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Abstrat

A simple algorithm for lattie redution of polynomial matries is de-

sribed and analysed. The algorithm is adapted and applied to various

tasks, inluding rank pro�le and determinant omputation, transforma-

tion to Hermite and Popov anonial form, polynomial linear system solv-

ing and short vetor omputation.

1. Introdution

Let A be a matrix over F [x℄, F a �eld. By applying a sequene of elementary

row operations we an transform A to a matrix R whih is in weak Popov form.

An example is given in Figure 1. We defer until Setion 2 to de�ne the form

A

2

4

4x

2

+ 3x+ 5 4x

2

+ 3x+ 4 6x

2

+ 1

3x+ 6 3x+ 5 3 + x

6x

2

+ 4x+ 2 6x

2

2x

2

+ x

3

5

�!

R

2

4

1 6x+ 3 6

0 0 0

2 5 3

3

5

Figure 1: Transformation of a 3� 3 rank 2 matrix to weak Popov form, F =Z=(7).

preisely. For now, we note two key properties of the weak Popov form:

� the number of nonzero rows of R is equal to the rank of A, and

� the sum of the degrees of the nonzero rows of R is minimal among all

�
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matries whih an be obtained from A by applying elementary row trans-

formations.

Thus, transformation to weak Popov form is essentially lattie redution for

polynomial matries. The weak Popov form is a simpli�ed, non{anonial version

of the well known Popov anonial form from linear ontrol theory.

This paper gives a simple algorithm for transforming an input matrix over

F [x℄ to weak Popov form. We adapt and apply the algorithm to get solutions to

various other problems involving polynomial matries, see Table 1.

x2 Transformation to weak Popov form.

x3 Computation of rank pro�le.

x4 Computation of determinant.

x5 Transformation of full olumn rank matrix to Hermite form.

x6 Polynomial linear system solving.

x7 Transformation to anonial Popov form.

Table 1: Some polynomial matrix omputations.

The algorithms we present are designed to handle eÆiently the ase of in-

put matries whih may be retangular and/or rank de�ient. Consider the well

understood ase of matries over a �eld. Let A 2 F

n�m

have rank r. Problems

involvingA like linear system solving and rank pro�le omputation an be solved

with O(nmr) �eld operations using gaussian elimination. This paper gives anal-

ogous results for matries over F [x℄. Let A 2 F [x℄

n�m

have rank r and degree

bounded by d, where the degree of a polynomial matrix is de�ned as being the

maximum of the degree of its entries. We show that all the problems listed in

Table 1 an be solved with O(nmrd

2

) �eld operations. Note that when r and d

appear in a big-O bounds they should be taken as upper bounds, that is, r > 0

and d > 0.

An algorithm to ompute a redued basis very similar to the weak Popov

form has been given by von zur Gathen (1984) and applied to the problem of

omputing short vetors. In Setion 8 we indiate the relationship between the

Popov form and redued basis as de�ned there. This results in a substantially

faster algorithm for the redued basis and short vetors problem.

In Setion 9 we extend the notion of weak Popov form to the setting of disrete

valuation rings. Analogous results as in the polynomial setting hold. In Setion 10

we end the paper with a short summary, some remarks on implementation issues

and some suggestions for further researh.

Cost model

We assume we have primitives for polynomial arithmeti whih support the

following ost bounds. Let a; b 2 F [x℄ be nonzero. Then a+ b and a� b an be
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omputed with O(1+max(deg(a);deg(b))) �eld operations, ab an be omputed

with O((1 + deg a)(1 + deg b)) �eld operations, and if deg a � deg b, then the

unique q; r 2 F [x℄ with a = bq + r and deg r < deg b an be omputed with

O((1 + deg a� deg b)(1 + deg b)) �eld operations.

The algorithms in this paper are deterministi. Allowing randomization, asymp-

totially faster algorithms are known in some ases. For eah problem we mention

the urrently best known omplexity bound. Some of these randomized algo-

rithms allow use of asymptotially fast matrix or polynomial multipliation. Let

� (2 < � � 3) be suh that two n � n matries over a �eld an be multiplied

together with O(n

�

) �eld operations. Let � (0 < � � 1) be suh that two degree

d polynomials an be multiplied together with O(d

1+�

) �eld operations.

2. The weak Popov form

A well known notion in systems theory is the Popov form (Popov (1969)) of

a retangular matrix with polynomial entries. A non{anonial but still useful

version of the Popov form is the quasi Popov form (Kailath (1980)). In this

setion we de�ne the weak Popov form | a form with even less onditions than

the quasi Popov form.

Let F be a �eld and M = (m

i;j

) 2 F [x℄

n�m

. In what follows we use M to

de�ne general notions for matries. We use alligraphi haraters to refer to

spei� variables used in the various algorithms.

De�nition: For 1 � i � n we de�ne the ith pivot index I

M

i

of M as follows: if

m

i;j

= 0 for 1 � j � m, then I

M

i

= 0; otherwise

1. deg(m

i;j

) � deg(m

i;I

M

i

) for 1 � j < I

M

i

;

2. deg(m

i;j

) < deg(m

i;I

M

i

) for I

M

i

< j � m.

When I

M

i

6= 0, the element m

i;I

M

i

is alled the ith pivot element of M and is

denoted by P

M

i

. The degree of P

M

i

is alled the ith pivot degree of M and is

denoted by D

M

i

. When I

M

i

= 0 we put D

M

i

= �1.

A pivot element is the rightmost element with maximal degree in its row.

De�nition: The arrier set C

M

of M is de�ned as C

M

= f1 � i � n j I

M

i

6= 0g.

De�nition: M is said to be in weak Popov form if the positive pivot indies of

M are all di�erent, i.e. if

k; l 2 C

M

; k 6= l ) I

M

k

6= I

M

l

:

By applying unimodular row-transformations, we want to transform a given ma-

trix to weak Popov form.We now de�ne a partiularly simple kind of unimodular

transformation.
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De�nition: If k 2 C

M

, l 6= k and deg(m

l;I

M

k

) � D

M

k

, there are unique  2 F and

e 2 N suh that

deg(m

l;I

M

k

� x

e

P

M

k

) < deg(m

l;I

M

k

):

In that ase we all subtrating x

e

times row k from row l the simple transfor-

mation of row k on row l. If I

M

l

= I

M

k

, the transformation is alled of the �rst

kind, otherwise it is alled of the seond kind.

Sometimes we want to apply a simple transformation on M and simultaneously

apply the same transformation on a vetor or matrix A. We then say that we

apply the transformation on

�

M A

�

. Note that we only onsider M when we

determine the pivot element of a row.

De�nition: When

�

N B

�

is the result after applying a number of simple trans-

formations on

�

M A

�

, we write

�

M A

�

!

�

N B

�

. Note that in that

ase

�

N B

�

is left equivalent to

�

M A

�

, i.e.

�

N B

�

= U

�

M A

�

where U is unimodular and even det(U) = 1.

Example 1: Let

M =

�

1 x

2

x

3x x+ 2x

3

x

3

�

; A =

�

x

4

x

2

�

and

N =

�

1 x

2

x

x x x

3

� 2x

2

�

; B =

�

x

4

x

2

� 2x

5

�

:

Then I

M

1

= 2 and by applying the simple transformation of the �rst row on the

seond row of

�

M A

�

, we see that

�

M A

�

!

�

N B

�

.

AlgorithmWeakPopovForm, shown in Figure 2, transforms a matrix by applying

simple transformations of the �rst kind. The algorithm is based on the following

trivial lemma.

Lemma 2.1: M is not in weak Popov form if and only if we an apply a simple

transformation of the �rst kind on M , that is, not all nonzero pivot indies of

M are di�erent.

