
High-order lifting and integrality
erti�
ation

Arne Storjohann

S
hool of Computer S
ien
e, University of Waterloo, Waterloo, Ontario, Canada,

N2L 3G1

Abstra
t

Redu
tions to polynomial matrix multipli
ation are given for some
lassi
al prob-

lems involving a nonsingular input matrix over the ring of univariate polynomials

with
oeÆ
ients from a �eld. High-order lifting is used to
ompute the determinant,

the Smith form, and a rational system solution with about the same number of �eld

operations as required to multiply together two matri
es having the same dimension

and degree as the input matrix. Integrality
erti�
ation is used to verify
orre
tness

of the output. The algorithms are spa
e eÆ
ient.

1 Introdu
tion

The intera
tion between matrix multipli
ation and linear algebra problems on

matri
es over a �eld K is well understood. The best known algorithms for

omputing the determinant of a nonsingular matrix A 2 K

n�n

, or for solving

a linear system of equations involving A, have
ost O(n

�

) �eld operations,

2 < � � 3 a valid exponent for matrix multipli
ation. This paper gives similar

results for problems on polynomial matri
es. We show that a wide variety

of problems involving a nonsingular matrix A 2 K[x℄

n�n

an be solved with

O(n

�

d) � (log n+ log d)

O(1)

�eld operations, d a bound on the degree of A.

Of the problems we
onsider the most fundamental is linear system solving.

Let a ve
tor b 2 K[x℄

n�1

be given in addition to A. The nonsingular rational

system solving problem is to
ompute the ve
torA

�1

b 2 K(x)

n�1

. Numerators

and denominators of entries in A

�1

b will have degree bounded by nd, where d

is a bound on the degree of entries in A and b. The most eÆ
ient algorithms

for
omputing A

�1

b work by
omputing a trun
ated X-adi
 series expansion

of A

�1

b using Hensel lifting, or Newton iteration, and then applying ratio-

nal fun
tion re
onstru
tion. The des
riptions in Moen
k and Carter (1979)

Email address: astorjoh�s
g.uwaterloo.
a (Arne Storjohann).

Preprint submitted to Elsevier S
ien
e 27 Mar
h 2003

and Dixon (1982) are for integer matri
es but
arry over to the
ase K[x℄

immediately. The method usually requires knowing a small degree X 2 K[x℄

su
h that X is relatively prime to detA (Notation: X ? detA). The te
h-

nique has been well studied. Mulders and Storjohann (2000) give a variation

that always allows
hoosing X to be a power of x and is designed to handle

eÆ
iently input systems of arbitrary shape and rank. Given a system with n

rows, m
olumns, rank r, and degrees of entries bounded by d, the algorithm

either
omputes a rational solution or proves that the system is in
onsistent

with O((n + m)r

2

d

1+�

) �eld operations from K, 0 < � � 1 depending on

the
ost of polynomial multipli
ation. Thus, the algorithm solves the nonsin-

gular rational system solving problem deterministi
ally with O(n

3

d

1+�

) �eld

operations. In this paper we redu
e the exponent of n from three down to �,

2 < � � 3 a valid exponent for matrix multipli
ation. Given an X 2 K[x℄ su
h

that X ? detA, our algorithm
omputes A

�1

b with O(n

�

(log n)d

1+�

) �eld op-

erations, d a bound for degA, deg b, and degX. We also give an extension

of the algorithm that allows entries in b to have degree substantially larger

than those in A without adversely a�e
ting the
ost estimate. It suÆ
es that

d � (deg b)=n as well as d � degA;degX.

The se
ond problem we
onsider is integrality
erti�
ation. Let a matrix B 2

K[x℄

n�m

be given in addition to A. The integrality
erti�
ation problem is

to answer the following question:
an every
olumn of B be expressed as a

K[x℄{linear
ombination of
olumns of A? This question is equivalent to the

following: is A

�1

B over K[x℄? Given an X 2 K[x℄ su
h that X ? detA,

our algorithm answers this question with O(n

�

(log n)d

1+�

) �eld operations,

d a bound for degA and degX. This
ost estimate holds for any B su
h

that m(1 + (degB)=d) is O(n). A spe
ial
ase of the integrality
erti�
ation

problem o

urs when B is equal to the identity matrix. The question then

be
omes: is A a unimodular matrix, that is, is the inverse of A over K[x℄?

Sin
e A is unimodular pre
isely when detA has degree zero, we
an test for

unimodularity by
omputing detA mod X for a small degree, and randomly

hosen X. This gives a nearly optimal Monte Carlo probabilisti
 algorithm

with running time about O(n

�

+ n

2

d) �eld operations (ignoring logarithmi

fa
tors). Here we give a deterministi
 algorithm for solving this spe
ial
ase

of the integrality
erti�
ation problem that has
ost O(n

�

(log n)d

1+�

) �eld

operations.

The third problem we
onsider is determinant
omputation. Mulders and Stor-

johann (2002) show how to
ompute detA deterministi
ally with O(n

3

d

2

) �eld

operations, d = degA. The Las Vegas probabilisti
 algorithm we give here

uses an expe
ted number of O(n

�

(log n)

2

d

1+�

) �eld operations. For �elds of

small
ardinality the
ost estimate in
reases by a poly-logarithmi
 fa
tor. In

the same time the Smith form of A is
omputed, also Las Vegas. Re
all that

Smith form of A is the unique diagonal matrix S = Diagonal(s

1

; s

2

; : : : ; s

n

)

2

su
h that s

i

js

i+1

for 1 � i < n, and S = UAV for unimodular matri
es

U; V 2 K[x℄

n�n

.

We mention some re
ent related work. Giorgi et al. (2003) give algorithms

with
ost O(n

�

d) � (log n + log d)

O(1)

�eld operations for
omputing minimal

bases and order d matrix approximates, and for
omputing a
olumn redu
ed

form of an invertible matrix. Giorgi et al. (2003) also
onsider some redu
tions

in the opposite dire
tion. They show that if there is a straight-line program

of length D(n; d) for
omputing the
oeÆ
ient of degree d of the determinant,

then there is a straight-line program of length no more than 8D(n; d) whi
h

multiplies two matri
es of degree d.

2 Model of
omputation and
ost fun
tions

We analyse our algorithms by bounding the number of required �eld operations

from K on an algebrai
 random a

ess ma
hine; the operations +, �, � and

\divide by a nonzero" are
onsidered as unit step operations.

Polynomial multipli
ation

We use M for polynomial multipli
ation. Let M :Z

�0

�! R

>0

be su
h that

polynomials in K[x℄ of degree bounded by d
an be multiplied using at most

M(d) �eld operations. The
lassi
al method has M(d) = 2d

2

. The algorithm of

Karatsuba and Ofman (1963) allows M(d) = O(d

1:59

). FFT-based methods al-

lowM(d) = O(d(log d)(log log d)).We refer to (Gathen and Gerhard, 1999, Se
-

tion 11.1) for more details and referen
es. We assume that M(ab) � M(a)M(b)

for a; b 2Z

>1

.

It will be useful to de�ne an additional fun
tion B for polynomial g
d{related

omputations. We assume that B(d) = M(d) log d or B(d) = d

2

. Then the

extended g
d problem with two polynomials in K[x℄ of degree bounded by d

an be solved with O(B(d)) �eld operations.

Matrix multipli
ation

We use MM for matrix multipli
ation. Let MM :Z

>0

�! R

>0

be su
h that

two n� n matri
es over a ring (
ommutative, with 1)
an be multiplied with

MM(n) ring operations. The
lassi
al method has MM(n) = 2n

3

� n

2

. The

3

algorithm of Strassen (1973) allows MM(n) = 42n

log

2

7

. The asymptoti
ally

fastest known method allows MM(n) = O(n

2:376

).

We use MM with two arguments for polynomial matrix multipli
ation. Let

MM :Z

>0

�Z

�0

�! R

>0

be su
h that two matri
es from K[x℄

n�n

with de-

gree bounded by d
an be multiplied together with at most MM(n; d) �eld

operations. We
an always
hoose MM(n; d) = O(MM(n)M(d)), but better

bounds may be possible. For example, if #K > 2d then we
an use an evalu-

ation/interpolation s
heme to get MM(n; d) = O(MM(n)d + n

2

B(d)).

In our algorithms, every time we multiply two polynomial matri
es we will

need to perform some additional work also, e.g., redu
e all entries in the

produ
t modulo a given X 2 K[x℄, degX � d. For this reason, we are going

to assume that n

2

M(d) = O(MM(n; d)). This is a mild assumption, sin
e an

information lower bound gives n

2

(2d + 1) = O(MM(n; d)).

Some results will be greatly simpli�ed by making the expli
it assumption

that B(n) = O(MM(n)=n), whi
h stipulates that if fast matrix multipli
ation

te
hniques are used then fast polynomial multipli
ation should be used also.

For example, B(n) = O(MM(n)=n), then nB(nd) = O(MM(n)B(d)).

Redu
tion to matrix multipli
ation

We use MM for some problems (see below) that
an be redu
ed re
ursively to

matrix multipli
ation. For n a power of two, de�ne

MM(n; d) :=

0

�

log

2

n

X

i=0

4

i

MM(2

�i

n; d)

1

A

+ n

2

(log n)B(d): (1)

If n is not a power of two, then de�ne MM(n; d) := MM(�n; d), where �n is the

smallest power of two greater than n. We now motivate the de�nition of MM.

Suppose X 2 K[x℄ is nonzero. Then R := K[x℄=(X) is a prin
ipal ideal ring.

R
an be taken to be the set of all polynomials in K[x℄ with degree stri
tly

less than d, d = degX. Multipli
ation in R
osts O(M(d)) �eld operations

and is a

omplished by �rst multiplying over K[x℄ and then redu
ing modulo

X. Similarly, matri
es in R

n�n

an be multiplied with MM(n; d) �eld opera-

tions. The following operations
an be a

omplished with O(MM(n; d)) �eld

operations:

� Compute a unimodular U 2 R

n�n

su
h that UA is upper triangular.

� Compute the inverse of an A 2 R

n�n

or determine that A is not invertible.

� Compute the Smith
anoni
al form of an A 2 R

n�n

.

4

An algorithm supporting the running time O(MM(n; d)) �eld operations for

the �rst problem is given by Hafner and M
Curley (1991). Now
onsider

the se
ond problem. A will be invertible pre
isely if all diagonal entries of

UA are invertible. If so, the inverse of UA
an be found using an additional

O(MM(n; d) + nB(d)) �eld operations: �rst multiply UA by the diagonal ma-

trix D su
h that diagonal entries in DUA are equal to one, then apply a

standard re
ipe for triangular matrix inversion. The result for
omputing the

Smith form is given in (Storjohann, 2000, Chapter 7).

If there exists an absolute
onstant
 > 0 su
h that n

2+

= O(MM(n)), then

we
an
hoose MM(n; d) = O(MM(n)B(d)).

3 Outline and synopsis

Let K be a �eld and A 2 K[x℄

n�n

be nonsingular. Let B 2 K[x℄

n�m

be given

in addition to A. For any X 2 K[x℄ su
h that X ? detA, the matrix of

rational fun
tions A

�1

B 2 K(x)

n�m

admits a unique, and possibly in�nite,

X-adi
 series expansion:

A

�1

B = C

0

+ C

1

X + C

2

X

2

+ C

3

X

3

+ � � � ; (2)

where ea
h C

�

2 K[x℄

n�m

has degC

�

< degX. The �rst part of this paper

(se
tions 4|10) presents fast algorithms for
omputing only parts of the ex-

pansion. We
all this high-order lifting. There are di�erent variations of high-

order lifting. One variation
alls for
omputing a single
ontiguous segment

[C

h

; C

h+1

; : : : ; C

h+k�1

℄ of
oeÆ
ients for a given h and k. Another variation

omputes a
olle
tion of su
h segments for a given expansion. This se
tion

gives intuitive des
riptions of the key ideas and algorithms for the various

versions of X-adi
 lifting.

Nonsingular rational system solving using X-adi
 lifting

Se
tions 4 and 5 de�ne some notation and re
all some basi
 fa
ts about X-

adi
 expansions of rational fun
tions, in
luding the re
overy of su
h expansions

using X-adi
 lifting.

Consider the problem of
omputing the X-adi
 expansion of

A

�1

b =

0

+

1

X +

2

X

2

+

3

X

3

+ � � �

where b is a
olumn ve
tor, and both degA and deg b are � degX. Suppose

5

our goal is to
ompute the expansion up to orderX

k

, k even.We
an divide the

problem into two similar subproblems. The �rst is to
ompute the expansion

of A

�1

b up to order X

k=2

.

