
A deterministic algorithm for inverting a polynomial
matrix

Wei Zhou, George Labahn, Arne Storjohann
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON,

Canada N2L 3G1

Abstract

Improved cost estimates are given for the problem of computing the inverse of an
n×n matrix of univariate polynomials over a field. A deterministic algorithm is
demonstrated that has worst case complexity (n3s)

1+o(1) field operations, where
s ≥ 1 is an upper bound for the average column degree of the input matrix.
Here, the “+o(1)” in the exponent indicates a missing factor c1(log ns)c2 for
positive real constants c1 and c2. As an application we show how to compute
the largest invariant factor of the input matrix in (nωs)

1+o(1) field operations,
where ω is the exponent of matrix multiplication.

1. Introduction

We consider the problem of computing the inverse of a matrix of polynomials
over an abstract field K. Let F ∈ K [x]

n×n be an n× n matrix over the ring of
univariate polynomials K[x], and let d ≥ 1 be a bound on the degrees of entries
of F. Recall that the determinant detF can have degree up to nd and that the
adjugate (or classical adjoint) detF ·F−1 is a polynomial matrix with entries of
degree up to nd. Thus, F−1 can require on the order of n3d field elements to
represent: a factor of n more than required to write down F.

In a surprising result, Jeannerod and Villard [4] give an algorithm to compute
F−1 for a generic input matrix of dimension a power of 2 that has a cost of
(n3d)

1+o(1) field operations from K. Here, and in the remainder of the paper, the
“+o(1)” in the exponent of cost estimates indicates a missing factor c1(log nd)c2

for positive real constants c1 and c2. The inversion algorithm of Jeannerod
and Villard [4] works for arbitrary input matrices. However, the (n3d)

1+o(1)

running time bound is obtained only for inputs that have dimension a power
of 2, and which satisfy the genericity requirement that the n2(d+ 1) coefficients
of F do not cause a particular polynomial of degree n2(d + 1) to vanish. The
genericity requirement ensures that all matrices arising during the construction

Email address: {w2zhou,glabahn,astorjoh}@uwaterloo.ca (Wei Zhou, George Labahn,
Arne Storjohann)

Preprint submitted to Elsevier July 28, 2014

have uniform row and column degrees. Jeannerod and Villard’s recipe is the
first essentially optimal inversion algorithm for polynomial matrices, at least
for generic matrices with dimension a power of 2, improving on the previously
known algorithms which have cost (nω+1d)

1+o(1), where ω is the exponent of
matrix multiplication. More recently, an alternative inversion algorithm is given
by Storjohann [9]: the algorithm is Las Vegas randomized and has expected cost
(n3d)

1+o(1) field operations for all input matrices. For a survey of previous work
on polynomial matrix inversion we refer to [4, 9].

In this paper we extend the algorithm of Jeannerod and Villard [4] to
work for arbitrary input matrices while maintaining a worst case deterministic
(n3d)

1+o(1) bound on the running time in all cases. We illustrate the differences
between the algorithm of [4] and our extension using a pair of simple examples.

To understand the behaviour of the inversion algorithm [4] for generic inputs
it will suffice to consider a 4×4 input matrix of degree 3. In our examples we only
show the degree profile of the matrices, that is, the degrees of the polynomials
inside the matrix and not the polynomials themselves. Blocks of the matrix
that are necessarily zero are left blank. The algorithm begins by computing a
matrix A1 such that

degs F
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3

degs A1

3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3

=

6 6
6 6

6 6
6 6

 .
The first 2 columns of A1 comprise a kernel basis for the last 2 rows of F
while the last 2 columns of A1 comprise a kernel basis for the first 2 rows of
F. The algorithm now proceeds recursively on the two 2× 2 diagonal blocks of
F ·A1, continuing until the matrix is diagonalized. For this example two levels
of recursion suffices to obtain a diagonalization B of the input matrix.

F

degs A1
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3

degs A2

6 6
6 6

6 6
6 6

=

degs B
12

12
12

12

 . (1)

By multiplying (1) on the left by F−1 and on the right by B−1 a structured
decomposition is obtained for F−1. The genericity condition required for the
cost analysis in [4] ensures that the property “dimension × degree = nd” holds
for all the recursive subproblems. In general, for a generic input matrix F of
degree d, and dimension n a power of 2, the decomposition has the form

F−1 = A1A2 · · ·Alogn ·B−1, (2)

with B = (detF) · In and Ai+1 block diagonal with blocks of dimension n/2i

and degree 2id, 0 ≤ i ≤ log n − 1. Thus, if T (n, d) denotes the running time

2

of the method to compute the structured decomposition on the right hand side
of (2), then

T (n, d) ≤ 2T (n/2, 2d) + (nωd)
1+o(1)

, (3)

and it follows that T (n, d) ∈ (nωd)
1+o(1). Note that each of the output matrices

A1, . . . ,Alogn,B in the inverse decomposition requires at most n2(d + 1) field
elements to represent, so the total size of the output is O(n2d log n) field ele-
ments. In [4] it is also shown that that multiplying together the decomposition
to obtain F−1 explicitly can be done in time (n3d)

