, 2004, §3 and §5) and (Zhou
et al., 2012, Theorem 4.1).

The first fact gives sharp degree bounds for two basic arithmetic operations – division with
remainder and partial fraction decomposition. This turns out to be very useful in estimating
degree sizes. The proofs are mainly based on Cramer’s rule and determinant expansions and will
be skipped.

Fact 5.1 (Degree bounds). Let f , g be two nonzero polynomials in K[x, y].

(i) Assume that degy( f ) ≥ degy(g). Then there exist unique q, r ∈ K[x, y] with

(degx(q), degy(q)) ≤
(
(degy( f ) − degy(g)) degx(g) + degx( f ), degy( f ) − degy(g)

)
and (degx(r), degy(r)) ≤

(
(degy( f ) − degy(g) + 1) degx(g) + degx( f ), degy(g) − 1

)
such that lcy(g)degy( f )−degy(g)+1 f = qg + r.
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(ii) Assume that degy( f ) < degy(g) and g = ge1
1 . . . gem

m with ei ∈ N \ {0} and gi ∈ K[x, y] being
pairwise coprime. Then there exists u ∈ K[x] and { fi j}1≤i≤m,1≤ j≤ei ⊆ K[x, y] with

degx(u) ≤ degx(g) degy(g) −
m∑

i=1

ei(1 + ei)
2

degx(gi) degy(gi) and

(degx( fi j), degy( fi j)) ≤ (degx(g) degy(g) + degx( f ) − degx(g) + j degx(gi), degy(gi) − 1)

such that
f
g

=
1
u

(
f11

g1
+ · · · +

f1e1

ge1
1

+ · · · +
fm1

gm
+ · · · +

fmem

gem
m

)
.

The next fact contains the cost of some basic arithmetics for univariate polynomials.

Fact 5.2 (Arithmetic of univariate polynomials). Let f , g ∈ K[x] with degx( f ), degx(g) ≤ dx.
Then the following operations can be performed at most in O(d2

x) arithmetic operations in K
with classical arithmetic and O∼(dx) with fast arithmetic.

(i) Addition, multiplication, division with remainder, GCD computation of f and g;

(ii) Evaluation f at dx + 1 distinct points in K or interpolation in K[x] at these points;

(iii) Partial fraction decomposition of f /g with respect to a given factorization of g, provided
that f , g are nonzero coprime polynomials with degx( f ) < degx(g).

In order to analyze the cost for operations on bivariate polynomials, a general (although not
optimal) technique is to use evaluation and interpolation on polynomials and to perform opera-
tions on univariate polynomials based on the above fact. We will frequently use this technique
without explicitly pointing it out.

As mentioned in the introduction, most of recent creative telescoping algorithms, including
our new one presented in Section 4, eventually reduce the problem of finding telescopers to the
problem of solving linear systems, which can be accomplished efficiently.

Fact 5.3 (Solving linear systems). Let M be a polynomial matrix in K[x]m×n with entries being
polynomials in K[x] of degree in x less than dx. Assume that n ∈ O(m). Then a basis of the null
space of M in K[x] can be computed using O(m3d2

x) arithmetic operations in K with classical
arithmetic (Gaussian elimination) and O∼(mω−1ndx) with fast arithmetic, where ω ∈ R with
2 < ω ≤ 3 is the exponent of matrix multiplication over K.

5.2. Output size estimates
We define the degree of a rational function in K(x, y) with respect to x (resp. y) to be the

maximum of the degrees of its numerator and denominator with respect to x (resp. y). Using
Fact 5.1, we are now able to estimate sizes of intermediate results.

Lemma 5.4. Let f ∈ K(x, y) be a rational function with degx( f ) = dx and degy( f ) = dy. Assume
that the RILD-based partial fraction decomposition of f takes the form (4.3). Let ã0 ∈ K[x, y] be
the numerator of a0. Let u ∈ K[x] be the common denominator of the Mik and write each Mik as
Mik = 1

u M̃ik for some M̃ik ∈ K[x, y,Sλi,µi ]. Then

(degx(ã0), degy(ã0)) ∈ O(dxdy) × O(dy), degx(u) ∈ O(dxdy)

and (degx(M̃i jk), degy(M̃i jk)) ∈ O(dxdy) × O(degz(pi)) for all i = 1, . . . ,m and k = 1, . . . , di.
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Proof. We know from definition that (4.3) gives the partial fraction decomposition of f with
respect to y, based on the refined integer-linear decomposition of its denominator. The degree
bounds thus follow directly by Fact 5.1.

Lemma 5.5. Let r ∈ K(x, y) be a rational function of the form (4.6). Let u ∈ K[x] be the common
denominator of the Mik and write each Mik as Mik = 1

u M̃ik for some M̃ik ∈ K[x, y,Sλi,µi ]. Let
L =

∑ρ
`=0 c`σ`x(u)S`x ∈ K[x][Sx] with ρ ∈ N and c` ∈ K[x]. Then for each integer pair (i, k) with

1 ≤ i ≤ m and 1 ≤ k ≤ di, the left scalar remainder Rik of L � Mik by Sy − 1 can be written as

Rik = cρR̃ikρ + · · · + c0R̃ik0, (5.1)

where R̃ik` ∈ K[x, y,Sλi,µi ] with

(degx(R̃ik`), degy(R̃ik`)) ≤ (degx(M̃ik), degy(M̃ik)) and degx,y(R̃ik`) ≤ degx,y(M̃ik).

Here degx,y(·) denotes the total degree of the argument with respect to x, y.

Proof. For each integer pair (i, k) with 1 ≤ i ≤ m and 1 ≤ k ≤ di, it follows from (4.11) that
letting R̃ik` = LSR(S`x � M̃ik,Sy − 1) for all ` = 0, . . . , ρ gives the decomposition (5.1). It remains
to check the degree estimates of R̃ik`, which in turn is an immediate result of (3.3).