We remark that the opying of matries is done only in order to be able to

reason about the algorithm. Corretness of the algorithms output follows from

Lemma 2.1. That the algorithm always terminates will follow as a orollary of

our ost analysis.

The next lemma notes how the pivot indies and pivot degrees may hange

when we apply a simple transformation.

Lemma 2.2: Let N be the matrix we get after applying the simple transformation

of row k on row l of M . If the simple transformation is of the �rst kind, then

either D

N

l

< D

M

l

or (D

N

l

= D

M

l

and I

N

l

< I

M

l

). If the simple transformation is

of the seond kind, then I

N

l

= I

M

l

and D

N

l

= D

M

l

.
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algorithm WeakPopovForm

input: M 2 F [x℄

n�m

.

output: N in weak Popov form, obtained by applying simple transfor-

mations of the �rst kind on M.

A := opy(M);

while A is not in weak Popov form do

Apply a simple transformation of the �rst kind on A

od;

N := opy(A);

return N

Figure 2: Algorithm WeakPopovForm

Now we bound the ost of Algorithm WeakPopovForm. For this, the following

orollary of Lemma 2.2 is important.

Corollary 2.1: If d is a bound on the degree of M, then the degree of A is

always bounded by d.

Now we desribe the possible values that a pair (D

A

l

; I

A

l

) an assume during the

ourse of Algorithm WeakPopovForm.

De�nition: The set I

M

= fI

M

i

j i 2 C

M

g of nonzero pivot indies of M is alled

the index set of M .

The next two lemmas follow from Lemma 2.2 and the de�nitions of a simple

transformation of the �rst and seond kind.

Lemma 2.3: If N is the matrix we get after applying a simple transformation

on M , then I

M

� I

N

.

Lemma 2.4: For 1 � l � n, the values that the pair (D

A

l

; I

A

l

) an assume

during the ourse of Algorithm WeakPopovForm are all in the set fD

N

l

;D

N

l

+

1; : : : ;D

M

l

g � (I

N

[ f0g).

Lemma 2.5: If the pivot indies of all rows of M are positive and di�erent, then

the rows of M are independent over F (x).

Proof: Let N be the matrix we get by multiplying, for 1 � i � n, row i by x

�D

M

i

.

Then N = N

0

+

^

N , where

^

N 2 x

�1

F [x

�1

℄

n�m

and N

0

2 F

n�m

has independent

rows. Consider F (x) � F ((x

�1

)). It is lear that the rows of N are independent

over F ((x

�1

)) and thus are also independent over F (x). 2

Corollary 2.2: rank(M) � #I

M

.

Theorem 2.1: AlgorithmWeakPopovForm is orret. The ost of the algorithm

is bounded by O(nmrd

2

) �eld operations, where r is the rank of M and d is a

bound on the degree of M.



Mulders and Storjohann: On Lattie Redution for Polynomial Matries 6

Proof: From Lemma 2.4 it follows that, during the ourse of the algorithm, the

pair (D

A

l

; I

A

l

) an assume at most (D

M

l

+2)(#I

N

+1) values. Sine rank(N ) =

rank(M), it follows from Corollary 2.2 that #I

N

= r. By Lemma 2.2, every

simple transformation of the �rst kind dereases, for one l, the pair (D

A

l

; I

A

l

)

in the lexiographi order. It follows that the number of simple transformations

applied during the ourse of the algorithm is O(nrd). By Corollary 2.1 the ost

of one simple transformation is bounded by O(md) �eld operations. 2

To be able to ompute the amortized ost of some algorithms we have to

speify in more detail the number of simple transformations applied by Algorithm

WeakPopovForm.

De�nition: The state S

M

of M is de�ned by

S

M

=

X

i2C

M

(D

M

i

m+ I

M

i

):

Lemma 2.6: S

M

� 0. Moreover, when N is the matrix we get after applying a

simple transformation of the �rst kind on M , then S

N

< S

M

.

So the state of M is a bound on the number of simple transformations of the

�rst kind it will take to transform M into weak Popov form.

De�nition: If M ! N , the state drop S

M;N

from M to N is de�ned by S

M;N

=

S

M

� S

N

.

The next result follows immediately from de�nition of state drop.

Theorem 2.2: The number of simple transformations applied by Algorithm

WeakPopovForm is at most S

M;N

.

In fat S

M

an also be de�ned withm replaed by r = rank(M) and Theorem 2.2

then still holds. Sine the proof is more involved, and we do not need this result

in what follows, we restrit ourselves to the urrent de�nition.

3. The rank pro�le

In this setion we show how Algorithm WeakPopovForm an be adjusted to

ompute the rank pro�le of a matrix A 2 F [x℄

n�m

. Reall that the olumn rank

pro�le of A is the lexiographially smallest list of row indies [i

1

; i

2

; : : : ; i

r

℄ suh

that these rows of A are linearly independent, where r is the rank of A. The

olumn rank pro�le is thus named beause it desribes the ehelon struture of

the olumn ehelon form of A. The row rank pro�le is de�ned analogously, and

is equal to the olumn rank pro�le of the transpose.

The rank pro�le over F [x℄ an be reovered with high probability by om-

puting the rank pro�le modulo a small degree and randomly hosen irreduible
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algorithm RankPro�le

input: M 2 F [x℄

n�m

.

output: the olumn rank pro�le of M.

r := 0;

A := the 0 �m matrix;

for i to n do

Augment A with row i of M;

A := WeakPopovForm(A);

if rank(A) = r + 1 then

r := r + 1;

i

r

:= i

�

od;

return [i

1

; i

2

; : : : ; i

r

℄

Figure 3: Algorithm RankPro�le

polynomial. This Monte Carlo algorithm requires about O(nmr

��2

+ nmd) �eld

operations. The ost estimate might inrease by a poly{logarithmi fator in the

ase of small �elds.

Algorithm RankPro�le, shown in Figure 3, omputes the rank pro�le determin-

istially. We get the following as a orollary of Theorem 2.1.

Theorem 3.1: Algorithm RankPro�le is orret. The ost of the algorithm is

bounded by O(nmrd

2

) �eld operations, where r is the rank ofM and d is a bound

on the degree of M.

4. The determinant

In this setion we show how Algorithm WeakPopovForm an be adjusted to

ompute the determinant of a matrix A 2 F [x℄

n�n

. The determinant will have

degree bounded by nd, where d is a bound on the degree of A. The algorithm

we propose here omputes det(A) with O(n

3

d

2

) �eld operations.

Using randomization and a ompletely di�erent approah, Storjohann (2002)

gives a Las Vegas probabilisti algorithm that requires an expeted number of

O(n

�

(log n)

2

d

1+�

) �eld operations. The ost estimate might inrease by a poly{

logarithmi fator in the ase of small �elds. Also, theO((log n)

2

) fator is present

even in ase � = 3.

Algorithm ExtendedWeakPopovForm, shown in Figure 4, applies simple trans-

formations onM to obtain the weak Popov form N and applies the same trans-

formations on the vetor V, obtaining W. To estimate the ost of Algorithm

ExtendedWeakPopovForm we have to bound the degree of U .



Mulders and Storjohann: On Lattie Redution for Polynomial Matries 8

algorithm ExtendedWeakPopovForm

input: M 2 F [x℄

n�m

;V 2 F [x℄

n

.

output:

�

N W

�

with N in weak Popov form, obtained by applying

simple transformations of the �rst kind on

�

M V

�

.

(A;U) := opy(M;V);

while A is not in weak Popov form do

Apply a simple transformation of the �rst kind on

�

A U

�

od;

(N ;W) := opy(A;U);

return

�

N W

�

Figure 4: Algorithm ExtendedWeakPopovForm

De�nition: The degree sum D

M

of M is de�ned by

D

M

=

n

X

i=1

D

M

i

:

Lemma 4.1: If N is the matrix we get after applying a simple transformation

on M , then D

N

� D

M

.