1+o(1).
For a non-generic input matrix the degrees of columns in the kernel basis in

the Ai matrices need not be uniform. Even a so-called minimal kernel basis, for
which the sum of the column degrees is minimal, can have skew column degrees.
As a result, the recurrence (3) for the running time, which is based on the single
degree bound d, no longer applies. To overcome the difficulty of non-uniform
column degrees we capture more precisely the size of the input matrix to the
kernel computations using a tuple [d1, d2, . . . , dn] such that column i of the
input is bounded in degree by di. We also make use of shifted column degrees to
guide the computations and to prove size bounds for the intermediate matrices
arising during the compuations. The notion of shifted column degree and the
key subroutines we use are recalled with examples in Section 2. Incorporating
shifted column degrees allows us to apply the new algorithms from Zhou et al.
[13] (see also [11]) for shifted kernel basis computations and skew degree matrix
multiplications. Instead of analyzing algorithms in terms of an upper bound
d ≥ 1 for the matrix degree, we can analyse in terms of a bound s ≥ 1 for the
average column degree. We show that the inversion algorithm for generic input
matrices [4] can be adapted to a non-generic input matrix in such a way as to
support a similar recurrence for the running time as given by (3) but with d
replaced by s.

To illustrate the inversion algorithm with the computations guided by shifted
degrees, consider a 5 × 5 input matrix F. (This particular example is given
explicitly in Section 3.) The degrees of entries of F are

degs F =

1 3 4 1 2
0 0 1 0 1
0 2 2 4 1
· 2 4 · ·
0 2 3 1 ·

with a · indicating a zero polynomial. For this input the algorithm computes
the following decomposition.

F

degs A1
1 4 · 0 1
· 2 · 2 ·
· 0 · 1 ·
0 1 · 0 ·
· · 0 · 0

degs A2

2 3 2
1 4 1
4 5 3

5 ·
1 1

degs A3

4 0
3 2

0
0

0

=

degs B
9

7
3

5
1

3

In general, the modified inversion algorithm for non-generic inputs returns a list
of matrices A1,A2, . . . ,Adlogne,B satisfying

F−1 = A1A2 · · ·Adlogne ·B−1. (4)

The Ai matrices will be block diagonal, with A2 having blocks of dimension
bounded by dn/2e, A3 having blocks of dimension bounded by ddn/2e/2e, etc.
The algorithm produces the output matrices in (4) in time (nωs)

1+o(1). The
structured decomposition still requires only O(n2s log n) space. We also show
that the explicit inverse can be computed as the product of the matrices on the
right hand side of (4) in time (n3s)

1+o(1).
As an application of the inversion algorithm we show that the largest invari-

ant factor of the input matrix F can be recovered from the diagonalization B
in (4). Recall that the largest invariant factor of F is the minimal degree monic
polynomial p such that p · F−1 has only polynomial entries. We show that p
is equal to the least common multiple of the diagonal entries of B and thus
our work establishes that p can be computed deterministically in (nωs)

1+o(1)

field operations. The previously fastest algorithm [8] for largest invariant fac-
tor is randomized and computes p in expected time (nωd)

1+o(1). We also show
how to compute the sequence of matrix powers V 2, V 3, . . . , V n of an arbitrary
V ∈ Kn×n in time (n3)

1+o(1).
The remainder of this paper is as follows. Section 2 includes some back-

ground on the tools required for the inversion computation described in Sec-
tion 3. This is followed in Section 4 by the theorems giving the new complexity
results for multiplying together the Ai matrices. Section 5 gives some appli-
caitons of the fast inversion algorithm and Section 6 concludes.

2. Preliminaries

In this section we give the basic cost model and definitions and properties
of shifted degree and kernel basis, which are essential for our computation.

2.1. Cost model
Algorithms are analyzed by bounding the number of arithmetic operations in

the coefficient field K on an algebraic random access machine. We will frequently
use the fact that the cost of multiplying two polynomial matrices with dimension
n and degree bounded by d ≥ 1 is (nωd)

1+o(1) field operations from K, where
ω is the exponent of matrix multiplication. We refer to the book by von zur
Gathen and Gerhard [10] for more details and references about polynomial and
matrix multiplication.

2.2. Shifted degrees
Our methods depend extensively on the concept of shifted degrees of poly-

nomial matrices [1]. For a column vector p = [p1, . . . , pn]
T of univariate poly-

nomials over a field K, its column degree, denoted by cdegp, is the maximum

4

of the degrees of the entries of p, that is,

cdegp = max
1≤i≤n

deg pi.

The shifted column degree generalizes this standard column degree by taking the
maximum after adjusting the degrees by a given integer vector that is known as
a shift. More specifically, the shifted column degree of p with respect to a shift
~s = [s1, . . . , sn] ∈ Zn, or the ~s-column degree of p is

cdeg~s p = max
1≤i≤n

[deg pi + si] = cdeg(x~s · p),

where
x~s = diag (xs1 , xs2 , . . . , xsn) .