The following depicts an order-degree curve of telescopers for bivariate rational functions.

Lemma 5.6. Let r ∈ K(x, y) be a rational function of the form (4.6). Let u ∈ K[x] be the common
denominator of the Mik and write each Mik as Mik = 1

u M̃ik for some M̃ik ∈ K[x, y,Sλi,µi ]. For
each integer pair (i, k) with 1 ≤ i ≤ m and 1 ≤ k ≤ di, define αik = max{−1, degx,y(M̃ik)} and
βik = max{−1, degy(M̃ik)}, and let

ρ0 =

m∑
i=1

di∑
k=1

µi(βik + 1). (5.2)

Then for any nonnegative integer pair (ρ, τ) with ρ ≥ ρ0 and

τ > degx(u) − 1 +

∑m
i=1

∑di
k=1 µi(αik −

1
2βik)(βik + 1)

ρ + 1 − ρ0
, (5.3)

there exists a telescoper for r of order at most ρ and degree at most τ.

Proof. Let ρ, τ ∈ N with ρ ≥ ρ0 and τ satisfying (5.3). To prove the lemma, it is sufficient to
show that there exist c0, . . . , cρ ∈ K[x], not all zero, with degx(c`) ≤ τ − degx(u) such that

LSR

( ρ∑
`=0

c`σ`x(u)S`x
)
� Mik,Sy − 1

 = 0 for all i = 1, . . . ,m and k = 1, . . . , di, (5.4)

because then Theorem 4.3 asserts that
∑ρ
`=0 c`σ`x(u)S`x gives a desired telescoper for r. Now we

consider the linear system over K (rather than K[x]) obtained by vanishing coefficients of like
powers of x and y in (5.4). In other words, we view the coefficients of the c` with respect to x,
not the c` themselves, as unknowns. This then gives us (τ−degx(u)+1)(ρ+1) unknowns in total.
On the other hand, we derive from Lemma 5.5 that each equation in (5.4) has total degree in x, y
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at most τ − degx(u) + αik and degree in y at most βik. It follows that the induced linear system
contains at most

(τ − degx(u) + 1)ρ0 +

m∑
i=1

di∑
k=1

µi(αik −
1
2
βik)(βik + 1)

equations over K. Since ρ ≥ ρ0, one concludes from (5.3) that the linear system over K resulting
from (5.4) have more unknowns than equations, assuring such a nontrivial solution.

We note that the left scalar remainders of the M̃ik by Sy − 1 can be employed to further refine
the bounds given by (5.2) and (5.3).

Remark 5.7. Under the assumptions of the above lemma, in the context of (Chen and Kauers,
2012, §4), all M̃ik are actually in K[x,Sλi,µi ], yielding αik = max{−1, degx(M̃ik)} and βik = 0.
Then ρ0 =

∑m
i=1

∑di
k=1 µi by (5.2), and (5.3) becomes

τ > degx(u) − 1 +

∑m
i=1

∑di
k=1 µiαik

ρ + 1 − ρ0
,

which coincides with the order-degree curve given in (Chen and Kauers, 2012, Theorem 10)
(after correcting the typos in the formula of the lower bound for d there).

5.3. Cost analysis of algorithm
Recall that the auto-dispersion set of a polynomial g ∈ K[x, y] with respect to y consists of

all integers ` such that degy(gcd(g, σ`y(g))) > 0.

Lemma 5.8. Let a0, p0 ∈ K[x, y] be two coprime polynomials with p0 , 0 and degy(a0/p0) = dy.
Then the GGSZ reduction computes h, r ∈ K(x, y) with h in a compact form such that (4.8) holds,
using O(degx(p0)d4

y + degx(p0)2d3
y + degx(a0) degx(p0)d2

y + degx(a0)2dy) arithmetic operations
in K with classical arithmetic and O∼(degx(p0)d3

y + degx(a0)dy) with fast arithmetic, plus the
cost of computing the auto-dispersion set of p0 with respect to y.

Proof. By (Gerhard et al., 2003, Theorem 13), the cost of the GGSZ reduction is dominated by
computing the shiftless decomposition of p0 and the subsequent partial fraction decomposition
of a0/p0. By (Gerhard et al., 2003, Theorem 10) and making use of the evaluation-interpolation
technique, one obtains that the former operation takes O(degx(p0)d4

y + degx(p0)2dy) arithmetic
operations in K with classical arithmetic and O∼(degx(p0)d3

y ) with fast arithmetic, plus the cost
of computing the auto-dispersion set of p0 with respect to y. While the latter operation takes
O(degx(p0)2d3

y +degx(a0) degx(p0)d2
y +degx(a0)2dy) with classical arithmetic and O∼(degx(p0)d2

y +

degx(a0)dy) with fast arithmetic. Combining these two costs concludes the lemma.

Now we are ready to study the cost of the algorithm RationalCT, in which we shall assume
that the four enhancements discussed in Section 4.3 have been taken into account.

Theorem 5.9. Let f ∈ K(x, y) be a rational function with degx( f ) = dx and degy( f ) = dy.
Assume that f has a telescoper and let ρ be the actual order of its minimal telescopers. Further
assume (4.3) and (4.6) hold, and define ρ0 by (5.2). Then the algorithm RationalCT finds a
minimal telescoper for f and a certificate in a compact form using O(dxd4

y + ρd2
xd3

y + ρρ3
0d2

xd2
y )

arithmetic operations inK with classical arithmetic and O∼(dxd3
y +ρdxd2

y +ρ2ρω−1
0 dxdy) with fast

arithmetic, plus the cost of computing auto-dispersion sets and finding rational roots.
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Proof. Based on modification (i) in Section 4.3, in step 1, we incorporate the coarsest shiftless
decomposition into the integer-linear decomposition to obtain the refined one of the denominator
of f , which, by (Giesbrecht et al., 2019, Theorem 3.5) and (Gerhard et al., 2003, Theorem 10),
takes O(d2

