High-order lifting and integrality certification

Arne Storjohann

School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
N2L 3G1

Abstract

Reductions to polynomial matrix multiplication are given for some classical prob-
lems involving a nonsingular input matrix over the ring of univariate polynomials
with coeflicients from a field. High-order lifting is used to compute the determinant,
the Smith form, and a rational system solution with about the same number of field
operations as required to multiply together two matrices having the same dimension
and degree as the input matrix. Integrality certification is used to verify correctness
of the output. The algorithms are space efficient.

1 Introduction

The interaction between matrix multiplication and linear algebra problems on
matrices over a field K is well understood. The best known algorithms for
computing the determinant of a nonsingular matrix A € K™*", or for solving
a linear system of equations involving A, have cost O(n”) field operations,
2 < 6 < 3 a valid exponent for matrix multiplication. This paper gives similar
results for problems on polynomial matrices. We show that a wide variety
of problems involving a nonsingular matrix A € K[z]"*" can be solved with

O(n’d) x (log n 4 log d)°M) field operations, d a bound on the degree of A.

Of the problems we consider the most fundamental is linear system solving.
Let a vector b € K[z]"*! be given in addition to A. The nonsingular rational
system solving problem is to compute the vector A~'b € K (x)**!. Numerators
and denominators of entries in A71b will have degree bounded by nd, where d
is a bound on the degree of entries in A and b. The most efficient algorithms
for computing A71b work by computing a truncated X-adic series expansion
of A7'b using Hensel lifting, or Newton iteration, and then applying ratio-
nal function reconstruction. The descriptions in Moenck and Carter (1979)

Email address: astorjoh@scg.uwaterloo.ca (Arne Storjohann).

Preprint submitted to Elsevier Science 27 March 2003

and Dixon (1982) are for integer matrices but carry over to the case Kx]
immediately. The method usually requires knowing a small degree X € Klz]
such that X is relatively prime to det A (Notation: X L det A). The tech-
nique has been well studied. Mulders and Storjohann (2000) give a variation
that always allows choosing X to be a power of x and is designed to handle
efficiently input systems of arbitrary shape and rank. Given a system with n
rows, m columns, rank r, and degrees of entries bounded by d, the algorithm
either computes a rational solution or proves that the system is inconsistent
with O((n + m)r?d**e) field operations from K, 0 < € < 1 depending on
the cost of polynomial multiplication. Thus, the algorithm solves the nonsin-
gular rational system solving problem deterministically with O(n?d'*¢) field
operations. In this paper we reduce the exponent of n from three down to 8,
2 < # < 3 a valid exponent for matrix multiplication. Given an X € K[x] such
that X 1 det A, our algorithm computes A~*b with O(n’(logn)d**<) field op-
erations, d a bound for deg A, degbd, and deg X. We also give an extension
of the algorithm that allows entries in b to have degree substantially larger

than those in A without adversely affecting the cost estimate. It suffices that
d > (degb)/n as well as d > deg A, deg X.

The second problem we consider is integrality certification. Let a matrix B €
K[x]"™™ be given in addition to A. The integrality certification problem is
to answer the following question: can every column of B be expressed as a
K[x]-linear combination of columns of A? This question is equivalent to the
following: is A™'B over Kz]|? Given an X € KJz| such that X L det A,
our algorithm answers this question with O(n’(logn)d'*<) field operations,
d a bound for deg A and deg X. This cost estimate holds for any B such
that m(1 + (deg B)/d) is O(n). A special case of the integrality certification
problem occurs when B is equal to the identity matrix. The question then
becomes: is A a unimodular matrix, that is, is the inverse of A over K[z]?
Since A is unimodular precisely when det A has degree zero, we can test for
unimodularity by computing det A mod X for a small degree, and randomly
chosen X. This gives a nearly optimal Monte Carlo probabilistic algorithm
with running time about O(n’ + n2d) field operations (ignoring logarithmic
factors). Here we give a deterministic algorithm for solving this special case
of the integrality certification problem that has cost O(n’(logn)d'*) field
operations.

The third problem we consider is determinant computation. Mulders and Stor-
johann (2002) show how to compute det A deterministically with O(n*d?) field
operations, d = deg A. The Las Vegas probabilistic algorithm we give here
uses an expected number of O(n’(logn)*d'*c) field operations. For fields of
small cardinality the cost estimate increases by a poly-logarithmic factor. In
the same time the Smith form of A is computed, also Las Vegas. Recall that
Smith form of A is the unique diagonal matrix S = Diagonal(sy, sa,...,)

such that s;|s;1; for 1 < ¢ < n, and S = UAV for unimodular matrices
U,V e Klz]™ ",

We mention some recent related work. Giorgi et al. (2003) give algorithms
with cost O(n?d) x (logn + log d)°M) field operations for computing minimal
bases and order d matrix approximates, and for computing a column reduced
form of an invertible matrix. Giorgi et al. (2003) also consider some reductions
in the opposite direction. They show that if there is a straight-line program
of length D(n, d) for computing the coeflicient of degree d of the determinant,
then there is a straight-line program of length no more than 8D(n,d) which
multiplies two matrices of degree d.

2 Model of computation and cost functions

We analyse our algorithms by bounding the number of required field operations
from K on an algebraic random access machine; the operations +, —, x and
“divide by a nonzero” are considered as unit step operations.

Polynomial multiplication

We use M for polynomial multiplication. Let M : Zsq — Ry be such that
polynomials in K'[z] of degree bounded by d can be multiplied using at most
M(d) field operations. The classical method has M(d) = 2d?. The algorithm of
Karatsuba and Ofman (1963) allows M(d) = O(d"*?). FFT-based methods al-
low M(d) = O(d(log d)(log log d)).We refer to (Gathen and Gerhard, 1999, Sec-
tion 11.1) for more details and references. We assume that M(ab) < M(a)M(b)
for a,b € Z,.

It will be useful to define an additional function B for polynomial gcd-related
computations. We assume that B(d) = M(d)logd or B(d) = d*. Then the
extended ged problem with two polynomials in K[x] of degree bounded by d
can be solved with O(B(d)) field operations.

Matriz multiplication

We use MM for matrix multiplication. Let MM : Z<o — R+ be such that
two n X n matrices over a ring (commutative, with 1) can be multiplied with
MM(n) ring operations. The classical method has MM(n) = 2r® — n® The

algorithm of Strassen (1973) allows MM(n) = 42n!°627. The asymptotically
fastest known method allows MM(n) = O(n?3).

We use MM with two arguments for polynomial matrix multiplication. Let
MM :Z+o X Z>o — Ry be such that two matrices from K[z]|"*" with de-
gree bounded by d can be multiplied together with at most MM(n,d) field
operations. We can always choose MM(n,d) = O(MM(n)M(d)), but better
bounds may be possible. For example, if #K > 2d then we can use an evalu-

ation/interpolation scheme to get MM(n,d) = O(MM(n)d + n?B(d)).