For a matrix P, we use cdegP and cdeg~sP to denote respectively the list of its
column degrees and the list of its shifted ~s-column degrees. When ~s = [0, . . . , 0],
the shifted column degree specializes to the standard column degree.

Shifted degrees have been used previously in polynomial matrix computa-
tions and in generalizations of some matrix normal forms [2]. The shifted column
degree is equivalent to the notion of defect commonly used in the literature. If
one views a maximum degree as a position of importance then one can think
of shifted degrees as alternative ways to weigh positions. A good example il-
lustrating this can be found in [1] where one uses maximum degree as a way of
determining pivot rows for normal forms. The use of shifted degrees allows one
to specify alternate pivot choices for these forms.

Along with shifted degrees we also make use of the notion of a polynomial
matrix being column reduced. A polynomial matrix A ∈ K [x]

m×n is column
reduced if the leading column coefficient matrix, that is the matrix

lcoeff A = [coeff(aij , x, dj)]1≤i≤m,1≤j≤n, with [d1, . . . , dn] = cdegA,

has full rank. A polynomial matrix A is ~s-column reduced if x~s ·A is column
reduced.

The usefulness of the shifted degrees can be seen from their applications
in polynomial matrix computation problems [11, 12, 13]. One of its uses is
illustrated by the following lemma, which follows directly from the definition of
shifted degree.

Lemma 1. Let ~s be a shift whose entries bound the corresponding column de-
grees of A ∈ K∗×m. Then for any polynomial matrix B ∈ K [x]

m×∗, the column
degrees of A ·B are bounded by the corresponding ~s-column degrees of B.

A closely related result involving the shifted degrees is the following lemma [11,
Lemma 2.19], which can be viewed as a stronger version of the predictable degree
property [5, Theorem 6.3-13].

Lemma 2. Let A ∈ K[x]∗×m be a ~s-column reduced matrix with no zero columns
and with cdeg~sA = ~t. Then any matrix B ∈ K[x]m×∗ satisfies cdeg~tB =
cdeg~s (A ·B).

5

An essential subroutine needed in our computation, also based on the use
of the shifted degrees, is the efficient multiplication of a pair of matrices A ·B
with unbalanced degrees. The following result follows as a special case of [13,
Theorem 3.7]. The notation

∑
~s, for any list ~s, denotes the sum of all entries

in ~s.

Theorem 3. Let A ∈ K[x]n×m and B ∈ K[x]m×m be given with m ≤ n.
Assume, without loss of generality, that B has no zero columns. Suppose ~s ∈
Zn≥0 is a shift that bounds the corresponding column degrees of A. If ξ is an
upper bound for both

∑
~s and

∑
cdeg~sB, then the product A·B can be computed

in (nmω−1(1 + ξ/m))
1+o(1) field operations from K.

Note that ξ/n in the cost estimate in Theorem 3 is an upper bound on the
average column degree of A and the average ~s-column degree of B. The cost
estimate uses 1+ξ/n in order to correctly handle the case when ~s contains some
zero entries. In particular, we always have 1 + ξ/n ≥ 1. Also note that to use
the proof of [13, Theorem 3.7], we may assume that the entries of ~s are ordered
in increasing order. This can be done by ordering the columns of A and the
rows of B in the same way as ~s.

2.3. Kernel bases
Let F ∈ K [x]

m×n be a matrix of polynomials over a field K. The kernel of
F ∈ K [x]

m×n is the K [x]-module

{p ∈ K [x]
n | F · p = 0}

with a kernel basis of F being a basis of this module.

Definition 4. Given F ∈ K [x]
m×n, a polynomial matrix N ∈ K [x]

n×∗ is a
~s-minimal (right) kernel basis of F if N is a kernel basis of F and N is ~s-column
reduced. We also call a ~s-minimal (right) kernel basis of F a (F, ~s)-kernel basis.

The following result [13, Theorem 3.4] shows that the use of shifted degrees
can ensure that the sizes of certain shifted kernel bases do not get too big.

Lemma 5. Suppose F ∈ K [x]
m×n and ~s ∈ Zn≥0 is a shift with entries bounding

the corresponding column degrees of F. Then the sum of the ~s-column degrees
of any ~s-minimal kernel basis of F is bounded by

∑
~s.

Example 1. Let

F =

 x −x3 −2x4 2x −x2
1 −1 −2x 2 −x
−3 3x2 + x 2x2 −x4 + 1 3x

a 3 × 5 matrix over Z7[x] and let ~s = (1, 3, 4, 4, 2), the column degrees of F.
Then

N =

−1 x
−x2 0
−3x 0
−3 0

0 1

 with lcoeff~sN =

0 1
−1 0
−3 0

0 0
0 1

6

is a ~s-minimal kernel basis of F satisfying F ·N = 0 and its ~s-shifted leading
coefficient has full rank. Note that the sum of the ~s-column degrees of N (in
this case 7) is less than

∑
~s = 14 as implied in Lemma 5.