Proof: This follows immediately from Lemma 2.2. 2

De�nition: If M ! N , the degree drop D

M;N

is de�ned by D

M;N

= D

M

�D

N

.

Lemma 4.2: Let v 2 F [x℄

n

and assume that

�

M v

�

!

�

N w

�

. If  2Zis

suh that deg(v

i

) � D

M

i

+  for all i, then deg(w

i

) � D

N

i

+ +D

M;N

for all i.

Proof: Sine degree drop is additive, we only have to prove the lemma when

applying one simple transformation. Suppose we apply the simple transformation

of row k on row l. For i 6= l we have deg(w

i

) = deg(v

i

) � D

M

i

+  = D

N

i

+  �

D

N

i

+  +D

M;N

, sine D

M;N

� 0 by Lemma 4.1. Let j = I

M

k

and M = (m

i;j

).

Then

deg(w

l

) � max(deg(v

l

);deg(m

l;j

)� deg(m

k;j

) + deg(v

k

))

� max(D

M

l

+ ;D

M

l

�D

M

k

+D

M

k

+ )

= D

M

l

+ :

Sine D

M;N

= D

M

l

�D

N

l

we have D

M

l

+  = D

N

l

+ +D

M;N

. 2

Theorem 4.1: The ost of Algorithm ExtendedWeakPopovForm is bounded by

O((m+n)dS

M;N

) �eld operations, where d is a bound on the degree ofM and V.

Proof: By Theorem 2.2 at most S

M;N

simple transformations are applied. By

Corollary 2.1 the degree of A is always bounded by d. Sine deg(V

i

) � D

M

i

+d+1

for all i and always D

M;A

� n(d+1), it follows from Lemma 4.2 that the degree

of U is always bounded by d+(d+1)+n(d+1) = O(nd). From this the theorem

follows. 2
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algorithm Determinant

input: T 2 F [x℄

n�n

.

output: det(T ).

�

T := opy(T );

det := 1;

for i from n � 1 by �1 to 1 do

M := �rst i olumns of

�

T ;

V := last olumn of

�

T ;

�

N W

�

:= ExtendedWeakPopovForm(M;V);

Let k be suh that the kth row of N is zero;

�

T := N with row k deleted;

t := kth entry of W;

det := (�1)

k+i+1

t det

od;

return

�

T

1;1

det

Figure 5: Algorithm Determinant

Let T 2 F [x℄

n�n

. Write T =

�

M V

�

, where M onsists of the �rst n� 1 rows

of T and V is the last olumn of T . Apply Algorithm ExtendedWeakPopovForm

on the pair (M;V ) yielding

�

N W

�

. Sine N is in weak Popov form and

rank(N) = rank(M) � n � 1, it follows from Corollary 2.2 that N will ontain

at least one zero row. So up to a row permutation we have

�

N W

�

=

�

�

T �

0 t

�

;

where

�

T 2 F [x℄

(n�1)�(n�1)

and t 2 F [x℄. Thus, up to sign we have det(T ) =

det(

�

T ) t. This leads to Algorithm Determinant shown in Figure 5. Figure 6 is

(up to row permutation) a pitorial representation of the ow of Algorithm

Determinant. Here, the dark gray areas represent M and N , the middle gray

areas represent V andW, the light gray areas are ignored during the omputation

and the white areas represent zero entries. The determinant of the matrix is (up

to sign) the produt of the blak entries.

Theorem 4.2: The ost of Algorithm Determinant is bounded O(n

3

d

2

) �eld

operations, where d is a bound on the degree of T .

Proof: By Corollary 2.1 the degrees of

�

T ;M;V and N are always bounded by d.

LetM

n�1

;M

n�2

; : : : ;M

1

be the onseutive values ofM andN

n�1

;N

n�2

; : : : ;N

1

the onseutive values of N during the ourse of the algorithm. By Theorem 4.1

the ost is then bounded by

O

 

nd

n�1

X

i=1

S

M

i

;N

i

!

:
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M

n�1

S

M

n�1

;N

n�1

=

N

n�1

M

n�2

S

M

n�2

;N

n�2

=

N

n�2

M

n�3

S

M

n�3

;N

n�3

=

N

n�3

Figure 6: Flow of Algorithm Determinant

If i =2 I

N

i

, then D

M

i�1

l

= D

N

i

l

; I

M

i�1

l

= I

N

i

l

for all i and thus S

M

i�1

= S

N

i

. If k

is suh that I

N

i

k

= i, then D

M

i�1

l

= D

N

i

l

; I

M

i�1

l

= I

N

i

l

for l 6= k, D

M

i�1

k

� D

N

i

k

and I

M

i�1

k

< I

N

i

k

and thus S

M

i�1

< S

N

i

. So

n�1

X

i=1

S

M

i

;N

i

= S

M

n�1

�

n�1

X

i=2

�

S

N

i

� S

M

i�1

�

� S

N

1

� S

M

n�1

:

Sine S

M

n�1

= O(n

2

d), the theorem follows. 2

5. The Hermite form

Let A over F [x℄ have full olumn rank. The Hermite form H of A is the unique

upper triangular matrix whih is left equivalent to A, has diagonal entries moni,

and o� diagonal entries of degree less than the diagonal entry in the same ol-

umn, see MaDu�ee (1956) or Newman (1972). In this setion we show how

Algorithm Determinant an be adjusted to ompute the Hermite form of a non-

singular input matrix A 2 F [x℄

m�m

. The ost of the algorithm is O(m

3

d

2

) �eld
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operations, where d is a bound on the degree of A. The algorithm extends im-

mediately to retangular input matries of full olumn rank by �rst omputing

the weak Popov form and restriting to the nonzero rows.

Di�erent approahes to omputing the Hermite form have been given. Domih

et al. (1987) work modulo the determinant of the input matrix to avoid inter-

mediate expression swell. Labhalla et al. (1996) transform the original problem

over F [x℄ to that of triangularizing a larger matrix matrix over F . Villard (1996)

dedues the Hermite form from the Popov form, omputed via a matrix gd us-

ing a blok Hankel onstrution, see Setion 7. The O(m

3

d

2

) �eld operations

algorithm we give here, based on lattie redution, is the �rst with a omplexity

bound that is ubi in the matrix dimension. For omparison, the approah of

Domih et al. (1987) has ost O(m

3

(md)

1+�

) �eld operations.

In AlgorithmDeterminant we ignored the last olumns of the matrix when apply-

ing transformations, see Figure 6. That algorithm reovered the diagonal entries

of the Hermite form but not the o�{diagonal entries. If instead we apply all

transformations to the whole matrix, we would be left with a triangularization.

One ould �nally use the diagonal entries to lower the degree of the o�{diagonal

entries, yielding a matrix in Hermite form. The problem with this approah is

that the degrees of the o�{diagonal entries may beome too high, thus leading

to a bad omplexity. In order to avoid these high degrees we will apply, during

the ourse of the algorithm, extra elementary transformations.

Figure 7 gives a desription of Algorithm HermiteForm to transform a full

olumn rank matrix into Hermite form. The details of steps (1), (2) and (3)

will be explained shortly. Figure 8 is a pitorial representation of Algorithm

HermiteForm. Here the dark gray olumns representM, the middle gray olumns

represent V and the light gray olumns represent A.

Figure 9 represents (up to row permutation) the ations of one iteration during

the inner while loop. Here D

s

= D

M

s

and for j > i, d

j

is the degree of the bullet

entry in olumn j. The idea is to let

�

M V A

�

always have the following

property.

