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Abstrat

A randomized algorithm is given for solving a system of linear equations over a

prinipal ideal domain. The algorithm returns a solution vetor whih has mini-

mal denominator. A erti�ate of minimality is also omputed. A given system has

a diophantine solution preisely when the minimal denominator is one. Cost esti-

mates are given for systems over the ring of integers and ring of polynomials with

oeÆients from a �eld.

Key words: linear system solution; diophantine system solution; integer matrix;

polynomial matrix; randomized algorithm; Las Vegas

1 Introdution

Finding a partiular solution to a system of linear equations is a lassial

mathematial problem. In the literature we typially �nd separate treatments

for two versions of the problem. The �rst version | rational system solving

| an be stated as follows: given an integer matrix A 2 Z

n�m

and vetor

b 2 Z

n�1

, �nd a rational vetor x 2 Q

m�1

that satis�es Ax = b. The seond

version | diophantine system solving | asks for an integer vetor x that

satis�es Ax = b. There are three possibilities:

?
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� The system has no rational solution.

� The system has a rational solution but no diophantine solution.

� The system has a diophantine solution.

In this paper we propose a generalization that enompasses all of these situ-

ations. Suppose that Ax = b admits a rational solution. If d is the smallest

positive integer suh that dx is integral, and d is minimal among all solutions

to the system, then we all x a solution with minimal denominator. We give

a randomized algorithm that takes as input an A 2 Z

n�m

and b 2 Z

n�1

and

returns as output one of the following:

(1) (y; z), where

� y 2 Q

m�1

with Ay = b,

� z 2 Q

1�n

with zA 2Z

1�m

, and

� zb and y have the same denominator.

(2) (\no solution", q), where

� q 2 Q

1�n

with qA = (0; : : : ; 0) 2 Q

1�m

and qb 6= 0.

We all this erti�ed linear system solving. In the �rst ase, the onditions on

y and z ertify that y is a solution with minimal denominator. In partiular,

y is a diophantine solution preisely when the denominator of y is one. In the

seond ase, the existene of suh a q erti�es that the system has no rational

solution. This idea for ertifying inonsisteny is due to Giesbreht, Lobo and

Saunders (1998).

The main result of this paper is a fast algorithm for erti�ed solving. A om-

plete statement of omplexity results, inluding interation with fast matrix

multipliation, is given in Setions 7.1 and 7.2. Here, we state the results

assuming the standard (ubi) algorithm for matrix multipliation.

We show that erti�ed solving of a linear system over Zan be aomplished

using an expeted number of O(nmr B(d + logm)) bit operations, where r is

the rank of A and d is a bound on the bitlength of entries in A and b. Atually,

we show that this omplexity bound holds even if entries in b are substantially

larger than entries in A. It suÆes that d bound both log jjAjj and (log jjbjj)=r,

where jjAjj and jjbjj denote the maximum magnitude of entries in A and b.

The funtion B is a ost funtion for ertain operations with integers and

polynomials, see below. The best methods have B(t) = O(t(log t)

2

log log t).

We obtain an analogous result for an input system overK[x℄,K a �eld. LetA 2

K[x℄

n�m

and b 2 K[x℄

n�1

be given. Certi�ed solving of a linear system over

K[x℄ an be aomplished using an expeted number of O(nmr B(d+log

#K

r))

�eld operations fromK, where d is a bound for both jjAjj and jjbjj=r, and jjAjj

and jjbjj denote the maximum degree of entries in A and b. If K is an in�nite

�eld, then log

#K

r = 0.
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Our algorithms are based on an idea of Giesbreht (1997). The idea is to

onstrut a diophantine solution of Ax = b by ombining a small number of

rational solutions of the same system. Giesbreht omputes di�erent ratio-

nal solutions by solving the leading nonsingular subsystem of UALx = Ub,

for randomly hosen upper- and lower-triangular toeplitz matries U and L.

Giesbreht, Lobo and Saunders (1998) extend the algorithm to ertify the

nonexistene of a diophantine solution, should this be the ase. The studies

in Giesbreht (1997) and Giesbreht et al. (1998) fous on the ase of sparse

or strutured linear systems, with an emphasis also on algorithms whih ad-

mit a good oarse grain parallelization. If we inorporate the best sequential

methods for rational system solving (see Setion 5) then the ost of the algo-

rithms there beomes O(nm

2

d

2

)� (logm+log d)

O(1)

bit operations, assuming

m � n. The extra logarithmi fators (logm + log d)

O(1)

are due to the rate

of onvergene and beause the proof of onvergene requires entries in the

toeplitz onditioners to be hosen from a ring extension.

The main tehnial ontributions of the urrent paper are as follows. First, the

idea of erti�ation is extended to verify orretness of a minimal denominator

solution. Seond, we perform a thorough study of the e�etiveness of dense

preonditioners, showing how they an be used to avoid the need for extension

rings and at the same time improve the rate of onvergene to an expeted

onstant number of iterations. The onvergene analysis is over a general prin-

ipal ideal domain and is thus appliable in di�erent settings. Third, we give

a omplete ost analysis for systems over Zand K[x℄. Part of the e�ort is to

show how to inorporate fast arithmeti and matrix multipliation.

We now give a more detailed outline of the rest of the paper.

Setions 2, 3 and 4 study the erti�ed solving problem over an abstrat prin-

ipal ideal domain. Setion 2 presents the AlgorithmMinimalSolution for on-

struting a solution with minimal denominator together with erti�ate (y; z)

for a full row rank system Ax = b. Eah iteration of the algorithm on-

struts a new rational solution by solving the leading nonsingular subsystem

of APx = b, where P has entries hosen uniformly and randomly from a sub-

set of the ring. Setion 3 gives sundry results about the rank properties of

random matries. This setion is self-ontained and may be of independant

interest. Setion 4 uses the results of the previous setion to estimate the

performane of Algorithm MinimalSolution. The main result is that we an

expet onvergene in a onstant number of iterations by hoosing entries in

the preonditioning matries P from a large enough (but still relatively very

small) subset of the ring.

Setions 5, 6 and 7 study the erti�ed solving problem overZand K[x℄. These

setions are onerned with eÆieny overZ(expeted number of required bit
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operations) and over K[x℄ (expeted number of required �eld operations from

K). The algorithms we present work by reduing to the problem of solving a

square nonsingular system. Our approah is to bound separately the expeted

ost of the redution and the expeted number of nonsingular systems that

need to be solved. Setion 5 gives a brief survey of the urrently best known

omplexity results for solving a nonsingular system overZand F [x℄. Setion 6

adapts Algorithm MinimalSolution from Setion 2 to solve a full row rank

system over Zor F [x℄. The algorithm from Setion 2 needs to be modi�ed

slightly to avoid expression swell. Finally, Setion 7 gives the Algorithm Cer-

ti�edSolver for solving a possibly non full row rank and inonsistent system

over Zand K[x℄.

Cost estimates are given in terms of the subadditive funtions M, B and MM.

We assume that B(n) = O(n

2

) or B(n) = O(M(n) log n) where M is a multi-

pliation time for K[x℄ and Z(von zur Gathen and Gerhard, 1999, De�nition

8.26). Then the extended gd involving two polynomials fromK[x℄ of degree at

most n, or two integers of bitlength at most n, an be omputed with O(B(n))

�eld operations or bit operations, respetively. The best known methods al-

low M(n) = O(n(log n)(log log n)). We assume that M(ab) � M(a)M(b) for

a; b 2 Z

>1

. Let MM be suh that two n � n matries over a ring an an be

multiplied in O(MM(n)) ring operations. In this paper we will assume that

n

2+

= O(MM(n)) for some positive .

For a matrix or vetor A over Z, we denote by jjAjj the maximummagnitude

of entries in A. For A over K[x℄, we denote by jjAjj the maximum degree of

entries. Let L

Z

(n; �; �) denote the problem of omputing A

�1

b 2 Q

n�1

for a

given nonsingular A 2Z

n�n

and b 2Z

n�1

with jjAjj � �, jjbjj � �. Similarly,

let L

K[x℄

(n; �; �) denote the problem of omputingA

�1

b 2 K(x)

n�1

for a given

nonsingular A 2 K[x℄

n�n

and b 2 K[x℄

n�1

with jjAjj � �, jjbjj � �.

2 Certi�ed solving of a onsistent system

Let R be a prinipal ideal domain and F its quotient �eld. Let A 2 R

n�m

and

b 2 R

n�1

be given. Assume throughout this setion that the system Ax = b is

onsistent. This setion gives an algorithm to ompute a pair (y; z) suh that:

� y 2 F

m�1

with Ay = b.

� z 2 F

1�n

with zA 2 R

1�m

.

� zb and y have the same denominator.

From these onditions it will follow that y is a solution with minimal denom-

inator. To de�ne preisely what is meant by \denominator" and \minimal
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denominator" we need to �x some notation about prinipal ideal domains.