A

�1

b �

0

+

1

X + � � � +

k=2�1

X

k=2�1

mod X

k=2

: (3)

Multiplying both sides by A and then subtra
ting the right hand side from

the left gives

b�A(

0

+

1

X + � � �+

k=2�1

X

k=2�1

) � 0 mod X

k=2

:

The left hand side must be divisible by X

k=2

. Set

r

k=2

= (b�A(

0

+

1

X + � � �+

k=2�1

X

k=2�1

))=X

k=2

: (4)

The degree bounds for b and A imply that deg r

k=2

< d. The key idea ofX-adi

lifting is to repla
e of the \mod" in (3) with the \residue" term r

k=2

. Multiply

both sides of (4) by A

�1

X

k=2

, and rearrange to obtain the following:

A

�1

b =

A

�1

b mod X

k=2

z }| {

0

+

1

X + � � �+

k=2�1

X

k=2�1

+A

�1

r

k=2

X

k=2

: (5)

Thus, the se
ond subproblem |
ompute the expansion of A

�1

r

k=2

up to

order X

k=2

| has the same form as the �rst subproblem. The salient point

is that we need to solve the �rst subproblem before we
an begin the se
ond

subproblem. High{order lifting will be used to
ompute r

k=2

dire
tly, allowing

us to in
orporate re
ursion into the
omputation.

High{order
omponents of matrix inverse

Se
tion 6 gives our �rst high-order lifting algorithm. Consider (2) when B = I

n

and degA � degX. Let Æ denote the
oeÆ
ients of the X-adi
 expansion of

A

�1

, ordered from left to right. Let � denote a
oeÆ
ient that has
urrently

been
omputed. Normally, all
oeÆ
ients of the expansion are
omputed up

to order X

�(n)

| in terms of n this
osts O(n

�

� n) �eld operations using

O(log n) steps of quadrati
 X-adi
 lifting,
f. Figure 1. After the fourth step

of lifting (whi
h dominates the
ost) all initial thirty-two
oeÆ
ients have

been
omputed. The algorithm we give here
omputes a
riti
al subset of

size �(log n) from the �rst �(n)
oeÆ
ients by using quadrati
 X-adi
 lifting

ombined with short produ
ts,
f. Figure 2. The result is that a �(n) fa
tor in

the running time is repla
ed by �(log n). Although most of the
oeÆ
ients of

6

0 � Æ

1 Æ � Æ

2 Æ Æ � � Æ

3 Æ Æ Æ Æ � � � � Æ

4 Æ Æ Æ Æ Æ Æ Æ Æ � � � � � � � � Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

5 Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ � � � � � � � � � � � � � � � �

Fig. 1. Quadrati
 lifting for n = 5

0 � Æ

1 � � Æ

2 Æ Æ � � Æ

3 Æ Æ Æ Æ Æ Æ � � Æ

4 Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ � � Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

5 Æ � �

(6)

Fig. 2. High-order
omponent lifting for n = 5

the inverse expansion are not re
overed, the
omputation of the
riti
al subset

of high-order
omponents has many appli
ations. The algorithm des
ribed in

this se
tion is used in almost all subsequent se
tions.

Unimodularity
erti�
ation

Se
tion 7 gives an algorithm to test for unimodularity. Re
all that a matrix

A 2 K[x℄

n�n

is unimodular pre
isely when the determinant of A is a nonzero

onstant polynomial. Another
hara
terization of unimodularity is that the

x-adi
 expansion of A

�1

exists (i.e., x ? detA), and is �nite.

Suppose that A has degA � d and x ? detA. Let X = x

d

. Let k > n and

onsider the (possibly in�nite) X-adi
 expansion

A

�1

=

C

z }| {

C

0

+ C

1

X + � � �+ C

k�2

X

k�2

+C

k�1

X

k�1

+ C

k

X

k

+ � � � :

If A is unimodular, then A

�1

2 K[x℄

n�n

and we have the
lassi
al a priori

bound degA

�1

� (n � 1)d, i.e., A is unimodular pre
isely if all
oeÆ
ients

7

C

i

are zero for i � k � 1. Thus, if C

k�1

is not the zero matrix, then A is not

unimodular. A key point to note here is that the parti
ular value of k is not

important. We only require that k > n. In our
ase we will
hoose k to be

the smallest possible power of two. Then we
an
ompute C

k�1

using O(log n)

steps of high{order lifting.

Now suppose that C

k�1

is the zero matrix. It is not immediately
lear that

this should imply that all of C

i

are zero for i � k � 1, but in Se
tion 7 we

show that this is in fa
t the
ase.

Thus, we
an test if A is unimodular by determining if a single high order

oeÆ
ient C

k�1

of A

�1

is the zero matrix.

Series solution | small degree right hand side

Se
tion 8 gives an algorithm for rational system solving in the
ase where

deg b � degA. The main idea is to redu
e the problem of solving one system up

to orderX

k

to that of solving two systems up to orderX

k=2

. We have des
ribed

su
h a redu
tion above,
f. (5). The key di�eren
e here is that we
ompute

the residue term r

k=2

shown in (4) without �rst solving the initial subproblem

shown in (3). In Se
tion 5 we observe that r

k=2

an be
omputed using a

single matrix�ve
tor involving A and a parti
ular high-order
omponent of

the inverse of A. We now have

A

�1

b mod X

k

=

�

A

�1

�

b r

k=2

�

mod X

k=2

�

2

6

4

1

X

k=2

3

7

5

(7)

where the right hand side

�

b r

k=2

�

has
olumn dimension two,
f. (5). This idea

is applied re
ursivelyO(log k) times, ea
h time doubling the
olumn dimension

of the right hand side. This allows matrix multipli
ation to be introdu
ed into

the rational system solving problem, e�e
tively redu
ing the overall
omplexity

in terms of n from O(n

3

) to O(n

�

� log n).

Series solution

Se
tion 9 extends the result of the previous se
tion to allow deg b = O(ndegA)

without in
reasing the asymptoti

ost. Let d = degX, and
onsider the
ase

when the right hand side b has degrees bounded by nd, say b = b

0

+ b

1

X +

b

2

X

2

+ � � �+ b

n�1

X

n�1

. Suppose our goal is to produ
e A

�1

b up to order X

n

.

8

Solving this single linear system with large degree right hand side is equivalent

to solving n systems with small degree right hand side:

A

�1

b mod X

n

=

n�1

X

i=0

(A

�1

b

i

mod X

n

)X

i

!

mod X

n

:

The algorithm en
odes the \fat" ve
tor b as an n�nmatrixB with ith
olumn

equal to b

i�1

and then uses the small degree right hand side series solution

method. The ith
olumn of B may be thought to be impli
itly multiplied

by X

i�1

. For an n � n matrix C, a matrix�ve
tor produ
t Cb, deg b < nd,

an be now a

omplished more eÆ
iently as a matrix�matrix produ
t CB,

degB < d.

Suppose n is even. Let B

i

denote the ith
olumn of B. Using �(1) matrix

produ
ts involving A, B, and the high-order
omponents of the expansion of

A

�1

, the algorithm produ
es a se
ond matrix R su
h that

A

�1

b mod X

n

=

0

B

B

B

B

B

B

�

subproblem 1

z }| {

n�1

X

i=0

(A

�1

B

i

mod X

n=2

)X

i

+

subproblem 2

z }| {

n�1

X

i=0

(A

�1

R

i

mod X

n=2

)X

i

1

C

C

C

C

C

C

A

mod X

n

=

n�1

X

i=0

(A

�1

(B

i

+R

i

) mod X

n=2

)X

i

!

mod X

n

:

Thus, a single matrix addition B+R allows us to re
urse on only one instead

of two problems. Now suppose n is a power of two. Then this te
hnique
an

be applied for order X

n=2

;X

n=4

;X

n=8

; � � � yielding a series of O(log n) transfor-

mations using the high-order
omponents of the expansion of A

�1

. The overall

ost in terms of n is O(n

�

� log n).

High-order lifting

Se
tion 10 gives a general algorithm for solving the high-order lifting prob-

lem: the re
overy, for some h and k, of a
ontiguous segment of
oeÆ
ients

H = C

h

+ C

h+1

X + C

h+2

X

2

+ � � � + C

h+k�1

X

k�1

from the X-adi
 expansion

of A

�1

B as shown in (2). By general we mean that the
olumn dimension

as well as degrees of entries in B are not restri
ted. The algorithm here is a

straightforward
ombination of the algorithms of previous se
tions. The key

point is the analysis. Let degA � d, d = degX, and m be the
olumn dimen-

sion of B. A running time of O(n

�

� log n) in terms of n is a
hieved for a wide

range of the input parameters m, k and degB. All that is required is that the

9

parameters m and f(degB)=d; kg be balan
ed: both m� (degB)=d and m�k

should be O(n).

Integrality
erti�
ation

Many of the te
hniques we develop in this paper for polynomial matri
es are

appli
able to the integer matrix setting. It will be
onvenient to give some

examples using integers.

There is a natural analogy between X-adi
 expansions of polynomials and

p-adi
 expansions of integers, e.g.,

2691 = 1 + 9(10) + 6(10

2

) + 2(10

3

):

For brevity, we will prefer to use the standard representation on the left.

Fra
tions also admit 10-adi
 expansion, e.g., if

f := a

�1

b =

b

a

=

19669081321110688996

2691

;

then

f � �1486436269044957387929646558644 mod 10

32

:

Note that the fra
tion a

�1

b is redu
ed, i.e., a ? b. Suppose we have a number

t (say t = 32292) whi
h we suspe
t to be a multiple of the denominator of f ,

i.e., ft may be an integer. It turns out that we
an assay if ft is integral by

using only the high-order segment h := �14864362689 of f mod 10

32

, shown

underlined above. Note that

(

h

z }| {

�14864362690)(

t

z }| {

32292) �

z }| {

14520 mod10

12

:

There are now two key observations. First, provided the high-order segment is

high enough, we will have
 < t if and only if t is multiple of the denominator

of f . Se
ond, the fa
tor by whi
h t is too large
an be
omputed as g
d(t;
),

whi
h in this
ase is equal to 12: note that 32292=12 = 2691. We
all
 an

integrality
erti�
ate for f and t.

Now
onsider the above ideas but for polynomial matri
es. We are starting

with a left fra
tion F = A

�1

B, and we have a matrix T whi
h is a multiple of

10

the denominator of F , i.e., FT is over K[x℄. Then F admits the two fra
tion

des
riptions: F = (A)

�1

(B) and F = (A

�1

BT)(T)

�1

. (Se
tion 12 re
alls some

fa
ts about fra
tion des
riptions.) Noti
e that the se
ond des
ription is a right

fra
tion. The �rst des
ription may be very
ompa
t in the sense that both A

and B have degree bounded by d. Unfortunately, the numerator A

�1

BT in

the se
ond des
ription may be mu
h larger, even if T has small degree. Our

approa
h is to
ompute an integrality
erti�
ate C from a high-order lift of

A

�1

B. (Se
tion 11 gives an algorithm for
omputing integrality
erti�
ates

over K[x℄.) Then, up to normalization, the matrix fra
tion CT

�1

will have

the same irredu
ible denominator as (A

�1

BT)(T

�1

), and degC < deg T . The

fa
tor by whi
h T is too large
an then be
omputed via a matrix g
d involving

T and C, instead of T and A

�1

BT .

Our appli
ation of the above idea is to
ompute portions of the Hermite form

of A, see below. Similar ideas have been used already by Villard (1996), in

parti
ular also for
omputing a
olumn redu
ed form of A. Roughly speaking,

a
olumn redu
ed form of A is a matrix P with
olumns of minimal degree,

and su
h that AU = P for a unimodular matrix U . A key observation made in

Villard (1996) is that P is a normalized denominator of (I)(A)

�1

. In parti
ular,

(I)(A)

�1

also admits the des
ription (U)(P)

�1

. Here again, although degP �

degA, the degree of U may be mu
h larger than A. In Giorgi et al. (2003)

this diÆ
ulty is avoided by using integrality
erti�
ation as des
ribed here:

a matrix fra
tion (C)(P)

�1

is
omputed whi
h has the same denominator as

(U)(P)

�1

, but with degC < degP .

Smith form
omputation

Se
tions 13{17 are about
omputing the Smith form of a nonsingular A 2

K[x℄

n�n

. Re
all the the Hermite
olumn basis of A looks like

H =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

h

1

� h

2

� � h

3

.

.

.

.

.

.

.

.

.

.

.

.