xdy + dxd3
y + d4

y ) arithmetic operations with classical arithmetic and O∼(dxd2
y + d3

y )
with fast arithmetic, plus the cost of finding rational roots. Therefore, the RILD-based integer-
linear decomposition of f can be obtained using O(d2

xd3
y + d4

y ) with classical arithmetic and
O∼(dxd2

y + d3
y ) with fast arithmetic in total. Regardless of the cost of computing auto-dispersion

sets, one concludes from modification (ii) and Lemmas 5.4, 5.8 that step 2 takes O(dxd4
y + d2

xd3
y )

with classical arithmetic and O∼(dxd3
y ) with fast arithmetic. By assumption, r = 0 in (4.8) and

thus the algorithm continues after step 3.
Based on modifications (iii)-(iv), we proceed to find the common denominator u ∈ K[x] of

the operators Mik, reformulate each of them as Mik = 1
u M̃ik for M̃ik ∈ K[x, y,Sλi,µi ], and compute

the left scalar remainders Nik of the M̃ik by Sy − 1. By Lemma 5.4, degx(M̃ik) ∈ O(dxdy) and
degy(M̃ik) ∈ O(degz(pi)). It then follows from (3.3) that computing all the Nik in total requires
O(d2

xd3
y ) with classical arithmetic and O∼(dxd2

y ) with fast arithmetic. Since degx(Nik) ≤ degx(M̃ik)
and degy(Nik) ≤ degy(M̃ik), for each iteration of the outer loop of step 4, the same cost applies to
step 4.1 with Mik replaced by Nik as discussed in modifications (iii)-(iv).

Since ρ is the actual order of minimal telescopers for f , the outer loop of step 4 runs exactly
ρ iterations. Thus the total cost of step 4.1 in the whole loop is O(ρd2

xd3
y ) with classical arith-

metic and O∼(ρdxd2
y ) with fast arithmetic. For the `-th iteration with 0 ≤ ` ≤ ρ, Lemmas 5.4

and 5.5 assert that the coefficient matrix over K[x] attached to the linear system obtained in
step 4.2 has at most ρ0 rows and `+ 1 columns, and each of its nonzero entries has degree in x in
O(dxdy). Thus Fact 5.3 implies that finding a solution needs O(ρ3

0d2
xd2

y ) with classical arithmetic
and O∼(`ρω−1

0 dxdy) with fast arithmetic. This yields the total cost of O(ρρ3
0d2

xd2
y ) with classical

arithmetic and O∼(ρ2ρω−1
0 dxdy) with fast arithmetic for solving linear systems in step 4.2 in the

whole loop, as there are ρ iterations.
When a nontrivial solution is found, it virtually takes no arithmetic operations for returning

the certificate in such a compact representation. By modification (iii), we eventually construct
a minimal telescoper of the form L =

∑`
j=0 c jσ

j
x(u)S j

x. Computing the σ j
x(u) in the telescoper L

requires O(ρd2
xd2

y ) with classical arithmetic and O∼(ρdxdy) with fast arithmetic. In addition, by
Lemma 5.6, degx(c j) ∈ O(ρ0dxdy). Therefore, expanding the telescoper L takes O(ρ0d2

xd2
y ) with

classical arithmetic and O∼(ρ0dxdy) with fast arithmetic. The announced cost follows.

Corollary 5.10. With the assumptions of Theorem 5.9, further let µ = max{µ1, . . . , µm}. Then
ρ0 ∈ O(µdy), and the algorithm RationalCT takes O(µ4d2

xd6
y ) arithmetic operations in K with

classical arithmetic and O∼(µω+1dxdω+2
y ) with fast arithmetic, plus the cost of computing auto-

dispersion sets and finding rational roots.

Proof. By assumption, with u ∈ K[x] denoting the common denominator of the Mik in (4.3),
each operator Mik has the form Mik = 1

u M̃ik for M̃ik ∈ K[x, y,Sλi,µi ] with degy(M̃ik) < degz(pi). It
follows from (5.2) that ρ0 ∈ O(µdy). Since ρ is the actual order of minimal telescopers for f , we
conclude from Lemma 5.6 that ρ ≤ ρ0. The announced cost is then evident by Theorem 5.9.

Remark 5.11. Under the assumptions of the above corollary, according to Lemma 5.6, there
exists a minimal telescoper for f of total size in O(µ2dxd3

y ).
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Remark 5.12. In the case ofK = Q, by incorporating the cost of computing the auto-dispersion
set of an integer polynomial (cf. (Gerhard et al., 2003, Theorem 14)) and the cost of finding
rational roots of an integer polynomial (cf. (von zur Gathen and Gerhard, 2013, Theorem 15.21)),
one sees from the above corollary that the algorithm RationalCT has the total running time
bounded by (µ+dx +dy + log || f ||∞)O(1) word operations, where the max-norm || f ||∞ of f ∈ Q(x, y)
is defined as the maximal absolute value of the integer coefficients appearing in the numerator
and denominator of f with respect to x, y. See (Gerhard, 2004; von zur Gathen and Gerhard,
2013) for more information on word operations.

6. Arithmetic cost for the reduction-based approach

In this section, we review the reduction-based creative telescoping algorithm developed in
(Chen et al., 2015) in the context of bivariate rational functions and further analyze its cost in
this setting. As indicated by the name of the algorithm, a reduction method plays a fundamental
role. The original reduction method employed by (Chen et al., 2015) in the rational case was
developed by Abramov (1975). In order to highlight more significant discrepancies between this
creative telescoping algorithm and the one developed in Section 4, we instead use the GGSZ
reduction recalled in Section 2.1 to carry out all the reduction steps in the algorithm.

Before discussing the concrete algorithm, let us recall some notions. As a generalization
of auto-dispersion sets, the dispersion set of a polynomial f ∈ K[x, y] with respect to another
polynomial g ∈ K[x, y] is defined to be the integer set

DSy( f , g) = {` ∈ Z | degy(gcd( f , σ`y(g))) > 0}.