We will also need the following result [13, Lemma 3.15] to compute kernel
bases by rows.

Lemma 6. Let G =
[
GT

1 ,G
T
2

]T ∈ K [x]
m×n and ~t ∈ Zn a shift vector. If N1

is a
(
G1,~t

)
-kernel basis with ~t-column degrees ~u, and N2 is a (G2N1, ~u)-kernel

basis with ~u-column degrees ~v, then N1N2 is a
(
G,~t

)
-kernel basis with ~t-column

degrees ~v.

Another essential subroutine we need is the minimal kernel basis algorithm
with shift recently reported by the authors [13, Theorem 4.2].

Theorem 7. Let F ∈ Km×n with m ≤ n and ~s be a shift bounding the cor-
responding column degrees of F. Then a ~s-minimal kernel basis of F can be
computed in (nω(1 + ξ/n))

1+o(1) field operations from K, where ξ =
∑
~s.

3. The inversion algorithm

In order to reduce a matrix F into diagonal form Jeannerod and Villard [4]
first considers a matrix A1 such that F ·A1 = R has just two diagonal blocks.
More specifically, if we separate F into

F =

[
Fu
Fd

]
,

with Fu and Fd consisting of the upper dn/2e and lower bn/2c rows of F,
respectively, then a matrix A1 = [N`,Nr] consisting of kernel bases N` and Nr

of Fd and Fu, respectively, gives

F ·A1 =

[
Fu
Fd

]
· [N`,Nr] =

[
FuN` FuNr

FdN` FdNr

]
=

[
Ru 0
0 Rd

]
. (5)

If F is nonsingular, then the column dimensions of N` and Nr match the row
dimensions of Fu and Fd, respectively, making the diagonal blocks Ru and Rd

square.

Example 2. Let

F =

x −x3 −2x4 2x −x2
1 −1 −2x 2 −x
−3 3x2 + x 2x2 −x4 + 1 3x
0 x2 x4 + 2x3 − 2x2 0 0
1 −x2 + 2 −2x3 − 3x 2x+ 2 0

 ,

7

a 5 × 5 matrix over Z7[x] with column degrees ~s = (1, 3, 4, 4, 2). Then the
~s-minimal kernel basis of the upper 3 rows and lower 2 rows of F are given by

N
(1)
1,` =

−2x− 2 −x4 + x2 − 1 0

0 −x2 − 2x+ 2 0
0 1 0
1 −2x+ 2 0
0 0 1

 and N
(1)
1,r =

−1 x
−x2 0
−3x 0
−3 0

0 1

 ,

respectively, with N
(1)
1,r determined in Example 1. Multiplying F on the right

by A1 = [N
(1)
1,` ,N

(1)
1,r] then gives

F ·A1 =

[
Ru

Rd

]

=

−2x2 −x3 + 3x2 + 3x −x2
−2x −x4 + 2x2 + 3x+ 1 −x
−x4 − x 2x5 − 2x4 + 3x2 − 2 3x

−3x5 − x3 0
x x

 .
Notice that the column degrees of both Ru and Rd are bounded by the ~s-
column degrees of N

(1)
1,`and N

(1)
1,r, respectively. In particular, the sum of the

column degrees of both Ru and Rd are each bounded by
∑
~s = 14.

In general, the matrices F and A1 can have unbalanced degrees. But the
use of shifted degrees allows them to be efficiently multiplied making use of
Theorem 3. The same process can then be repeated recursively on Ru and
Rd, until we reach the base case where the dimension becomes 1. This gives a
recursive algorithm, shown in Algorithm 1, which returns a sequence of matrices
A1, . . . ,Adlogne that transforms the input matrix F into a diagonal matrix B.

Example 3. Continuing with Example 2, let Ru and Rd be the two diagonal
blocks of dimension 3 × 3 and 2 × 2, respectively. To apply Lemma 6 we base
the subsequent shifted kernel computation on the shifted column degrees of
the previously computed kernels. Recall that ~s = (1, 3, 4, 4, 2). The ~s-column
degrees of N(1)

1,` and N
(1)
1,r are (4, 5, 2) and (5, 2), respectively. Repeating our

previous computation for Ru we obtain (4, 5, 2)-minimal kernel bases N(1)
2,` and

N
(1)
2,r for the top 2 rows and bottom row, respectively, given by

[N
(1)
2,` ,N

(1)
2,r] =

 1 3x2 − 3x 3
0 −2x 0

−2x3 − 2 3x2 − x+ 1 1

with

Ru · [N(1)
2,` ,N

(1)
2,r] =

 2x5 x3

2x4 2x5 + x3 + x2 − 3x
−3x4

 .
8

Similarly for the 2×2 matrix Rd we determine (5, 2)-minimal kernel bases N(2)
2,`

and N
(2)
2,r for the top and bottom row, respectively, obtaining

[N
(2)
2,` ,N

(2)
2,r] =

[
1 0
−1 1

]
with

Rd · [N(2)
2,` ,N

(2)
2,r] =

[
−3x5 − x3

x

]
.