For v;w 2 F we say that v and w are assoiates (notation: v � w) if there is

a unit u in R suh that v = uw. We assume that for every equivalene lass

of assoiate elements we have a unique representative and that this represen-

tative is 1 for the lass of units in R. In this way we get a unique generator

d(I) 2 R for every ideal I of R and this allows us to use the term \greatest

ommon divisor" and \least ommon multiple" without ambiguity.

De�nition 1 Let x 2 F

m

. It is easy to see that the set of all v 2 R suh

that vx 2 R

m

is an ideal I of R. We denote d(I) by d(x) and all it the

denominator of x. By n(x) we denote d(x)x 2 R

m

and all it the numerator

of x.

A vetor y 2 F

m�1

suh that Ay = b is alled a rational solution of the linear

system Ax = b. If in addition d(y) = 1, then y is a diophantine solution of the

system.

De�nition 2 Let I be the ideal of R generated by the set of denominators of

all rational solutions of Ax = b. We denote d(I) by d(A; b).

d(A; b) is theminimal denominator that a rational solution of Ax = b an have

in the sense that d(A; b) divides d(y) for any rational solution y of Ax = b.

Clearly, if Ax = b has a diophantine solution, then d(A; b) = 1.

The next lemma shows how we an take a linear ombination of two rational

solutions y

1

and y

2

to produe a new rational solution y with potentially

smaller denominator. This idea is due to Giesbreht (1997).

Lemma 3 Let y

1

; y

2

2 F

m

be rational solutions of Ax = b. Let d; s

1

; s

2

2 R

be suh that d = gd(d(y

1

); d(y

2

)) = s

1

d(y

1

) + s

2

d(y

2

). Then

y :=

s

1

d(y

1

)y

1

+ s

2

d(y

2

)y

2

d

is a rational solution of Ax = b.

Note that d(y) divides gd(d(y

1

); d(y

2

)). From Lemma 3 it follows that a so-

lution with minimal denominator does exist.

De�nition 4 A rational solution y of Ax = b with d(y) = d(A; b) is alled a

solution with minimal denominator.

To get di�erent rational solutions of Ax = b, we apply the following result for

di�erent random hoies of P .

Lemma 5 Let P 2 R

m�n

. If y is a rational solution of APx = b, then Py is

a rational solution of Ax = b.
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By taking linear ombinations of several rational solutions as in Lemma 3 we

hope to get a sequene of solutions with dereasing and, eventually, minimal

denominator. The erti�ation of minimality is based on the next lemma.

Lemma 6 Suppose Ax = b has a rational solution and let z 2 F

1�n

suh that

zA 2 R

1�m

. Then d(zb) divides d(A; b).

PROOF. Let y be a rational solution of Ax = b with minimal denominator.

Then d(A; b)(zb) = d(A; b)zAy = (zA)(d(A; b)y) and (zA)(d(A; b)y) is over R

sine zA and d(A; b)y are over R. 2

Lemma 6 states that z erti�es the fator d(zb) of d(A; b). The next lemma

shows how we an take a linear ombination of two ertifying vetors z

1

and z

2

in order to get a new vetor z ertifying a potentially larger fator of d(A; b).

Lemma 7 Let z

1

; z

2

2 F

1�n

suh that z

1

A; z

2

A 2 R

1�m

. Write z

1

b = n

1

=d

1

and z

2

b = n

2

=d

2

where gd(n

1

; d

1

) = gd(n

2

; d

2

) = 1. Let g = gd(d

1

; d

2

),

l = lm(d

1

; d

2

), e; s

1

; s

2

2 R suh that

e = gd

 

n

1

d

2

g

; n

2

d

1

g

!

= s

1

n

1

d

2

g

+ s

2

n

2

d

1

g

:

Then z := s

1

z

1

+ s

2

z

2

satis�es zA 2 R

1�m

and d(zb) = l.

PROOF. zA = (s

1

z

1

+ s

2

z

2

)A = s

1

(z

1

A) + s

2

(z

2

A) 2 R

1�m

and

zb = s

1

n

1

d

1

+ s

2

n

2

d

2

=

s

1

n

1

d

2

+ s

2

n

2

d

1

d

1

d

2

�

s

1

n

1

d

2

+ s

2

n

2

d

1

gl

= e=l:

Let p 2 R be prime. If p divides d

1

but not d

2

, then p does not divide n

1

d

2

and thus p does not divide e. Similarly, if p divides d

2

but not d

1

, then p does

not divide e. If p divides both d

1

and d

2

, then p does not divide n

1

and n

2

.

Sine also gd(d

1

=g; d

2

=g) = 1, p does not divide e. So gd(e; l) = 1 and thus

d(e=l) = l. 2

To get another z 2 F

1�n

suh that zA 2 R

1�m

, we apply the following lemma

for di�erent random hoies of P and q.

Lemma 8 Let P 2 R

m�n

and q 2 R

1�n

. If z 2 F

1�n

is suh that z(AP ) = q,

then (d(zA)z)A 2 R

1�m

.

Algorithm MinimalSolution is shown in Figure 1. For the input, we assume

we have a system Bx =  of full row rank together with a partiular rational
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algorithm MinimalSolution(B; ; y

0

)

input: B 2 R

s�m

,  2 R

s�1

and y

0

2 F

m�1

, with B of rank s and By

0

= .

omment: The solution y

0

should be from a nonsingular subsystem of Bx = .

output: (y; z), with y 2 F

m�1

, z 2 F

1�s

, By =  and d(y) = d(z).

U := �nite subset of R;

y := y

0

;

z := (0; : : : ; 0) 2 F

1�s

;

do

Choose P 2 U

m�s

and q 2 U

1�s

randomly and uniformly;

if BP is nonsingular then

v := (BP )

�1

;

ŷ := Pv;

y := as in Lemma 3 with (y

1

; y

2

) = (y; ŷ);

u := q(BP )

�1

;

ẑ := d(uB)u;

z := as in Lemma 7 with (z

1

; z

2

) = (z; ẑ);

�

until d(y) = d(z);

return (y; z)

Fig. 1. Algorithm MinimalSolution

solution y

0

. The general ase of a non full row rank system will be redued

to this situation in Setion 7. The algorithm takes linear ombinations of

rational solutions in order to get rational solutions with noninreasing (and

hopefully dereasing) denominator. At the same time linear ombinations of

ertifying vetors are omputed in order to get vetors ertifying nondereasing

(and hopefully inreasing) fators of d(B; ). The loop is iterated until the

denominator and erti�ed fator found so far oinide.

The next result follows from the previous lemmas in this setion.

Proposition 9 Algorithm MinimalSolution is orret.

By \orret" we mean that any output produed by the algorithm will be as

spei�ed. The next two setions show that we an expet the algorithm to

terminate, even if U is hosen to be f0; 1g.

3 Rank properties of random matries

We state the results in this setion in a general setting so that they an be

used in several situations. The oeÆients in the matries we onsider are from
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a �eld K. We also use a �nite set U and a map �:U ! K. In this way we

over several possible appliations of our results, e.g.

(1) U � K, � the inlusion map.

(2) R a prinipal ideal domain, U a �nite subset of R, K = R=pR, where p

is a prime in R and � the projetion map.

The map � is assumed to be a nononstant map.

De�nition 10 Let K be a �eld and A a matrix over K. By rowSpan(A) we

denote the vetor spae over K generated by the rows of A. By olSpan(A) we

denote the vetor spae generated by the olumns.

The proof of the next result uses ounting arguments similar to the analysis

in Wiedemann (1986).

Proposition 11 Let K be a �eld, A 2 K

n�m

1

; B 2 K

n�m

2

and v 2 K

1�m

1

.

Let t = rank(A) and s = rank

�

A B

�

. Let U be a �nite set and �:U ! K

a map. Let g be the maximum number of elements in the preimage of any

element of K under �. Then

(a) if v =2 rowSpan(A), then

#fu 2 U

1�m

2

j

�

v �(u)

�

2 rowSpan

��

A B

��

g = 0:

(b) if v 2 rowSpan(A), then

#fu 2 U

1�m

2

j

�

v �(u)

�

2 rowSpan

��

A B

��

g � (#U)

s�t

g

m

2

�(s�t)

;

with equality when the preimages of all elements of K have the same size.