Such a dispersion set can be achieved by the algorithm of Man and Wright (1994) or by the
procedure pDispersionSet from (Gerhard et al., 2003, §6) in the particular case where K = Q.

A polynomial in K[x, y] is called primitive with respect y (or y-primitive for short) if the
greatest common divisor over K[x] of all its coefficients with respect to y is equal to one. A
rational function in K(x, y) is called proper with respect y (or y-proper for short) if the degree
of its numerator with respect to y is less than that of its denominator. For a rational function
f ∈ K(x, y), another rational function r ∈ K(x, y) is called a shift-remainder with respect to y (or
σy-remainder for short) of f if f − r is σy-summable and r is y-proper with denominator being
σy-free. For brevity, we just say that r is a σy-remainder if f is clear from the context. Clearly,
any integer shift of a σy-remainder with respect to x is again a σy-remainder. By (2.2), we see
that the GGSZ reduction reduces a rational function to a σy-remainder modulo σy-summable
rational functions.

A rational function in K(x, y) usually has more than one σy-remainder and any two of them
differ by a σy-summable rational function. The following proposition implies that zero is the
only σy-remainder in the case of a σy-summable rational function.

Proposition 6.1 (Abramov 1975, Proposition 7). A rational function in K(x, y) is σy-summable
if and only if any of its σy-remainders is zero.

We summarize below the main idea of the reduction-based algorithm in (Chen et al., 2015).
Let f be a rational function in K(x, y). Applying the GGSZ reduction to f yields (2.2). If the

denominator of r in (2.2) is not integer-linear, then by (Abramov and Le, 2002, Theorem 1), f
does not have any telescoper. Otherwise, the existence of telescopers for f is guaranteed.
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Assume now that we want to find a telescoper for f of order no more than ρ ∈ N. In this
respect, we make an ansatz

L = cρS
ρ
x + · · · + c1Sx + c0 with c0, . . . , cρ ∈ K[x] to be determined.

For ` = 0, . . . , ρ, compute a rational function h` ∈ K(x, y) and a σy-remainder r` such that

σ`x( f ) = (Sy − 1)(h`) + r` and
∑̀
i=0

ciri is a σy-remainder. (6.1)

A direct calculation then shows that

L( f ) = (Sy − 1)

 ρ∑
`=0

c`h`

 +

ρ∑
`=0

c`r`.

Therefore,
∑ρ
`=0 c`r` is a σy-remainder of L( f ). By Proposition 6.1, L is a telescoper for f if

and only if
∑ρ
`=0 c`r` = 0. This reduces the problem of finding telescopers to the simple task

of solving a linear system over K[x]. In other words, we obtain a linear homogeneous system
in unknowns c0, . . . , cρ by equating

∑ρ
`=0 c`r` to zero, whose any nontrivial solution over K[x]

gives rise to a desired telescoper for f . Failing to find such a solution implies that no required
telescopers exist.

In order to compute a minimal telescoper for f , the reduction-based algorithm then applies
the above process incrementally with ρ = 0, 1, . . . , with the termination assured by the existence
of telescopers.

The proof of (Chen et al., 2015, Theorem 5.6) contains an algorithm for computing such a
σy-remainder r` that satisfies (6.1). The key tool is the so-called shift-coprime decompositions of
σy-free polynomials. Let b, b0 ∈ K[x, y] be two nonzero σy-free polynomials. The σy-coprime
decomposition of b with respect to b0 is defined as

b = p0σ
`1
y (p1) · · ·σ`m

y (pm), (6.2)

where p0 ∈ K[x, y] with degy(gcd(b0, σ
i
y(p0))) = 0 for any nonzero integer i, p1, . . . , pm ∈ K[x, y]

are monic and y-primitive factors of b0 of positive degrees in y, and `1, . . . , `m are distinct nonzero
integers. Note that the factors p0, σ

`1
y (p1), . . . , σ`m

y (pm), p1, . . . , pm are pairwise coprime, since
b and b0 are both σy-free. Such a decomposition (6.2) is clearly unique up to the order of
factors. It is evident from (6.2) and the σy-freeness of b that DSy(b, b0) = {0, `1, . . . , `m} and
pi = gcd(σ−`i

y (b), b0) for all i = 1, . . . ,m. Thus the decomposition (6.2) can be obtained using
GCD computation, provided that the dispersion set DSy(b, b0) is known.

Let r, r0 ∈ K(x, y) be two nonzero σy-remainders of respective denominators b, b0 ∈ K[x, y].
By partial fraction decomposition, based on theσy-coprime decomposition (6.2) of b with respect
to b0, there exist unique f0, f1, . . . , fm ∈ K(x)[y] with degy( fi) < degy(pi) such that

r =
f0
p0

+
f1

σ`1
y (p1)

+ · · · +
fm

σ`m
y (pm)

. (6.3)

We will refer to (6.3) as the SCD-based partial fraction decomposition of r with respect to r0.
The following result can be read from the proof of (Chen et al., 2015, Theorem 5.6).
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Proposition 6.2. Let r, r0 ∈ K(x, y) be two nonzero σy-remainders. Assume that the SCD-based
partial fraction decomposition of r with respect to r0 is given by (6.3). Let

r̃ =
f0
p0

+
σ−`1

y ( f1)
p1

+ · · · +
σ−`m

y ( fm)
pm

. (6.4)

Then r̃ is a σy-remainder of r and c0r0 + c1r̃ is a σy-remainder for any c0, c1 ∈ K[x].

In view of the above proposition, we call r̃ the adjusted σy-remainder of r by r0. It then
follows from Proposition 6.2 that (6.1) naturally holds by letting r` be the adjusted σy-remainder
ofσx(r`−1) with respect to

∑`−1
i=1 ciri. With all these adjustedσy-remainders at hand, the reduction-

based algorithm works smoothly in an iterative manner as described before.