Observe how the size — the sum of the shifted degrees of the minimal bases —
is bounded by

∑
~s, where ~s is the original bound on the column degrees of F.

The (4, 5, 2)-minimal bases have shifted degrees (5, 6) and 4 on the left while the
(5, 2)-minimal basis on the left has shifted degrees 5 and 1. In all cases these
shifted degrees bound the recursive matrix polynomials Ru and Rd at each step
and hence their size (sum of bound of column degrees is always at most

∑
~s for

the original bound ~s.
Setting now

A2 =

[
[N

(1)
2,` ,N

(1)
2,r]

[N
(2)
2,` ,N

(2)
2,r]

]

=

1 3x2 − 3x 3
0 −2x 0

−2x3 − 2 3x2 − x+ 1 1
1 0
−1 1

we get

F ·A1 ·A2 =

2x5 x3

2x4 2x5 + x3 + x2 − 3x
−3x4

−3x5 − x3
x

 . (6)

It remains to diagonalize the 2 × 2 leading submatrix Ru · [N(1)
2,` ,N

(1)
2,r] of (6).

The (4, 5, 2)-column degrees of N(1)
2,` are (5, 6). The final step of the recursion

gives the (5, 6)-minimal kernel bases N(1)
3,` and N

(1)
3,r, where

[N
(1)
3,` ,N

(1)
3,r] =

[
−3x4 + 2x2 + 2x+ 1 1

3x3 −2x2

]
with

Ru · [N(1)
2,` ,N

(1)
2,r] · [N

(1)
3,` ,N

(1)
3,r] =

[
x9 − 3x7 + 2x5

3x7 − 2x5 − x3
]
.

9

Note that A3 is a block diagonal matrix with 4 diagonal blocks. Because the
original matrix dimension 5 is not a power of two, the algorithm simply takes
[N

(3)
k,`,N

(3)
k,r] = I1 for k = 2, 3, 4. Thus, with

A3 =

[N

(3)
1,` ,N

(3)
1,r]

[N
(3)
2,` ,N

(3)
2,r]

[N
(3)
3,` ,N

(3)
3,r]

[N
(3)
4,` ,N

(3)
4,r]

=

1 + 2x2 + 2x− 3x4 1

3x3 −2x2

1
1

1

we obtain the final diagonal form B is then given as

F·A1 ·A2 ·A3 =

x9 − 3x7 + 2x5

3x7 − 2x5 − x3
−3x4

−3x5 − x3
x

 .
Notice how the sizes of intermediate computations (as measured by the sum

of column degrees) are continue to be controlled during the recursion. The input
column degrees are ~s = (1, 3, 4, 4, 2) with sum 14 and the initial ~s-minimal kernel
bases have ~s-column degrees (4, 5, 2) and (5, 2), in each case summing to less
than 14. The initial diagonal blocks Ru and Rd then have column degrees
bounded by (4, 5, 2) and (5, 2), respectively, and hence their sums are also less
than the sum of the initial column degrees. Recursing on the upper block implies
sums are at most 11 while on the lower block the sums are at most 7. In all cases
the sums are at most 14 for any shifted minimal kernel basis computation.

Algorithm 1 recurses on two problems of about half the dimension. The
following theorem establishes a bound on the cost of the algorithm. The key
idea of the cost analysis is to show that the sum of column degrees of each
of the recursive problems is bounded by the sum of the column degrees of F.
In addition to the input matrix F the algorithm takes as input a shift ~s that
bounds the corresponding degrees of columns of F. For the top level call to
the algorithm we can choose ~s = cdegF, in which case the parameter s in the
following theorem is the average column degree of F plus one.

Theorem 8. Algorithm 1 is correct. The cost of the algorithm is bounded by
(nωs)

1+o(1) field operations from K, where s = 1 + (
∑
~s)/n.

Proof. First note that the base case n = 1 returns a correct output. Next, the
algorithm will report fail at line 3 if and only if F is singular. Finally, Lemma 1

10

Algorithm 1 Inverse(F, ~s)

Input: F ∈ K [x]
n×n, ~s ∈ Zn≥0 such that entries of ~s bound the corresponding

column degrees of F
Output: A =

[
A1, . . . ,Adlogne

]
,B with A1, . . . ,Adlogne,B ∈ K [x]

n×n such
that B is diagonal and A1 . . .AdlogneB

−1 = F−1 if F is nonsingular, or fail
if F is singular.

1: if F = 0 then fail endfi;
if n = 1 then return {[],F} endif ;

2: F :=

[
Fu
Fd

]
with Fu consisting of the upper dn/2e rows of F;

3: Nr := MinimalKernelBasis(Fu, ~s);
N` := MinimalKernelBasis(Fd, ~s);
if ColumnDimension([N`,Nr]) 6= n then fail endif ;

4: Ru := FuN`;
Rd := FdNr;

5:
{
A(1),B1

}
:= Inverse(Ru, cdeg~sN`);{

A(2),B2

}
:= Inverse(Rd, cdeg~sNr);

6: A :=
[
[N`,Nr] , diag(A(1)

1 ,A(2)
1), . . . ,diag(A(1)

dlogne−1,A
(2)
dlogne−1)

]
;

Note: If A(2)
dlogne−1 is not defined then substitute the identity matrix.