� � � � � � h

n

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;

and that h

1

h

2

� � �h

n

is the moni
 asso
iate of detA. The Smith form of A

looks like Diagonal(s

1

; s

2

; : : : ; s

n

), where s

i

divides s

i+1

for 1 � i � n� 1. See

Se
tion 12 for de�nitions of the Hermite and Smith form. Let H(s; e) denote

the submatrix ofH
omprised of rows and
olumns s; s+1; : : : ; e. ThenH(s; e)

11

is also a Hermite
olumn basis. Our approa
h for
omputing the determinant

of A is to
ompute the Smith form S(s; e) of H(s; e) for various
hoi
es of s

and e.

Se
tion 13 presents an algorithm for
omputing a trailing submatrix H(s; n)

of H. Se
tion 14 modi�es the algorithm to
ompute S(s; n) dire
tly, without

�rst
omputing H(s; n). It is well known that the singleton matrix H(n; n) =

S(n; n) = [h

n

℄
an be
omputed by solving a single linear system involving

A. Our algorithm for S(s; n) in Se
tion 14
ompute S(s; n) for (n � s+ 1) �

nd=deg S(n; k) in about the same time, d the degree of A.

Se
tion 15 presents a key subroutine for the algorithm in Se
tion 16, whi
h

in turn extends the algorithms of the previous se
tions to
ompute S(s; e)

for arbitrary e. Finally, Se
tion 17 gives an algorithm for
omputing the

Smith form. If the input matrix has been su

essfully pre
onditioned so that

Diagonal(h

1

; h

2

; : : : ; h

m

) is equal to the Smith form of A, then the algorithm

requires
omputing a sequen
e of only O(log n) blo
ks: S(n; n); S(n � 2; n �

1); S(n� 6; n� 3); : : :, ea
h blo
k having double the dimension of the last but

with degree at most half. The algorithm uses integrality
erti�
ation to verify

that Diagonal(h

1

; h

2

; : : : ; h

m

) is indeed equal to the Smith form.

4 X-adi
 representation

Let X 2 K[x℄ have degree greater than zero. By X-adi
 expansion of a 2

K[x℄ we mean to write a = a

0

+ a

1

X + a

2

X

2

+ � � � + a

l

X

l

, l nonnegative,

deg a

�

< degX. Throughout this paper, \degree" or \deg a" will always mean

degree with respe
t to x. For example, if degX = d and a

l

is nonzero, then

dl � deg a < d(l + 1). The a

�

are
alled
oeÆ
ients of the X-adi
 expansion

of a.

The ring K[x℄ has the usual arithmeti
 operations f+;�;�g. Here we de�ne

the three additional operations fLeft;Trun
; Inverseg and give some of their

properties. These fun
tions will impli
itly be de�ned in terms of a pros
ribed

X. Let a 2 K[x℄ and k be nonnegative. Suppose the X-adi
 expansion of a is

a = a

0

+ a

1

X + a

2

X

2

+ � � � : Then Left(a; k) = a

k

+ a

k+1

X + a

k+2

X

2

+ � � � and

Trun
(a; k) = a

0

+ a

1

X + a

2

X

2

+ � � �+ a

k�1

X

k�1

.

The Trun
 operation trun
ates an X-adi
 expansion, e.g.,

a= a

0

+ a

1

X + a

2

X

2

+ a

3

X

3

+ a

4

X

4

+ a

5

X

5

+ a

6

X

6

+ � � �

Trun
(a; 4)= a

0

+ a

1

X + a

2

X

2

+ a

3

X

3

:

The Left operation
orresponds to division by a power of X; the name
omes

12

from the fa
t that all
oeÆ
ients of the X-adi
 expansion are shifted left, e.g.,

a= a

0

+ a

1

X + a

2

X

2

+ a

3

X

3

+ a

4

X

4

+ a

5

X

5

+ a

6

X

6

+ � � �

Left(a; 3)= a

3

+ a

4

X + a

5

X

2

+ a

6

X

3

+ a

7

X

4

+ a

8

X

5

+ a

9

X

6

+ � � � :

If a ? X, then Inverse(a; k) denotes the unique b 2 K[x℄ su
h that b =

Trun
(b; k) and Trun
(ab; k) = Trun
(ba; k) = 1.

Let a; b 2 K[x℄ and k be nonnegative. A key property of the Left(�; k) opera-

tion is linearity: Left(a+ b; k) = Left(a; k) + Left(b; k).

Lemma 1 If deg b < deg(X

k

) then Left(a+ b; k) = Left(a; k).

The next lemma observes that Left and Trun

ommute.

Lemma 2 If l � k then Left(Trun
(a; k); l) = Trun
(Left(a; l); k � l).

X-adi
 expansions of matri
es

Everything dis
ussed above extends naturally to matrix polynomials: repla
e

a; b 2 K[x℄ with A;B 2 K[x℄

n�m

. The operation Inverse takes as input a

square matrix A, detA ? X.

The inverse of a nonsingular polynomial-matrix usually has rational fun
tion

entries. For example, if

A =

2

6

4

1 1

x 1

3

7

5
then A

�1

=

2

6

4

1

1�x

1

x�1

x

x�1

1

1�x

3

7

5
2 K(x)

2�2

: (8)

It is well known that denominators of redu
ed entries in A

�1

are divisors of

the determinant of A. In the above example detA = 1 � x whi
h has degree

bounded by one. In general, for a nonsingular A 2 K[x℄

n�n

we have:

Fa
t 3 deg(detA) � ndeg(A).

For a given B 2 K[x℄

n�m

, the matrix A

�1

B usually has rational fun
tion

entries as opposed to polynomials. But (detA)A

�1

B is a polynomial matrix

and

Fa
t 4 deg((detA)A

�1

B) � deg(B) + (n� 1) deg(A).

Consider again A from (8). Sin
e detA ? x, we
an express ea
h entry of A

�1

as an in�nite x-adi
 expansion.

13

A

�1

=

2

6

4

1 + x+ x

2

+ x

3

+ � � � �1� x� x

2

� x

3

+ � � �

�x� x

2

� x

3

+ � � � 1 + x+ x

2

+ x

3

+ � � �

3

7

5

=

2

6

4

1 �1

0 1

3

7

5
+

2

6

4

1 �1

�1 1

3

7

5
x+

2

6

4

1 �1

�1 1

3

7

5
x

2

+ � � � :

The last equation gives the in�nite x-adi
 expansion of A

�1

. In the rest of

the paper, we will use A

�1

similarly, e.g., A

�1

denotes a possibly in�nite X-

adi
 expansion. In algorithms we will use Trun
(Inverse(A; k)b; k); we will also

write Trun
(A

�1

; k) to mean the same.

Computation with X-adi
 polynomials

We are working overK[x℄ with the operations f+;�;�, Left, Trun
, Inverseg.

The
ost of these operations will depend essentially on our
hoi
e of represen-

tation for elements of K[x℄. Let d = degX, and for a 2 K[x℄ let k be minimal

su
h that a = Trun
(a; k). Then deg a < kd, and a
an be stored as a list

omprised of the �rst k
oeÆ
ients of the X-adi
 expansion.

The
onversion between the x-adi
 representation of a and the X-adi
 rep-

resentation (either dire
tion)
an be
omputed with O(M(kd) log k) �eld op-

erations (Gathen and Gerhard, 1999, Theorem 9.15 and Exer
ise 9.20). In

parti
ular, if k � 2 then the
ost of
onversion is O(M(d)) �eld operations;

this
ase o

urs often in our algorithms.

Let b 2 K[x℄ be given in addition to a, deg b � deg a < kd. Suppose a

and b are represented as X-adi
 polynomials. Then the X-adi
 expansion of

a+ b or a� b
an be
omputed with at most kd �eld operations. The X-adi

expansion of ab
an be
omputed with O(M(kd)(log k)) �eld operations by

�rst
onverting a and b to x-adi
 representation,
omputing the produ
t, then

onverting ba
k to X-adi
 representation; we may sometimes use the
oarser

bound M(kd)(log k) = O(B(kd)). Similarly, Inverse(a; k)
an be
omputed

with O(B(kd)) �eld operations; the
ost of the
onversions between X-adi

and x-adi
 representation does not dominate here.

Operations Left, Trun
 and multipli
ation by a power of X are free.

In most of our algorithms, we will make the impli
it assumption that the

input is given in X-adi
 representation. The output will also be given in X-

adi
 representation.

14

5 X-adi
 lifting

Let A 2 K[x℄

n�n

be nonsingular. Suppose we are given an X 2 K[x℄ su
h

that X ? detA. In the X-adi
 expansion

A

�1

=

C

z }| {

�+ �X + � � �+ �X

l�1

+ �X

l

+ �X

l+1

+ � � � ;

ea
h � lives in K[x℄

n�n

and has degree stri
tly less than degX. Let B 2

K[x℄

n��

. The next de�nition and lemma give the key idea of X-adi
 lifting,

f. (4). Note that the division by X

k

is exa
t.

De�nition 5 Residue(A;B; k) := (B �ATrun
(A

�1

B; k))=X

k

.

Lemma 6 A

�1

B = Trun
(A

�1

B; k) +A

�1

Residue(A;B; k)X

k

.

The next result follows immediately.

Theorem 7 Let C := Trun
(A

�1

; l) and R := Residue(A;B; k). Then

A

�1

B =

Trun
(A

�1

B; k)

z }| {

�+ �X + � � �+ �X

k�1

+

Trun
(CR; l)X

k

z }| {

�X

k

+ � � �+ �X

k+l�1

+ � � � :

There are some well known variation of Theorem 7. For i � 0, de�ne C

(i)

:=

Trun
(A

�1

; 2

i

) and R

(i)

:= Residue(A; I; 2

i

). Then A

�1

= C

(i)

+ A

�1

R

(i)

X

2

i

.

Starting with C

(0)

, a Newton iteration (or quadrati
 X-adi
 lifting) applies

Theorem 7 for l = k = 2; 4; 8; 16; : : :, doubling the number of
oeÆ
ients of

the expansion of A

�1

at ea
h step,
f. Figure 1:

Inverse(A; 2

k

) :=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

C

(0)

:= Inverse(A; 1);

for i to k do

R

(i�1)

= (I �AC

(i�1)

)=X

2

i�1

;

C

(i)

:= C

(i�1)

+ Trun
(C

(i�1)

R

(i�1)

; 2

i

)X

2

i�1

od;

return C

(k)

In all of the above, no assumptions are required on the degree of A or B.

15

X-adi
 lifting using short produ
ts

Let k > 1,

Trun
(A

�1

; k) =

C

z }| {

�+ �X + �X

2

+ � � �+ �X

k�3

+

EX

k�2

z }| {

�X

k�2

+ �X

k�1

; (9)

and

Trun
(A

�1

B; k) = �+ �X + �X

2

+ � � �+ �X

k�3

+ �X

k�2

+DX

k�1

: (10)

Suppose we want to
ompute only the single high-order
oeÆ
ient D shown

in (10). In general, we need all
oeÆ
ients of Trun
(A

�1

; k) to
ompute D.

The next result shows that it suÆ
es to have only E in
ase B has small

degree. Let d = degX.

Theorem 8 Assume degB � d. Then D = Trun
(Left(EB; 1); 1).

PROOF. Trun
(A

�1

; k) = C + EX

k�2

. This gives D = Left(Trun
(CB +

EBX

k�2

; k); k � 1). Using Lemma 2 we
an inter
hange the Left and Trun

to get D = Trun
(Left(CB+EBX

k�2

; k� 1); 1). The key observation is that

degCB � degC+degB < (k�2)d+d � (k�1)d. Using Lemma 1 now gives

D = Trun
(Left(EBX

k�2

; k � 1); 1). 2

Now
onsider the
omputation of R := Residue(A;B; k),
f. Lemma 6. In

general, we need all
oeÆ
ients of Trun
(A

�1

B; k) to
ompute R. The next

result shows it suÆ
es to have only D in
ase degA and degB are small

enough.

Theorem 9 Assume degA � d and degB < kd. Then R = Left(�AD; 1).

PROOF. By de�nition, R = Left(B �ATrun
(A

�1

B; k); k). Lemma 1 gives

R = Left(�ATrun
(A

�1

B; k); k). Now substitute Trun
(A

�1

B; k�1)+DX

k�1

for Trun
(A

�1

B; k), and apply Lemma1 to see that the termATrun
(A

�1

B; k�

1), whi
h has degree stri
tly less than kd, vanishes. 2

Re
all Lemma 6: A

�1

B = Trun
(A

�1

B; k) + A

�1

RX

k

. Thus, the problem of

omputing A

�1

B up to a
ertain order
an be divided into two parts. The �rst

is to
ompute Trun
(A

�1

B; k). The se
ond is to
ontinue by
omputing the

16

expansion of A

�1

R. The following
orollary of Theorem 9 states that R may

have small degree even if B has large degree.