Remark 6.3. As already pointed out in (Chen et al., 2019, §5.2), it is actually sufficient to let
each r` be the adjusted σy-remainder of σx(r`−1) with respect to r0 (rather than

∑`−1
i=0 ciri) so as to

insure the property (6.1). This may reduce the total cost for computing adjusted σy-remainders.

Let us return to the two examples from Section 4. We will use the above reduction-based
algorithm in order to illustrate the difference between the two approaches.

Example 6.4. Let f be the rational function given in Example 4.2. We know from Example 4.2
that f has a minimal telescoper of order two. With ρ = 2, the reduction-based algorithm finds
the additive decompositions

σ`x( f ) = (Sy − 1)(h`) +
a`
b`

for ` = 0, 1, 2,

where h` ∈ Q(x, y), a` ∈ Z[x, y], b` = ((−5x + 2y)2 + 1)((−5x + 2y + 1)2 + 1) and all a`/b`, as well
as their Q[x]-linear combination, are σy-remainders. Note that the h` and a` are not displayed
here for space reasons. In order to find a Q[x]-linear dependency among the a`/b`, we set up a
linear system attached by the coefficient matrix 8x2 + 4x 8x2 + 20x + 12 8x2 + 36x + 40

−40x3 − 12x2 + 4 −40x3 − 100x2 − 56x −40x3 − 172x2 − 168x + 36
50x4 + 5x3 + 4x2 − 9x + 1 50x4 + 125x3 + 67x2 + 6x + 3 50x4 + 205x3 + 174x2 − 73x + 19

 .
This linear system admits the same solutions as (4.5), in other words, it leads to the same minimal
telescoper as Example 4.2. The corresponding certificate is left as an unnormalized dense sum.

Example 6.5. Consider the same rational function f as Example 2.2. From the same example,
we see that f satisfies (2.2) with h, r given by (2.3). Moreover, there exist telescopers for f
since the denominator of r is integer-linear. Let h0 = h and r0 = r. Then for ` = 1, . . . , 22,
the reduction-based algorithm iteratively finds rational functions h` ∈ Q(x, y) and adjusted σy-
remainders r` such that (6.1) holds. Finding a Q[x]-linear dependency among the r` yields a
linear system with the coefficient matrix of 33 rows and 23 columns and having entries of degree
in x at most 34, which yields the same minimal telescoper given by (4.10) as Example 4.6, yet
leaving the corresponding certificate as a large, unnormalized dense sum. This compares to
Example 4.6 where the induced coefficient matrix has 22 rows and 23 columns with entries of
degree in x at most 2.
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6.1. Output size estimates
Lemma 6.6. Let f ∈ K(x, y) be a rational function with degx( f ) = dx and degy( f ) = dy. Let
r ∈ K(x, y) be theσy-remainder obtained by applying the GGSZ reduction to f . Write r = a/(ub),
where u ∈ K[x] and a, b ∈ K[x, y] with degy(a) < degy(b), gcd(a, ub) = 1 and b being y-primitive
and σy-free. Then

degx(u) ∈ O(dxdy), (degx(b), degy(b)) ∈ O(dx) × O(dy)

and (degx(a), degy(a)) ∈ O(dxdy) × O(dy).

Proof. Assume that the denominator g of f admits the shift-homogeneous decomposition of the
form (2.1). With respect to this, we obtain the unique partial fraction decomposition

f = p +
1
ũ

m∑
i=1

ni∑
j=1

ei j∑
k=1

fi jk

σ
νi j
y (gi)k

,

where p ∈ K(x)[y], ũ ∈ K[x] and fi jk ∈ K[x, y] with degy( fi jk) < degy(gi). Applying Fact 5.1
to the above decomposition yields degx(ũ) ∈ O(dxdy) and degx( fi jk) ∈ O(dxdy). Let di =

max1≤ j≤ni {ei j} and specify that fi jk = 0 in case k > ei j. By (Gerhard et al., 2003, Theorem 12),

r =
a
ub

=
1
ũ

m∑
i=1

di∑
k=1

∑ni
j=1 σ

−νi j
y ( fi jk)

gk
i

.

Since b is y-primitive, u divides ũ in K[x] and thus degx(u) ∈ O(dxdy). Notice that di ≤
∑ni

j=1 ei j

for all i = 1, . . . ,m, so degy(b) ≤
∑m

i=1 di degy(gi) ≤ dy and similarly, degx(b) ≤ dx. Moreover,
degx(a) ≤ maxi jk{degx( fi jk)} + dx, implying degx(a) ∈ O(dxdy). The lemma follows.

Lemma 6.7. Let r = a/(ub) ∈ K(x, y) be a σy-remainder, where u ∈ K[x] and a, b ∈ K[x, y]
with degy(a) < degy(b), gcd(a, ub) = 1 and b being y-primitive and σy-free. Let ` ∈ N and
assume that r` ∈ K(x, y) is a σy-remainder of σ`x(r). Write r` = a`/(u`b`), where u` ∈ K[x] and
a`, b` ∈ K[x, y] with degy(a`) < degy(b`), gcd(a`, u`b`) = 1 and b` being y-primitive and σy-free.
Then

degx(u`) ≤ degx(u) + degx(b) degy(b), (degx(b`), degy(b`)) = (degx(b), degy(b)),

and (degx(a`), degy(a`)) ≤ (degx(a) + degx(b) degy(b), degy(b) − 1).

Proof. Since b` is y-primitive, it admits the full factorization of the form b` = c`pe1
1 . . . pem

m ,
where c` ∈ K and p1, . . . , pm ∈ K[x, y] \K[x] are distinct, monic and irreducible factors of b` of
multiplicities e1, . . . , em, respectively. Then by (Huang, 2016, Proposition 5.2), σ`x(b) must have
the form

σ`x(b) = cσk1
y (p1)e1 · · ·σkm

y (pm)em for some c ∈ K and k1, . . . , km ∈ Z. (6.5)

Consequently, (degx(b`), degy(b`)) = (degx(b), degy(b)).
On the other hand, notice that b` is σy-free, so σk1

y (p1), . . . , σkm
y (pm) are pairwise coprime.