In our algorithms, every time we multiply two polynomial matrices we will
need to perform some additional work also, e.g., reduce all entries in the
product modulo a given X € K[xz], deg X < d. For this reason, we are going
to assume that n?M(d) = O(MM(n,d)). This is a mild assumption, since an
information lower bound gives n*(2d + 1) = O(MM(n, d)).

Some results will be greatly simplified by making the explicit assumption
that B(n) = O(MM(n)/n), which stipulates that if fast matrix multiplication
techniques are used then fast polynomial multiplication should be used also.

For example, B(n) = O(MM(n)/n), then n B(nd) = O(MM(n)B(d)).
Reduction to matriz multiplication

We use MM for some problems (see below) that can be reduced recursively to
matrix multiplication. For n a power of two, define

log, n

MM(n,d) := (Z 4i|v||v|(2—in,d)) + n*(log n)B(d). (1)

=0

If n is not a power of two, then define MM(n, d) := MM(n, d), where n is the
smallest power of two greater than n. We now motivate the definition of MM.

Suppose X € K[z] is nonzero. Then R := K[z]/(X) is a principal ideal ring.
R can be taken to be the set of all polynomials in K[x] with degree strictly
less than d, d = deg X. Multiplication in R costs O(M(d)) field operations
and is accomplished by first multiplying over A [z] and then reducing modulo
X. Similarly, matrices in R™*" can be multiplied with MM(n,d) field opera-
tions. The following operations can be accomplished with O(MM(n,d)) field
operations:

e Compute a unimodular U € R™*" such that UA is upper triangular.
o Compute the inverse of an A € R™*" or determine that A is not invertible.
o Compute the Smith canonical form of an A € R™*".

An algorithm supporting the running time O(MM(n,d)) field operations for
the first problem is given by Hafner and McCurley (1991). Now consider
the second problem. A will be invertible precisely if all diagonal entries of
UA are invertible. If so, the inverse of UA can be found using an additional
O(MM(n,d) + nB(d)) field operations: first multiply U A by the diagonal ma-
trix D such that diagonal entries in DUA are equal to one, then apply a
standard recipe for triangular matrix inversion. The result for computing the
Smith form is given in (Storjohann, 2000, Chapter 7).

If there exists an absolute constant v > 0 such that n?*™ = O(MM(n)), then
we can choose MM(n,d) = O(MM(n)B(d)).

3 Outline and synopsis

Let K be a field and A € K[z]"*" be nonsingular. Let B € K[z]"*™ be given
in addition to A. For any X € KJ[z] such that X L det A, the matrix of
rational functions A™'B € K(z)"*™ admits a unique, and possibly infinite,
X-adic series expansion:

AT'B=Co+ C1X + CoX* 4+ C3 X3 + -+ -, (2)

where each C, € K[z]|"*™ has deg C, < deg X. The first part of this paper
(sections 4—10) presents fast algorithms for computing only parts of the ex-
pansion. We call this high-order lifting. There are different variations of high-
order lifting. One variation calls for computing a single contiguous segment
[Ch,Chaty ...y Chyg_1] of coefficients for a given h and k. Another variation
computes a collection of such segments for a given expansion. This section
gives intuitive descriptions of the key ideas and algorithms for the various
versions of X-adic lifting.

Nonsingular rational system solving using X -adic lifting

Sections 4 and 5 define some notation and recall some basic facts about X-
adic expansions of rational functions, including the recovery of such expansions
using X-adic lifting.

Consider the problem of computing the X-adic expansion of

Ab=co+ e X + X2+ s X34 -

where b is a column vector, and both deg A and degb are < deg X. Suppose

our goal is to compute the expansion up to order X*, k even. We can divide the

problem into two similar subproblems. The first is to compute the expansion
of A='b up to order X*/2.

A Vb =co+ e X+ + ck/z_le/z_l mod X*/2, (3)
Multiplying both sides by A and then subtracting the right hand side from

the left gives

b—Alco+a X +---+ ck/z_le/z_l) = (0 mod X*/2.

The left hand side must be divisible by X*/2. Set
Tk/z = (b — A(CO + ClX + -4 Ck/z_le/z_l))/Xk/z. (4)
The degree bounds for b and A imply that deg i/, < d. The key idea of X-adic

lifting is to replace of the “mod” in (3) with the “residue” term ry/,. Multiply
both sides of (4) by A~'X*/2 and rearrange to obtain the following:

A~1b mod X*/2

A b =co+ e X+ + ck/z_le/z_l —I—A_lrk/sz/2. (5)
Thus, the second subproblem — compute the expansion of A™'ry, up to
order X*/?2 — has the same form as the first subproblem. The salient point

is that we need to solve the first subproblem before we can begin the second
subproblem. High-order lifting will be used to compute ry/, directly, allowing
us to incorporate recursion into the computation.

High—order components of matriz inverse

Section 6 gives our first high-order lifting algorithm. Consider (2) when B = I,
and deg A < deg X. Let o denote the coefficients of the X-adic expansion of
A~! ordered from left to right. Let o denote a coefficient that has currently
been computed. Normally, all coefficients of the expansion are computed up
to order X®" — in terms of n this costs O(n’ x n) field operations using
O(log n) steps of quadratic X-adic lifting, cf. Figure 1. After the fourth step
of lifting (which dominates the cost) all initial thirty-two coeflicients have
been computed. The algorithm we give here computes a critical subset of
size O(log n) from the first ©(n) coeflicients by using quadratic X-adic lifting
combined with short products, cf. Figure 2. The result is that a ©(n) factor in
the running time is replaced by O(logn). Although most of the coefficients of

0.0000000000000000000000000000000
]_0.000000000000000000000000000000
CO0OO00000O0O0OO0O0OOOOOOOOOOOOOOOOOOO

CO00000e0O00000O0O0OOOOODOOOOOOOOOOOOO

[oloNoNoNoNoNoRoNoNoNoNoNoNoNoNoN B N N A N N N N N N N N N N N J

2
3
4000OOOOO........OOOOOOOOOOOOOOOO
3

Fig. 1. Quadratic lifting for n =5

0.0000000000000000000000000000000
]_..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
CO0OO00000O0O0OO0O0OOOOOOOOOOOOOOOOOOO

OCO00000ee@00000O0O0OOOOOOOOOOOOOOOOOO

2
3
4000OOOOOOOOOOO..OOOOOOOOOOOOOOOO
3

OCO00000000O00OO0OOOOOOOOOOOOOOOOOOCe e

Fig. 2. High-order component lifting for n = 5

the inverse expansion are not recovered, the computation of the critical subset
of high-order components has many applications. The algorithm described in
this section is used in almost all subsequent sections.

Unimodularity certification

Section 7 gives an algorithm to test for unimodularity. Recall that a matrix
A € K[x]™™ is unimodular precisely when the determinant of A is a nonzero
constant polynomial. Another characterization of unimodularity is that the
z-adic expansion of A™! exists (i.e., # L det A), and is finite.