PROOF. The only nontrivial statement of the proposition is (b). Deleting a

row from

�

A B

�

that is in the row span of the other rows of

�

A B

�

does not

hange any essential data in the proposition. Neither does any elementary row

operation on

�

A B

�

. So we may assume that

�

A B

�

has full row rank, i.e.

s = n, and that

�

A B

�

is in redued row ehelon form. Let (j

1

; : : : ; j

n

) be the

rank pro�le of

�

A B

�

. Then j

t

� m

1

, j

t+1

> m

1

, the �rst nonzero entry in

row i is on the j

i

'th position and the j

i

'th olumn is the 0 olumn, exept for
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a 1 in the i'th row. A possible on�guration for

�

A B

�

ould look as follows:

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 � 0 � � 0 � � 0 � 0 �

0 0 1 � � 0 � � 0 � 0 �

0 0 0 0 0 1 � � 0 � 0 �

0 0 0 0 0 0 0 0 1 � 0 �

0 0 0 0 0 0 0 0 0 0 1 �

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Suppose v 2 rowSpan(A). For u 2 U

1�m

2

we then have:

�

v �(u)

�

2 rowSpan

��

A B

��

if and only if

for all j 2 f1; : : : ;m

2

g n fj

t+1

�m

1

; : : : ; j

n

�m

1

g:

�(u

j

) equals the jth oordinate of

(v

j

1

; : : : ; v

j

t

; �(u

j

t+1

�m

1

); : : : ; �(u

j

n

�m

1

))B:

So, in order that

�

v �(u)

�

2 rowSpan

��

A B

��

, u

j

2 U an be anything

for j 2 fj

t+1

�m

1

; : : : ; j

n

� m

1

g and they uniquely determine �(u

j

) for j 2

f1; : : : ;m

2

g n fj

t+1

�m

1

; : : : ; j

n

�m

1

g. From this (b) follows easily. 2

We remark that, on the one hand, there exist examples where the bound in part

(b) of Proposition 11 is sharp. On the other hand, the bound is very pessimisti

in many ases. This is beause for some hoies of the u

j

with j 2 fj

t+1

�

m

1

; : : : ; j

n

�m

1

g there may exist k 2 f1; : : : ;m

2

g n fj

t+1

�m

1

; : : : ; j

n

�m

1

g

suh that there are less than g di�erent (or even no) u 2 U with �(u) equal

to the kth oordinate of (v

j

1

; : : : ; v

j

t

; �(u

j

t+1

�m

1

); : : : ; �(u

j

n

�m

1

))B.

Corollary 12 When we hoose in Proposition 11 the entries in u uniformly

from U , then the probability that

�

v �(u)

�

=2 rowSpan

��

A B

��

is

8

>

<

>

:

1; if v =2 rowSpan(A);

� 1�

�

g

#U

�

m

2

�(s�t)

; if v 2 rowSpan(A);

with equality when the preimage of all elements from K have the same size.
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We now suessively augment rows to a matrix in order to inrease its rank.

Applying Corollary 12 a number of times gives us a bound for the probability

of suess.

Lemma 13 Let K be a �eld. Let A 2 K

n

1

�m

1

; B 2 K

n

1

�m

2

and C 2 K

n

2

�m

1

.

Let t = rank(A); s = rank

�

A B

�

and r = rank

2

6

4

A

C

3

7

5

. Let U be a �nite set and

�:U ! K a map. Let g be the maximum number of elements in the preimage

of any element from K under �. Let P be the probability that

rank

2

6

4

A B

C �(D)

3

7

5
= s+ n

2

;

when the entries of D 2 U

n

2

�m

2

are hosen uniformly from U . Then

P �

m

2

�(s�t)

Y

i=m

2

�n

2

+r�s+1

0

�

1 �

 

g

#U

!

i

1

A

;

with equality when the preimage of all elements from K have the same size.

PROOF. We hoose the rows of D one after the other. Let C

i

be the �rst i

rows of C and D

i

the �rst i rows of D. Let A

i

=

2

6

4

A

C

i

3

7

5

and B

i

=

2

6

4

B

�(D

i

)

3

7

5

.

Then rank

2

6

4

A B

C �(D)

3

7

5

= s + n

2

if and only if rank

�

A

i

B

i

�

= s + i for all

i, i.e. every row we add must inrease the rank by one. Let t

i

= rank(A

i

)

and s

i

= rank

�

A

i

B

i

�

. Suppose we have hosen D

i

suh that s

i

= s + i.

Let v

i+1

be the (i+ 1)'th row of C. We want to hoose u 2 U

1�m

2

suh that

rank

2

6

4

A

i

B

i

v

i+1

�(u)

3

7

5

= s+i+1, i.e. suh that

�

v

i+1

�(u)

�

=2 rowSpan

��

A

i

B

i

��

.

Let P

i

be the probability that

�

v

i+1

�(u)

�

=2 rowSpan

��

A

i

B

i

��

. From

Corollary 12 we get

8

>

<

>

:

P

i

= 1 if v

i+1

=2 rowSpan(A

i

);

P

i

� 1�

�

g

#U

�

m

2

�(s

i

�t

i

)

if v

i+1

2 rowSpan(A

i

);

(1)

with equality when the preimage of all elements from K have the same size.
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Sine

(a) t

i+1

= t

i

+ 1, if v

i+1

=2 rowSpan(A

i

);

(b) t

i+1

= t

i

, if v

i+1

2 rowSpan(A

i

),

we see that ase a applies r� t times and that ase b applies n

2

� (r� t) times.

If we have hosen u suh that

�

v

i+1

�(u)

�

=2 rowSpan

��

A

i

B

i

��

, then s

i+1

=

s

i

+ 1, and so if ase (a) applies, then s

i

� t

i

does not hange and if ase (b)

applies, then s

i

� t

i

is inremented. Sine P = P

1

P

2

� � �P

n

2

and s

0

� t

0

= s� t,

the lemma now follows from (1). 2

De�nition 14 Let K be a �eld and A 2 K

n�m

. We all the set fx 2 K

m

j

Ax = 0g the right kernel of A. N 2 K

m�k

is alled a right kernel for A if

olSpan(N) is the right kernel of A. In a similar way we de�ne left kernel.

Lemma 15 Let K be a �eld, A 2 K

n�m

and B 2 K

m�k

. Let N be a right

kernel for A. Then

rank(AB) = rank

�

N B

�

� rank(N):

PROOF. Note that for a matrix M , rank(M) = dim(olSpan(M)). Sine

olSpan(AB) = olSpan

�

A

�

N B

��

, we get:

dim(olSpan(AB))= dim

�

olSpan

�

A

�

N B

���

=dim

�

olSpan

��

N B

���

� dim

�

olSpan

��

N B

��

\ olSpan(N)

�

=dim

�

olSpan

��

N B

���

� dim(olSpan(N)):

2

Corollary 16 Let K be a �eld, W

1

2 K

n�m

1

and W

2

2 K

n�m

2

suh that

�

W

1

W

2

�

has full row rank, and M 2 K

m

1

�n

. Let

2

6

4

N

1

N

2

3

7

5

be a right kernel

for

�

W

1

W

2

�

. Let r

1

= rank(N

1

) and r

2

= rank

�

N

1

M

�

. Let U be a �nite

set and �:U ! K a map. Let g be the maximum number of elements in the

preimage of any element from K under �. When the entries of P 2 U

m

2

�n

11



are hosen uniformly from U , then the probability that

�

W

1

W

2

�

2

6

4

M

�(P )

3

7

5

has rank n;

is at least

n+r

1

�m

1

Y

i=r

2

�m

1

+1

0

�

1�

 

g

#U

!

i

1

A

;

with equality when the preimage of all elements from K have the same size.

PROOF. From Lemma 15 it follows that

rank

0

B

�

�

W

1

W

2

�

2

6

4

M

�(P )

3

7

5

1

C

A

= rank

2

6

4

N

1

M

N

2

�(P )

3

7

5

� rank

2

6

4

N

1

N

2

3

7

5

:

Using rank

2

6

4

N

1

N

2

3

7

5

= m

1

+m

2

�n, the lemmanow follows by applying Lemma 13

with A = N

t

1

, B = N

t

2

, C =M

t

and D = P

t

. 2

4 Performane of the Algorithm MinimalSolution

We bound the expeted number of iterations of the Algorithm MinimalSolu-

tion. This bound will depend on the size of the set U . If not expliitly stated

otherwise, all names represent the variables in the algorithm.

De�nition 17 Let p 2 R be prime. For a 2 R we de�ne ord

p

(a) as the

maximum integer n suh that p

n

divides a.

In general, ŷ in the algorithm will not be a solution of Bx =  with minimal

denominator. However, if for a prime p 2 R we have ord

p

(d(ŷ)) = ord

p

(d(B; ))

for at least one ŷ, then the returned solution y will satisfy ord

p

(d(y)) =

ord

p

(d(B; )) (Lemma 3.) Similarly, ẑ will in general not ertify all of d(B; ).

However, if for a prime p 2 R ord

p

(d(ẑ)) = ord

p

(d(B; )) for at least one

ẑ, then the returned erti�ate z will satisfy ord

p

(d(z)) = ord

p

(d(B; ))

(Lemma 7.)

Reall that a square matrix V over R is said to be unimodular if V is invert-

ible over R, that is, if V

�1

is over R. The unimodular matries over R are

preisely those with determinant a unit from R. The following fat is used in

the subsequent lemma.