7: return {A, diag (B1,B2)};

gives that the column degrees ofRu andRd are bounded by the corresponding ~s-
column degrees ofN` andNr, respectively. Thus, the arguments in the recursive
calls in line 5 satisfy the precondition of the algorithm. Correctness now follows
using strong induction on n.

For ξ ≥ 1, let T (n, ξ) be a bound on the cost of the algorithm with input
(F ∈ K[x]n×n, ~s ∈ Zn) that satisfies

∑
~s ≤ ξ. To obtain a recurrence relation

for T we first claim that the cost of the nonrecursive work done in the algorithm
is bounded by (nω(1 + ξ/n))

1+o(1). Note that lines 1, 2, 6 and 7 do not require
any field operations. The claim for line 3 follows using the algorithm supporting
Theorem 7. By Lemma 5 we have∑

cdeg~sN` ≤
∑

~s and
∑

cdeg~sNr ≤
∑

~s, (7)

so the claim for line 4 follows from Theorem 3.
Finally, consider line 5. Since the column degrees of Ru are bounded by the

corresponding ~s-column degrees of N`, it follows from (7) that
∑

cdegRu ≤∑
~s. Similarly,

∑
cdegRd ≤

∑
~s. This shows that

T (n, ξ) ≤ T (bn/2c, ξ) + T (dn/2e, ξ) + (nω(1 + ξ/n))
1+o(1)

.

Solving this recurrence shows that T (n, ξ) is bounded by (nω(1 + ξ/n))
1+o(1).

Since ξ ≤ n(s− 1) the result follows.

11

The use of shifted degrees allowed us to bound the cost of our inversion
computation in terms of a bound s ≥ 1 for the average column degree instead
of the maximal column degree. Since F−1 = ((FT)−1)T , the complexity bound
(n3s)

1+o(1) we have established for polynomial matrix inversion holds more gen-
erally with s − 1 equal to the minimum of the average of the row degrees and
the average of the column degrees of F.

In some cases it is also possible to efficiently handle matrices which have both
some rows and some columns of large degree, for example a matrix polynomial
having degrees

degs F =

nd nd · · · nd
nd 0 · · · 0
...

...
. . .

...
nd 0 · · · 0

 . (8)

First note that an a priori bound for deg detF (and for the degree of any minor
of F) is given by ns, leading to the bound O(n3s) for the space required to
write down F−1. For some input matrices, including the one shown in (8), the
upper bound ns on deg detF can be pessimistic. Considering only the degrees
of entries, the best a priori bound for deg detF is given from the definition of
the determinant:

deg detF ≤ max
σ∈Sn

n∑
i=1

degFi,σ,

where Sn is the set of all permutations of (1, 2, . . . , n).
The minimum of the average row degree and average column degree of F in

(8) is s = nd. However the definition of the determinant gives deg detF ≤ 2nd.
Partial linearization [3, Section 6] can be used to handle such inputs efficiently.
Up to a row and column permutation, assume that degFi,i bounds the degree
of all entries in the trailing submatrix Fi...n,i...n, 1 ≤ i ≤ n, and let E =∑n
i=1 degFi,i. Then corresponding to F there exists a matrix F̄ that satisfies

the following properties: Dimension(F̄) < 3n; deg F̄ ≤ dE/ne; the principal
n×n submatrix of F̄−1 is equal to F−1. The matrix shown in (8), for example,
would be transformed [3, Corollary 3] into a matrix F̄ with dimension 3n − 1
and degree d.

4. Cost of multiplying the output matrices

Throughout this section, letA1, . . . ,Adlogne,B be the output of Algorithm 1
for an input (F ∈ K[x]n×n, ~s ∈ Zn). To compute A = A1 · · ·Adlogne we simply
multiply the matrices in sequential order. Let Mi = A1A2 · · ·Ai, 1 ≤ i ≤
dlog ne. At step i, for i = 1, 2, . . . , dlog ne− 1, we compute the product Mi+1 =
Mi ·Ai+1.

The matrix Ai+1 consists of 2i diagonal blocks, that is,

Ai+1 = diag(A
(1)
i+1, . . . ,A

(2i)
i+1),

12

with each diagonal block A
(k)
i+1 = [N

(k)
i+1,`,N

(k)
i+1,r] consisting of two kernel bases

computed in one of the subproblems. The matrix Mi can be decomposed as

Mi = [M
(1)
i , . . . ,M

(2i)
i]

with 2i column blocks, where the column dimension of M(k)
i corresponds to the

column dimension of A(k)
i+1, 1 ≤ k ≤ 2i. The matrix

Mi+1 = [M
(1)
i+1,M

(2)
i+1, . . . ,M

(2·2i−1)
i+1 ,M

(2·2i)
i+1]

is thus defined by the matrix products

M
(2k−1)
i+1 = M

(k)
i ·N

(k)
i+1,` and M

(2k)
i+1 = M

(k)
i ·N

(k)
i+1,r (9)

for 1 ≤ k ≤ 2i.
It is interesting to note that each M

(k)
i is in the kernel of a subset of the

rows of the original input matrix F. This can be seen from the fact that the
product F ·Mi is a matrix with only diagonal blocks nonzero. The following
theorem makes precise the type of kernel elements and the rows they annihilate.