Property 1: For j > i+1 and s < j the degree of entry (s; j) of

�

M V A

�

is at most D

s

+ d

j

.

So Property 1 ensures that the degrees of the entries in the light gray area are not

too big. Note that for s > i+ 1 we have D

s

= �1 and thus when

�

M V A

�

has Property 1, then for i+ 1 < s < j the degree of entry (s; j) is less than d

j

.

This means that the lower triangular part of A is in Hermite form, and at the

end of Algorithm HermiteForm

�

V A

�

is in Hermite form.

Suppose E =

�

M V A

�

has property 1 and let F =

�

N W B

�

be the

matrix we get after applying on

�

M V A

�

the simple transformation of the

�rst kind from row k on row l. Let

�

D

l

= D

N

l

. For j > i+1 we have by Lemma 4.2

deg(F

l;j

) �

�

D

l

+ d

j

+D

M;N

= D

l

+ d

j

. So if

�

D

l

= D

l

,

�

N W B

�

still has

property 1 and nothing has to be done in step (1). If however

�

D

l

< D

l

, the
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algorithm HermiteForm

input: T 2 F [x℄

n�m

with full olumn rank.

output: H in Hermite form, left equivalent to T .

�

T :=WeakPopovForm(T );

M := �rst n� 1 olumns of

�

T ;

V := last olumn of

�

T ;

A := empty matrix;

for i from n � 1 by �1 to 1 do

while M is not in weak Popov form do

Apply a simple transformation of the �rst kind on

�

M V A

�

, say from row k

on row l;

(1) Use �{entries to lower degrees of entries in lth row of A

od;

(2) Use |{entry to lower degrees in V;

Let l suh that I

M

l

= i;

M := �rst i� 1 olumns of

�

M V A

�

;

V := ith olumn of

�

M V A

�

;

A := last n� i olumns of

�

M V A

�

;

(3) Use � entries to lower degrees of entries in lth row of A

od;

H :=

�

V A

�

with rows permuted to make it upper triangular;

Multiply rows of H with onstants to make diagonal entries moni;

return H

Figure 7: Algorithm HermiteForm

entries in the lth row of

�

N W B

�

may violate Property 1 and we have to

restore the property in step (1). Let q be the quotient of F

l;i+2

by F

i+2;i+2

x

�

D

l

+1

,

i.e. deg(F

l;i+2

� qF

i+2;i+2

x

�

D

l

+1

) �

�

D

l

+ deg(F

i+2;i+2

). Then deg(q) < D

l

�

�

D

l

.

Let G be the result of subtrating q times row i + 2 from row l in F . Then

the (l; i+ 2) entry of G has degree at most

�

D

l

+ deg(G

i+2;i+2

) and thus satis�es

Property 1. Moreover, for j > i+ 2

deg(G

l;j

) � max(deg(F

l;j

);deg(q) + deg(F

i+2;j

))

� D

l

+ d

j

sine deg(F

l;j

) � D

l

+ d

j

, deg(q) < D

l

and deg(F

i+2;j

) � d

j

� 1. Subtrating in

a similar way in sequene multiples of rows i + 3; : : : ; n from row l, we restore

Property 1 for row l in step (1).

Now we desribe step (2). Figure 10 represents (up to row permutation) the

situation just after the while loop has ompleted. Before we enlarge A with

olumn V, we make sure that the entries in V satisfy Property 1, i.e. make

deg(V

l

) � D

l

+d

i+1

. Step (2) takes are of this. We ould apply row transforma-
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|

� �

|

�

�

�

�

|

Figure 8: Flow of Algorithm HermiteForm

�

�

D

k

D

l

�1

�1

d

n

�

1

d

n

M V A

E

�

�

�

D

l

�1

�1

d

n

�

1

d

n

N W B

F

Figure 9: One iteration during while loop
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�

�

|

D

l

�1

�1

�1

d

n

�

2

d

n

�

1

d

n

M V A

E

Figure 10: Snapshot after while loop

tions like in step (1), using the |{ and �{entries, for this. However, this would

be too ostly.

Let s be the maximumdegree exess in olumn V, that is, for 1 � l � i we have

deg(V

i

) � D

l

+d

i+1

+s. LetQ

0

be the (i+1)th row of E. For u = 1; : : : ; s letQ

u

be

the row vetor we get by multiplyingQ

u�1

by x and, like in step (1), reduing all

entries from left to right using rows i+2; : : : ; n of E. Then deg(Q

u

i+1

) = d

i+1

+u

and deg(Q

u

j

) < d

j

for j > i+1. Now we an add appropriate monomial multiples

of the Q

u

to rows 1; : : : ; i to make the entries of V satisfy Property 1. Notie

that this does not destroy Property 1 for the entries in A.

Finally, we desribe step (3). When the last olumn of M is deleted before we

enter the while loop again, D

M

l

may derease and thus the entries in the lth row

may violate Property 1. In step (3) we then apply the same proedure as in step

(1) to make sure that the entries in row l satisfy the property again.

Theorem 5.1: The ost of Algorithm HermiteForm is bounded by O(nm

2

d

2

)

�eld operations, where d is a bound on the degree of T .

Proof: By Theorem 2.1 omputing

�

T an be aomplished in the allotted time.

By Corollary 2.1 the degreeM is bounded by d. By Lemma 4.2 the entries in

V have degree bounded by O(md). The sum of the degrees of the entries in one

row of A is at most

P

m

j=i+2

(d + d

j

). Sine the produt of all �{entries divides

the determinant of

�

T we have

P

m

j=i+1

(d+ d

j

) = O(md).

As in the proof of Theorem 4.2 we see that the number of simple transfor-

mations applied is bounded by S

�

T

= O(m

2

d). One simple transformation osts

O(md) and thus the ost of all simple transformations is O(m

3

d

2

).

Adding a multiple of a row like in step (1) osts O((D

l

�

�

D

l

)md) and thus

performing step (1) one takes O((D

l

�

�

D

l

)m

2

d). Sine the total degree drop, i.e.

the sum of all D

l

�

�

D

l

is at most md, the total ost of all steps (1) is O(m

3

d

2

).

The ost of performing step (2) one is bounded by O(sm

2

d). By Lemma 4.2

s is bounded by the sum of d and the degree drop during the last invoation of

the while loop. So the sum of all s during the algorithm is O(md) and thus the

total ost of all steps (2) is O(m

3

d

2

).
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As in step (1), the ost of step (3) is bounded by O(m

3

d

2

) and making the

diagonal entries moni an be aomplished with O(m

2

d). 2

Triangular fatorization

Algorithm HermiteForm an be used to obtain a triangular fatorization of a full

olumn rank A 2 F [x℄

n�m

, that is, ompute the Hermite form H of A together

with a unimodular matrix V suh that A = V H. Proeed as follows.

Compute the olumn rank pro�le of A and, if neessary, permute the rows

so that the �rst m rows are linearly independent. For simpliity, assume no

permutation of rows is required. Append to A the (n �m) � (n �m) identity

matrix to the right bottom, yielding the nonsingular matrix

�

A =

�

A

0

I

�

2 F [x℄

n�n

:

Now ompute the Hermite form

�

H of

�

A. Let H be the �rst m olumns of

�

H .

Finally, we are going to ompute V =

�

A

�

H

�1

. To do this eÆiently, let D

i

be

the n � n identity matrix exept with ith diagonal entry equal to that of

�

H.

Similarly, let E

i

be the n � n identity matrix exept with o�-diagonal entries

in the ith olumn equal to those of

�

H . Then

�

H = D

n

E

n

� � �D

3

E

3

D

2

E

2

D

1

E

1

.

Compute V =

�

AE

�1

1

D

�1

1

E

�1

2

D

�1

3

� � �E

�1

n

D

�1

n

, evaluating from left to right.