12



Fat 18 There exists a unimodular V 2 R

m�m

suh that BV = H =

�

H

1

0

�

,

where H

1

is s�s and nonsingular. Moreover, detH

1

is an assoiate of the gd

of all s� s minors of B.

Lemma 19 Let � 2 R

m

suh that B� = d(B; ), that is, �=d(B; ) is a

solution of Bx =  with minimal denominator. Let V be as in Fat 18 and

W the �rst s rows of V

�1

. Let p 2 R be prime. Let P suh that p=j det(WP ).

Then BP is nonsingular and ord

p

(d(ŷ)) = ord

p

(d(B; )). If moreover q is suh

that p=jq det(WP )(WP )

�1

W�, then ord

p

(d(ẑ)) = ord

p

(d(B; )).

PROOF. Sine B = HV

�1

and H =

�

H

1

0

�

we have

B = H

1

W: (2)

It follows that BP = H

1

WP is nonsingular sine H

1

is nonsingular and WP

is nonsingular modulo p.

Substituting (2) into B�=d(B; ) =  yields H

�1

1

 = W�=d(B; ). Then

ŷ=P (BP )

�1



=P (H

1

WP )

�1



=P (WP )

�1

H

�1

1



=

1

det(WP )d(B; )

� P det(WP )(WP )

�1

W�: (3)

From (3) we see that d(ŷ)j(det(WP )d(B; )) sine P det(WP )(WP )

�1

W�

is over R. It follows that ord

p

(d(ŷ)) � ord

p

(d(B; )) sine by assumption

p=j det(WP ). On the other hand, we must have ord

p

(d(B; )) � ord

p

(d(ŷ))

sine ŷ is a rational solution ofBx = . It follows that ord

p

(d(ŷ)) = ord

p

(d(B; )).

Sine u = q(BP )

�1

= q(H

1

WP )

�1

= q(WP )

�1

H

�1

1

we have

ẑ= d(uB)u

= d(uB)q(WP )

�1

H

�1

1

H

1

W�=d(B; )

=

1

det(WP )d(B; )

d(uB)q det(WP )(WP )

�1

W�: (4)

Sine V is unimodular we have d(uB) = d(uBV ) = d(uH) = d(uH

1

). Sine

p=j det(WP ), pjd(uH

1

) would imply that pjd(uH

1

(WP )) = d(uBP ) = d(q) =

1; a ontradition, so p=jd(uH

1

) = d(uB). Sine p=jq det(WP )(WP )

�1

W� we

see from (4) that ord

p

(d(ẑ)) � ord

p

(d(B; ). Sine always ord

p

(d(ẑ)) �

ord

p

(d(B; ) it follows that ord

p

(d(ẑ)) = ord

p

(d(B; ). 2

13



De�nition 20 The pair (P; q) is a good pair with respet to the prime p if

(1) BP is nonsingular;

(2) ord

p

(d(ŷ)) = ord

p

(d(B; ));

(3) ord

p

(d(ẑ)) = ord

p

(d(B; )).

So if we hoose in the Algorithm MinimalSolution a good pair (P; q) with

respet to the prime p, y and z will satisfy from that moment on ord

p

(d(y)) =

ord

p

(d(z)).

Lemma 21 Let p 2 R be prime, �:U ! R=pR the projetion map and g

the maximum number of elements in the preimage of any element from R=pR

under �. Then the probability that in a partiular iteration of the loop in

Algorithm MinimalSolution a good pair (P; q) with respet to p is hosen is at

least

 

1�

g

#U

!

0

�

1 �

g

#U

�

 

g

#U

!

2

1

A

:

PROOF. Let V;W and � be as in Lemma 19. If p=jd(B; ) and p=j det(WP )

we have for all q 2 U

1�s

that ord

p

(d(ẑ)) = ord

p

(d(B; )) = 0. So in that

ase it follows from Lemma 19 that in order for (P; q) to be a good pair with

respet to p it suÆes that p=j det(WP ).

Sine V

�1

is also over R and unimodular, it is lear that W modulo p has

rank s. Applying Corollary 16 with K = R=pR, m

1

= 0 and W

2

= W , we see

that the probability that p=j det(WP ) is at least

s

Y

i=1

0

�

1�

 

g

#U

!

i

1

A

:

Let x = g=#U . Then

s

Y

i=1

(1� x

i

)�

1

Y

i=1

(1 � x

i

)

= 1 +

1

X

k=0

(�1)

k+1

�

x

(k+1)(3k+2)=2

+ x

(k+1)(3k+4)=2

�

� 1� x� x

2

:

The seond last identity follows from (Hardy and Wright, 1979, Theorem 358).

The last inequality uses the observation that for odd k, the sum of the kth

and (k+1)th term in the sum is positive. The lemma follows when p=jd(B; ).

Now assume that pjd(B; ) and p=j det(WP ). Suppose pjW�. Sine the olumns

of W span all of R

s

we then have (W�)=p = W� for some � 2 R

m

and

14



thus B� = H

1

W� = H

1

W�=p = B�=p = (d(B; )=p), ontraditing the

minimality of d(B; ). So p=jW� and thus p=j det(WP )(WP )

�1

W�. Applying

16 with K = R=pR, m

1

= 0, W

2

= (det(WP )(WP )

�1

W�)

t

and P = q

t

, we

see that the probability that p=jq det(WP )(WP )

�1

W� is at least 1 � g=#U .

The lemma follows from Lemma 19. 2

We want the numbers of elements in the preimage of all elements from R=pR

under �:U ! R=pR to di�er as little as possible.

De�nition 22 Let U � R �nite and p 2 R prime. We say that U is evenly

distributed with respet to p, if

(1) #(R=pR) <1: for all w 2 R

$

#U

#(R=pR)

%

� #fu 2 U j u � w (mod p)g �

&

#U

#(R=pR)

'

;

(2) #(R=pR) =1: for all w 2 R

#fu 2 U j u � w (mod p)g � 1:

Corollary 23 Let p 2 R be prime and U evenly distributed with respet to p.

Then the probability that (P; q) is not a good pair with respet to p is at most

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

10

if #U = 2 or (#U � 25 and #(R=pR) = 2);

2

#U

if #U < #(R=pR);

2

#(R=pR)

if #(R=pR)j#U ;

2

#(R=pR)

+

2

#U

if #(R=pR)=j#U:

PROOF. Sine (1� x)(1� x� x

2

) = 1� 2x+ x

3

it follows from Lemma 21

that the wanted probability is at most 2g=#U � (g=#U)

3

� 2g=#U . The

lemma now follows by noting that

g =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if #U < #(R=pR);

#U

#(R=pR)

if #(R=pR)j#U ;

j

#U

#(R=pR)

k

+ 1 if #(R=pR)=j#U:

2

One an give sharper bounds for the probability bounded in Corollary 23.

However, the bounds in Corollary 23 are easy to use and suÆe for our pur-

poses, so we will not give a more detailed analysis of the probability.
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Proposition 24 Let S be a �nite set of primes of R. Let U � R be evenly

distributed with respet to all primes in S. For t 2 Z

�2

and t = 1 let S

t

=

fp 2 S j #(R=pR) = tg. Then the probability that after N iterations of the

loop in Algorithm MinimalSolution there is still a prime p 2 S suh that no

good pair (P; q) with respet to p was hosen is at most

8

>

>

>

>

>

<

>

>

>

>

>

:

#S

�

9

10

�

N

if #U = 2;

#S

2

�

9

10

�

N

+

P

t>#U

#S

t

�

2

#U

�

N

+

P

tj#U;t>2

#S

t

�

2

t

�

N

+

P

t=j#U;2<t<#U

#S

t

�

2

t

+

2

#U

�

N

if #U � 25:

PROOF. The wanted probability is at most the sum over all primes p 2 S of

the probability that no good pair with respet to p was hosen. The probability

that N independent experiments, eah with a probability of failure less than

f , all fail is less than f

N

. The lemma now follows from Corollary 23. 2

We now apply Proposition 24 when R = Zand R = K[x℄. In both ases we

will onsider U to be a minimal possible set (i.e. U = f0; 1g) and U of bigger

size. Reall that for an integer matrix A we denote by jjAjj the maximum

magnitude of an entry in A. For a polynomial matrix A we denote by jjAjj the

maximum degree of an entry in A. The following well known bounds follow

from Cramer's rule and Hadamard's inequality (Horn and Johnson, 1985).

Fat 25 Let A 2 R

n�n

be nonsingular, b 2 R

n�1

and y 2 F

n�1

satisfy Ay = b.

� (R =Z) d(y) � n

n=2

jjAjj

n

and jjn(y)jj � n

n=2

jjAjj

n�1

jjbjj.

� (R = K[x℄) deg d(y) � njjAjj and jjn(y)jj � (n� 1)jjAjj+ jjbjj.