Suppose that A has deg A < d and = L det A. Let X = 2% Let & > n and
consider the (possibly infinite) X-adic expansion

C
-1 _ k—2 k—1 k
A7 =Co+ C1 X 4+ Cr 3 X7 4Cr 1 X + Cp X 4.

If A is unimodular, then A™!' € K[z]"*" and we have the classical a priori
bound deg A" < (n — 1)d, i.e., A is unimodular precisely if all coefficients

C; are zero for ¢+ > k — 1. Thus, if Cj_; is not the zero matrix, then A is not
unimodular. A key point to note here is that the particular value of k is not
important. We only require that & > n. In our case we will choose k£ to be
the smallest possible power of two. Then we can compute Cj_; using O(log n)
steps of high—order lifting.

Now suppose that Ci_; is the zero matrix. It is not immediately clear that
this should imply that all of C; are zero for ¢« > k — 1, but in Section 7 we
show that this is in fact the case.

Thus, we can test if A is unimodular by determining if a single high order
coefficient Cy_; of A™' is the zero matrix.

Series solution — small degree right hand side

Section 8 gives an algorithm for rational system solving in the case where
deg b < deg A. The main idea is to reduce the problem of solving one system up
to order X* to that of solving two systems up to order X*/2. We have described
such a reduction above, cf. (5). The key difference here is that we compute
the residue term 7y, shown in (4) without first solving the initial subproblem
shown in (3). In Section 5 we observe that rg/, can be computed using a
single matrixxvector involving A and a particular high-order component of
the inverse of A. We now have

A1 mod X* = <A—1 [b

rk/z] mod Xk/2> (7)

Xk/2

where the right hand side [b

Tk/z] has column dimension two, cf. (5). This idea

is applied recursively O(log k) times, each time doubling the column dimension
of the right hand side. This allows matrix multiplication to be introduced into
the rational system solving problem, effectively reducing the overall complexity
in terms of n from O(n?) to O(n’ x logn).

Series solution

Section 9 extends the result of the previous section to allow degb = O(n deg A)
without increasing the asymptotic cost. Let d = deg X, and consider the case
when the right hand side b has degrees bounded by nd, say b = by + b, X +
by X%+ .-« + b, X" 1. Suppose our goal is to produce A71b up to order X".

Solving this single linear system with large degree right hand side is equivalent
to solving n systems with small degree right hand side:

n—1
A7'b mod X" = (Z(A_lb,' mod X”)Xi) mod X".

=0

The algorithm encodes the “fat” vector b as an n X n matrix B with ¢th column
equal to b;_; and then uses the small degree right hand side series solution
method. The ith column of B may be thought to be implicitly multiplied
by X1, For an n x n matrix C, a matrixxvector product Cb, degb < nd,
can be now accomplished more efficiently as a matrixxmatrix product C'B,

deg B < d.

Suppose n is even. Let B, denote the ith column of B. Using ©(1) matrix
products involving A, B, and the high-order components of the expansion of
A~! the algorithm produces a second matrix R such that

subproblem 1 subproblem 2
n—1 n—1
A7 mod X" = Z(A_IB,' mod X”/Z)Xi + Z(A_IR,' mod X”/Z)Xi mod X"
=0 =0

n—1
- (Z(A‘I(B,» + R;) mod X”/Z)Xi) mod X".

=0

Thus, a single matrix addition B + R allows us to recurse on only one instead
of two problems. Now suppose n is a power of two. Then this technique can
be applied for order X™/2 X7/* X"/8 ... vielding a series of O(logn) transfor-
mations using the high-order components of the expansion of A™!. The overall
cost in terms of n is O(n? x logn).

High-order lifting

Section 10 gives a general algorithm for solving the high-order lifting prob-
lem: the recovery, for some L and k, of a contiguous segment of coefficients
H=Ch+ O X +CrhpoX?+ -+ Cpyp_1 X* ! from the X-adic expansion
of A™'B as shown in (2). By general we mean that the column dimension
as well as degrees of entries in B are not restricted. The algorithm here is a
straightforward combination of the algorithms of previous sections. The key
point is the analysis. Let deg A < d, d = deg X, and m be the column dimen-
sion of B. A running time of O(n’ x logn) in terms of n is achieved for a wide
range of the input parameters m, k and deg B. All that is required is that the

parameters m and {(deg B)/d, k} be balanced: both m x (deg B)/d and m x k
should be O(n).

Integrality certification

Many of the techniques we develop in this paper for polynomial matrices are
applicable to the integer matrix setting. It will be convenient to give some
examples using integers.

There is a natural analogy between X-adic expansions of polynomials and
p-adic expansions of integers, e.g.,

2691 = 14 9(10) + 6(10%) + 2(10°).

For brevity, we will prefer to use the standard representation on the left.

Fractions also admit 10-adic expansion, e.g., if

f -1y, b 19669081321110688996
= = — =
2691 ’

then

= —1486436269044957387929646558644 mod 102.

Note that the fraction a™'b is reduced, i.e., a L b. Suppose we have a number
t (say t = 32292) which we suspect to be a multiple of the denominator of f,
l.e., ft may be an integer. It turns out that we can assay if ft is integral by
using only the high-order segment h := —14864362689 of f mod 10%?, shown
underlined above. Note that

h t c
(C14864362690)(32292) = T4520 mod10'2.

There are now two key observations. First, provided the high-order segment is
high enough, we will have ¢ < ¢ if and only if ¢ is multiple of the denominator
of f. Second, the factor by which ¢ is too large can be computed as ged(t, ¢),
which in this case is equal to 12: note that 32292/12 = 2691. We call ¢ an

integrality certificate for f and t.

Now consider the above ideas but for polynomial matrices. We are starting
with a left fraction F' = A™'B, and we have a matrix T which is a multiple of

10

the denominator of F,i.e., FT is over K[x]. Then F admits the two fraction
descriptions: F = (A)™Y(B) and F = (A™'BT)(T)~'. (Section 12 recalls some
facts about fraction descriptions.) Notice that the second description is a right
fraction. The first description may be very compact in the sense that both A
and B have degree bounded by d. Unfortunately, the numerator A'BT in
the second description may be much larger, even if T' has small degree. Our
approach is to compute an integrality certificate C' from a high-order lift of
A~'B. (Section 11 gives an algorithm for computing integrality certificates
over K[z].) Then, up to normalization, the matrix fraction CT~" will have
the same irreducible denominator as (A™'BT)(T'), and deg C < deg T. The
factor by which T is too large can then be computed via a matrix ged involving

T and C, instead of T and A™'BT.

Our application of the above idea is to compute portions of the Hermite form
of A, see below. Similar ideas have been used already by Villard (1996), in
particular also for computing a column reduced form of A. Roughly speaking,
a column reduced form of A is a matrix P with columns of minimal degree,
and such that AU = P for a unimodular matrix U. A key observation made in
Villard (1996) is that P is a normalized denominator of (I)(4)~". In particular,
(I)(A)~! also admits the description (U)(P)~'. Here again, although deg P <
deg A, the degree of U may be much larger than A. In Giorgi et al. (2003)
this difficulty is avoided by using integrality certification as described here:
a matrix fraction (C)(P)~! is computed which has the same denominator as

(U)(P)™', but with deg C' < deg P.