Theorem 9. Let F
(k)
i be a matrix consisting of the rows of F that have the

same row indices as the column indices of M(k)
i in Mi, and F̄

(k)
i consisting of

the remaining rows of F. Then M
(k)
i is a ~s-minimal kernel basis of F̄(k)

i .

Proof. The shifted minimal kernel basis computation in Algorithm 1 use the
shift specified by Lemma 6. The only rows of F not used in computing M

(k)
i

are the rows from F
(k)
i .

We can now establish good bounds on the sizes of the matrices involved in the
products shown in (9) and subsequently bound the cost of the multiplications.

Lemma 10. Let ~t = cdeg~sM
(k)
i . Then

(a)
∑
~t ≤

∑
~s, and

(b)
∑

cdeg~tN
(k)
i+1,` ≤

∑
~s and

∑
cdeg~tN

(k)
i+1,r ≤

∑
~s.

Proof. The bound for
∑
~t follows from Lemma 5 as a corollary of Theorem 9.

For the second two bounds, Lemma 2 gives that cdeg~tN
(k)
i+1,` = cdeg~sM

(2k−1)
i+1

and cdeg~tN
(k)
i+1,r = cdeg~sM

(2k)
i+1 . But now the first claim in the lemma gives that∑

cdeg~sM
(2k−1)
i+1 ≤

∑
~s and

∑
cdeg~sM

(2k)
i+1 ≤

∑
~s , so the result follows.

Lemma 11. For a given i and k the matrix multiplications in (9) can be done
in time (n(n/2i)ω−1(1 + ξ/(n/2i))

1+o(1), where ξ =
∑
~s.

13

Proof. It will suffice to bound the cost of the multiplication M
(k)
i ·N

(k)
i+1,` since

the other multiplication is similar. Let ~t = cdeg~sM
(k)
i , as in Lemma 10. Note

that ~t bounds the corresponding column degrees of x~s ·M(k)
i . By Lemma 10 we

have
∑

cdeg(x~s ·M(k)
i) ≤ ξ and

∑
cdeg~tN

(k)
i+1,` ≤ ξ. Up to a factor of 2, the

column dimensions of M(k)
i and N

(k)
i+1,` are n/2

i, so the result now follows from
Theorem 3.

The product (((A1A2)A3) · · ·Alogn
) can be computed by performing the

products in (9) for i = 1, 2, . . . , dlog ne − 1 and k = 1, . . . , 2i. Multiplying the
cost estimate of Lemma 11 by 2i × log n, substituting ξ =

∑
~s and ω = 3, and

simplifying, gives the following result.

Theorem 12. The product A = A1 · · ·Adlogne can be computed in (n3s)
1+o(1)

operations from K, where s = 1 + (
∑
~s)/n.

5. Applications

We show how the inverse algorithm for non-generic input can be used to
obtain improved complexity bounds for solving three other problems: deter-
mining the largest invariant factor of a polyomial matrix, computing a sequence
of powers of a constant matrix, and solving a linear system with multiple right
hand sides. All the results we mention here follow as a corollary of Theorem 8.

5.1. Largest invariant factor
The largest invariant factor of a matrix of polynomials F ∈ K[x]n×n is de-

fined as the ratio of the determinant and the gcd of all n − 1 minors of F. It
coincides with the last diagonal entry of the Smith normal form of F. Alter-
natively, the largest invariant factor is the minimal degree monic polynomial p
having the property that p ·F−1 is a polynomial matrix. From Theorem 9, each
column a of A = A1 · · ·Adlogne is a kernel basis for a subset of n − 1 rows of
F. It follows that the gcd g of the entries in a must be 1 to allow the kernel ele-
ment a/g to be generated by the kernel basis a. Since A = F−1B, the diagonal
entries of the matrix B have the smallest possible degrees among that of all full
rank diagonal matrix that can be multiplied to F−1 to get a polynomial matrix.
The least common multiple of the diagonal entries of B is therefore equal to p.
In particular, if F has aveage column degree s, the largest invariant factor of F
can be computed in time (nωs)

1+o(1).

Example 4. Let F be given as in Example 2, with the final diagonal form

B = diag(x9 − 3x7 + 2x5, 3x7 − 2x5 − x3,−3x4, −3x5 − x3, x) ∈ Z7[x] (10)

as in Example 3. The largest invariant factor of F is the least common multiple
of the entries of B, which is equal to x9−3x7 + 2x5. For comparison, the Smith
form of F ∈ Z7 [x] is diag(1, 1 , x , x2 , x9 − 3x7 + 2x5).