We will frequently use the following.

Fat 26 The expeted number of experiments one has to perform in order to

have suess is at most the inverse of a lower bound for the probability that

any single experiment has suess.

Corollary 27 (R =Z) Taking U = f0; 1g, the expeted number of iterations

of Algorithm MinimalSolution is O(log s+ log log jjBjj).

PROOF. Let S be the set of prime divisors of the denominator of y

0

. By

Proposition 24 the probability that after N iterations there is still a prime p 2

S suh that ord

p

(d(y)) 6= ord

p

(d(z)) is at most #S(9=10)

N

. From Fat 26 it

then follows that the expeted number of iterations in order that ord

p

(d(y)) =

16



ord

p

(d(z)) for all p 2 S is at most

N

�

1 �#S

�

9

10

�

N

�

: (5)

Taking N =

l

log

(10=9)

(2#S)

m

we see that (5) is at most 2N . By Fat 25,

#S � s((log

2

s)=2 + log

2

jjBjj) and the lemma follows. 2

Corollary 28 (R =Z)Taking U = f0; 1; : : : ;Mg whereM = max(24; dlog

2

s

s=2

jjBjj

s

e),

the expeted number of iterations of Algorithm MinimalSolution is O(1).

PROOF. The proof is similar to the one of Corollary 27. Note that #U �

#S + 2 and #U � 25. Now, the probability that after N iterations there is

still a prime p 2 S suh that ord

p

(d(y)) 6= ord

p

(d(z)) is at most

�=

�

9

10

�

N

+

X

p2S;p>2

 

2

p

+

2

#U

!

N

�

�

9

10

�

N

+

#S+2

X

k=3

 

2

k

+

2

#U

!

N

�

�

9

10

�

N

+

A

X

k=3

�

2

k

+

2

25

�

N

+

#S+2

X

k=A+1

 

2

k

+

2

#S + 2

!

N

�

�

9

10

�

N

+

A

X

k=3

�

2

k

+

2

25

�

N

+

#S+2

X

k=A+1

�

4

k

�

N

�

�

9

10

�

N

+

A

X

k=3

�

2

k

+

2

25

�

N

+

1

X

k=A+1

�

4

k

�

N

;

and then the expeted number of iterations in order that ord

p

(d(y)) = ord

p

(d(z))

for all p 2 S is at most N=(1 � �). Taking N = 10 and A = 10 we see that

this is less than 17. 2

Corollary 29 (R = K[x℄) Taking U = f0; 1g, the expeted number of itera-

tions that Algorithm MinimalSolution has to perform is O(log s+ log jjAjj).

PROOF. Similar to the proof of Corollary 27. Now #S � sjjAjj.

Corollary 30 (R = K[x℄) If K is not �nite, take t = 0 and U � K to be

of size max(25; 3sjjBjj); if K is �nite, let t be suh that (#K)

t

� 3sjjBjj and
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take U = ff 2 K[x℄ j deg(f) < tg. Then the expeted number of iterations of

Algorithm MinimalSolution is O(1).

PROOF. Suppose K is not �nite. Then #U � 3(#S) and the probability

that after one iteration there is still a prime p 2 S suh that ord

p

(d(y)) 6=

ord

p

(d(z)) is at most #S(2=#U) � 2=3. Thus the expeted number of itera-

tions in order that ord

p

(d(y)) = ord

p

(d(z)) for all p 2 S is at most 3.

Now suppose that K is �nite. There are at most sjjBjj=(t + 1) primes in

S of degree > t and at most (#K)

k

primes of degree k. If #K > 2 the

probability that after N iterations there is still a prime p 2 S suh that

ord

p

(d(y)) 6= ord

p

(d(z)) is at most

�=

sjjBjj

t+ 1

 

2

(#K)

t

!

N

+

t

X

k=1

(#K)

k

 

2

(#K)

k

!

N

�

�

2

3

�

N

+

t

X

k=1

2

�

2

3

k

�

N�1

�

�

2

3

�

N

+

1

X

k=1

2

�

2

3

k

�

N�1

;

and the expeted number of iterations in order that ord

p

(d(y)) = ord

p

(d(z))

for all p 2 S is at most N=(1 � �). Taking N = 8 this is at most 10.

If #K = 2 there are at most two primes p suh that #(R=pR) = 2 and we get

�=2

�

9

10

�

N

+

sjjBjj

t+ 1

�

2

2

t

�

N

+

t

X

k=2

(#K)

k

 

2

(#K)

k

!

N

� 2

�

9

10

�

N

+

�

2

3

�

N

+

t

X

k=2

2

�

2

2

k

�

N�1

� 2

�

9

10

�

N

+

�

2

3

�

N

+

1

X

k=1

2

�

2

2

k

�

N�1

:

The expeted number of iterations in order that ord

p

(d(y)) = ord

p

(d(z)) for

all p 2 S is at most N=(1 � �). Taking N = 15 this is at most 26. 2

5 Rational system solving over Zand K[x℄

Let Av = b be a nonsingular system of linear equations over R, where R =Z

or R = K[x℄. The most eÆient algorithms for omputing v = A

�1

b are based
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on p-adi lifting as desribed by Moenk and Carter (1979), see also Dixon

(1982). The method usually requires knowing a p 2 R suh that p is relatively

prime to detA (notation: p ? detA), and p is not a unit of R.

First onsider the ase R = Z. The omplexity analysis of p-adi lifting by

Dixon (1982), and by Mulders and Storjohann (1999, Theorem 20), assumes

standard integer arithmeti. The inorporation of fast arithmeti is straight-

forward, but we are not aware of a areful presentation in the literature. We

o�er a treatment here, indiating only the required modi�ations to the algo-

rithm as desribed in (Mulders and Storjohann, 1999).

We are given as input an A 2Z

n�n

and a b 2Z

n�1

. Suppose we are also given

a p 2 Z

>1

suh that p ? detA and log p = O(log n + log�). Suh a p an be

hosen at random, as in our algorithms in Setions 6 and 7.

Suppose jjAjj � � and jjbjj � �. Then numerators and denominators in A

�1

b

are bounded in magnitude by n

n=2

�

n�1

� and n

n=2

�

n

, respetively. We will

inorporate fast integer multipliation by using the modulus q = p

k

instead

of p, where k is hosen minimal suh that q

n

> 2bn

n=2

�

n�1

�bn

n=2

�

n

. Then

log q = �(log� + log n) and exatly n steps of q-adi lifting are required to

ompute the q-adi expansion A

�1

b � z

0

+ z

1

q + : : :+ z

n�1

q

n�1

mod q

n

, eah

z

�

2Z

n�1

with jjz

�

jj < q.

B := mod(A

�1

; q);

 := the q-adi expansion of b;

omment: Keep  represented as:  = 

0

+ 

1

q + 

2

q

2

+ � � �

for i from 0 to n� 1 do

z

i

:= mod(B

i

; q);

 := �Az

i

q

i

od;

The inverseB an be omputed withO(n

3

M(log q)+n

2

B(log q)) bit operations

by working overZ=(q), see for example Storjohann (2000, page 55). The reason

for the n

2

B(log q) term is that O(n

2

) gd-type operations may be required

sine q is not neessarily a prime. After stage i of the loop, A

�1

b = z

0

+ z

1

q+

� � �+z

i

q

i

+A

�1

, where  is divisible by q

i

. It follows that  = b�A(z

0

+z

1

q+� � �+

z

i

q

i

), whih shows that log  = O(n log q) throughout. The key to performing

the lifting eÆiently is to keep  in q-adi representation. The initial expansion

of a single entry of b an be aomplished with O(B(n log q)) bit operations

using radix onversion (von zur Gathen and Gerhard, 1999, Setion 9.2). A

ost bound of O(n

2

M(log q)) bit operations for a single iteration of the loop is

now easily obtained. After the ode fragment �nishes, ompute z := z

0

+z

1

q+

� � �+ z

n�1

q

n�1

by applying radix onversion to eah entry. Finally, Wang and

Pan (2003) prove that rational reonstrution an be applied to an entry of z
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at a ost of O(B(n log q)) bit operations. Note that O(B(n log q)) is bounded

by O(n

2

B(log q)), using the simpli�ation B(n log q) = O(B(n)B(log q)), and

then B(n) = O(n

2

).

This variation of p-adi lifting desribed above supports the running time

bounds in Proposition 31. Part 1 of the proposition, the analysis in terms of

� and �, was already given by Mulders and Storjohann (1999, Theorem 20).

Proposition 31 (Cost of L

Z

(n; �; �)) Let nonsingular A 2 Z

n�n

and b 2

Z

n�1

be given, jjAjj � �, jjbjj � �. Then A

�1

b 2 Q

n�1

an be omputed with

(1) O(n

3

(log � + log n)

2

+ n(log �)

2

) bit operations using standard integer

arithmeti, assuming we are given a p 2 Z

>1

suh that p ? detA and

log p = O(log � + log n).