Smath form computation

Sections 13-17 are about computing the Smith form of a nonsingular A €
K[z]"*". Recall the the Hermite column basis of A looks like

hy
* hz

H = k% h3)
% ok %k b,

and that hihg---h, 1s the monic associate of det A. The Smith form of A

looks like Diagonal(sy, S2, ..., 8,), where s; divides s;41 for 1 <7 <n —1. See
Section 12 for definitions of the Hermite and Smith form. Let H(s,e) denote
the submatrix of H comprised of rows and columns s,s+1,...,e. Then H(s, €)

11

is also a Hermite column basis. Our approach for computing the determinant
of A is to compute the Smith form S(s,e) of H(s,e) for various choices of s
and e.

Section 13 presents an algorithm for computing a trailing submatrix H(s,n)
of H. Section 14 modifies the algorithm to compute S(s,n) directly, without
first computing H(s,n). It is well known that the singleton matrix H(n,n) =
S(n,n) = [hs] can be computed by solving a single linear system involving
A. Our algorithm for S(s,n) in Section 14 compute S(s,n) for (n —s+1) <
nd/ deg S(n, k) in about the same time, d the degree of A.

Section 15 presents a key subroutine for the algorithm in Section 16, which
in turn extends the algorithms of the previous sections to compute S(s,e€)
for arbitrary e. Finally, Section 17 gives an algorithm for computing the
Smith form. If the input matrix has been successfully preconditioned so that
Diagonal(hq, ha, ..., hm) is equal to the Smith form of A, then the algorithm
requires computing a sequence of only O(logn) blocks: S(n,n),S(n —2,n —
1),S(n—6,n—3),..., each block having double the dimension of the last but
with degree at most half. The algorithm uses integrality certification to verify
that Diagonal(hy, hz, ..., hy) is indeed equal to the Smith form.

4 X-adic representation

Let X € K[z] have degree greater than zero. By X-adic expansion of a €
K[z] we mean to write a = ag + a1 X + a;X* + -+ + a; X', [nonnegative,
deg a, < deg X. Throughout this paper, “degree” or “dega” will always mean
degree with respect to x. For example, if deg X = d and «; is nonzero, then
dl < dega < d(l 4+ 1). The a, are called coefficients of the X-adic expansion
of a.

The ring K'[z] has the usual arithmetic operations {4, —, x }. Here we define
the three additional operations {Left, Trunc, Inverse} and give some of their
properties. These functions will implicitly be defined in terms of a proscribed
X. Let @ € K[z] and k be nonnegative. Suppose the X-adic expansion of « is
a=ag+ a1 X +ayX*+---. Then Left(a, k) = ar + arp 1 X + ag42X*+ -+ - and
Trunc(a, k) = ag + a1 X + a; X* + -+ + aj_ X* L.

The Trunc operation truncates an X-adic expansion, e.g.,

a=ag+ a1 X + a2X2 + a3X3 + a4X4 + a5X5 + a6X6 4+ ...
Trunc(a,4) =ap + a; X + a; X* + a3 X°.

The Left operation corresponds to division by a power of X; the name comes

12

from the fact that all coefficients of the X-adic expansion are shifted left, e.g.,

a=apg+ a1 X + a3 X?* + a3 X2+ ay X+ as X® +ag X6+ - -+
Left(a,3) = a3 + a4 X + as X + a6 X® + a7 X* + agX° + agX® + -+,

If « L X, then Inverse(a,k) denotes the unique b € K[x| such that b =
Trunc(b, k) and Trunc(ab, k) = Trunc(ba, k) = 1.

Let a,b € Kz] and k be nonnegative. A key property of the Left(x, k) opera-
tion is linearity: Left(a + b, k) = Left(a, k) + Left(b, k).

Lemma 1 If degb < deg(X*) then Left(a + b, k) = Left(a, k).

The next lemma observes that Left and Trunc commute.

Lemma 2 Ifl <k then Left(Trunc(a, k),1) = Trunc(Left(a,l), k —1).
X-adic expansions of matrices

Everything discussed above extends naturally to matrix polynomials: replace
a,b € K[z] with A,B € K[z]"*™. The operation Inverse takes as input a
square matrix A, det A 1 X.

The inverse of a nonsingular polynomial-matrix usually has rational function
entries. For example, if

11 1 1
A= then A~'= | !7@ *=1 | ¢ I&”(:z;)zxz. (8)
T 1 x 1

z—1 1l—=z

It is well known that denominators of reduced entries in A™! are divisors of
the determinant of A. In the above example det A = 1 — = which has degree
bounded by one. In general, for a nonsingular A € K[z]"*" we have:

Fact 3 deg(det A) < ndeg(A).

For a given B € K[z]"*™, the matrix A™'B usually has rational function
entries as opposed to polynomials. But (det A)A™' B is a polynomial matrix
and

Fact 4 deg((det A)A™' B) < deg(B) + (n — 1) deg(A).

Consider again A from (8). Since det A | z, we can express each entry of A~
as an infinite z-adic expansion.

13

4o _1—|—:1;—|—:1;2—|—:1;3—|—---‘—1—:1;—:1;2—:1;3—|—---

—x—a? -2+ ‘ l+a+a?+a®+---

1 -1 1 -1 1 -1,
01 -1 1 -1 1

The last equation gives the infinite a-adic expansion of A7!. In the rest of
the paper, we will use A~! similarly, e.g., A™! denotes a possibly infinite X-
adic expansion. In algorithms we will use Trunc(Inverse(A, k)b, k); we will also
write Trunc(A™', k) to mean the same.

Computation with X -adic polynomials

We are working over K[z] with the operations {4+, —, x, Left, Trunc, Inverse}.
The cost of these operations will depend essentially on our choice of represen-
tation for elements of K[z]. Let d = deg X, and for « € K[z] let k be minimal
such that ¢ = Trunc(a,k). Then dega < kd, and a can be stored as a list
comprised of the first & coefficients of the X-adic expansion.

The conversion between the x-adic representation of a and the X-adic rep-
resentation (either direction) can be computed with O(M(kd)log k) field op-
erations (Gathen and Gerhard, 1999, Theorem 9.15 and Exercise 9.20). In
particular, if & < 2 then the cost of conversion is O(M(d)) field operations;
this case occurs often in our algorithms.

Let b € K[x] be given in addition to a, degb < dega < kd. Suppose «a
and b are represented as X-adic polynomials. Then the X-adic expansion of
a+bor a—>b can be computed with at most kd field operations. The X-adic
expansion of ab can be computed with O(M(kd)(log k)) field operations by
first converting a and b to z-adic representation, computing the product, then
converting back to X-adic representation; we may sometimes use the coarser
bound M(kd)(logk) = O(B(kd)). Similarly, Inverse(a, k) can be computed
with O(B(kd)) field operations; the cost of the conversions between X-adic
and z-adic representation does not dominate here.