Based on the factorization (6.5) of σ`x(b), we then find unique polynomials ũ ∈ K[x] and
f1, . . . , fm ∈ K[x, y] with degy( fi) < ei degy(pi) such that

σ`x

(a
b

)
=

1
ũ

 f1
σk1

y (p1)e1
+ · · · +

fm
σkm

y (pm)em

 . (6.6)
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Since r` is a σy-remainder of σ`x(r), then r` −σ`x(r) is σy-summable. Notice that each fi/σ
ki
y (pi)ei

differs from σ−ki
y ( fi)/pei

i by a σy-summable rational function. We conclude from (6.6) that

a`
u`b`

−
1

σ`x(u)ũ

σ−k1
y ( f1)
pe1

1
+ · · · +

σ−km
y ( fm)
pem

m

 (6.7)

is σy-summable. Observe that the denominator of the above rational function divides b` over
K(x), so it is σy-free. Since the rational function (6.7) is evidently y-proper, it is a σy-remainder
by definition. It thus follows from Proposition 6.1 that (6.7) is equal to zero, that is, a`/(u`b`) =

1/(σ`x(u)ũ)
∑m

i=1 σ
−ki
y ( fi)/pei

i . Since b` = c`pe1
1 . . . pem

m is y-primitive, u` divides σ`x(u)ũ in K[x]
and then degx(a`) ≤ max1≤i≤m{degx( fi) + degx(b`)− ei degx(pi)}. The degree estimates for u` and
a` thus follow by one application of Fact 5.1 (ii) to (6.6).

The reduction-based approach also provides us an order-degree curve of telescopers for bi-
variate rational functions.

Lemma 6.8. Let r = a/(ub) ∈ K(x, y) be a σy-remainder, where u ∈ K[x] and a, b ∈ K[x, y] with
degy(a) < degy(b), gcd(a, ub) = 1 and b being y-primitive, σy-free and integer-linear. Assume
that b admits the refined integer-linear decomposition of the form given by the right-hand side of
(2.5). Define ρ0 =

∑m
i=1 µi degz(pi) max{ei1, . . . , eini }. Then for any nonnegative integer pair (ρ, τ)

with ρ ≥ ρ0 and

τ >

(
(ρ + 1) degx(b) degy(b) + ρ degx(u) + degx(a) + ρ0

)
ρ0 −

1
2ρ0(ρ0 − 1) − (ρ + 1)

ρ + 1 − ρ0
, (6.8)

there exists a telescoper for r of order at most ρ and degree at most τ.

Proof. Let ρ, τ ∈ N with ρ ≥ ρ0 and τ satisfying (6.8). In order to show the lemma, it amounts
to proving that there exist c0, . . . , cρ ∈ K[x], not all zero, with degx(c`) ≤ τ such that

cρrρ + · · · + c0r0 = 0, (6.9)

where r0 = r and r` is the adjusted remainder of σx(r`−1) by r0 for ` = 1, . . . , ρ, because then, by
Proposition 6.1 and Remark 6.3, the operator

∑ρ
`=0 c`S`x gives a desired telescoper for r. This then

suffices to verify that, for the linear homogeneous system over K induced by (6.9), the number
of unknowns, namely (τ + 1)(ρ + 1) in this case, is greater than the number of equations over K.
By (Huang, 2016, Theorem 5.5) and Lemma 6.7, the denominator of the left-hand side of (6.9)
in K[x, y] has total degree in x, y at most (ρ + 1)(degx(u) + degx(b) degy(b)) + ρ0. By separately
applying Lemma 6.7 to r0, . . . , rρ, one then calculates that there are at most(

τ + (ρ + 1) degx(b) degy(b) + ρ degx(u) + degx(a) + ρ0

)
ρ0 −

1
2
ρ0(ρ0 − 1)

equations over K. Since ρ ≥ ρ0 and (6.8) holds, a direct comparison between the number of
unknowns and the above number completes the proof.

We remark that for “generic” rational functions, ρ0 defined in the above lemma coincides with
the one given by (5.2), although there are cases in which the latter is smaller. Let f ∈ K(x, y) with
degx( f ) = dx and degy( f ) = dy be a rational function admitting r as a σy-remainder. Lemma 6.8
then asserts that there exists a minimal telescoper for f of degree in O(ρ2

0dxdy). This compares to
Lemma 5.6 which tells us that f can actually have a minimal telescoper of degree in O(ρ0dxdy).
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6.2. Cost analysis of algorithm

Lemma 6.9. Let r, r0 ∈ K(x, y) be two nonzero σy-remainders. Write r = a/(ub) with u ∈ K[x],
a, b ∈ K[x, y], degy(a) < degy(b), gcd(a, ub) = 1 and b being y-primitive and σy-free. Let
b0 ∈ K[x, y] be the y-primitive denominator of r0. Assume that degx(b), degx(b0) ≤ dx and
degy(b), degy(b0) ≤ dy. Then the adjusted σy-remainder r̃ of r by r0 can be computed using
O(degx(a)2dy + d2

xd3
y + degx(u)dxdy) arithmetic operations in K with classical arithmetic and

O∼(degx(a)dy + dxd2
y + degx(u)) with fast arithmetic, plus the cost of computing the dispersion set

of b with respect to b0.