Theorem 5.2: Let A 2 F [x℄

n�m

have rank m and degree bounded by d. A trian-

gular fatorization of A an be omputed with O(n

3

d

2

) �eld operations. Moreover,

the degree of the unimodular transformation matrix is bounded by d.

Proof: Use the method desribed above. Determine the m independent rows of

A and ompute

�

H using Algorithms RankPro�le and HermiteForm. Beause

�

H

is in Hermite form, we have the bounds deg(det(

�

H)

�

H

�1

) � deg(det(

�

H)) and

P

1�j�n

deg(E

i

) �

P

1�j�n

deg(D

i

) = deg(det(

�

H)) = O(md). The former shows

deg(V ) � deg(

�

A). Using this and the latter bound it follows that V an be

omputed as indiated with O(n

2

md

2

) �eld operations. 2

6. Polynomial linear system solving

Let M 2 F [x℄

n�m

and b 2 F [x℄

1�m

be given. This setion shows how to solve

the polynomial linear system vM = b in the following general sense:

1. If the system does not have a rational solution, that is, if there does not

exist a v 2 F (x)

1�n

suh that vM = b, then report this.

2. If the system does have a rational solution, then �nd the minimal degree

moni e 2 F [x℄ suh that vM = eb has a polynomial solution, and

3. �nd a partiular solution v 2 F [x℄

1�n

for vM = eb.
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These problems have been well studied. Let r be the rank ofM and d be a bound

on the degree ofM . The omplexity bounds we state allow the target vetor b to

have degree as large as O(rd). Mulders and Storjohann (2000b) solve problem 1

with O((n+m)r

2

d

1+�

) �eld operations. A rational solution vetor, if one exists,

is omputed in the same time. Problems 2 and 3 are more subtle. The fastest

methods are based on randomized preonditioning. The Las Vegas algorithm

of Mulders and Storjohann (2000a) solves all the problems using an expeted

number of O((nmr

��2

+ r

�

(log r))(d+ log

#F

r)

1+�

) �eld operations. If � = 3 the

log r fator an be avoided and the result beomes O(nmr(d+ log

#F

r)

1+�

) �eld

operations. Here we show how to solve the problems without randomization with

O(nmrd

2

) �eld operations.

Our solution will be divided into three phases. The �rst phase is to solve prob-

lems 1 and 2 above. The seond phase is to redue the system vM = eb to an

equivalent system vA =  whih has full olumn rank. The third phase is to

�nd a partiular solution of vA = . The �rst two phases use standard methods

together with the algorithms presented in previous setions. Similarly, the third

phase is easy to solve with O(n

3

d

2

) �eld operations, but this may be too expen-

sive for an input system that is overdetermined (i.e. n� m) or is rank de�ient.

Our main ontribution here is to show how to solve the third phase with only

O(nr

2

d

2

) �eld operations.

Phase 1: Computation of minimal denominator e. If the rank of M aug-

mented with b is greater than the rank ofM alone, then the linear system vM = b

does not have a rational solution. We an perform this rank hek and solve prob-

lem 2 simultaneously by doing the following. Use AlgorithmWeakPopovForm to

ompute the nonzero rows R 2 F [x℄

r�m

of a weak Popov form of M . Now use

Algorithm ExtendedPopovForm to transform the matrix

�

R

b 1

�

2 F [x℄

(r+1)�(m+1)

: (1)

If there does not exist a row in the transformed matrix whih has �rst m entries

zero, then report that the system has no solution; otherwise, the moni assoiate

of the last entry in this row is the desired minimal denominator e.

Phase 2: Redution to full olumn rank system vA = . First use Algorithm

RankPro�le to ompute the row and olumn rank pro�les of M in order to iden-

tify a nonsingular r�r submatrix. Now onstrut A fromM as follows: permute

the rows and olumns so that the prinipal r� r submatrix is nonsingular, then

remove the last m� r olumns. Let  2 F [x℄

1�r

be the orresponding subvetor

of eb. Any solution of vA =  will be, up to permutation of entries in v, also

a solution of vM = eb, and vie versa. Thus, we have redued our problem to

�nding a partiular solution v 2 F [x℄

1�n

to the system vA = , where A is n� r

with prinipal r � r submatrix nonsingular.
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Phase 3: Partiular solution of vA = . Let k = dn=re and deompose A as

A =

2

6

6

6

4

A

1

A

2

.

.

.

A

k

3

7

7

7

5

where eahA

�

is r�r exept for possiblyA

k

whih has row dimension n�(k�1)r.

Consider transforming the following augmented matrix to Hermite form:

2

6

6

6

6

6

4

1 �

A

1

A

2

I

.

.

.

.

.

.

A

k

I

3

7

7

7

7

7

5

�!

2

6

6

6

6

6

4

1 v

2

� � � v

k

H

1

� � � � �

H

2

� � � �

.

.

.

.

.

.

H

k

3

7

7

7

7

7

5

: (2)

Note that the blok above H

1

is neessarily zero (as shown) beause � is in the

lattie generated by the rows of A, that is, the system vA =  has a polynomial

solution for v. One the v

�

in (2) have been omputed, solve the nonsingular

system v

1

A

1

= �v

2

A

2

�v

3

A

3

�� � ��v

k

A

k

for v

1

using the algorithm of Mulders

and Storjohann (2000b). Then v =

�

v

1

v

2

v

3

� � � v

k

�

is easily seen to be a

solution to the system vA = .

We ould apply Algorithm HermiteForm to ompute the v

�

in (2) but this

would ost O(n

3

d

2

) �eld operations. By pipelining the omputation we an avoid

omputation of the o�-diagonal bloks � and redue the ost to O(nr

2

d

2

). Pro-

eed as follows.

Use AlgorithmWeakPopovForm to ompute a weak Popov form R

k

of A

1

. For

i = k� 1; k � 2; : : : ; 2 in suession, let R

i

be the nonzero rows of a weak Popov

form of

�

R

i+1

A

i+1

�

;

omputed using Algorithm WeakPopovForm. Now ompute v

i

for i = 2; 3; : : : ; k

in suession as follows: set 

i

= � + v

2

A

2

+ v

3

A

3

+ � � � + v

i�1

A

i�1

and use

Algorithm HermiteForm to e�et the following transformation:

2

4

1 

i

R

i

A

i

I

3

5

�!

2

4

1 v

i

� �

H

i

3

5

: (3)

This ends the desription of phase 3. We now show using indution on i that the

Hermite form in (3) will be as shown, ompare with (2).

For some i (i = 2; 3; : : : ; k) assume that v

2

; v

3

; : : : ; v

i�1

have been orretly

omputed. Note that for i = 2 (the base ase) this assumption is vauously true.



Mulders and Storjohann: On Lattie Redution for Polynomial Matries 18

Let w =

�

v

2

v

3

� � � v

i�1

�

. Write A using a onformal blok deomposition

as

A =

2

6

6

4

A

1

X

A

i

Y

3

7

7

5

:

Now onsider the transformation to Hermite form shown in (2), but restrited

to the �rst ir+ 1 olumns and using a sequene of unimodular transformations:

2

6

6

6

4

1 �

A

1

X I

A

i

I

Y

3

7

7

7

5

(a)

�!

2

6

6

6

4

1 �

R

i

X I

A

i

I

3

7

7

7

5

(b)

�!

2

6

6

6

4

1 

i

w

R

i

X I

A

i

I

3

7

7

7

5

()

�!

2

6

6

6

4

1 w v

i

� �

X I

H

i

3

7

7

7

5

(d)

�!