Operations Left, Trunc and multiplication by a power of X are free.

In most of our algorithms, we will make the implicit assumption that the
input is given in X-adic representation. The output will also be given in X-
adic representation.

14

5 X-adic lifting
Let A € K[x]™" be nonsingular. Suppose we are given an X € Kz such
that X 1 det A. In the X-adic expansion

C
A_IZ*—I_*X—I_+*Xl_1+*Xl—|_*Xl+1—|—7

each * lives in K[z]"*" and has degree strictly less than deg X. Let B €
K[x]"**. The next definition and lemma give the key idea of X-adic lifting,
cf. (4). Note that the division by X* is exact.

Definition 5 Residue(A, B, k) := (B — ATrunc(A™' B, k))/ X*.

Lemma 6 A~'B = Trunc(A™'B, k) + A~! Residue(A, B, k) X*.

The next result follows immediately.

Theorem 7 Let C := Trunc(A™',1) and R := Residue(A, B, k). Then

Trunc(A™' B, k) Trunc(C R, 1) X*
AT'B = s+ %X 4+ & X uXF 4o e XM

There are some well known variation of Theorem 7. For i > 0, define) =
Trunc(A~!,2') and R®) := Residue(A, I,2'). Then A~!' = C) + ATROXZ,
Starting with C©), a Newton iteration (or quadratic X-adic lifting) applies
Theorem 7 for [= k = 2,4,8,16, ..., doubling the number of coefficients of
the expansion of A™! at each step, cf. Figure 1:

C© = Inverse(4,1);
for i to k do

RU-D = (I — ACt-1) /x>

C .= C=Y 4 Trunc(CU-YR(I-D 21)x 2™
od;

?

Inverse(A, 2%) :=

| return c®)

In all of the above, no assumptions are required on the degree of A or B.

15

X-adic lifting using short products

Let k> 1,

C EXk-2
Trunc(A™' k) = % + %X 45X 4 - 42 X572 4 X2 p X0 (9)

and

Trunc(A™ B, k) = % + X + X + .- 4 X2 1« X*2 L DX*1. (10)

Suppose we want to compute only the single high-order coefficient D shown
in (10). In general, we need all coefficients of Trunc(A™* k) to compute D.
The next result shows that it suffices to have only F in case B has small

degree. Let d = deg X.

Theorem 8 Assume deg B < d. Then D = Trunc(Left(EB,1),1).

PROOF. Trunc(A™Y k) = C + EX*=2_ This gives D = Left(Trunc(CB +
EBX*%).k —1). Using Lemma 2 we can interchange the Left and Trunc
to get D = Trunc(Left(CB + EBX* 2 k —1),1). The key observation is that
degCB < degC+deg B < (k—2)d+d < (k—1)d. Using Lemma 1 now gives
D = Trunc(Left(EBX*2 k —1),1). O

Now consider the computation of R := Residue(A, B, k), cf. Lemma 6. In
general, we need all coefficients of Trunc(A™'B, k) to compute R. The next
result shows 1t suffices to have only D in case deg A and deg B are small
enough.

Theorem 9 Assume deg A < d and deg B < kd. Then R = Left(—AD,1).

PROOF. By definition, R = Left(B — A Trunc(A™' B, k), k). Lemma 1 gives
R = Left(— A Trunc(A~' B, k), k). Now substitute Trunc(A~' B, k—1)+DX*!
for Trunc(A™'B, k), and apply Lemma 1 to see that the term A Trunc(A™'B, k—
1), which has degree strictly less than kd, vanishes. O

Recall Lemma 6: A™'B = Trunc(A™'B, k) + A7'RX*. Thus, the problem of
computing A7 B up to a certain order can be divided into two parts. The first
is to compute Trunc(A™'B, k). The second is to continue by computing the

16

expansion of A™!'R. The following corollary of Theorem 9 states that R may
have small degree even if B has large degree.

Corollary 10 Assume deg A < d and deg B < kd. Then deg R < d.
The next corollary is obtained by applying Theorems 8 and 9 in succession.

Corollary 11 Assume deg A < d and deg B < d. Then

R = Left(—A Trunc(Left(EB,1),1),1).

6 High-order components of matrix inverse

Let A € K[z]™" be nonsingular, det A 1 X. In what follows, let C() =
Trunc(A~%,2"). In this section we show how to recover the high order compo-
nents of the inverse of A: E() = Left(C®,2! —2) for i = 1,2,..., k. To see

more clearly what we are computing, write the X-adic expansion of A™! as

AN =Co+C I X +C X%+ ---.
Then

EQ)
——
cW=0,+C,X
E2) X2
—N—
CO=Cy+ O, X + 0, X%+ C3X°
EB) X6
—N—
C<3)ZCO—|- ClX —|— —|— C5X5 —|— C6X6 —|— C7X7

Algorithm 1 (HighOrderComp) recovers only the high order components E*)
as shown above.

Algorithm 1 HighOrderComp[X]|(A, k)

Input: A € K[z and k > 2.

Output: (EW, E® .. E®) as shown above.
Condition: X | det A and d = deg X > deg A.

(1) L :=Inverse(A,1);

H := Trunc(L Left(I — AL,1),1);
EW .= L+ XH;

17

(2) for ¢ from 2 to k do

L := Trunc(Left(EC=Y Left(— AL, 1),1),1);
H := Trunc(Left(EC~Y Left(—AH, 1),1),1);
EW:=L+XH

od;

?

return (B, E®) E®R)

9 PRI

We now prove that the algorithm is correct. Let [X](A, k) be a valid input
tuple. Let (L), H®) be equal to (L, H) as computed during the loop in phase 2
with index 7. Phase 1 computes (L(l), H(l)) = (Cy, Cy) and EW = Cy+ XC;.

Using induction on j we now prove that

L(]) :Czj_z (11)
H(]) == Czj_l (12)
E(j):CZj_z —I‘X02j_1 (13)

for y = 1,2,...,k. The base case j = 1 has already been established. That
(13) follows from (11) and (12) is clear. Let ¢ > j. Our goal is to show (11)
and (12) hold for j = ¢. It will be sufficient to show that (12) holds since the
proof of (11) is analogous.

The algorithm computes

R
HO .= Trunc(Left(E(i_l) Left(—AH(i_l), 1),1),1).

By Theorem 9, R = Residue(A, I,2"7!). Theorem 8 now gives that H(is
equal to the coefficient of X?7' =1 in the X-adic expansion of A™'R. Since
A=l = CU1) 4 ATRX?T | this coefficient is equal to Cyi_;. This shows
that (12) holds. The proof that (11) holds for j = ¢ is analogous. This ends

the inductive proof of correctness of the algorithm.

Inverse(A, 1) costs MM(n, d) field operations. The remaining steps cost O(k MM (n, d))
field operations.