Corollary 10 Assume degA � d and degB < kd. Then degR < d.

The next
orollary is obtained by applying Theorems 8 and 9 in su

ession.

Corollary 11 Assume degA � d and degB � d. Then

R = Left(�ATrun
(Left(EB; 1); 1); 1):

6 High-order
omponents of matrix inverse

Let A 2 K[x℄

n�n

be nonsingular, detA ? X. In what follows, let C

(i)

=

Trun
(A

�1

; 2

i

). In this se
tion we show how to re
over the high order
ompo-

nents of the inverse of A: E

(i)

= Left(C

(i)

; 2

i

� 2) for i = 1; 2; : : : ; k. To see

more
learly what we are
omputing, write the X-adi
 expansion of A

�1

as

A

�1

= C

0

+ C

1

X + C

2

X

2

+ � � � :

Then

C

(1)

=

E

(1)

z }| {

C

0

+ C

1

X

C

(2)

=C

0

+ C

1

X +

E

(2)

X

2

z }| {

C

2

X

2

+ C

3

X

3

C

(3)

=C

0

+ C

1

X + � � �+ C

5

X

5

+

E

(3)

X

6

z }| {

C

6

X

6

+ C

7

X

7

.

.

.

Algorithm 1 (HighOrderComp) re
overs only the high order
omponents E

(�)

as shown above.

Algorithm 1 HighOrderComp[X℄(A; k)

Input: A 2 K[x℄

n�n

and k � 2.

Output: (E

(1)

; E

(2)

; : : : ; E

(k)

) as shown above.

Condition: X ? detA and d = degX � degA.

(1) L := Inverse(A; 1);

H := Trun
(LLeft(I �AL; 1); 1);

E

(1)

:= L +XH;

17

(2) for i from 2 to k do

L := Trun
(Left(E

(i�1)

Left(�AL; 1); 1); 1);

H := Trun
(Left(E

(i�1)

Left(�AH; 1); 1); 1);

E

(i)

:= L+XH

od;

return (E

(1)

; E

(2)

; : : : ; E

(k)

)

We now prove that the algorithm is
orre
t. Let [X℄(A; k) be a valid input

tuple. Let (L

(i)

;H

(i)

) be equal to (L;H) as
omputed during the loop in phase 2

with index i. Phase 1
omputes (L

(1)

;H

(1)

) = (C

0

; C

1

) and E

(1)

= C

0

+XC

1

.

Using indu
tion on j we now prove that

L

(j)

=C

2

j

�2

(11)

H

(j)

=C

2

j

�1

(12)

E

(j)

=C

2

j

�2

+XC

2

j

�1

(13)

for j = 1; 2; : : : ; k. The base
ase j = 1 has already been established. That

(13) follows from (11) and (12) is
lear. Let i > j. Our goal is to show (11)

and (12) hold for j = i. It will be suÆ
ient to show that (12) holds sin
e the

proof of (11) is analogous.

The algorithm
omputes

H

(i)

:= Trun
(Left(E

(i�1)

R

z }| {

Left(�AH

(i�1)

; 1); 1); 1):

By Theorem 9, R = Residue(A; I; 2

i�1

). Theorem 8 now gives that H

(i)

is

equal to the
oeÆ
ient of X

2

i�1

�1

in the X-adi
 expansion of A

�1

R. Sin
e

A

�1

= C

(i�1)

+ A

�1

RX

2

i�1

, this
oeÆ
ient is equal to C

2

i

�1

. This shows

that (12) holds. The proof that (11) holds for j = i is analogous. This ends

the indu
tive proof of
orre
tness of the algorithm.

Inverse(A; 1)
ostsMM(n; d) �eld operations. The remaining steps
ostO(kMM(n; d))

�eld operations.

Proposition 12 Algorithm 1 (HighOrderComp) is
orre
t. The
ost of the

algorithm is O(kMM(n; d) +MM(n; d)) �eld operations.

7 Unimodularity
erti�
ation

We present an algorithm to assay if a given A 2 K[x℄

n�n

is unimodular. Our

approa
h is to assay if the x-adi
 expansion of A

�1

is �nite.

18

Algorithm 2 UnimodularityCert(A)

Input: A 2 K[x℄

n�n

.

Output: True in
ase A is unimodular, otherwise false.

(1) if det(A mod x) = 0 then return false �;

d := degA;

X := x

d

;

(2) k := dlog

2

(n+ 3)e;

(�; �; : : : ; �; E) := HighOrderComp[X℄(A; k);

(3) if E is the zero matrix then

return true

else

return false

�

We now prove
orre
tness. Let k and E be as
omputed in phase 2. Then

Trun
(A

�1

; 2

k

) = Trun
(A

�1

; 2

k

� 2) + EX

2

k

�2

. Let R := Residue(A;B; 2

k

).

On the one hand, suppose E is the zero matrix. Then Theorem 9 gives R =

Left(�ALeft(E; 1); 1), i.e.,R is the zero matrix. Sin
eA

�1

= Trun
(A

�1

; 2

k

)+

A

�1

RX

2

k

, the expansion of A

�1

is �nite. This shows that a return value of

true is always
orre
t.

On the other hand, the parameter k is
hosen so that deg(X

2

k

�2

) is stri
tly

greater than degrees of numerators in A

�1

2 K(x)

n�n

. Thus, if A

�1

is over

K[x℄ then E will be the zero matrix.

Proposition 13 Algorithm 2 (UnimodularityCert) is
orre
t. The
ost of

the algorithm is O((log n)MM(n;degA) +MM(n;degA)) �eld operations.

8 Series solution | small degree right hand side

Let A 2 K[x℄

n�n

be nonsingular, detA ? X. Let b 2 K[x℄

n�1

. We present an

algorithm for
omputing theX-adi
 expansion ofA

�1

b up to a given order. The

algorithm requires both deg b as well as degA to be bounded by d, d = degX.

Algorithm 3 SeriesSolSmall[X℄(A; b; k)

Input: A 2 K[x℄

n�n

, b 2 K[x℄

n�1

, and k � 2.

Output: Trun
(A

�1

b; 2

k

).

Condition: X ? detA and d = degX � max(degA;deg b).

(1) E

(1)

; E

(2)

; : : : ; E

(k�1)

:= HighOrderComp[X℄(A; k � 1);

(2) B :=

�

b O

�

where O is the n� (2

k

� 1) zero matrix;

19

for i from k � 1 by �1 to 1 do

�

B := the �rst 2

k

� 2

i

olumns of B;

�

R := Left(�ATrun
(Left(E

(i)

�

B; 1); 1); 1);

R :=

�

O

�

R

�

where O is the n� 2

i

zero matrix;

B := B +R;

od;

B := Trun
(E

(1)

B; 2);

(3) # Let B =

�

d

0

0 d

2

0 � � � d

2

k

�2

0

�

.

B := d

0

+ d

2

X

2

+ � � � + d

2

k

�2

X

2

k

�2

;

return B

We now prove
orre
tness. Let [X℄(A; b; k) be valid input tuple.

The purpose of phase 2 is to
ompute all the
oeÆ
ients of Trun
(A

�1

b; 2

k

).

The idea is most
learly explained with an example:
onsider the
ase k = 4.

Let r

j

= Residue(A; b; j), j 2 f0; 2; 4; : : : ; 14g. Then r

0

= b, and repeated

appli
ation of Lemma 6 gives

Trun
(A

�1

b; 16) =Trun
(A

�1

r

0

; 16)

=Trun
(A

�1

r

0

; 8) + Trun
(A

�1

r

8

; 8)X

8

.

.

.

=Trun
(A

�1

r

0

; 2) + � � �+ Trun
(A

�1

r

14

; 2)X

14

Our initial problem is to
ompute the solution to a single linear system up to

order 16. At the start of the loop we have

B =

�

r

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�

:

The j'th
olumn of B may be thought to be impli
itly multiplied by X

j�1

,

f. (7). After the loop
ompletes with index i, the matrix B is as follows:

i = 3 r

0

r

8

i = 2 r

0

r

4

r

8

r

12

i = 1 r

0

r

2

r

4

r

6

r

8

r

10

r

12

r

14

3

7

7

7

7

7

5

:

Thus, ea
h pass through the loop doubles the number of systems we need to

solve, but halves the order of pre
ision to whi
h we need the solutions. After

the loop
ompletes we need to solve 8 systems up to order X

2

; this is done by

the last line of phase 2.

20

We now give a formal proof of
orre
tness for phase 2. We will prove by

indu
tion on s, s = k; k � 1; k � 2; : : : ; 1, that after the loop
ompletes with

index i = s, we have

A

�1

b �

2

k

X

j=1

Trun
(A

�1

Column(B; j); 2

s

)X

j�1

(mod X

2k

); (14)

and degB � d. The base
ase s = k
orresponds to the state of B before the

�rst iteration of the loop: (14) holds.

Now assume (14) holds with s = i + 1, some i � 1. Let

j

= Column(B; j),

where B is at the start of the loop with index i. Then (14) with s = i+1 gives

A

�1

b �

2

k

X

j=1

Trun
(A

�1

j

; 2

i+1

)X

j�1

(mod X

2k

): (15)

We need to show that (14) holds with s = i after the loop
ompletes with

index i. Let �

j

:= Residue(A;

j

; 2

i

). Then Lemma 6 gives

Trun
(A

�1

j

; 2

i+1

) = Trun
(A

�1

j

; 2

i

) + Trun
(A

�1

�

j

; 2

i

)X

2

i

:

Substituting into (15) gives

A

�1

b �

2

k

X

j=1

Trun
(A

�1

j

; 2

i

)X

j�1

+

2

k

X

j=1

Trun
(A

�1

�

j

; 2

i

)X

2

i

+j�1

(mod X

2k

):(16)

Let

�

R and R be as
omputed in the loop. By Corollary 11, Column(

�

R; j) = �

j

for 1 � j � 2

k

� 2

i

. Substitute �

j

= Column(R; 2

i

+ j � 1) for 1 � j � 2

k

� 2

i

into (16), and use the observation that Trun
(A

�1

�

j

; 2

i

)X

2

i

+j�1

� 0 mod X

2k

in
ase j > 2

k

� 2

i

, to get

A

�1

b �

2

k

X

j=1

Trun
(A

�1

(

j

+ Column(R; j)); 2

i

)X

j�1

(mod X

2k

):

Thus, after the update B := B+R, B will satisfy (14) with s = i. Corollary 10

gives degR < d. Thus degB � max(degB;degR) � d. This
ompletes the

indu
tive proof.

Now we estimate the
ost. The
ost of phase 1 is given by Proposition 12. In

phase 2, the number of nonzero
olumns inB is doubling ea
h time through the

loop. The last iteration of the loop dominates. The
ost is O((2

k

=n)MM(n; d))

21

�eld operations if 2

k

> kn. If 2

k

� kn the
ost is dominated by that of phase 1.

Finally, phase 3 multiplies ea
h
olumn of B by the appropriate power of X

and adds all the
olumns together. Under our
ost model this is free.

Proposition 14 Algorithm 3 (SeriesSolSmall) is
orre
t. The
ost of the

algorithm is O((k + 2

k

=n)MM(n; d) +MM(n; d)) �eld operations.

9 Series solution

Let A 2 K[x℄

n�n

be nonsingular, detA ? X. Let b 2 K[x℄

n�m

. We present an

algorithm for
omputing the X-adi
 expansion of A

�1

b up to a given order.

The algorithm here extends the algorithm given in the previous se
tion: no

assumption is required on the degree of b, and b may have
olumn dimension

m, m > 1.

Algorithm 4 SeriesSol[X℄(A; b; k)

Input: A 2 K[x℄

n�n

, b 2 K[x℄

n�m

, and k � 2.

Output: Trun
(A

�1

b; 2

k

).

Condition: X ? detA and d = degX � degA.

(1) E

(1)

; E

(2)

; : : : ; E

(k�1)

:= HighOrderComp[X℄(A; k � 1);

(2) # Let X-adi
 expansion of b be b

0

+ b

1

X + b

2

X

2

+ � � �.