2

6

6

6

4

1 w v

i

H

1

� �

� �

H

i

3

7

7

7

5

:

Transformation (a) orresponds to the de�nition of R

i

and involves only rows

ontaining A

1

and Y . Indeed, R

i

is the nonzero rows of a weak Popov form of

A

1

augmented with Y . Transformation (b) adds w �

�

X I

�

to the �rst

row. Note that 

i

= � + wX. Transformation () is that shown in (3), and is

restrited to the rows ontaining R

i

and A

i

. The key point is that the �rst row is

already in orret form after transformation () ompletes. Thus, transformation

(d), whih ompletes the transformation to Hermite form, an be avoided.

Theorem 6.1: Let M 2 F [x℄

n�m

have rank r and degree bounded by d. Let

b 2 F [x℄

1�m

have degree bounded by O(rd). The ost of the algorithm desribed

above for solving the polynomial linear system vM = b is bounded by O(nmrd

2

)

�eld operations.

Proof: As indiated, almost all of the omputation is done by AlgorithmsWeakPopov-

Form, ExtendedPopovForm, RankPro�le and HermiteForm. There are a ouple

of plaes where we need to take are that these algorithm run in the allotted

time.

The transformation using Algorithm ExtendedPopovForm shown in (1) needs

to be done in a speial way beause we are allowing deg b = O(rd). Perform the

transformation in two phases. For the �rst phase, apply simple transformations

of the �rst kind involving the rows of R on the last row until either the last

row has degree � d or the transformed matrix is in weak Popov form. A similar

argument as used in the proof of Theorem 2.1 shows that the number of suh

simple transformations is bounded by O(r deg(b)). To estimate the ost of the

�rst phase it remains to bound the ost of a single simple transformation of
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the �rst kind of a row with degree bounded by d on row with degree bounded

by O(deg(b)). Before beginning, store the oeÆients of the polynomials in b in

m arrays of length 1 + deg(b). By modifying these arrays in{plae, eah simple

transformation an be aomplished with O(md) instead of O(mdeg(b)) �eld

operations. Thus, the total ost for phase one is O(mrddeg(b)) �eld operations.

For the seond phase, use Algorithm ExtendedWeakPopovForm to omplete the

transformation.

Next we bound the degree of  and the 

�

. Note that e will be a divisor of an

r � r minor of R and hene deg(e) � rd. This shows that deg() � rd + deg b.

The degree of the Hermite form shown in (2) will be bounded by deg(det(A

1

)),

whih is � rd. Note that for i > 2, 

i

an be omputed as 

i�1

+ v

i�1

A

i�1

. Using

this, we see that all the 

�

an be omputed from the v

�

in the allotted time and

will have degree bounded by O(rd).

Now onsider the omputation of the v

�

using the transformation to Hermite

form shown in (3). Again, some are needs to be taken beause deg(

i

) may be

as large as O(rd). The transformation should be done in two phases. First, use

the tehnique desribed above to apply simple transformations of the rows in R

i

to the �rst row to redue the degree of the �rst row to � d. Then omplete the

transformation using Algorithm HermiteForm.

For the �nal omputation of v

1

= A

�1

1

(�

k

� v

k

A

k

) use the algorithm of

Mulders and Storjohann (2000b). 2

7. The Popov form

In this setion, we show how we an transform a matrix that is in weak Popov

form into Popov form. Combined with AlgorithmWeakPopovForm this will yield

an algorithm to transform any matrix into Popov form.

In Kailath (1980) and Villard (1996) the Popov form of a matrix is omputed

via translation to problems over F with bigger dimensions. Consider the ase

of a nonsingular m � m input matrix with degree d. Villard (1996) redues

the problem to inverting a single m � m matrix over F [x℄ with degree d and

omputing the rank pro�les of two md�md matries over F . This approah also

yields a fast parallel algorithm. Using the best known sequential algorithms for

these problems the ost estimate beomes about O(m

�+1

d+(md)

�

+m

2

(md)

1+�

)

�eld operations. The algorithmwe propose here has ostO(m

3

d

2

) �eld operations

for this ase.

De�nition: M is said to be in asending order if for i < l we have D

M

i

< D

M

l

or

(D

M

i

= D

M

l

6= �1 and I

M

i

< I

M

l

).

Note that whenM is in asending order, the zero rows ofM are on top, i.e. have

smallest row index.

De�nition (see also Kailath (1980)): M is said to be in Popov form if
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1. M is in weak Popov form;

2. M is in asending order;

3. P

M

i

is moni for i 2 C

M

;

4. deg(m

i;I

M

l

) < D

M

l

for l 2 C

M

and i 6= l.

When M is in weak Popov form we an transform M into asending order by

permuting the rows of M .

Assume that M already satis�es properties 1 and 2. We will make M satisfy

property 4 by applying simple transformations of the seond kind onM . In order

that a simple transformation does not anel progress made before, we apply the

simple transformations in a partiular order.

Suppose that the �rst k � 1 rows of M already satisfy property 4, that is

deg(m

i;I

M

l

) < D

M

l

for l 2 C

M

, i 6= l and i; l < k.

If the kth row of M is the zero row, then the �rst k rows of M are all zero

rows and satisfy property 4.

Now suppose that the kth row of M is not the zero row. For i < k we then

have:

1. If D

M

i

= �1, then deg(m

i;I

M

k

) = �1 < D

M

k

.

2. If D

M

i

< D

M

k

, then deg(m

i;I

M

k

) � D

M

i

< D

M

k

.

3. If D

M

i

= D

M

k

, then I

M

i

< I

M

k

and thus deg(m

i;I

M

k

) < D

M

i

= D

M

k

.

So deg(m

i;I

M

k

) < D

M

k

for i < k and we only have to make the entries in row k

satisfy property 4.

Let Æ

M

= max

i<k;i2C

M
(deg(m

k;I

M

i

)�D

M

i

). If Æ

M

< 0, then the �rst k rows ofM

satisfy property 4. Otherwise let l < k; l 2 C

M

suh that Æ

M

= deg(m

k;I

M

l

)�D

M

l

and N = (n

i;j

) the matrix we get when we apply the simple transformation (of

the seond kind) of row l on row k. By Lemma 2.2 D

M

k

and I

M

k

do not hange

and thus N still satis�es properties 1 and 2 and still deg(n

i;I

N

k

) < D

N

k

for i < k.

Let Æ

N

= max

i<k;i2C

N (deg(n

k;I

N

i

) � D

N

i

). If Æ

N

< 0, the �rst k rows of N

satisfy property 4. Otherwise, let �

M

= #fi < k j Æ

M

= deg(m

k;I

M

i

)�D

M

i

g and

�

N

= #fi < k j Æ

N

= deg(n

k;I

N

i

)�D

N

i

g. We now show that (Æ

N

; �

N

) < (Æ

M

; �

M

)

in the lexiographi order. For this we only have to show that Æ

N

� Æ

M

and if

Æ

N

= Æ

M

, then �

N

< �

M

.

For i < k suh that i 6= l and i 2 C

N

let j = I

N

i

= I

M

i

and note that

D

N

i

= D

M

i

. Then

deg(n

k;j

)�D

N

i

� max(deg(m

k;j

)�D

N

i

; Æ

M

+ deg(m

l;j

)�D

N

i

):

Sine the �rst k�1 rows ofM already satisfy property 4 we have deg(m

l;j

)�D

N

i

<

0. So if deg(m

k;j

)�D

M

i

< Æ

M

, then deg(n

k;j

)�D

N

i

< Æ

M

; if deg(m

k;j

)�D

M

i

= Æ

M

,

then deg(n

k;j

)�D

N

i

= Æ

M

. Moreover, deg(n

k;I

N

l

)�D

N

l

< deg(m

k;I

N

l

)�D

N

l

= Æ

M

,

sine we applied the simple transformation of row l on row k. We see that either

(Æ

N

= Æ

M

and �

N

= �

M

� 1) or Æ

N

< Æ

M

.
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algorithm PopovForm

input: M 2 F [x℄

n�m

.

output: N in Popov form, left equivalent to M.