Proposition 12 Algorithm 1 (HighOrderComp) is correct. The cost of the
algorithm is O(k MM(n, d) + MM(n,d)) field operations.

7 Unimodularity certification

We present an algorithm to assay if a given A € K[z]"*" is unimodular. Our
approach is to assay if the x-adic expansion of A~! is finite.

18

Algorithm 2 UnimodularityCert(A)
Input: A € K[z|"*".
Output: True in case A is unimodular, otherwise false.

(1) if det(A mod 2) = 0 then return false fi;
d := deg A;
X = 2%
(2) 1= logy(n + 3],
(*,%,...,% E):=HighOrderComp[X](A4, k);
(3) if E is the zero matrix then
return true
else
return false

fi

We now prove correctness. Let k& and F be as computed in phase 2. Then

Trunc(A~%, 2%) = Trunc(A~!, 2% — 2) + EX?-2 Let R := Residue(A, B, 2).

On the one hand, suppose E is the zero matrix. Then Theorem 9 gives R =
Left(—A Left(E,1),1), i.e., R is the zero matrix. Since A~! = Trunc(A~1, 2%)+
A_IRsz, the expansion of A™! is finite. This shows that a return value of
true is always correct.

On the other hand, the parameter k is chosen so that deg(sz_z) is strictly
greater than degrees of numerators in A™' € K(z)"*". Thus, if A™! is over
K[xz] then E will be the zero matrix.

Proposition 13 Algorithm 2 (UnimodularityCert) is correct. The cost of
the algorithm is O((log n)MM(n, deg A) + MM(n, deg A)) field operations.

8 Series solution — small degree right hand side

Let A € K[z]"*" be nonsingular, det A | X. Let b € K[z]"*!. We present an
algorithm for computing the X-adic expansion of A71b up to a given order. The

algorithm requires both deg b as well as deg A to be bounded by d, d = deg X.

Algorithm 3 SeriesSolSmall|[X](A,b,k)

Input: A € K[z]"*", b€ K[z]"™™!, and k > 2.

Output: Trunc(A~1b, 2F).

Condition: X L det A and d = deg X > max(deg A, degb).
(1) EMW E®@ E*-1 .= HighOrderComp[X](4,k — 1);
(2) B:= [6‘0] where O is the n x (28 — 1) zero matrix;

19

for i from & —1 by —1 to 1 do
B := the first 2F — 20 columns of B;
R := Left(—A Trunc(Left(E® B, 1), 1), 1);
R := [O‘R] where O is the n x 2! zero matrix;
B:=DB+ R;

od;

B := Trunc(EWW B, 2);

(3) # Let B = [do 0]d; 0‘ dok_o 0]'

B = do —|— d2 X2 —|— Cee _|_ d2k—2 X?k—Z;
return B

We now prove correctness. Let [X](A, b, k) be valid input tuple.

The purpose of phase 2 is to compute all the coefficients of Trunc(A~1b,2%).
The idea is most clearly explained with an example: consider the case k = 4.
Let r; = Residue(4,b,7), 7 € {0,2,4,...,14}. Then ro = b, and repeated
application of Lemma 6 gives

Trunc(A™'5,16) = Trunc(A™'ry, 16)
= Trunc(A™ "7y, 8) + Trunc(A™'rg, 8) X°®

= Trunc(A™'rg,2) + -+ - + Trunc(A ™ ryy, 2) X

Our initial problem is to compute the solution to a single linear system up to
order 16. At the start of the loop we have

B=1r000000000000000]-

The j’th column of B may be thought to be implicitly multiplied by X7~!,
cf. (7). After the loop completes with index ¢, the matrix B is as follows:

i:3r0 rs

i = 2 To T4 rs 2

t=1{rg 19 T4 Te Ts Tio Ti2 Ti4

Thus, each pass through the loop doubles the number of systems we need to
solve, but halves the order of precision to which we need the solutions. After
the loop completes we need to solve 8 systems up to order X?; this is done by
the last line of phase 2.

20

We now give a formal proof of correctness for phase 2. We will prove by
induction on s, s = k,k — 1,k —2,...,1, that after the loop completes with
index 7 = s, we have

2k
A~y = Z Trunc(A™" Column(B, j), QS)XJ_1 (mod XZk), (14)

J=1

and deg B < d. The base case s = k corresponds to the state of B before the
first iteration of the loop: (14) holds.

Now assume (14) holds with s =7 + 1, some 7 > 1. Let ¢; = Column(B, j),
where B is at the start of the loop with index 7. Then (14) with s = ¢ +1 gives

2k
A7 = Trunc(A™'¢;, 27 X771 (mod X2*). (15)

=1

We need to show that (14) holds with s = ¢ after the loop completes with
index 1. Let ¢; := Residue(A, ¢;,2'). Then Lemma 6 gives

Trunc(A™ ¢;, 27Y) = Trunc(A™'¢;, 2') + Trunc(A™'e;, 2°)le
Substituting into (15) gives

2k
A7 = Trunc(A™'¢;, 2 X 4 ZTrunc (A7'¢;, 2 X% i (mod X?%).(16)

j:l] 1

Let R and R be as computed in the loop. By Corollary 11, Column(R, j) = ¢;
for 1 < 7 < 2% — 2. Substitute ¢; = Column(R,2' +j — 1) for1 <j < 2k _ 9
into (16), and use the observation that Trunc(A~'¢;, 20) X2+~ = 0 mod X2
in case j > 2F — 2!, to get

2k

A7 = Trunc(A™"(¢; + Column(R, 7)), 29Xt (mod X)),

J=1

Thus, after the update B := B+ R, B will satisfy (14) with s = ¢. Corollary 10
gives deg R < d. Thus deg B < max(deg B,deg R) < d. This completes the

inductive proof.

Now we estimate the cost. The cost of phase 1 is given by Proposition 12. In
phase 2, the number of nonzero columns in B is doubling each time through the
loop. The last iteration of the loop dominates. The cost is O((2% /n)MM(n, d))

21

field operations if 28 > kn. If 28 < kn the cost is dominated by that of phase 1.
Finally, phase 3 multiplies each column of B by the appropriate power of X
and adds all the columns together. Under our cost model this is free.

Proposition 14 Algorithm 3 (SeriesSolSmall) is correct. The cost of the
algorithm is O((k + 2% /n)MM(n,d) + MM(n,d)) field operations.

9 Series solution

Let A € K[z]"™" be nonsingular, det A 1 X. Let b € K[z]"*™. We present an
algorithm for computing the X-adic expansion of A7 up to a given order.
The algorithm here extends the algorithm given in the previous section: no
assumption is required on the degree of b, and b may have column dimension
m, m > 1.

Algorithm 4 SeriesSol[X](A,b, k)

Input: A € K[z|"*", be K[z]"™, and k > 2.
Output: Trunc(A~1b, 2F).

Condition: X | det A and d = deg X > deg A.