B :=

�

b

0

b

1

� � � b

2

k

�1

�

;

for i from k � 1 by �1 to 1 do

�

B := the �rst m2

k

�m2

i

olumns of B;

�

R := Left(�ATrun
(Left(E

(i)

�

B); 1); 1); 1);

R :=

�

O

�

R

�

where O is the n�m2

i

zero matrix;

B := B +R;

od;

B := Trun
(E

(1)

B; 2);

(3) # Let B =

�

d

0

d

1

� � � d

2

k

�1

�

.

B := d

0

+ d

1

X + d

2

X

2

+ � � �+ d

2

k

�2

X

2

k

�2

+ Trun
(d

2

k

�1

; 1)X

2

k

�1

;

return B

We now prove
orre
tness. Let [X℄(A; b; k) be a valid input tuple.

Suppose m = 1. Then Algorithm 4 (SeriesSol) is identi
al to Algorithm 3

(SeriesSolSmall), ex
ept that b

i

is not ne
essarily zero for i > 0. The formal

proof of
orre
tness for phase 2
arries over dire
tly. There are some minor

di�eren
es in phase 3. Here, d

i

may not ne
essarily be zero for odd i, and in

parti
ular we need to trun
ate the expansion of d

2

k

�1

.

22

Now we estimate the
ost. The analysis for phase 2 is slightly di�erent than for

Algorithm 3 (SeriesSolSmall). Here, the number of nonzero
olumns in B is

bounded by O(m2

k

) in ea
h iteration of the loop. This gives the
ost estimate

of O(kdm2

k

=neMM(n; d)) �eld operations for phase 2. Phase 3 multiplies ea
h

olumn of B by the appropriate power of X and adds all the
olumns together.

Unlike the
orresponding phase in Algorithm 3 (SeriesSolSmall), we may

have to perform some additions here, but the
ost of this phase is dominated

by that of phase 2.

Proposition 15 Algorithm 4 (SeriesSol) is
orre
t. The
ost of the algo-

rithm is O(kdm2

k

=neMM(n; d) +MM(n; d)) �eld operations.

Let (A; b; �) be a valid input tuple to Algorithm 4 (SeriesSol), b a
olumn

ve
tor. Based on Fa
ts 3 and 4, Algorithm 5 (RationalSol)
omputes the

minimal degree moni
 fa
tor g of detA su
h that gA

�1

b is over K[x℄.

Algorithm 5 RationalSol[X℄(A; b)

Input: A 2 K[x℄

n�n

and b 2 K[x℄

n�1

.

Output: (gA

�1

b; g) 2 (K[x℄

n�1

;K[x℄) with g moni
 of minimal degree.

Condition: X ? detA and d = degX � degA.

(1) N := (n � 1) degA;

k := the smallest integer � 2 su
h that 2

k

> N + ndegA;

v := SeriesSol[X℄(A; b; k);

(2) g := 1;

for i to n do

h := minimal deg moni
 polynomial with deg Trun
(h(gv[i℄); 2

k

) � N ;

g := hg

od;

return (gv; g)

Ea
h
omputation of h in phase 2
osts O(B(2

k

d)) �eld operations using ra-

tional fun
tion re
onstru
tion, see (Gathen and Gerhard, 1999, Se
tions 5.7

and 11.1). This bounds the
ost of
onverting between X-adi
 and x-adi

representations.

Corollary 16 Algorithm 5 (RationalSol) is
orre
t. If (deg b)=d = O(n),

then the
ost of the algorithm is:

� O((log n)MM(n; d) +MM(n; d) + nB(nd)) �eld operations, or

� O((log n)MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive
.

23

10 High-order lifting

Let A 2 K[x℄

n�n

be nonsingular, detA ? X. Let B 2 K[x℄

n�m

. We present

an algorithm to
ompute a segment H = Left(Trun
(A

�1

B;h+ k); h) of
oef-

�
ients from the X-adi
 expansion of A

�1

B. Note that

A

�1

B = �+ �X + � � �+

HX

h

z }| {

�X

h

+ � � �+ �X

h+k�1

+ �X

h+k

+ � � � (17)

If h = 0 we
an use Algorithm 4 (SeriesSol) to
ompute H. In high-order

lifting, what is important is that h be larger than some spe
i�ed bound, say

h > l for a given l. The parti
ular value of h is not important, only that h > l.

Given l, the algorithm here
hooses h := 2

�

l

+ 2

�

k

, where

�

k is
hosen to be

the smallest integer that satis�es 2

�

k

d > degB, and

�

l is then
hosen to be the

smallest integer that satis�es 2

�

l

+ 2

�

k

> l.

The point of the algorithm here is that the
ost depends linearly on log l, not

on l. This is important be
ause in typi
al appli
ations l� k.

Algorithm 6 HighOrderLift[X℄(A;B; l; k)

Input: A 2 K[x℄

n�n

, B 2 K[x℄

n�m

, l � 2, and k a power of two.

Output: Left(Trun
(A

�1

B;h+ k); h) for some h > l.

Condition: X ? detA and d = degX � degA.

(1)

�

k := the smallest integer � 2 su
h that 2

�

k

d > degB;

D := Left(SeriesSol[X℄(A;B;

�

k); 2

�

k

� 1);

�

R := Left(�AD; 1);

(2)

�

l := the smallest integer � 2 su
h that 2

�

l

+ 2

�

k

> l;

(�; �; : : : ; �; E

(

�

l)

) := HighOrderComp[X℄(A;

�

l);

R := Left(�ATrun
(Left(E

(

�

l)

�

R; 1); 1); 1);

(3) H := SeriesSol[X℄(A;R; log

2

k);

return H

The purpose of phase 1 is to redu
e a possible large degree right hand side

B to a small degree residue

�

R. After phase 1 �nishes,

�

R = Residue(A;B; 2

�

k

)

(Theorem 9), deg

�

R < d (Corollary 10), and Lemma 6 gives

A

�1

B = Trun
(A

�1

B; 2

�

k

) +A

�1

�

RX

2

�

k

:

After phase 2 �nishes, R = Residue(A;

�

R; 2

�

l

) (Corollary 11), and

A

�1

B = Trun
(A

�1

B;h) +A

�1

RX

h

;

24

where h = 2

�

l

+ 2

�

k

.

Phase 1
osts O((log degB)dm(degB)=(nd)eMM(n; d) + MM(n; d)) �eld op-

erations (Proposition 15), phase 2
osts O((log l)MM(n; d) + MM(n; d)) �eld

operations (Proposition 12), and phase 3
osts O((log k)dmk=neMM(n; d) +

MM(n; d)).

Proposition 17 Algorithm 6 (HighOrderLift) is
orre
t. If log l = O(log n)

and both m � k and m � (degB)=d are O(n), then the
ost of the algorithm

is O((log n)MM(n; d) +MM(n; d)) �eld operations.

11 Integrality
erti�
ation

Let A 2 K[x℄

n�n

be nonsingular, detA ? X. Let B 2 K[x℄

n�m

and T 2

K[x℄

m�m

. This se
tion presents an algorithm to assay if A

�1

BT is integral,

i.e., if A

�1

BT is over K[x℄. Let

S = Trun
(A

�1

BT; h+ k):

We will spe
ify h and k below. For now, note that AS � BT mod X

h+k

. Thus,

if degAS and degBT are < (h+ k)d, then AS = BT , i.e., S = A

�1

BT .

Lemma 18 If degAS;degBT < (h+ k)d, then A

�1

BT is integral.

Let H = Left(Trun
(A

�1

B;h+k); h),
f. (17). Assume that k satis�es deg T <

kd. Then

S

z }| {

Trun
(A

�1

BT; h+ k) =

degree < hd + deg T

z }| {

Trun
(A

�1

B;h)T +

C

z }| {

Trun
(HT; k)X

h

: (18)

Theorem 19 Assume h satis�es (n � 1) degA+ degB + deg T < hd and k

satis�es deg T + degA < kd. Then A

�1

BT is integral if and only if degC <

deg T .

PROOF. (If:) Assume degC < deg T . Then deg S < hd + deg T (
f. (18)).

Now apply Lemma 18, noting that degAS � degA+degS. (Only if:)Assume

A

�1

BT is integral. Then Fa
t 4 gives degA

�1

BT � (n � 1) degA + degB +

deg T , whi
h is < hd. Considering (18), we must have Left(S; h) equal to the

zero matrix, whi
h implies C = �Left(Trun
(A

�1

B;h)T); h). 2

25

The next
orollary will be useful later on. The
orollary observes that C will

be invariant of the
hoi
e of k. Of
ourse, h and k are still required to satisfy

the assumptions of Theorem 19.

Corollary 20 If A

�1

BT is integral, then A

�1

BT = Trun
(A

�1

B;h)T + C.

In
ase of integrality, the algorithm returns C, the integrality
erti�
ate.

Algorithm 7 IntegralityCert[X℄(A;B; T)

Input: A 2 K[x℄

n�n

, B 2 K[x℄

n�m

, and T 2 K[x℄

m�m

.

Output: An integrality
erti�
ate if A

�1

BT is over K[x℄, otherwise fail.

Condition: X ? detA and d = degX � degA.

(1) h := the smallest integer su
h that hd > (n� 1)d + degB + deg T ;

k := the smallest power of two su
h that kd > deg T + d;

H := HighOrderLift[X℄(A;B; h; k);

(2) C := Trun
(HT; k);

if degC < deg T then

return C

else

return fail

�

The
ost estimate for phase 1 is given by Proposition 17. For the multipli
ation

ofHT in phase 2 we need to take
are to in
lude the
ost of
onversion between

X-adi
 and x-adi
 representation.

Proposition 21 Algorithm 7 (IntegralityCert) is
orre
t. If all of m, m�

(degB)=d and m� (deg T)=d are O(n), then the
ost of the algorithm is:

� O((log n)MM(n; d)+MM(n; d)+ (n=m)MM(m;nd=m)+nmB(nd=m)) �eld

operations, or

� O((log n)MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive
.

Extension to integer matri
es

We show how the idea of integrality
erti�
ation des
ribed above for poly-

nomial matri
es
an be adapted to integer matri
es. For
onvenien
e, we are

going to work modulo powers of 10 in the symmetri
 range. For a 2 Zand k

nonnegative, let Trun
(a; k) and Left(a; k) be the unique integers that satisfy

the following:

a = Left(a; k)10

k

+ Trun
(a; k); �

10

k

2

< Trun
(a; k) �

10

k

2

: (19)

26

In Maple(TM) we
ould de�ne these operators as follows:

Trun
(a,k) := pro
(a,k) mods(a,10^k) end:

Left(a,k) := pro
(a,k) (a-Trun
(a,k))/10^k end:

The
omputation with integer is
onsiderably
ompli
ated be
ause of the pres-

en
e of
arries. We will need the following lemmata, whi
h follow from the

de�nition of Left and Trun
.

Lemma 22 jLeft(a; k)j � (jaj+ jTrun
(a; k)j)=10

k

� jaj=10

k

+ 1=2.

Lemma 23 If jaj < 10

k

=2, then Trun
(a; k) = a.

We now develop the analogue of Theorem 19 for the integer setting. Suppose

detA ? 10. Let

S=Trun
(A

�1

BT; h+ k);

H =Left(Trun
(A

�1

B;h+ k); h); and

C =Trun
(HT; k):

Note that Trun
(AS; h+k) = Trun
(BT; h+k). Thus, if kASk

1

< 10

k

=2 and

kBTk

1

< 10

k

=2, then AS = BT (Lemma 23).

Lemma 24 If kASk

1

; kBTk

1

< 10

k

=2, then A

�1

BT is integral.

Before stating the main result, we give two more lemmas. The fa
t that the

absolute value norm over Zis Ar
himedian a

ounts for the �rst lemma. The

se
ond lemma follows from the �rst, Cramer's rule, and Hadamard's inequality.

Lemma 25 If P 2Z

��m

, and T 2Z

m��

, then kPTk

1

� mkPk

1

kTk

1

.

Lemma 26 kdet(A)A

�1

BTk

1

� mn

n=2

(kAk

1

)

n�1

kBk

1

kTk

1

.

The analogue of (18) is

S = Trun
(

j � j � (m=2)kTk

1

10

h

z }| {

Trun
(A

�1

B;h)T +C10

h

); h+ k): (20)

The magnitude bound in (20) follows from (19) and Lemma 25. The outermost

Trun
 operation on the right hand side of (20) is required be
ause the Trun

operation overZis not linear, e.g., Trun
(5+1; 1) 6= Trun
(5; 1)+Trun
(1; 1).

Theorem 27 Assume h satis�es mn

n=2

(kAk

1

)

n�1

kBk

1

kTk

1

< 10

h

=2 and

k satis�es nmkAk

1

kTk

1

< 10

k

=2. Then A

�1

BT is integral if and only if

kCk

1

� (m=2)kTk

1

.