A := WeakPopovForm(M);

Permute rows of A suh that A is in asending order;

for k to n do

if kth row is not the zero row then

do

Let Æ = max

i<k;i2C

A(deg(m

k;I

A

i

)�D

A

i

);

if Æ < 0 then

break

�;

Let l < k; l 2 C

A

suh that deg(m

k;I

A

l

)�D

A

l

= Æ;

Apply simple transformation of row l on row k

od

�

od;

Multiply nonzero rows of A with onstant to make pivots moni;

N :=opy(A);

return N

Figure 11: Algorithm PopovForm

Figure 11 desribes an algorithm to ompute the Popov form of a matrix based

on our previous observations.

Theorem 7.1: Algorithm PopovForm is orret. The ost of Algorithm PopovFrom

is bounded by O(nmrd

2

) �eld operations, where r is the rank of M and d is a

bound on the degree M.

Proof: Sine always Æ

M

� d and �

M

< r it follows from the previous observa-

tions that in the loop at most O(rd) simple transformations are applied on eah

nonzero row. So the total number of simple transformations applied in the loop

is O(r

2

d). From Lemma 2.2 it follows that the degree of A is always bounded

by d. Thus the ost of the loop is O(r

2

md

2

). The theorem now follows from

Theorem 2.1. 2

8. Redued basis

In von zur Gathen (1984) the notion of redued basis is introdued. For a poly-

nomial matrixM = (m

i;j

) 2 F [x℄

n�m

of rank r this boils down to the following.

De�nition: M is said to be redued if

1. Rows r + 1; : : : ; n are zero rows;
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2. For 1 � i � r we have deg(m

i;k

) < deg(m

i;i

) for 1 � k < i and deg(m

i;k

) �

deg(m

i;i

) for i � k � m;

3. deg(m

i;i

) � deg(m

j;j

) for 1 � i � j � r.

In von zur Gathen (1984) and von zur Gathen and Gerhard (1999, Exerise 16.12)

an algorithm is desribed to transform a full row rank matrix, up to olumn

permutation, into a redued matrix by a unimodular row transformation. The

omplexity of this algorithm turns out to be O(mn

3

d

2+�

) �eld operations.

Now suppose M is already in Popov form. If deg(P

M

k

) � deg(P

M

l

) for k 6= l,

then deg(m

l;I

M

k

) < deg(P

M

k

) � deg(P

M

l

). From this we see that by permuting

the rows and olumns of M suh that the pivots of M end up on the diagonal

with inreasing degree from top to bottom, we get a redued matrix. So we an

transform any matrix in redued form by �rst omputing its Popov form and

then permuting its rows and olumns. The ost of this is O(nmrd

2

) by Theo-

rem 7.1, whih is one order of magnitude better than the algorithm desribed

by von zur Gathen (1984).

Redued basis are used by von zur Gathen (1984) to ompute short vetors in

modules. In the polynomial ase the weak Popov form already suÆes for that.

Lemma 8.1: IfM is in weak Popov form and l is suh that deg(P

M

l

) = min

1�i�n

(deg(P

M

i

)),

then all vetors in the F [x℄{module generated by the rows of M have degree at

least deg(P

M

l

).

Proof: Let r

i

2 F [x℄

1�m

denote the ith row ofM = (m

i;j

) and let d

i

2 F [x℄ suh

that r =

P

n

i=1

d

i

r

i

6= 0. Let k suh that deg(d

k

P

M

k

) is maximal and I

M

k

maximal,

i.e. for i 6= k either deg(d

i

P

M

i

) < deg(d

k

P

M

k

) or (deg(d

i

P

M

i

) = deg(d

k

P

M

k

) and

I

M

i

< I

M

k

. Then for i 6= k we have

1. if deg(d

i

P

M

i

) < deg(d

k

P

M

k

), then deg(d

i

m

i;I

M

k

) � deg(d

i

P

M

i

) < deg(d

k

P

M

k

);

2. if deg(d

i

P

M

i

) = deg(d

k

P

M

k

) and I

M

i

< I

M

k

, then deg(d

i

m

i;I

M

k

) < deg(d

i

P

M

i

) =

deg(d

k

P

M

k

).

It follows that deg(r

I

M

k

) = deg(d

k

P

M

k

) � deg(P

M

l

) 2

9. Disrete valuation rings

In this setion we extend the notion of weak Popov form to the setting of disrete

valuation rings.

De�nition: (Atiyah and MaDonald (1969)) Let K be a �eld. A disrete valua-

tion on K is a mapping v of K

�

onto Zsuh that

1. v(ab) = v(a) + v(b);

2. v(a+ b) � min(v(a); v(b)).
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Let R be the ring onsisting of 0 and all a 2 K

�

suh that v(a) � 0. Then R is

alled a disrete valuation ring. R is a loal ring and its maximal ideal I is the

set of all a 2 K suh that v(a) > 0. Let u 2 R suh that v(u) = 1. Then I = (u),

the ideal of R generated by u. The set R

�

of units of R is the set of all a 2 K suh

that v(a) = 0. Let S � R

�

[f0g suh that the anonial projetion map S ! R=I

is a bijetion. For a; b 2 R with v(a) � v(b), we have v(u

v(b)�v(a)

a=b) = 0, so

there exists a unique  2 S n f0g suh that u

v(b)�v(a)

a=b�  2 I, and thus

v(a� u

v(a)�v(b)

b) > v(a): (4)

Example 2: Let F be a �eld. The set F [[x℄℄ of formal power series in x is a

disrete valuation ring. For a 2 F [[x℄℄, v(a) is the maximum n 2 N suh that x

n

divides a. For S we an take F in this ase.

LetM = (m

i;j

) 2 R

n�m

. As an analogue to Setion 2 we de�ne the pivot element

P

M

i

of row i of M as the rightmost element with minimum valuation in its row,

the pivot index I

M

i

as the index of P

M

i

, i.e. P

M

i

= m

i;I

M

i

, and the pivot valuation

D

M

i

as v(P

M

i

). Again, M is said to be in weak Popov form if all (nonzero)

indies are di�erent. If v(m

l;I

M

k

) � v(P

M

k

), let  2 S n f0g suh that v(m

l;I

M

k

�

u

v(m

l;I

M

k

)�v(P

M

k

)

P

M

k

) > v(m

l;I

M

k

). Then we all subtrating u

v(m

l;I

M

k

)�v(P

M

k

)

times

row k from row l the simple transformation of row k on row l. The analogue of

Lemma 2.2 holds also.

Lemma 9.1: Let N be the matrix we get after applying the simple transformation

of row k on row l of M . Then I

N

i

= I

M

i

;D

N

i

= D

M

i

for i 6= l and D

N

l

� D

M

l

.

If the transformation is of the �rst kind, then either D

N

l

> D

M

l

or (D

N

l

= D

M

l

and I

N

l

< I

M

l

). If the transformation is of the seond kind, then I

N

l

= I

M

l

and

D

N

l

= D

M

l

.

Now we an apply AlgorithmWeakPopovForm to transformM into weak Popov

form. However, the algorithm may run forever as the following example shows.