Proof. By Proposition 6.2, the adjusted σy-remainder r̃ of r by r0 is obtained by computing the
SCD-based partial fraction decomposition (6.3) of r with respect to r0, along with a subsequent
normalization based on (6.4). Notice that with the dispersion set DSy(b, b0) at hand, computing
the shift-coprime decomposition of b with respect to b0 merely involves GCD computations with
arguments of degree in x no more than dx and degree in y no more than dy. Together with the cost
of partial fraction decomposition, deriving (6.3) takes O(degy(a)2dy +d2

xd3
y ) arithmetic operations

with classical arithmetic and O∼(degy(a)dy+dxd2
y ) with fast arithmetic, plus the cost of computing

the dispersion set of b with respect to b0. Based on Facts 5.1-5.2, the final normalization of (6.4)
for r̃ requires O(degy(a)2dy + d2

xd3
y + degx(u)dxdy) arithmetic operations with classical arithmetic

and O∼(degy(a)dy + dxd2
y + degx(u)) with fast arithmetic. The announce cost follows.

Now we are ready to analyze the cost of the reduction-based creative telescoping algorithm
for bivariate rational functions.

Theorem 6.10. Let f ∈ K(x, y) be a rational function with degx( f ) = dx and degy( f ) = dy.
Assume that f has a telescoper and let ρ be the actual order of its minimal telescopers. Further
let r ∈ K(x, y) be a σy-remainder of f , and define ρ0 as in Lemma 6.8. Then the reduction-based
algorithm in (Chen et al., 2015) finds a minimal telescoper for f and an unnormalized certificate
using O(dxd4

y + ρd2
xd3

y + ρ3ρ3
0d2

xd2
y + ρρ5

0) arithmetic operations in K with classical arithmetic
and O∼(dxd3

y + ρdxd2
y + ρ3ρω−1

0 dxdy + ρ2ρω0 ) with fast arithmetic, plus the cost of computing the
(auto-)dispersion sets and finding rational roots.

Proof. By Lemma 5.8, the GGSZ reduction step takes O(dxd4
y + d2

xd3
y ) arithmetic operations

with classical arithmetic and O∼(dxd3
y ) with fast arithmetic, plus the cost of computing the auto-

dispersion set. In addition to the cost of finding rational roots in the integer-linearity detection,
the cost of the remaining algorithm is dominated by computing adjusted σy-remainders and solv-
ing linear homogeneous systems in iteration steps. For the `-th iteration with 0 ≤ ` ≤ ρ, by
Lemmas 6.6, 6.7 and 6.9, finding the `-th adjusted σy-remainder takes O(d2

xd3
y ) with classical

arithmetic and O∼(dxd2
y ) with fast arithmetic, plus the cost of computing relevant dispersion sets.

After this, we need to solve a linear system with the coefficient matrix having at most ρ0 rows and
`+1 columns. Moreover, the entries of the matrix are of degrees in x in O(`dxdy+ρ0). By Fact 5.3,
finding a solution requires O(`2ρ3

0d2
xd2

y + ρ5
0) with classical arithmetic and O∼(`2ρω−1

0 dxdy + `ρω0 )
with fast arithmetic. Since there are ρ iterations, this step in total takes O(ρd2

xd3
y +ρ3ρ3

0d2
xd2

y +ρρ5
0)

with classical arithmetic and O∼(ρdxd2
y + ρ3ρω−1

0 dxdy + ρ2ρω0 ) with fast arithmetic, yielding the
announced cost.

In analogy to Corollary 5.10, we obtain the following by the above theorem and Lemma 6.8.
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Corollary 6.11. With the assumptions of Theorem 6.10, further let µ = max{µ1, . . . , µm}. Then,
without expanding the certificate, the reduction-based algorithm in (Chen et al., 2015) takes
O(µ6d2

xd8
y ) arithmetic operations in K with classical arithmetic and O∼(µω+2dxdω+3

y ) with fast
arithmetic, plus the cost of computing (auto-)dispersion sets and finding rational roots.

Proof. It is evident from the definition of ρ0 that ρ0 ∈ O(µdy). By Lemma 6.8, ρ ≤ ρ0 since
ρ is the actual order of minimal telescopers for f . Thus ρ ∈ O(µdy). The announced cost then
directly follows by Theorem 6.10.

The above result compares to Corollary 5.10 which announces that for the same purpose, the
algorithm RationalCT takes O(µ4d2

xd6
y ) arithmetic operations in K with classical arithmetic and

O∼(µω+1dxdω+2
y ) with fast arithmetic, plus the cost of computing auto-dispersion sets and finding

rational roots.
Note that for a polynomial b ∈ K[x, y], computing its auto-dispersion set and computing

the dispersion set DSy(σx(b), b) take almost the same cost. Hence the extra costs for the two
algorithms in fact do not differ too much.

7. Implementation and timings

We have implemented our algorithms in the computer algebra system Maple 2018. Our
implementation includes the four enhancements discussed in Section 4.3. The code is available
by email request. In order to get an idea about the efficiency, we compared their running time
and memory requirements to the performance of two known algorithms – the one developed
by Le (2003) and the reduction-based one reviewed in Section 6. The implementation for the
former algorithm uses the built-in Maple procedure SumTools[Hypergeometric][ZpairDirect],
while the implementation for the latter algorithm was done in accordance with descriptions of the
algorithm ReductionCT from (Chen et al., 2015) restricted to the rational case, by embracing the
GGSZ reduction and Remark 6.3. All timings are measured in seconds on a Linux computer with
128GB RAM and fifteen 1.2GHz Dual core processors. The computations for the experiments
did not use any parallelism.

We take examples of the expanded form of

r(x, y) = (Sy − 1)
(

f0(x, y)
g0(x, y)

)
+

f (x, y)
g1(−λx + µy) · g2(λx + µy)

, (7.1)

where

• f0, f ∈ Z[x, y] of total degree m ≥ 0 and max-norm || f0||∞, || f ||∞ ≤ 20;

• g0 ∈ Z[x, y] of total degree n ≥ 0 and max-norm ||g0||∞ ≤ 20;

• λ, µ are positive integers;

• gi ∈ Z[z] of the form gi = pi(z)pi(z + λi)pi(z + λiµ)pi(z + λi + λiµ) for λi = (−1)iλ and
pi ∈ Z[z] of total degree n > 0 and max-norm ||pi||∞ ≤ 20.