27

PROOF. (If:) Assume kCk � (m=2)kTk

1

. Then S � mkTk

1

10

h

(
f. (20)).

Now apply Lemma 24, noting that kASk � nmkAk

1

kTk

1

10

h

(Lemma 25).

(Only if:)AssumeA

�1

BT is integral. Then kA

�1

BTk

1

< 10

h

=2 (Lemma 26).

Lemma 23 applied to both sides of (20) gives A

�1

BT = Trun
(A

�1

B;h)T +

C10

h

. Now note that Trun
(Trun
(A

�1

B;h)T; h) = A

�1

BT to dedu
e that

C = Left(Trun
(A

�1

B;h)T; h). The magnitude bound in (20), together with

Lemma 22, gives kCk

1

� (m=2)kTk

1

+ kA

�1

BTk

1

=10

h

< (m=2)kTk

1

+

1=2. Finally, note that kCk

1

2 Z, yielding the required bound: kCk

1

�

d(m=2)kTk

1

+ 1=2 � 1e. 2

Worked example

We will assay if A

�1

BT is integral, where

A :=

2

6

6

6

6

6

6

6

6

4

�28 �11 �56 �39

�5 42 �10 37

22 �44 �25 44

�32 3 38 46

3

7

7

7

7

7

7

7

7

5

, B :=

2

6

6

6

6

6

6

6

6

4

0 0

0 0

1 0

0 1

3

7

7

7

7

7

7

7

7

5

, T :=

2

6

4

3969 0

0 3969

3

7

5

:

Let h = 90 and k = 8. Then the assumptions of Theorem 27 are satis�ed. Let

H := Left(Trun
(A

�1

B; 98); 90) and C := Trun
(HT; 8):

H =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

�12194507 �23935500

�24086672 42529604

�5946082 33232552

24086672 �42529604

3

7

7

7

7

7

7

7

7

7

7

7

7

5

and C =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1717 500

�1168 �1724

542 �1112

1168 1724

3

7

7

7

7

7

7

7

7

7

7

7

7

5

: (21)

Sin
e kCk

1

= 1724 < (m=2)kTk

1

= 3969, we
on
lude that A

�1

BT is

integral. Note that we have not des
ribed how to eÆ
iently
ompute the high-

order lift H. This requires some new te
hniques and will be the subje
t of a

future paper.

28

12 The Hermite basis and fra
tion des
riptions

This se
tion introdu
es some notation and re
alls some de�nitions and fa
ts

that we will need in subsequent se
tions. The notation Sta
kMatrix(A

1

; A

2

)

is de�ned by

Sta
kMatrix(A

1

; A

2

) =

2

6

4

A

1

A

2

3

7

5

:

A matrix A is a left multiple of B if A = �B for a matrix � over K[x℄.

Analogously, A is a right multiple of B if A = B�. A matrix G 2 K[x℄

m�m

is

a row basis for a full
olumn rank A 2 K[x℄

n�m

if A and G are left multiples

of ea
h other. Column basis is de�ned analogously.

Corresponding to every full
olumn rank A 2 K[x℄

n�m

is a unimodular matrix

U 2 K[x℄

n�n

su
h that

UA = Sta
kMatrix(H; 0) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

h

1

h

12

� � � h

1m

h

2

� � � h

2m

.

.

.

.

.

.

h

m

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2 K[x℄

n�m

;

with o�-diagonal entries h

�j

inH of degree stri
tly less than the moni
 diagonal

entry h

j

in the same
olumn. The prin
ipal nonsingular submatrix H is the

unique Hermite row basis of A. In parti
ular, AH

�1

is over K[x℄ and has

Hermite row basis equal to I

m

. If A is square as well as nonsingular, then

U := HA

�1

is the unique unimodular transforming matrix su
h that UA = H.

Hermite
olumn basis is de�ned analogously: for A 2 K[x℄

m�n

with full row

rank m, the Hermite
olumn basis of A is the transpose of the Hermite row

basis of Transpose(A).

AU =

�

H

�

=

2

6

6

6

6

6

6

6

6

4

h

1

h

21

h

2

.

.

.

.

.

.

.

.

.

h

m1

h

m2

� � � h

m

3

7

7

7

7

7

7

7

7

5

2 K[x℄

m�n

:

29

Fa
t 28 Full row rank matri
es A and B over K[x℄ are right multiples of ea
h

other if and only A and B have the same Hermite
olumn basis.

We now re
all some fa
ts about matrix g
ds and fra
tions. (See for example

Kailath (1980) for a detailed study.) Suppose A

1

and A

2

are over K[x℄, with

same
olumn dimension, and A

2

is nonsingular. Then a right matrix g
d of

A

1

and A

2

is any row basis for Sta
kMatrix(A

1

; A

2

). Now let F 2 K(x)

n�m

have rank m.

De�nition 29 A nonsingular matrix D 2 K[x℄

m�m

is an irredu
ible right de-

nominator of F if FD is over K[x℄, and I

m

is a right g
d of Sta
kMatrix(FD;D).

Irredu
ible right denominators of F are right equivalent (equal up to post-

multipli
ation by a unimodular matrix on the right) inK[x℄

m�m

. In parti
ular,

we will use the following two results.

Fa
t 30 If D

1

and D

2

are irredu
ible right denominators of F , then the Her-

mite
olumn basis of D

1

equals the Hermite
olumn basis of D

2

.

Fa
t 31 Let D be an irredu
ible right denominator of F , and M 2 K[x℄

m�m

.

Then FM is over K[x℄ if and only if M is a right multiple of D.

Suppose we have a nonsingular right multiple M 2 K[x℄

m�m

of an irre-

du
ible right denominator of F . Then F admits the right fra
tion des
ription

F = (FM)(M)

�1

. An irredu
ible right denominator of F
an be
omputed

from FM and M as follows. Let G be a right g
d (e.g., the Hermite row ba-

sis) of Sta
kMatrix(FM;M) 2 K[x℄

n�m

. Then Sta
kMatrix(FM;M)G

�1

=

Sta
kMatrix(FMG

�1

;MG

�1

) is also over K[x℄, and has Hermite row basis

I

m

. Then F = (FMG

�1

)(MG

�1

)

�1

, and MG

�1

is by de�nition an irredu
ible

right denominator of F . This gives the following well known re
ipe.

Fa
t 32 Let M 2 K[x℄

m�m

be nonsingular and su
h that FM is over K[x℄.

Then MG

�1

is an irredu
ible right denominator of F , where G is any row

basis of Sta
kMatrix(FM;M).

13 Trailing Hermite basis

Let m satisfy 1 � m � n, and throughout this se
tion, let

� A 2 K[x℄

n�n

be nonsingular,

� B 2 K[x℄

n�m

the the last m
olumns of I

n

,

� T 2 K[x℄

m�m

be the trailing submatrix of the Hermite
olumn basis of A.

30

This se
tion presents Algorithm 8 (TrailingHermite) for
omputing T . The

algorithm is based on the observation that the following matrix is unimodular:

A

�1

H = [� j A

�1

BT ℄. It follows that A

�1

BT is over K[x℄ and that I

m

is a

left multiple of A

�1

BT . This gives the following.

Lemma 33 T is an irredu
ible right denominator of A

�1

B.

In parti
ular, T is the Hermite
olumn basis of any other irredu
ible right

denominator of A

�1

B (Fa
t 30). Suppose we are given a nonsingular M 2

K[x℄

m�m

su
h that A

�1

BM is over K[x℄. Then Fa
t 32 gives a method to

ompute an irredu
ible right denominator of A

�1

B from A

�1

BM and M .

Unfortunately,A

�1

BM 2 K[x℄

n�m

may have large degree (i.e., degA

�1

BM �

(n � 1) degA + degB + degM)
ompared to M and T , leading to a bad

omplexity for the row basis
omputation. Our algorithm avoids this by using

high-order lifting to
omputing a matrix C 2 K[x℄

n�m

, with degC < degM ,

and su
h that (C)(M

�1

) and (A

�1

BM)(M

�1

) have the same irredu
ible right

denominators.

Algorithm 8 TrailingHermite[X℄(A;M;m)

Input: A 2 K[x℄

n�n

and a nonsingular M 2 K[x℄

m�m

.

Output: The trailing m�m submatrix T of the Hermite
olumn basis of A

in
ase M is a right multiple of T , otherwise fail.

Condition: X ? detA and d = degX � degA.

(1) B := the last m
olumns of I

n

;

C := IntegralityCert[X℄(A;B;M);

if C = fail then return fail �;

(2) E := HermiteRowBasis(Sta
kMatrix(C;M));

D := HermiteColumnBasis(ME

�1

);

return D

We now prove
orre
tness. By the spe
i�
ation of Algorithm 7 (IntegralityCert),

phase 1 will not return fail if and only if A

�1

BM is integral. By Fa
t 31 and

Lemma 33, (A

�1

B)M is integral if and only if M is right multiple of T .

Suppose that the algorithm does not return fail. Let G be the Hermite row ba-

sis of Sta
kMatrix(A

�1

BM;M). Then A

�1

BMG

�1

and MG

�1

are over K[x℄.

Let E be as
omputed in phase 2. Then CE

�1

and ME

�1

are over K[x℄. By

Fa
t 32, MG

�1

is an irredu
ible right denominator of A

�1

B, while ME

�1

is

an irredu
ible right denominator of CM

�1

. Thus, we will be done if we show

that A

�1

B and ME

�1

are right multiples of ea
h other (Fa
t 28).

For some h, Corollary 20 gives that

A

�1

BM = Trun
(A

�1

B;h)M + CX

h

: (22)

31

On the one hand, both ME

�1

and CE

�1

are over K[x℄. Post-multiplying

both sides of (22) by E

�1

shows that A

�1

BME

�1

must be over K[x℄ also.

But then ME

�1

is a right multiple of MG

�1

(Fa
t 31). On the other hand,

both A

�1

BMG

�1

and MG

�1

are over K[x℄. Post-multiplying (22) by G

�1

shows that CG

�1

must be over K[x℄ also. But then MG

�1

is a right multiple

of ME

�1

(Fa
t 31).

Theorem 34 Algorithm 8 (TrailingHermite) is
orre
t.

We will not estimate the
omplexity of Algorithm 8 (TrailingHermite). A

potential problem is that the Hermite row and
olumn basis
omputations

in phase 2 may have too high
omplexity, even if M has small degree. (The

known algorithms for redu
ing Hermite form
omputation to matrix multipli-

ation work modulo the determinant and have a
omplexity whi
h depends on

deg detM rather than degM .) Instead, the next se
tion presents a modi�
a-

tion of the algorithm whi
h
omputes dire
tly the Smith form of T , avoiding

any expli
it Hermite basis
omputations.

14 Smith of trailing Hermite basis

Re
all the de�nition of the Smith form:
orresponding to any full
olumn

rank matrix A 2 K[x℄

n�m

are unimodular matri
es U 2 K[x℄

n�n

and V 2

K[x℄

m�m

su
h that UAV = Smith(A) = Sta
kMatrix(Prin
ipalSmith(A); 0),

with Prin
ipalSmith(A) = Diagonal(s

1

; s

2

; : : : ; s

m

), ea
h s

i

moni
, and s

i

di-

viding s

i+1

for 1 � i � m� 1.

Let m satisfy 1 � m � n, and throughout this se
tion, let

� A 2 K[x℄

n�n

be nonsingular,

� B 2 K[x℄

n�m

be the last m
olumns of I

n

,

� T 2 K[x℄

m�m

be trailing submatrix of the Hermite
olumn basis of A, and

� S 2 K[x℄

m�m

be the Smith form of T .

Algorithm 9 (SmithOfTrailingHermite) is a simple modi�
ation of Algo-

rithm 8 (TrailingHermite).

Algorithm 9 SmithOfTrailingHermite[X℄(A; s;m)

Input: A 2 K[x℄

n�n

and a nonzero s 2 K[x℄.

Output: The Smith form S of the trailing m�m submatrix T of the Hermite

olumn basis of A in
ase sI

m

is a right multiple of T , otherwise fail.

Condition: X ? detA and d = degX � degA.