14

5.2. Fast computation of a sequenc of matrix powers
The largest invariant factor of a matrix is a divisor of the determinant and

plays the same role as the minimal polynomial of a scalar matrix. Indeed, if
F = xI−V with V ∈ Kn×n then the largest invariant factor of F is precisely the
minimal polynomial of V , a divisor of the characteristic polynomial. Determin-
istic algorithms are already known to compute the characteristic polynomial [6]
in O(nω log n) and the minimal polynomial [7] in O(nω(log n)(log logn)) field
operations. On the other hand, if we consider the matrix F = I − xV , then
the x-adic expansion F−1 = I + xV + x2V 2 + . . . reveals the powers of V .
By computing F−1 explicitly using Algorithm 1 and then taking the truncated
series expansions of the entries, we see that the sequence of matrix powers
I, V, V 2, . . . , V n for an arbitrary V ∈ Kn×n can be computed deterministically
in (n3)

1+o(1) operations from K.

5.3. Linear system solving over K(x) with multiple right hand sides
Consider the problem of computing, for a given F ∈ K[x]n×n, multiple linear

system solutions
v1F

−1,v2F
−1, . . . ,vkF

−1 (11)

for vectors v1,v2, . . . ,vk ∈ K[x]1×n. Suppose each vi is bounded in degree by s,
the average column degree of F. If the representation F−1 = A1A2 · · ·AdlogneB−1
has been precomputed, the viF

−1 = viA1A2 · · ·AdlogneB−1 can be computed
in time (n2s)

1+o(1). Thus, if k ∈ O(nω−2) then all k of the linear system solu-
tions in (11) can be computed in succession in (nωs)

1+o(1) time.

6. Conclusion

In this paper, following [11, 12, 13], we have derived cost estimates only
up to logarithmic factors. It would be useful to derive more informative and
precise cost estimates which make explicit the logarithmic factors and make use
of cost functions for polynomial multiplication. The first step in such a project
is to analyse more precisely the algorithms from [13] on which our algorithm
depends. Note that the algorithms in [13] depend on those in [12], which would
also need to be reanalysed.

The algorithm in this paper, as well as those in [12, 13], may make attrac-
tive candidates for implementation not only becuse of their good asymptotic
complexity but because they are deterministic. In particular, the algorithms
are applicable over arbitrary fields, especially also small finite fields, without
the need for field extenstions. Algorithm 1 has been implemented in Maple
but only to check for correctness of the recursive steps. The algorithm has not
yet been implemented in an environment that supports fast matrix multiplica-
tion, something which we leave to future work. The main challenge is to obtain
optimized implementations of the subroutines in [13] for shifted kernel basis
computation and skew degree matrix polynomial multiplication.

REFERENCES

15

[1] B. Beckermann, G. Labahn, and G. Villard. Shifted normal forms of polyno-
mial matrices. In Proceedings of the International Symposium on Symbolic
and Algebraic Computation, ISSAC’99, pages 189–196, 1999.

[2] B. Beckermann, G. Labahn, and G. Villard. Normal forms for general
polynomial matrices. Journal of Symbolic Computation, 41(6):708–737,
2006.

[3] S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. Triangular x-basis
decompositions and derandomization of linear algebra algorithms over K[x].
Journal of Symbolic Computation, 47(4):422–453, October 2012. Festschrift
for the 60th Birthday of Joachim von zur Gathen.

[4] C. P. Jeannerod and G. Villard. Essentially optimal computation of the
inverse of generic polynomial matrices. Journal of Complexity, 21(1):72–86,
2005.

[5] T. Kailath. Linear Systems. Prentice-Hall, 1980.

[6] W. Keller-Gehrig. Fast algorithms for the characteristic polynomial. The-
oretical Computer Science, 36:309—317, 1985.

[7] A. Storjohann. Deterministic computation of the Frobenius form (Extended
Abstract). In Proc. 42nd Annual Symp. Foundations of Comp. Sci., pages
368–377, Los Alamitos, California, 2001. IEEE Computer Society Press.

[8] A. Storjohann. High–order lifting and integrality certification. Journal of
Symbolic Computation, 36(3–4):613–648, 2003.

[9] A. Storjohann. On the complexity of inverting integer and polynomial
matrices. Computational Complexity, 2010. Accepted for publication.

[10] J. von zur Gathen and J Gerhard. Modern Computer Algebra. Cambridge
University Press, 2nd edition edition, 2003.

[11] W. Zhou. Fast Order Basis and Kernel Basis Computation and Related
Problems. PhD thesis, University of Waterloo, 2012.

[12] W. Zhou and G. Labahn. Efficient algorithms for order basis computation.
Journal of Symbolic Computation, 47:793–819, 2012.

[13] W. Zhou, G. Labahn, and A. Storjohann. Computing minimal nullspace
bases. In Proceedings of the International Symposium on Symbolic and
Algebraic Computation, ISSAC’12, pages 375–382. ACM, 2012.

16