Note that in a generic situation, a rational function r ∈ Q(x, y) of the form (7.1) admits the
following RILD-based partial fraction decomposition

r = (Sy − 1)
(

f0(x, y)
g0(x, y)

)
+ M1

(
1

p1(−λx + µy)

)
+ M2

(
1

p2(λx + µy)

)
,
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where Mi = ai0 + ai1Sλi
λi,µ

+ ai2Sλiµ
λi,µ

+ ai3Sλi+λiµ
λi,µ

for some ai0, ai1, ai2, ai3 ∈ Q(x)[y]. As such, by
modulo some σy-summable rational function, it can be further reduced to

R1

(
1

p1(−λx + µy)

)
+ R2

(
1

p2(λx + µy)

)
with Ri = bi0 + bi1Sλi

λi,µ
for some bi0, bi1 ∈ Q(x)[y].

For a selection of random rational functions of this type for different choices of (m, n, λ, µ),
Table 1 collects the timings, without expanding the certificate, of the algorithm of Le (DCT), the
reduction-based algorithm (RCT) and our algorithm (OCT) developed in Section 4. The column
order is used to record the actual order of the output minimal telescoper.

(m, n, λ, µ) DCT RCT OCT order
(1, 1, 1, 1) 0.18 0.17 0.16 2
(1, 1, 4, 1) 0.18 0.20 0.16 2
(1, 1, 16, 1) 0.19 0.21 0.17 2
(5, 1, 4, 1) 0.22 0.23 0.19 3
(10, 1, 4, 1) 0.26 0.27 0.21 3
(15, 1, 4, 1) 0.46 0.40 0.27 4
(15, 1, 4, 5) 10.43 14.63 0.90 10
(15, 1, 4, 7) 46.39 69.64 1.92 14
(15, 1, 4, 9) 181.34 283.65 3.58 18
(15, 1, 4, 11) 456.69 851.72 7.49 22
(15, 1, 4, 13) 892.44 2436.57 13.59 26
(1, 2, 4, 1) – 15.24 2.48 7
(1, 3, 4, 1) – 1220.58 49.19 11
(1, 4, 4, 1) – 30599.21 935.41 15
(10, 2, 4, 1) – 21.00 3.96 7
(20, 2, 4, 1) – 27.27 5.92 7
(30, 2, 4, 1) – 51.82 14.55 8
(30, 2, 4, 3) – 504.78 51.93 12
(30, 2, 4, 5) – 6437.51 436.25 20
(30, 2, 4, 7) – 47763.39 1283.01 28

Table 1: Comparison of three algorithms for a collection of rational functions of the form (7.1).

From the finding we see that our creative telescoping algorithm has comparable timings for
random problems of small size. In particular none of the three algorithms have significant set
up costs. As m increases our algorithm shows significant improvement over both the direct
and reduction-based methods. The dash in the column DCT indicates that the current built-
in procedure for DCT in Maple 2018 is not applicable for random inputs with this choice of
(m, n, λ, µ). The issue in these cases is that the denominator of the input rational function has
irreducible factors of degrees greater than one, and then the algorithm of Le (2003) requires
recurrence operators with coefficients being polynomials over algebraic numbers, something not
yet included in the current implementation of DCT in Maple.
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8. Conclusion and future work

A new algorithm of creative telescoping for bivariate rational functions has been developed
in this paper. Our algorithm is based on basic arithmetic in the ring of recurrence operators and
expresses the certificate part by a compact representation, which, if desired, can be expanded in
time polynomial in the size of the final result. In terms of complexity, our algorithm outperforms
the reduction-based approach in the case of bivariate rational functions by at least one order of
magnitude ignoring the certificate part. In practice, our algorithm is also more efficient according
to the experiments.

With the rational case being settled, it is natural to wonder about an analogous algorithm for
hypergeometric terms. Recall that a bivariate function f (x, y) is called a hypergeometric term if
both f (x + 1, y)/ f (x, y) and f (x, y + 1)/ f (x, y) are rational functions in x, y. The hypergeometric
term is a basic and ubiquitous class of special functions appearing in combinatorics (Petkovšek
et al., 1996). It is more interesting and also more challenging than the rational case.

In the hypergeometric case, there exists no direct analog of the partial fraction decomposition
of rational functions. Thus the method described in this paper will not work directly for this
setting. One possible way to proceed is to first compute a multiplicative decomposition of the
given hypergeometic term and then reduce the problem to a rational one (cf. (Abramov and
Petkovšek, 2001; Chen et al., 2015)). This way, however, may introduce arithmetic operations
on recurrence operators overK(x, y) instead ofK(x)[y], and thus makes it more difficult to derive
a hypergeometric telescoping criterion, namely an analog of Theorem 4.3. In the future, we hope
to explore this topic further and aim at generalizing our results to the class of hypergeometric
terms and beyond.

Acknowledgments

We would like to express our gratitude to Ziming Li for his helpful discussions and valuable
comments, which improved this work considerably. We also would like to thank the anonymous
referees for many useful and constructive suggestions. Most of the work presented in this paper
was carried out while Hui Huang was a Post Doctoral Fellow at the University of Waterloo.

References

Abramov, S. A., 1975. The rational component of the solution of a first-order linear recurrence relation with a rational
right side. USSR Comput. Math. Math. Phys. 15 (4), 216–221.
URL https://doi.org/10.1016/0041-5553(75)90181-0

Abramov, S. A., Le, H. Q., 2002. A criterion for the applicability of Zeilberger’s algorithm to rational functions. Discrete
Math. 259 (1-3), 1–17.
URL http://dx.doi.org/10.1016/S0012-365X(02)00442-9
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