(1) B := the last m
olumns of I

n

;

C := IntegralityCert[X℄(A;B; sI

m

);

32

if C = fail then return fail �;

(2)

�

E := Prin
ipalSmith(Sta
kMatrix(C; sI

m

));

�

D := Smith((sI

m

)

�

E

�1

);

return D

We now prove
orre
tness. Phase 1 is identi
al to Algorithm 8 (TrailingHermite):

fail will not be returned if and only if sI

m

is a right multiple of T . Assume

phase 1 does not fail, and let

E := HermiteRowBasis(Sta
kMatrix(C; sI

m

)):

Then S = Smith((sI

m

)E

�1

), sin
e the Hermite
olumn basis of (sI

m

)E

�1

is equal to T . The key idea of phase 2 is to note that the Smith and inverse

omputation
ommute.This allows us to avoid the
omputation of the Hermite

basis E. Let U and V be unimodular matri
es su
h that UEV is in Smith form.

S=Smith((sI

m

)E

�1

)

=Smith(V

�1

((sI

m

)E

�1

)U

�1

)

=Smith((sI

m

)V

�1

E

�1

U

�1

)

=Smith((sI

m

)(Smith(E))

�1

)

=Smith((sI

m

)

�

E

�1

):

We have shown that the algorithm is
orre
t.

The
ost of phase 1 is bounded by Proposition 21. Note that degC < deg s

(Theorem 19). The initial Smith form in phase 2
an be
omputed with

O((n=m)MM(m;deg s)) �eld operations by working modulo s, i.e., over the

prin
ipal ideal ring R = K[x℄=(s). First embed Sta
kMatrix(C; sI

m

) into R,

then
ompute an upper e
helon form, and �nally transform an m�m matrix

to Smith form over R. The resulting Smith form over R,
onsidered as a ma-

trix over K[x℄, will be as desired after repla
ing zero diagonal entries by s.

For details and algorithm we refer to (Storjohann, 2000, Chapters 3 and 7).

Proposition 35 Algorithm 9 (SmithOfTrailingHermite) is
orre
t. If m

and m� (deg s)=d are O(n), then the
ost of the algorithm is:

� O((log n)MM(n; d) +MM(n; d) + (n=m)MM(m;nd=m)) �eld operations, or

� O((log n)MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive
.

33

Worked example

The essential idea used in the last two se
tions
arries over to the
ase of

integer matri
es with no modi�
ation. Spe
i�
ally, let

� A 2Z

n�n

be nonsingular,

� B 2Z

n�m

,

� M 2Z

m�m

be nonsingular.

� C be an integrality
erti�
ate for A

�1

BM (
f. Theorem 27).

Then the right matrix fra
tions (A

�1

BM)(M

�1

) and (C)(M

�1

) have irre-

du
ible denominators whi
h are right multiples of ea
h other. The key point

is that kCk

1

� (m=2)kMk

1

(Theorem 27) even though kA

�1

BMk

1

may be

large.

For example, the matrix

A =

2

6

6

6

6

6

6

6

6

4

�28 �11 �56 �39

�5 42 �10 37

22 �44 �25 44

�32 3 38 46

3

7

7

7

7

7

7

7

7

5

has Hermite basis H =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1

220 1231

0 2 3

379 670 3792 3969

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;

and the trailing 2� 2 submatrix

T =

2

6

4

3

3792 3969

3

7

5

of H has Smith form S =

2

6

4

3

3969

3

7

5

:

Let s = 3969, and let C be the integrality
erti�
ate shown in (21). Then

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1717 500

�1168 �1724

542 �1112

1168 1724

3969

3969

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

has prin
ipal Smith form

�

D =

2

6

4

1

1323

3

7

5

:

34

Note that the Smith form of (sI

2

)

�

D

�1

is S.

15 Determinant redu
tion

Let A 2 K[x℄

n�n

be nonsingular. Re
all that the Hermite row basis of A has

the shape

H =

2

6

6

6

6

6

6

6

6

4

h

1

h

12

� � � h

1n

h

2

� � � h

2n

.

.

.

.

.

.

h

n

3

7

7

7

7

7

7

7

7

5

2 K[x℄

n�n

;

and that detA =
detH for a nonzero
onstant polynomial
.

Algorithm 10 (DetRedu
tion)
omputes a matrix B, obtained from A by

repla
ing the last
olumn, su
h that the last diagonal entry in the Hermite row

basis of B is one. The algorithm is thus named be
ause detB = (detA)=h

n

,

where h

n

is the trailing diagonal entry in the Hermite row basis of A.

A key step in the algorithm is to solve an instan
e of the extended g
d problem.

For this we use the following result.

Lemma 36 Given a row ve
tor w 2 K[x℄

n�1

, a
olumn ve
tor b 2 K[x℄

1�n

su
h that deg b � degw, and wb = g
d(w[1℄; w[2℄; : : : ; w[n℄),
an be
omputed

with O(nB(degw)) �eld operations.

An algorithm supporting the running time estimate of Lemma 36 is given

in (Storjohann, 2000, Corollary 6.5).

Algorithm 10 DetRedu
tion[X℄(A)

Input: A 2 K[x℄

n�n

.

Output: B 2 K[x℄

n�n

, with B equal to A ex
ept for possibly the last
olumn,

degB � degA, and last diagonal entry in the Hermite row basis of B equal

to one.

Condition: X ? detA and d = degX � degA.

(1) (�w; h) := RationalSol[X℄(Transpose(A);Column(I

n

; n));

w := Transpose(�w);

P := a permutation su
h that the last entry of wP has maximal degree;

b := an element of K[x℄

n�1

su
h that wPb = 1, deg b � degw;

35

(2) v := Column(I

n

� P

�1

A;n);

s := h+ wPv;

(y; g) := RationalSol[X℄(A;P (sb� v));

q := Left[sg℄(y; 1);

q[n℄ := 0;

return a
opy of A ex
ept with last
olumn repla
ed by Pb�Aq

We now explain the algorithm and prove
orre
tness. Let w, P , and b, be as

omputed in phase 1. Let us assume, without loss of generality, that P = I

n

.

Then fwg is a basis for the left kernel (over K[x℄) of the �rst n � 1
olumns

of A. The next fa
t follows.

Fa
t 37 Assume B is nonsingular and equal to A ex
ept for possibly the last

olumn. Then the unimodular transforming matrix whi
h transforms B to Her-

mite row basis has last row equal to a s
alar multiple of w.

By
onstru
tion of b in phase 1, the matrix obtained from A by repla
ing the

last
olumn with b (
f. the matrix on the left of (23)) will have Hermite row

basis with trailing diagonal entry one. The problem is that deg b may be as

large as degw, and degw � (n � 1) degA. Phase 2 applies latti
e redu
tion:

the �rst n� 1
olumns of A are used to redu
e the degree of b.

Let s; g 2 K[x℄ and v; y; q 2 K[x℄

n�1

be as
omputed in phase 2. Then (I

n

+

v(w=h))A is equal to A with the last
olumn repla
ed by Column(I

n

; n), and

((I

n

+v(w=h))A)

�1

= A

�1

(I

n

�(1=s)vw). The ve
tor y is the unique solution to

(I

n

�v(w=h))Ay = sgb. Let

�

b; �y; �q 2 K[x℄

(n�1)�1

be the prin
ipal subve
tors of

b, y, q, and let

�

A 2 K[x℄

(n�1)�(n�1)

be the prin
ipal submatrix of A. Be
ause

the last
olumn of (I � v(w=h))A is equal to Column(I

n

; n), we also have

�

A�y = sg

�

b. The ve
tor q is a polynomial approximation to the rational ve
tor

y=(sg) in the following sense: y=(sg) = q + r=(sg) for some r 2 K[x℄ with

deg r < deg sg.

2

6

4

�

A

�

b

�a b

n

3

7

5

2

6

4

I

n�1

��q

1

3

7

5
=

2

6

4

�

A

�

b�A�q

�a b

n

� �a�q

3

7

5
(23)

It follows that

�

b�

�

A�q, whi
h is equal to

�

A�r=(sg), has degree stri
tly less than

deg

�

A. Sin
e w is a ve
tor in the left kernel of the �rst n�1
olumns of A, and

q[n℄ = 0, we have w(b �Aq) = wb. Sin
e wb = 1, we have w[n℄ (b� Aq)[n℄ =

1�

P

n�1

i=1

w[i℄ (b�Aq)[i℄. By assumption, degw[n℄ � degw[i℄ for 1 � i � n�1.

It follows that deg(b�Aq) � max((degA)� 1; 0).

Corollary 16 bounds the
ost of the two
alls to Algorithm 5 (RationalSol).

The
ost of
onverting among X-adi
, x-adi
 and (sg)-adi
 representations is

bounded by O(nB(nd)) �eld operations.

36

Proposition 38 Algorithm 10 (DetRedu
tion) is
orre
t. The
ost of the

algorithm is:

� O((log n)MM(n; d) +MM(n; d) + nB(nd)) �eld operations, or

� O((log n)MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive
.

Worked example

The same determinant redu
tion method is appli
able to the
ase of integer

matri
es. Consider the matrix A with Hermite row basis H.

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

�66 �65 20 �90 30

55 5 �7 �21 62

68 66 16 �56 �79

13 �41 �62 �50 28

26 �36 �34 �8 �71

3

7

7

7

7

7

7

7

7

7

7

7

7

5

, H =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 10 260246748

1 0 2 292062707

1 7 244095302

14 342954195

344319363

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

An extended g
d
omputation gives b =

�

779244 46649 46649 0 0

�

su
h that

Row(HA

�1

; n)b = 1. In the integer
ase, we
ompute q to be the integer ve
tor

su
h that ea
h entry of

�

A

�1

�

b � �q has magnitude < 1. The matrix obtained

from A by repla
ing the last
olumn with b�Aq is

2

6

6

6

6

6

6

6

6

6

6

6

6

4

�66 �65 20 �90 3

55 5 �7 �21 46

68 66 16 �56 79

13 �41 �62 �50 �15

26 �36 �34 �8 2

3

7

7

7

7

7

7

7

7

7

7

7

7

5

, with Hermite row basis

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 10 0

1 0 2 0

1 7 0

14 0

1

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

37

16 Partial Smith form

Let A 2 K[x℄

n�n

be nonsingular. Let k and m be given, 1 � m � k � n � 1,

and throughout this se
tion, let

� A =

2

6

6

6

6

6

4

A

11

A

12

A

13

A

21

A

22

A

23

A

31

A

32

A

33

3

7

7

7

7

7

5

where A

11

is k � k, and A

22

is 1 � 1,

� H be the Hermite
olumn basis of [A

11

jA

12

℄,

� T be the trailing m�m submatrix of H,

� S be the Smith form of T , and

� the Hermite
olumn basis of A be

2

6

4

H

11

H

21

H

22

3

7

5
where H

11

is k � k.

This se
tion presents an algorithm to
ompute S. Our eventual goal is to

ompute the entire Smith form of A. The algorithm in the next se
tion will

a

omplish this by repeatedly applying the algorithm of this se
tion to
om-

pute S as de�ned above for various
hoi
es of k and m. Note that S is not

ne
essarily a submatrix of the Smith form of A. What is suÆ
ient for the

algorithm of the next se
tion is that the following
onditions (C1) and (C2)

are satis�ed:

� (C1) H = H

11

.

� (C2) Smith(A) = Smith(Diagonal(H

11

;H

22

)).

� (C3) Smith(A) = Diagonal(Smith(H

11

);Smith(H

22

)).

Lemma 39 (C3) implies (C2).

Lemma 39 follows from the de�nition and uniqueness of the Smith form. Nor-

mally, these
onditions may not hold. However, pre
onditioning te
hniques

exist for transforming a nonsingular input matrix in K[x℄

n�n

to new matrix

A whi
h has the same Smith form, and whi
h satis�es these
onditions with

high probability for all 1 � m � k � n� 1, see x18. For a given m and k, the

algorithm here will fail if
onditions (C1) and (C2) do not hold, and will not

fail if (C1) and (C3) (and some additional
onditions) do hold.

38

De�ne B, C, and D with the following
onformal blo
k de
omposition:

2

6

4

B C

D �

3

7

5
=

2

6

6

6

6

6

6

6

6

4

A

11

A

12

A

13

A

21

A

22

A

23

A

21

A

22

A

23

A

31

A

32

A

33

3

7

7

7

7

7

7

7

7

5

2 K[x℄

(n+1)�n

; (24)

so that B is (k + 1) � (k + 1), and the last row of C is zero. Note that the

matrix in (24) is obtained from A by repeating row k + 1.

Algorithm 11 PartialSmith[X℄(A;s; k;m)

Input: A 2 K[x℄

n�n

, nonzero s 2 K[x℄, 1 � m � k < n.

Note: Let T , S, H

11

, H

21

, B, C, and D be as de�ned above.