(1) EMW E®@ E*-1 .= HighOrderComp[X](4,k — 1);
(2) # Let X-adic expansion of b be by + by X + by X + - -.
B = [bo by bzk—1]§
for : from £ — 1 by —1 to 1 do
B := the first m2*¥ — m2’ columns of B:;
R := Left(— A Trunc(Left(E® B),1),1),1);
R .= [O‘R] where O is the n x m2' zero matrix;
B:=DB+ R;
od;
B := Trunc(EWW B, 2);
(3) # Let B = [do dy dzk—1]'

B .= dO + dl X + d2 X2 +--- 4+ d2k—2 X?k—Z T Trunc(dzk_h 1)X2k_1;
return B

We now prove correctness. Let [X](A, b, k) be a valid input tuple.

Suppose m = 1. Then Algorithm 4 (SeriesSol) is identical to Algorithm 3
(SeriesSolSmall), except that b; is not necessarily zero for ¢ > 0. The formal
proof of correctness for phase 2 carries over directly. There are some minor
differences in phase 3. Here, d; may not necessarily be zero for odd ¢, and in
particular we need to truncate the expansion of dyx_;.

22

Now we estimate the cost. The analysis for phase 2 is slightly different than for
Algorithm 3 (SeriesSolSmall). Here, the number of nonzero columns in B is
bounded by O(m2*) in each iteration of the loop. This gives the cost estimate
of O(k[m2*/nIMM(n, d)) field operations for phase 2. Phase 3 multiplies each
column of B by the appropriate power of X and adds all the columns together.
Unlike the corresponding phase in Algorithm 3 (SeriesSolSmall), we may
have to perform some additions here, but the cost of this phase is dominated
by that of phase 2.

Proposition 15 Algorithm 4 (SeriesSol) is correct. The cost of the algo-
rithm is O(k[m2* /n]MM(n,d) + MM(n,d)) field operations.

Let (A,b,*) be a valid input tuple to Algorithm 4 (SeriesSol), b a column
vector. Based on Facts 3 and 4, Algorithm 5 (RationalSol) computes the
minimal degree monic factor ¢ of det A such that gA~'b is over K|z].

Algorithm 5 RationalSol[X](A,b)

Input: A € K[z]"*" and b € K[z]"*'.

Output: (gA™'b,9) € (K[z]™*!, K[z]) with ¢ monic of minimal degree.
Condition: X | det A and d = deg X > deg A.

(1) N:=(n—1)degA;
k := the smallest integer > 2 such that 2 > N + n deg A;
v := SeriesSol[X](4,b,k);
(2) g:=1
for : to n do
h := minimal deg monic polynomial with deg Trunc(h(gv[i]),2*) < N;
g:=hg
od;

return (gv,g)

Each computation of A in phase 2 costs O(B(2%d)) field operations using ra-
tional function reconstruction, see (Gathen and Gerhard, 1999, Sections 5.7
and 11.1). This bounds the cost of converting between X-adic and z-adic
representations.

Corollary 16 Algorithm 5 (RationalSol) is correct. If (degb)/d = O(n),
then the cost of the algorithm is:

e O((logn)MM(n,d) + MM(n,d) + n B(nd)) field operations, or
e O((logn)MM(n)B(d)) field operations, assuming B(n) = O(MM(n)/n) and
n?*t = O(MM(n)) for some positive .

23

10 High-order lifting

Let A € K[z]"™" be nonsingular, det A L X. Let B € K[z]"*™. We present
an algorithm to compute a segment H = Left(Trunc(A™' B, + k), k) of coef-
ficients from the X-adic expansion of A~'B. Note that

HX"
AT'B = s 44X + - X o fa XRTL o YR (17)

If h = 0 we can use Algorithm 4 (SeriesSol) to compute H. In high-order
lifting, what is important is that h be larger than some specified bound, say
h > [for a given [. The particular value of & is not important, only that & > [.
Given [, the algorithm here chooses h := =9 + 2k where k is chosen to be
the smallest integer that satisfies de > deg B, and [is then chosen to be the
smallest integer that satisfies ol 4ok > [,

The point of the algorithm here is that the cost depends linearly on log [, not
on [. This is important because in typical applications [> k.

Algorithm 6 HighOrderLift[X](A4, B,l, k)

Input: A € K[z]"*", B € K[z]"*™, 1 > 2, and k a power of two.
Output: Left(Trunc(A™' B, h + k), h) for some h > [.
Condition: X | det A and d = deg X > deg A.

(1) k := the smallest integer > 2 such that 2kd > deg B;
D := Left(SeriesSol[X](A, B, k), 2" —1);
R := Left(—AD, 1);)
(2) [:= the smallest integer > 2 such that 2! + ok > [;
s, %, ..., % Bl)) := HighOrderComp[X](A4,();
R := Left(— A Trunc(Left(EW R, 1),1),1);
(3) H :=SeriesSol[X](A, R,log, k);

return H

~~

The purpose of phase 1 is to reduce a possible large degree right hand side
B to a small degree residue R. After phase 1 finishes, R = Residue(A4, B 2’“)
(Theorem 9), deg R < d (Corollary 10), and Lemma 6 gives

A'B = Trunc(A_lB, QE) + A_IRXZE.

After phase 2 finishes, R = Residue(4, R, 2i) (Corollary 11), and

A™'B = Trunc(A™'B,h) + AT'RX",

24

where h = 2i—l— ok

Phase 1 costs O((log deg B)[m(deg B)/(nd)]MM(n,d) + MM(n, d)) field op-
erations (Proposition 15), phase 2 costs O((log[)MM(n, d) + |\/|(n d)) field
operations (Proposition 12), and phase 3 costs O((log k)[mk/n|MM(n,d) +

MM (1, d)).

Proposition 17 Algorithm 6 (HighOrderLift) is correct. Iflogl = O(logn)
and both m X k and m x (deg B)/d are O(n), then the cost of the algorithm
is O((log n)MM(n, d) + MM(n, d)) field operations.

11 Integrality certification

Let A € K[x]"™" be nonsingular, det A L X. Let B € K[z]"™*™ and T €
K[z]™*™. This section presents an algorithm to assay if A™'BT is integral,
i.e., if A7'BT is over K|z]. Let

S = Trunc(A_lBT, h+E).
We will specify h and k below. For now, note that AS = BT mod X"**. Thus,
if deg AS and deg BT are < (h + k)d, then AS = BT, i.e., S = A™'BT.
Lemma 18 If deg AS,deg BT < (h + k)d, then A~'BT is integral.

Let H = Left(Trunc(A™'B,h+k), k), cf. (17). Assume that k satisfies deg T <
kd. Then

S degree < hd + deg T C
Trunc(A™'BT,h + k) = Trunc(A™'B,h)T + Trunc(HT,k)X". (18)

Theorem 19 Assume h satisfies (n — 1)deg A+ deg B 4+ deg T < hd and k
satisfies deg T + deg A < kd. Then A7'BT is integral if and only if deg C <
degT'.