(2) O(n

3

B(log�+log n)) bit operations, assuming log � = O(n log �) and we

are given a p 2 Z

>1

suh that p ? detA and log p = O(log �+ log n).

Now onsider the ase R = K[x℄. The onstrution of algorithms over K[x℄

is onsiderably easier than over Zbeause the degree norm for polynomials

is non-Arhimedian (we don't have a problem with arries). Some improved

results are available. The �rst result of Proposition 32 is obtained using an al-

gorithm by Mulders and Storjohann (2000, Theorem 3). That algorithm allows

performing the lifting with the modulus x

�

, even when x divides detA. The

seond result, inorporating matrix multipliation into the lifting algorithm,

is due to Storjohann (2003, Corollary 16).

Proposition 32 (Cost of L

K[x℄

(n; �; �)) Let nonsingular A 2 K[x℄

n�n

and

b 2 K[x℄

n�1

be given, jjAjj � �, jjbjj � �. Then A

�1

b 2 K(x)

n�1

an be

omputed with

(1) O(n

3

M(�) + n

2

�=�M(�) + nB(n� + �)) �eld operations.

(2) O(MM(n)(log n)M(�+deg p)+MM(n)B(�+deg p)+nB(n(�+deg p)))

�eld operations, assuming � = O(n�) and we are given a nononstant

p 2 K[x℄ suh that p ? detA.

Note that the bound in part 1 of Proposition 32 simpli�es to O(n

3

M(�) +

nB(n�)) �eld operations if � = O(n�). The bound in part 2 simpli�es to

O(MM(n)(log n)B(�+deg p)) �eld operations under the additional assumption

that B(t) = O(MM(t)=t). This assumption on B(t) stipulates that if fast matrix

multipliation tehniques are used, then fast polynomial arithmeti should be

used also.
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6 Certi�ed solving of a onsistent system over Zand K[x℄

We give a modi�ation of Algorithm MinimalSolution that is suited to the

ase when R = Zor R = K[x℄. We �rst explain the required modi�ations,

present the algorithm, and then estimate the omplexity in eah of these ases.

To avoid expression swell, we need to hange how the various rational solutions

and erti�ates are ombined. We use the following two lemmas. Corretness

of the �rst lemma is easy. The proof of the seond lemma is similar to that of

Lemma 7.

Let A 2 R

n�m

and b 2 R

n�1

.

Lemma 33 Let y

0

; y

1

; y

2

2 F

m�1

be rational solutions of Ax = b. Let a 2 R

be suh that gd(d(y

0

); d(y

1

) + ad(y

2

)) = gd(d(y

0

); d(y

1

); d(y

2

)). Then

y :=

d(y

1

)y

1

+ ad(y

2

)y

2

d(y

1

) + ad(y

2

)

is a rational solution of Ax = b and gd(d(y

0

); d(y)) divides gd(d(y

0

); d(y

1

); d(y

2

)).

Lemma 34 Let z

1

; z

2

2 F

1�n

suh that z

1

A; z

2

A 2 R

1�m

. Write z

1

b = n

1

=d

2

and z

2

b = n

2

=d

2

, where gd(n

1

; d

1

) = gd(n

2

; d

2

) = 1. Let g = gd(d

1

; d

2

)

and l = lm(d

1

; d

2

). Then gd(n

1

d

2

=g; n

2

d

1

=g; l) = 1. Let a 2 R be suh that

gd(n

1

d

2

=g + an

2

d

1

=g; l) = 1. Then z := z

1

+ az

2

satis�es zA 2 R

1�m

and

d(zb) = l.

Figure 2 gives a detailed desription of the modi�ed algorithm. In order to

keep y and z small, we only ombine them with new solutions or erti�ates

when this will lead to some progress in the omputation, i.e. d(y) gets smaller

or d(z) gets bigger.

For T we will hoose a set of primes suh that for nonsingular BP , BP mod p

is singular over R=(p) for at most half of the primes p 2 T . When p is well

hosen, one iteration of Algorithm SpeialMinimalSolution is similar to one

iteration of Algorithm MinimalSolution. The next result now follows from

Fat 26 and the previous lemmas in this setion.

Proposition 35 Algorithm SpeialMinimalSolution is orret. The expeted

number of iterations of the algorithm is at most two times the expeted number

of iterations of Algorithm MinimalSolution.

21



algorithm SpeialMinimalSolution(B; ; y

0

)

input: B 2 R

s�m

,  2 R

n

and y

0

2 R

m�1

, with B of rank s and By

0

= .

omment: The solution y

o

should be from a nonsingular subsystem of Bx = .

output: (y; z), with y 2 R

m�1

, z 2 R

1�s

, By =  and d(y) = d(z).

U := �nite subset of R;

T := SetOfPrimes(B;U);

y := y

0

;

z := (0; : : : ; 0) 2 R

1�s

;

do

Choose P 2 U

m�s

and p 2 T randomly and uniformly;

if BP mod p is nonsingular then

v := (BP )

�1

;

ŷ := Pv;

if gd(d(y

0

); d(y); d(ŷ)) 6= gd(d(y

0

); d(y)) then

y := as in Lemma 33 with (y

0

; y

1

; y

2

) = (y

0

; y; ŷ)

�;

Choose q 2 U

1�s

randomly and uniformly;

u := q(BP )

�1

;

ẑ := d(uB)u;

if lm(d(z); d(ẑ)) 6= d(z) then

z := as in Lemma 34 with (z

1

; z

2

) = (z; ẑ)

�

�

until gd(d(y

0

); d(y)) = d(z);

y := as in Lemma 3 with (y

1

; y

2

) = (y; y

0

);

return (y; z)

Fig. 2. Algorithm SpeialMinimalSolution

6.1 Complexity when R =Z

Most of our e�ort is to bound the bitlengths of numbers ourring dur-

ing the algorithm. When the elements in U are bounded in magnitude by

M , then jjBP jj � mM jjBjj and detBP is bounded in magnitude by N =

(s

1=2

mM jjBjj)

s

. Let l = 6+dlog logNe and hoose T to be a set of 2dd(log

2

Ne=(l�

1)e primes between 2

l�1

and 2

l

. Giesbreht (1993, Theorem 1.8, based on

bounds by Rosser and Shoenfeld (1962)) shows that there are at least this

many primes in this range and notes that the onstrution of T an be a-

omplished with O(logN log log logN) bit operations using the sieve of Eras-

tosthenese, see (Knuth, 1981, Setion 4.5.4).

In what follows we will either take U = f0; 1g or take U = f0; 1; : : : ;Mg, where

M = max(24; dlog

2

(s

s=2

jjBjj

s

)e). It follows that primes in T have bitlength

bounded by O(log s + log logm + log log jjBjj); we use this bound impliitly

in what follows. By Fat 25, the following bitlength bounds hold throughout
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exeution of the algorithm:

n(y

0

) O(s(log s+ log jjBjj) + log jjj)

d(y

0

) O(s(log s+ log jjBjj))

d(v); d(ŷ); d(u); n(u); n(ẑ) O(s(logm+ log jjBjj))

n(v); n(ŷ) O(s(logm+ log jjBjj) + log jjjj)

Let V , H and H

1

be as in Fat 18. Sine ẑB 2 R

1�m

we also have ẑ

�

H

1

0

�

=

ẑBV 2 R

1�m

and thus d(ẑ)jdet(H

1

). In the same way we �nd d(z)jdet(H

1

).

Sine gd(d(y

0

); d(y)) and d(z) are always bounded by d(y

0

) it follows that

y and z will be modi�ed at most O(s(log s+ log jjBjj)) times. The a of Lem-

mas 33 and 34 will be omputed to have magnitude bounded by d(y

0

) and

lm(d(z); d(ẑ)) respetively. This gives the following length bounds holding

throughout exeution of the algorithm:

d(ẑ); d(z) O(s(log s+ log jjBjj))

n(y) O(s(logm+ log jjBjj) + log jjjj)

d(y); n(z) O(s(logm+ log jjBjj))

We get the following lemmas.

Lemma 36 (R = Z) Let (y; z) be output from Algorithm SpeialMinimalSo-

lution. Then d(y) and d(z) have bitlength bounded by O(s(log jjBjj+ log s)).

Entries of n(y) and n(z) have bitlength bounded by O(s(log jjBjj + logm) +

log jjjj) and O(s(log jjBjj+ logm)) respetively.

Lemma 37 (R = Z) Assume that log jjU jj = O(log s + log log jjBjj). The

ost of one iteration of the loop in Algorithm SpeialMinimalSolution, exept

for the omputation of v and u, is bounded by O(m(MM(s)=s)M(d+ logm) +

mB(s(d + logm))) bit operations, where d is a bound for both log jjBjj and

(log jjjj)=s.