Output: S or fail. Fail will be returned if (C1) and (C2) do not hold. Fail will

not be returned if (C2) and (C3) hold, X ? detB, and sI

m

is a right multiple

of T .

Condition: d = degX � degA.

(1) if X 6? detB then return fail �;

R := Transpose(DetRedu
tion[X℄(Transpose(B));

(2) if IntegralityCert[X℄(R;C; I) = fail then return fail �;

(3) if IntegralityCert[X℄(Transpose(R);Transpose(D); I) = fail then

return fail

�;

(4)

�

S := SmithOfTrailingHermite[X℄(R; s;m+ 1);

if

�

S = fail then return fail �;

S := the trailing m�m submatrix of

�

S;

return S

We now prove
orre
tness. Assume phase 1 does not fail. Then R is identi
al

to B ex
ept for possibly the last row (row k + 1).

Phase 2 assays if R

�1

C is integral. Let V 2 K[x℄

(k+1)�(k+1)

be the unimodular

matrix su
h that RV is the Hermite
olumn basis of R. Then

R

2

6

4

A

11

A

12

R

11

R

12

3

7

5

V

2

6

4

V

11

V

12

V

21

V

22

3

7

5

=

2

6

4

H

I

1

3

7

5

:

R

�1

C is integral , V

�1

R

�1

C is integral , H

�1

A

13

is integral , H = H

11

.

This shows that Phase 2 does not return fail if and only if H = H

11

.

39

So far, we have established that

2

6

6

6

6

6

6

6

6

4

A

11

A

12

A

13

R

21

R

12

A

23

A

21

A

12

A

23

A

31

A

32

A

33

3

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

4

V

11

V

12

V

21

V

12

I

3

7

7

7

7

7

5

2

6

6

6

6

6

4

I

k

�H

�1

11

A

13

I

1

I

3

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

H

11

I

1

Q

13

Q

11

Q

12

Q

13

Q

21

Q

22

Q

23

3

7

7

7

7

7

7

7

7

5

; (25)

where the Q

��

are new labels. Removing row k + 1 gives

2

6

6

6

6

6

4

A

11

A

12

A

13

A

21

A

12

A

23

A

31

A

32

A

33

3

7

7

7

7

7

5

2

6

6

6

6

6

4

V

11

V

12

V

21

V

12

I

3

7

7

7

7

7

5

2

6

6

6

6

6

4

I

k

�H

�1

A

13

I

1

I

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

H

11

Q

11

Q

12

Q

13

Q

21

Q

22

Q

23

3

7

7

7

7

7

5

: (26)

Considering (26) shows that H

21

is equal to the Hermite
olumn basis of

2

6

4

Q

12

Q

13

Q

22

Q

23

3

7

5

:

Phase 3 does not return fail if and only if DR

�1

is integral. Note that DR

�1

is integral if and only if (DV)(RV)

�1

is integral. Considering (25) now shows

that DR

�1

is integral if and only if Sta
kMatrix(Q

11

; Q

21

)H

�1

11

is integral, in

whi
h
ase Smith(A) = Smith(Diagonal(H

11

;H

12

)). At this point the argu-

ment splits. On the one hand, we have just shown shows that if phase 3 does

not return fail, then Smith(A) = Smith(Diagonal(H

11

;H

12

)). On the other

hand, suppose Smith(A) = Diagonal(Smith(H

11

);Smith(H

12

)). Then the de�-

nition and uniqueness of the Smith form imply that Sta
kMatrix(Q

11

; Q

21

)H

�1

11

is integral, in whi
h
ase phase 3 does not return fail.

Finally,
onsider phase 4. By
onstru
tion, the trailing (m+1)� (m+1) sub-

matrix of the Hermite
olumn basis of R is equal to Diagonal(T; I

1

). Now note

that Smith(Diagonal(T; I

1

)) = Diagonal(I

1

;Smith(T)). By the spe
i�
ation of

Algorithm 9 (SmithOfTrailingHermite), phase 4 does not return fail if and

only if sI

m

is a multiple of T .

Proposition 40 Algorithm 11 (PartialSmith) is
orre
t. If m and m �

(deg s)=d are O(n), then the
ost of the algorithm is:

� O((log n)MM(n; d) +MM(n; d) + (n=m)MM(m;nd=m) + nB(nd)) �eld op-

erations, or

40

� O((log n)MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive
.

17 Smith form
omputation

Let A 2 K[x℄

n�n

be nonsingular. We present an algorithm to
ompute the

Smith form of A. Write the Hermite
olumn basis H of A using a blo
k de-

omposition as

H =

2

6

6

6

6

6

6

6

6

4

H

i�1

.

.

.

.

.

.

� � � � H

1

� � � � � H

0

3

7

7

7

7

7

7

7

7

5

;

where H

j

is 2

j

�2

j

for j = 0; 1; : : : ; i�2, and the dimension of H

i�1

is � 2

i�1

.

Algorithm 12 Smith[X℄(A)

Input: A 2 K[x℄

n�n

.

Output: The Smith form of A or fail. Fail will not be returned if and only if

Smith(A) = Diagonal(Smith(H

i�1

); : : : ;Smith(H

0

)), and

� the Hermite
olumn basis of the prin
ipal k � (k + 1) submatrix of A is

equal to the the Hermite
olumn basis of the �rst k rows of A, and

� the prin
ipal k � k minor of A is ? X,

for k 2 fn � 1; n � (1 + 2); n� (1 + 2 + 4); : : : ; n� (1 + 2 + � � �+ 2

i�2

))g.

Condition: X ? detA and d = degX � degA.

(1) (�; h) := RationalSol[X℄(A;Column(I

n

; n));

S

0

:= [h℄;

(2) i := 0;

k := n� 1;

m := min(2; k);

for i while k > 0 do

S

i

:= PartialSmith[X℄(A;S

i�1

[1; 1℄; k;m);

if S

i

= fail then return fail �;

k := k �m;

m := min(2m;k)

od;

return Diagonal(S

i�1

;S

i�2

; : : : ;S

0

)

41

We now prove that if the algorithm does not fail, the result will be
or-

re
t. Phase 1
omputes S

0

= Smith(H

0

). Suppose phase 2 does not fail.

Then S

j

= Smith(H

j

) for 0 � j � i � 1. Sin
e
ondition (C2) was sat-

is�ed for ea
h
all to Algorithm 11 (PartialSmith), we may
on
lude that

Smith(Diagonal(S

i�1

; S

i�2

; : : : ; S

0

)) is the Smith form of A. Finally, sin
e S

j�1

[1; 1℄I

is a right multiple of S

j

for 1 � j � i�1, we have that Diagonal(S

i�1

; S

i�2

; : : : ; S

0

)

is already in Smith form.

Proposition 41 Algorithm 12 (Smith) is
orre
t. Assuming n is a power of

two, the
ost of the algorithm is:

� O((log n)

2

MM(n; d) +

P

log

2

n

i=0

2

i

MM(2

�i

n; 2

i

d)) �eld operations, or

� O((log n)

2

MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive
.

18 Con
lusions

Most of our algorithms require as input a small degreeX su
h that X ? detA.

If #K is large enough, then X
an be
hosen to be (x� a)

d

, for a randomly

hosen a 2 K, d = degA. Otherwise, X
an be
hosen to be the power of

a small degree irredu
ible, see for example Shoup (1994). See (Mulders and

Storjohann, 1999, Proof of Theorem 29) for more
omplete details of a method

for
hoosing X randomly.

Algorithm 12 (Smith) requires that A satisfy some
onditions. These are easy

to a
hieve using the pre
onditioning te
hnique as shown in Kaltofen et al.

(1990). Choose nonsingular matri
es U and V uniformly and randomly from

S

n�n

, S a subset of K with #S � 4dn

4

. Then UAV will satisfy all required

onditions with probability at least 1=2 (see (Kaltofen et al., 1990, Algorithm

3.2) and (Storjohann and Labahn, 1995, Algorithm Redu
e)). If #K is too

small, we
an work over an algebrai
 extension �eld, but this will
ause
ost

estimates to in
rease by a polylogarithmi
 fa
tor.

A key idea in this paper is the use of high order lifting to eÆ
iently
ertify

integrality. Without this te
hnique, many of the algorithms we propose would

be Monte Carlo instead of Las Vegas.

The main task remaining is to extend the results here to the
ase of integer

matri
es. The key ideas of Se
tions 11|17
arry over easily. The main diÆ
ul-

ties to be solved are to a
hieve a suitable pre
onditioning for the input matrix

of the Smith form
omputation, and to get analogous versions of the lifting

algorithms in Se
tions 6, 9 and 10. To solve the �rst diÆ
ulty the results in

Eberly et al. (2000) and Mulders and Storjohann (2003) should prove useful.

42

The
rux of the se
ond diÆ
ulty is that the absolute value norm over Z,

unlike the degree norm over K[x℄, is Ar
himedean; be
ause integer addition

has
arries, the analogue of Lemma 1 does not hold. One solution to this is to

do
omputation in a shifted number system. We will present this in a future

paper.

Referen
es

Dixon, J. D., 1982. Exa
t solution of linear equations using p-adi
 expansions.

Numer. Math. 40, 137{141.

Eberly, W., Giesbre
ht, M., Villard, G., 2000. Computing the Smith form of

a dense integer matrix. In: Pro
. 31st Ann. IEEE Symp. Foundations of

Computer S
ien
e. pp. 675{685.

Gathen, J. v. z., Gerhard, J., 1999. Modern Computer Algebra. Cambridge

University Press.

Giorgi, P., Jeannerod, C.-P., Villard, G., 2003. On the
omplexity of polyno-

mial matrix
omputations. Resear
h Report 2003-2. Laboratoire LIP, ENS

Lyon, Fran
e.

Hafner, J. L., M
Curley, K. S., De
. 1991. Asymptoti
ally fast triangulariza-

tion of matri
es over rings. SIAM Journal of Computing 20 (6), 1068{1083.

Kailath, T., 1980. Linear Systems. Prenti
e Hall, Englewood Cli�s, N.J.

Kaltofen, E., Krishnamoorthy, M. S., Saunders, B. D., 1990. Parallel algo-

rithms for matrix normal forms. Linear Algebra and its Appli
ations 136,

189{208.

Karatsuba, A., Ofman, Y., 1963. Multipli
ation of multidigit numbers on au-

tomata. Soviet Physi
s-Doklady 7, 595{596.

Moen
k, R. T., Carter, J. H., 1979. Approximate algorithms to derive exa
t

solutions to systems of linear equations. In: Pro
.

_

EUROSAM '79, volume

72 of Le
ture Notes in Compute S
ien
e. Springer-Verlag, Berlin-Heidelberg-

New York, pp. 65{72.

Mulders, T., Storjohann, A., 1999. Diophantine linear system solving. In: Doo-

ley, S. (Ed.), Pro
. Int'l. Symp. on Symboli
 and Algebrai
 Computation:

ISSAC '99. ACM Press, New York, pp. 281{288.

Mulders, T., Storjohann, A., 2000. Rational solutions of singular linear sys-

tems. In: Traverso, C. (Ed.), Pro
. Int'l. Symp. on Symboli
 and Algebrai

Computation: ISSAC '00. ACM Press, New York, pp. 242{249.

Mulders, T., Storjohann, A., 2002. On latti
e redu
tion for polynomial matri-

es. Journal of Symboli
 Computation 35 (4), 377{401.

Mulders, T., Storjohann, A., 2003. Certi�ed diophantine dense linear system

solving. Journal of Symboli
 Computation To appear.

Shoup, V., 1994. Fast
onstru
tion of irredu
ible polynomials over �nite �elds.

Journal of Symboli
 Computation 17, 371{391.

Storjohann, A., 2000. Algorithms for matrix
anoni
al forms. Ph.D. thesis,

43

Swiss Federal Institute of Te
hnology, ETH{Zuri
h.

Storjohann, A., Labahn, G., 1995. Pre
onditioning of re
tangular polynomial

matri
es for eÆ
ient Hermite normal form
omputation. In: Levelt, A. H. M.

(Ed.), Pro
. Int'l. Symp. on Symboli
 and Algebrai
 Computation: ISSAC

'95. ACM Press, New York, pp. 119{125.

Strassen, V., 1973. Vermeidung von Divisionen. J. reine angew. Math. 264,

182|202.

Villard, G., 1996. Computing Popov and Hermite forms of polynomial matri-

es. In: Lakshman, Y. N. (Ed.), Pro
. Int'l. Symp. on Symboli
 and Alge-

brai
 Computation: ISSAC '96. ACM Press, New York, pp. 251{258.

44