Example 3: For

M =

�

x

1�x

1

�

=

�

x+ x

2

+ x

3

+ � � �

1

�

2 F [[x℄℄

2�1

Algorithm WeakPopovForm will keep on subtrating x

i

fromM

1;1

for inreasing

i and thus run forever. However, it is possible to transformM into weak Popov

form by a unimodular transformation, sine

�

1 1

�x 1 � x

� �

1

x+ x

2

+ x

3

+ � � �

�

=

�

1 + x+ x

2

+ � � �

0

�

:

Notie that the unimodular transformation matrix is even over F [x℄. Indeed,

Algorithm WeakPopovForm only omputes transformations over F [x℄.
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Lemma 2.3 and Corollary 2.2 are still valid in the disrete valuations ring setting

and thus the number of di�erent values that a pivot index an assume during

the ourse of AlgorithmWeakPopovForm is bounded by the rank of the matrix.

The following lemma shows that the algorithm still works whenM has full row

rank.

Theorem 9.1: SupposeM has full row rank. Let d be the valuation of the deter-

minant of some nonsingular n�n submatrix ofM. Then AlgorithmWeakPopov-

Form is orret and applies at most dn+ n(n� 1) simple transformations of the

�rst kind.

Proof: Sine the index of a row an assume at most n di�erent values, Lemma 9.1

implies that the valuation of row l, that is min

1�j�m

(v(M

l;j

)), must have in-

reased after applying n simple transformations of the �rst kind on row l and

so when s

l

simple transformations of the �rst kind are applied on row l the

valuation of that row must have inreased by at least bs

l

=n.

Let G be a nonsingular submatrix of M and d = v(det(G)). Suppose that Al-

gorithmWeakPopovForm applies more than dn+n(n�1) simple transformations

of the �rst kind and suppose G is transformed into H after applying the �rst

dn + n(n � 1) + 1 simple transformations. Then v(det(H)) �

P

n

i=1

bs

i

=n > d,

ontraditing det(H) = det(G).

So Algorithm WeakPopovForm does stop and is thus orret by Lemma 2.1.

2

As in the polynomial ase, the weak Popov form in the urrent setting an be

used to determine a vetor with minimal valuation in the R{module generated

by the rows of a matrix.

The analogue of Popov form would insists that v(m

i;I

M

l

) > D

M

l

for i 6= l. It

is in general not possible to transform a matrix into Popov form by only using

unimodular transformations.

Example 4: Let

M =

�

1 x

x

2

x

2

�

:

Then M is nonsingular and in weak Popov form. Suppose

U =

�

a b

 d

�

2 F [[x℄℄

2�2

is unimodular and N = UM is in weak Popov form. We may assume (eventually

swith rows) that v(a) = 0. Then v(N

1;1

) = 0, v(N

1;2

) = 1 and v(N

2;2

) � 1. So

I

N

1

= 1 and thus I

N

2

must be 2. Sine v(N

1;2

) � v(N

2;2

), N annot be in Popov

form.
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10. Conlusions

We have introdued the weak Popov form of a polynomial matrix and desribed

a simple algorithm to ompute the form. The algorithm transforms a matrix

by applying elementary row operations in suh a way that the degrees of rows

never inrease. This leads to a omplexity of O(nmrd

2

) �eld operations for trans-

forming an input matrix A 2 F [x℄

n�m

of rank r with entries of degree bounded

by d. The algorithm is entral to various other algorithms: for rank pro�le, de-

terminant, Hermite form, Popov form, linear system solution and short vetor

omputation.

The analysis in this paper only ounts �eld operations and thus gives a good

estimate of the ost when F is a �nite �eld. The hidden onstants in the big-O

bounds are not expliitly omputed but estimates an be derived without too

muh diÆulty. Sine these onstants are small, the algorithms will perform well

in pratie, also for modest sized input matries. Some omparative experiments

with implementations of various algorithms in Aldor (Watt et al. (1994)) on�rm

this.

For the problem of omputing the Hermite form we did not obtain a omplexity

bound that was ubi in the matrix dimension for the ase of an input matrix

that does not have full olumn rank. The problem of omputing the form in this

ase is at least as diÆult as omputing a unimodular transformation matrix U

to ahieve the form. For example, let A 2 F [x℄

n�n

be nonsingular with degree

bounded by d. Consider transforming the n � 2n matrix

�

A I

�

, whih is

obviously not of full olumn rank, to Hermite form

�

H U

�

. The triangular

fatorization of A is given by A = V H, where V = U

�1

. Note that V will have

degree bounded by d but U will have degree bounded by (n�1)d. We have shown

how to ompute V and H with O(n

3

d

2

) �eld operations. Can U be omputed in

the same time?

The performane of the algorithms for other oeÆient �elds F , e.g. F =

Q (or Z), is another issue. In this ase, intermediate expression swell on the

oeÆient level is introdued, leading to a severe breakdown of the algorithms

performane. Combining the algorithms with homomorphi imaging shemes

may be the solution to this problem. Another idea may be to introdue fration

free tehniques, as is done by Bekermann et al. (1999, 2002). Further researh

needs to be done in this area.

We also extended the notion of weak Popov form to the setting of disrete

valuation rings. Suh an extension does not seem possible for the notion of Popov

form. Another remaining question is how to transform in the disrete valuation

ring setting a non full row rank matrix into weak Popov form. The algorithm

presented in Setion 9 may run forever on suh a matrix.

Referenes

M. F. Atiyah and I. G. MaDonald. Introdution to Commutative Algebra.

Addison{Wesley, 1969.



Mulders and Storjohann: On Lattie Redution for Polynomial Matries 26

B. Bekermann, G. Labahn, and G. Villard. Shifted normal forms of polynomial

matries. In S. Dooley, editor, Pro. Int'l. Symp. on Symboli and Algebrai

Computation: ISSAC '99, pages 189{196. ACM Press, 1999.

B. Bekermann, G. Labahn, and G. Villard. Normal forms for general polynomial

matries. Researh Report 2002{1, ENS Lyon, Frane, 2002.

P. D. Domih, R. Kannan, and L. E. Trotter, Jr. Hermite normal form om-

putation using modulo determinant arithmeti. Mathematis of Operations

Researh, 12(1):50{59, 1987.

J. von zur Gathen. Hensel and Newton methods in valuation rings. Mathematis

of Computation, 42:637|661, 1984.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge

University Press, 1999.

T. Kailath. Linear Systems. Prentie Hall, 1980.

S. Labhalla, H. Lombardi, and R. Marlin. Algorithmes de alul de la r�edution

de Hermite d'une matrie �a oeÆients polynomiaux. Theoretial Computer

Siene, 161:69|92, 1996.

C. C. MaDu�ee. The Theory of Matries. Chelsea, 1956.

T. Mulders and A. Storjohann. Certi�ed dense linear system solving. Tehreport

355, ETH Zurih, Department of Computer Siene, 2000a. To appear in the

Journal of Symboli Computation.

T. Mulders and A. Storjohann. Rational solutions of singular linear systems. In

C. Traverso, editor, Pro. Int'l. Symp. on Symboli and Algebrai Computa-

tion: ISSAC '00, pages 242{249. ACM Press, 2000b.

M. Newman. Integral Matries. Aademi Press, 1972.

V. Popov. Some properties of ontrol systems with irreduible matrix trans-

fer funtions. In Leture Notes in Mathematis, volume 144, pages 169{180.

Springer, 1969.

A. Storjohann. High{order lifting. In T. Mora, editor, Pro. Int'l. Symp. on

Symboli and Algebrai Computation: ISSAC '02, pages 246{254. ACM Press,

2002.

G. Villard. Computing Popov and Hermite forms of polynomial matries. In

Y. N. Lakshman, editor, Pro. Int'l. Symp. on Symboli and Algebrai Com-

putation: ISSAC '96, pages 250{258. ACM Press, 1996.

S. M. Watt et al. A First Report on the A

℄

Compiler. In M. Giesbreht, editor,

Pro. Int'l. Symp. on Symboli and Algebrai Computation: ISSAC '94, pages

25{31. ACM Press, 1994.