PROOF. Integers throughout are bounded in length by O(s(d+logm)) bits.

For most of the steps (eg. omputing denominators, gds, lms, vetor arith-

meti, omputation of BP et.) the lemma now follows from standard om-

plexity onsiderations.

For the omputation of a in Lemmas 33 and 34 we an use an algorithm de-

sribed in (Mulders and Storjohann, 1999) when B(n) = O(n

2

) and in (Stor-

johann and Mulders, 1998) when B(n) = O(M(n) log n).
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For the omputation of Pv, proeed as follows.

(1) Divide the entries in n(v) in hunks of length d(log

2

jjn(v)jj)=se bits and

onsider v as an s�O(s) matrix V . Note that log jjV jjj = O(d + logm).

(2) Compute d(v)Pv from PV by shifts and additions.

This shows that Pv an be omputed in the allotted time. The omputation

of uB is aomplished similarly. 2

The next result follows immediately from Lemma 37, Proposition 35 and

Corollaries 27 and 28.

Proposition 38 (R =Z) Let d be a bound for both log jjBjj and (log jjjj)=s.

� Taking U = f0; 1; : : : ;Mg with M = max(24; dlog

2

s

s=2

jjBjj

s

e), the expeted

ost of Algorithm SpeialMinimalSolution is O(m(MM(s)=s)M(d+logm)+

mB(s(d + logm))) bit operations, plus the ost of solving an expeted O(1)

instanes of L

Z

(s;mM jjBjj;max(M; jjjj)).

� Taking U = f0; 1g, the expeted ost is O((m(MM(s)=s)M(d + logm) +

mB(s(d + logm))) � (log s + log log jjBjj)) bit operations, plus the ost of

solving an expeted O(log s+ log log jjBjj) instanes of L

Z

(s; jjBjj; jjjj).

6.2 Complexity when R = K[x℄

When the elements in U have degree bounded by t, the entries in BP have

degree bounded by jjBjj+t and thus the degree of any minor of BP is bounded

by N := s(jjBjj+ t). Choose T in step (1) di�erently depending on the size of

K.

(Case 1: #K � 2N) Take for T a set of 2N polynomials of the form X � a,

with a 2 K.

(Case 2: #K < 2N) Let q = #K and let l 2 Z be minimal suh that

q

l

� q(q

l=2

� 1)=(q � 1) � 2N . Then l = O(log

q

N). From Lidl and Nieder-

reiter (1983, Exerise 3.27) it follows that there are � 2N=l moni irre-

duible polynomials of degree l over K. Thus, we an take for T the set

of all moni irreduible polynomials of degree l. The expliit onstrution

of T is not atually required. A random irreduible polynomial of degree l

(hosen randomly and uniformly from the set of all suh polynomials) an

be onstruted with an expeted number of O(l

3

) �eld operations, see for

example Shoup (1994).

In what follows we will either take U = f0; 1g or take U as in Corollary 30.

Then t = O(log

q

s + log

q

jjBjj) and it follows that the degree of a prime in
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T is bounded by O(log

q

s+ log

q

jjBjj). Similar to the integer ase, we get the

following degree bounds holding throughout the algorithm:

n(y

0

) O(sjjBjj+ jjjj)

d(y

0

); d(ẑ); d(z) O(sjjBjj)

d(u); d(ŷ); d(v); n(v); n(ẑ); d(y); n(z) O(s(jjBjj+ t))

n(u); n(ŷ); n(y) O(s(jjBjj+ t) + jjjj)

We get the following lemmas.

Lemma 39 (R = K[x℄) Let (y; z) be output from Algorithm SpeialMinimal-

Solution. Then d(y) and d(z) have degree bouded by O(sjjBjj). Let t be the

maximum degree of entries in U . Then entries of n(y) and n(z) have degree

bounded by O(s(jjBjj+ t) + jjjj) respetively.

Lemma 40 (R = K[x℄) Let t be the maximum degree of entries in U . The ost

of one iteration of the loop in Algorithm SpeialMinimalSolution, expet for

omputation of v and u, is bounded by O(m (MM(s)=s)M(d+t)+mB(s(d+t)))

�eld operations, where d is a bound for both jjAjj and jjjj=s.

The proof of Lemma 40 is analogous to the proof of Lemma 37.

The next result follows immediately from Lemma 40, Proposition 35 and

Corollaries 29 and 30.

Proposition 41 (R = K[x℄) Let d be a bound for both jjBjj and jjjj=s.

� Taking U as in Corollary 30, the expeted ost of Algorithm SpeialMini-

malSolution is O(m(MM(s)=s)M(d+t)+mB(s(d+t))) �eld operations, plus

the ost of solving O(1) instanes of L

K[x℄

(s; jjBjj + t;max(t; jjjj)), where

t = 0 if #K is in�nite and t = blog

#K

(3sjjBjj) otherwise.

� Taking U = f0; 1g, the expeted ost is bounded by O((m(MM(s)=s)M(d) +

mB(sd))�(log s+log jjBjj)) �eld operations, plus the ost of solving O(log s+

log jjBjj) instanes of L

K[x℄

(s; jjBjj; jjjj).

7 Certi�ed solving over Zand K[x℄

Let R =Zor R = K[x℄. This setion presents an extension of Algorithm Spe-

ialMinimalSolution that solves the erti�ed linear system solving problem.

The algorithm that takes as input an A 2 R

n�m

, whih may not be of full row

rank, together with a b 2 R

n�1

and returns as output one of the following:
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(1) (y; z), where

� y 2 F

m�1

with Ay = b,

� z 2 F

1�n

with zA 2 R

1�m

, and

� zb and y have the same denominator.

(2) (\no solution", q), where

� q 2 F

1�n

with qA = (0; : : : ; 0) 2 F

1�m

and qb 6= 0.

The idea of ertifying inonsisteny as in 2. is due to Giesbreht et al. (1998,

Theorem 2.1), who make the following observation.

Theorem 42 Let A 2 F

n�m

and b 2 F

n�1

. There is no x 2 F

m�1

suh that

Ax = b if and only if there exists a u 2 F

1�n

suh that uA = (0; : : : ; 0) 2 F

1�m

and ub 6= 0.

Algorithm Certi�edSolver is shown in Figure 3. The algorithm is an easy

extension of Algorithm SpeialMinimalSolution. Let r = rank[A℄ and �r =

rank[A j b℄. Then r � �r � r+1 and the system Ax = b is inonsistent preisely

when �r = r+1. This test for inonsisteny is performed in step 2 by omputing

the rank over R=(p) for a randomly hosen prime p. The set T will be hosen

so that for at least half the primes p 2 T we have, in step 2, that s = rank[A℄.

After step 2 and throughout the algorithm we will always have s � �s � s+1,

s � r and �s � �r. Now onsider step 3. Assume, without loss of generality, that

P = I

n

and Q = I

m

.

In ase s = �s, Algorithm SpeialMinimalSolution is used to ompute a minimal

denominator solution y to the full row rank subsystem [A

11

jA

12

℄x = b

1

. The

algorithm then heks if y is a solution to the entire system Ax = b. Note that

if s = r and r = �r then this hek will not fail. If this hek does fail, then

we know that �s < �r, so we inrement �s, adjust P as indiated and return to

step 3 with �s = s+1. Note that if we are arriving at step 3 from step 4, then

the �rst �s rows of P [AQjb℄ have rank only �s � 1 over R=(p), but rank �s over

R, as required.

In ase �s = s+ 1, the algorithm attempts to ompute a erti�ate for inon-

sisteny. By onstrution,

�

u �1

�

2

6

4

A

11

A

12

b

1

A

21

A

22

b

2

3

7

5
=

2

6

4

A

11

A

12

b

1

 �

3

7

5
(6)

where  mod p is zero and � is nonzero when  is zero. The algorithm then

heks if  is zero overR, in whih ase the system is erti�ed to be inonsistent.

Note that if s = r then this hek will not fail.
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algorithm Certi�edSolver

input: A 2 R

n�m

, b 2 R

n�1

.

output: Either (y; z) with y 2 F

m�1

, z 2 F

1�n

, Ay = b, zA 2 R

1�m

and

d(y) = d(zA) OR (\no solution", q) where q 2 F

1�n

suh that qA = 0 and

qb 6= 0.

(1) T := SetOfPrimes(A);

(2) Choose p randomly and uniformly from T ;

s := rank(A mod p);

�s := rank([Ajb℄ mod p);

P;Q := permutation matries as indiated below;

(3) Write P [AQjb℄ using a blok deomposition as

P [AQjb℄ =

2

6

6

6

6

6

4

A

11

A

12

b

1

A

21

A

22

b

2

A

31

A

32

b

3

3

7

7

7

7

7

5

;

where A

11

is s � s with rank s, A

21

is (�s� s) � s and the �rst �s rows of

the augmented system have rank �s.

(4) if s = �s then

omment:

�

A

21

A

22

b

2

�

has dimension 0� (m+ 1).

v := A

�1

11

b

1

;

y

0

:= (v; 0; : : : ; 0) 2 F

n�1

;

(y; z) := SpeialMinimalSolution([A

11

jA

12

℄; b

1

; y

0

);

if [A

31

jA

32

℄y 6= b

3

then

Let i be suh that i'th entry of [A

31

jA

32

℄y � b

3

is nonzero;

Interhange row s+ 1 and s+ i of P ;

�s := �s+ 1;

goto (3)

�;

z := (z; 0; : : : ; 0) 2 F

1�n

;

return (Qy; zP )

else

u := A

21

A

�1

11

;

if uA

12

6= A

22

then goto (2) �;

q := (u;�1; 0; : : : ; 0) 2 F

1�m

;

return (\no solution", qP )

�

Fig. 3. Algorithm Certi�edSolver
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Reall that T is hosen so that at most half the primes in T ause repetition

of the algorithm. The next result now follows from Fat 26.

Proposition 43 Algorithm Certi�edSolver is orret. The algorithm repeats

step 2 an expeted number of fewer than two times.

7.1 Complexity when R =Z

A maximal rank minor of A is bounded in dimension by m and hene in

magnitude by N = (m

1=2

jjAjj)

m

. As explained in x6.1, we an set l = 6 +

dlog logNe and hoose T to be a set of 2ddlog

2

Ne=(l � 1)e primes between

2

l�1

and 2

l

. Then primes in T have length bounded by O(logm+ log log jjAjj)

bits.

Proposition 44 (R = Z) The expeted ost of Algorithm Certi�edSolver is

bounded O(nm(MM(r)=r

2

)M(d+ logm) + (n+m)B(r(d+ logm))) bit opera-

tions, where r is the rank of A and d is bound for both log jjAjj and (log jjbjj)=r,

plus the ost of solving an expeted O(1) instanes of L

Z

(r;mM jjAjj;max(M; jjAjj; jjbjj)),

where M = max(24; dlog

2

r

r=2

jjAjj

r

e).

PROOF. The ost of omputing [A j b℄ mod p is bounded byO(nmM(log jjAjj)+

nM(log jjBjj)). The ranks (s; �s) over R=(p) are reovered by omputing a

row ehelon form of [A j b℄ mod p. This osts O(nm (MM(r)=r

2

)M(log p) +

r B(log p)) bit operations using an algorithm of Storjohann and Mulders (1998),

see also (Storjohann, 2000, Chapter 2). At the same time we an reover per-

mutation matries P and Q suh that the prinipal s�s submatrix of PAQ is

nonsingular modulo p and the �rst �s rows of P [Ajb℄ are linearly independant

over R=(p). This shows that step 2 an be aomplished in the allotted time.

Now onsider step 4. Lemma 36 bounds log jjn(y)jj by O(r(logm+log jjAjj)+

log jjbjj). For the omputation of [A

31

jA

32

℄y use the same tehnique as used to

ompute Pv in the proof of Proposition 37. Compute uA

12

in a similar way. Fi-

nally, the omputation of v and u are instanes of L

Z

(r; jjAjj;max(jjAjj; jjbjj)).

The result now follows from Proposition 38 and 43. 2

Corollary 45 (R = Z) Let nonsingular A 2 Z

n�m

and b 2 Z

n�1

be given.

The erti�ed linear system solving problem with input (A; b) an be solved with

an expeted number of O(nmr B(d+logm)) bit operations, where r is the rank

of A and d is a bound for both log jjAjj and (log jjbjj)=r.
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PROOF. Let � = mM jjAjj and � = max(M; jjAjj; jjbjj). Then log� =

O(logm + log jjAjj) and log � = O(r log�). Eah instane of L(r; �; �) an

be solved in the allotted time using the algorithm supporting part 2 of Propo-

sition 31. This requires knowing a p 2 Z for whih the input system re-

mains nonsingular modulo p. Notie that, every time an instane of L

Z

(r; �; �)

needs to be solved in Algorithm Certi�edSolver or SpeialMinimalSolution,

suh a p has already been hosen and has bitlength bounded by log p =

O(logm + log log jjAjj). This gives the estimate O(nmr B(d + logm) + (n +

m)B(r(d + logm))) for the expeted number of required bit operations. The

bound given in the statement of the orollary is atually a simpli�ation, ob-

tained using B(r(d + logm)) = O(B(r)B(d + logm)), then B(r) = O(r

2

). 2

7.2 Complexity when R = K[x℄

Any minor of A has degree bounded by M := min(n;m)jjAjj. Choose T in

step (1) di�erently depending on the size of K.

(Case 1: #K � 2M) Choose T as explained in ase 1 of x6.2 with N :=M .

(Case 2a: #K < 2M and log

#K

min(n;m) � jjAjj) Choose T as explained

in ase 2 of x6.2 with N :=M .

(Case 2b: #K < 2M and log

#K

min(n;m) > jjAjj) Construt an irreduible

polynomial p of degree 2jjAjj (see Shoup (1994)) and ompute �r to be the

rank of A mod p 2 (K[x℄=(p))

n�m

. By Lemma 46 we have r � �r � 2r where

r is the rank of A. Construt T as in ase 2 of x6.2 with N := �rjjAjj.

In all ases, primes in T have degree bounded by O(log

#K

r + log

#K

jjAjj).

Lemma 46 Let A 2 K[x℄

n�m

and p 2 K[x℄ be irreduible. Let �r be the rank

of A mod p 2 (K[x℄=(p))

n�m

. If deg p > jjAjj, then the rank r of A over K[x℄

satis�es �r � r � �r=(1 � jjAjj=deg p).

PROOF. The rank modulo a prime an only derease so the laim �r � r is

lear. It remains to prove that r � �r=(1 � jjAjj=deg p), whih is equivalent

to r � �r � rjjAjj=deg p. If r = �r the laim is true, so assume �r < r. Let

diag(s

1

; s

2

; : : : ; s

r

; 0; : : : ; 0) be the Smith form of A. Then

P

i

deg s

i

� rjjAjj,

whih is the maximum degree of any minor of A. Sine p divides s

�r+1

, we have

deg s

�r+1

� deg p. Sine s

1

js

2

j � � � js

r

, we have (r� �r) deg p �

P

i

deg s

i

� rjjAjj.

The result follows. 2

The proof of the next result is analogous to that of Proposition 44.
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Proposition 47 (R = K[x℄) The expeted ost of Algorithm Certi�edSolver

is bounded by O(nm(MM(r)=r

2

)M(d + t) + (n + m)B(r(d + t))) �eld oper-

ations, plus the ost of solving an expeted O(1) instanes of L

K[x℄

(r; jjAjj+

t;max(t; jjbjj)), where r is the rank of A, d is a bound for both jjAjj and jjbjj=r,

and t = 0 if #K is in�nite and t = blog

#K

(3rjjAjj) otherwise.

The proof of the next result is similar to that of Corollary 45, but now using

Proposition 32 to bound the ost of solving the instanes of L

K[x℄

(r; �; �).

Corollary 48 (R = K[x℄) Let nonsingular A 2 K[x℄

n�n

and b 2 K[x℄

n�1

be given. The erti�ed linear system solving problem with input (A; b) an be

solved using an expeted number of

(1) O(nmr B(d + t)), or

(2) O(nm (MM(r)=r

2

)M(d+ t)+MM(r)(log r)B(d+ t)+(n+m)B(r(d+ t)))

�eld operations, where r is the rank of A, d is a bound for both jjAjj and jjbjj=r,

and t = 0 if #K is in�nite and t = O(log

#K

r) otherwise.

If we assume that B(r) = O(MM(r)=r), whih stipulates that if fast ma-

trix multipliation tehniques are used then fast polynomial arithmeti should

be used also, then the bound in part 2 of Corollary 48 an be simpli�ed to

O(nm(MM(r)=r

2

)(log r)B(d + t)) �eld operations.

8 Shortest vetor omputation

We mention the notion of minimal fator. Let R be a prinipal ideal domain

and F its fration �eld. Let Ax = b over R be onsistent. The set of all f 2 F

for whih Ax = fb admits a diophantine solution is a frational ideal of R in

F , that is an R{module I � F suh that I � R for some  2 Rnf0g (see Lang

(1986)). As in Setion 2, we get a unique generator f(A; b) for this frational

ideal | the set equals f(A; b)R. We all f(A; b) the minimal fator of the

system Ax = b. The vetor f(A; b)b is the shortest vetor in the diretion of

b that is ontained in the R{lattie spanned by the olumns of A. It is not

diÆult to show that f(A; b) = d(A; b=g)=g, where g is the gd of entries in b

and d(A; b=g) is the minimal denominator of Ax = b=g. Thus, f(A; b) an be

omputed easily using the algorithms in this paper.
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