PROOF. (If:) Assume degC < degT. Then deg S < hd + deg T (cf. (18)).
Now apply Lemma 18, noting that deg AS < deg A+deg S. (Only if:) Assume
A™'BT is integral. Then Fact 4 gives deg A™'BT < (n — 1)deg A + deg B +
deg T, which is < hd. Considering (18), we must have Left(.S, h) equal to the
zero matrix, which implies C = —Left(Trunc(A™* B, h)T),h). O

25

The next corollary will be useful later on. The corollary observes that C will
be invariant of the choice of k. Of course, I and k are still required to satisfy
the assumptions of Theorem 19.

Corollary 20 If A~'BT is integral, then A~'BT = Trunc(A™'B,h)T + C.
In case of integrality, the algorithm returns C, the integrality certificate.

Algorithm 7 IntegralityCert[X](A,B,T)

Input: A € K[z|"*", B € K[z]"™, and T € K[z]™*™.

Output: An integrality certificate if A~!' BT is over K'[z], otherwise fail.
Condition: X | det A and d = deg X > deg A.

(1) h := the smallest integer such that hd > (n — 1)d + deg B + deg T';
k := the smallest power of two such that kd > degT + d;
H :=HighOrderLift[X]|(A, B, h,k);
(2) C:=Trunc(HT,k);
if deg C < degT then
return C
else
return fail

fi

The cost estimate for phase 1 is given by Proposition 17. For the multiplication
of HT in phase 2 we need to take care to include the cost of conversion between
X-adic and z-adic representation.

Proposition 21 Algorithm 7 (IntegralityCert) is correct. If all of m, m X
(deg B)/d and m x (degT)/d are O(n), then the cost of the algorithm is:

e O((log n)MM(n,d) +MM(n,d) + (n/m)MM(m,nd/m) +nm B(nd/m)) field
operations, or

e O((logn)MM(n)B(d)) field operations, assuming B(n) = O(MM(n)/n) and
n?*t = O(MM(n)) for some positive .

Ezxtension to integer matrices

We show how the idea of integrality certification described above for poly-
nomial matrices can be adapted to integer matrices. For convenience, we are
going to work modulo powers of 10 in the symmetric range. For @ € Z and k
nonnegative, let Trunc(a, k) and Left(a, k) be the unique integers that satisfy
the following:

10% 10%

a = Left(a, k)10* + Trunc(a, k), — > < Trunc(a, k) < - (19)

26

In Maple(TM) we could define these operators as follows:

Trunc(a,k) :
Left(a,k) :

proc(a,k) mods(a,10"k) end:
proc(a,k) (a-Trunc(a,k))/10"k end:

The computation with integer is considerably complicated because of the pres-
ence of carries. We will need the following lemmata, which follow from the
definition of Left and Trunc.

Lemma 22 |Left(a, k)| < (|a| + |Trunc(a, k)|)/10F < |a|/10% + 1/2.
Lemma 23 If |a| < 10%/2, then Trunc(a, k) = a.

We now develop the analogue of Theorem 19 for the integer setting. Suppose
det A L 10. Let

S =Trunc(A™'BT, h + k),
H = Left(Trunc(A™' B, h + k), h), and
C =Trunc(HT, k).

Note that Trunc(AS, h+k) = Trunc(BT, h+k). Thus, if | AS|| < 10%/2 and
|BT || < 10¥/2, then AS = BT (Lemma 23).

Lemma 24 If [|AS||w, [|BT||o < 10%/2, then A= BT is integral.

Before stating the main result, we give two more lemmas. The fact that the
absolute value norm over Z is Archimedian accounts for the first lemma. The
second lemma follows from the first, Cramer’s rule, and Hadamard’s inequality.

Lemma 25 If P € Z**", and T € Z"**, then ||PT | < m||P|loc||T]|c-
Lemma 26 || det(A)A™'BT || < mn™?(||Allec)” " | Blloo || T] -
The analogue of (18) is

|- | < (m/2)||T||-10"
S = Trunc(Trunc(A_lB,h)T —I—C'l()h),h + k). (20)

The magnitude bound in (20) follows from (19) and Lemma 25. The outermost
Trunc operation on the right hand side of (20) is required because the Trunc
operation over Z is not linear, e.g., Trunc(5+41, 1) # Trunc(5, 1)+ Trunc(1,1).

Theorem 27 Assume h satisfies mn”/2(||A||OO)”_1||B||0<>||T||OO < 10"/2 and
k satisfies nml||Al|o||T]|e < 10¥/2. Then AT'BT is integral if and only if
[Cllse < (m/2)[|T |-

27

PROOF. (If:) Assume ||C]| < (m/2)]|T||o- Then S < m||T||o10" (cf. (20)).
Now apply Lemma 24, noting that ||AS|| < nm||Al|«||T|~10" (Lemma 25).
(Only if:) Assume A~! BT is integral. Then ||[A™!BT ||, < 10"/2 (Lemma 26).
Lemma 23 applied to both sides of (20) gives A™'BT = Trunc(A™'B,)T +
C10". Now note that Trunc(Trunc(A=*B,h)T,h) = A7'BT to deduce that
C = Left(Trunc(A™'B,h)T,). The magnitude bound in (20), together with
Lemma 22, gives ||Clloc < (m/2)||T]|oe + [|[ATBT||oo/10" < (m/2)||T |0 +
1/2. Finally, note that ||Cll € Z, yielding the required bound: ||C|l. <
/2Tl +1/2 - 1], O

Worked example

We will assay if A7'BT is integral, where

98 —11 —56 —39 | (00

_5 42 —10 37 00 3969 0
A:: 5 B:: R T:: X

99 _44 —25 44 10 0 3969

-32 3 38 46 | 01

Let i = 90 and k& = 8. Then the assumptions of Theorem 27 are satisfied. Let
H := Left(Trunc(A™'B,98),90) and C := Trunc(HT,38):

—12194507 —23935500 1717 500
—24086672 42529604 —1168 —1724
H = and C =) (21)
—5946082 33232552 542 —1112
24086672 —42529604 1168 1724

Since [|Clloe = 1724 < (m/2)||T||sc = 3969, we conclude that A'BT is
integral. Note that we have not described how to efficiently compute the high-
order lift H. This requires some new techniques and will be the subject of a
future paper.

28

12 The Hermite basis and fraction descriptions

This section introduces some notation and recalls some definitions and facts
that we will need in subsequent sections. The notation StackMatrix(A4;, As)

is defined by

Ay

StackMatrix(A4;, As) = |—| .
Ay

A matrix A is a left multiple of B if A = *B for a matrix * over K|z].
Analogously, A is a right multiple of B if A = Bx. A matrix G € K[z]™*™ is
a row basis for a full column rank A € K[z]"*™ if A and G are left multiples
of each other. Column basis is defined analogously.

Corresponding to every full column rank A € K[z]"*™ is a unimodular matrix
U € K[z]"™" such that

[y Bz B |
h2 ce h2m
UA = StackMatrix(H,0) = N < Kla]™™,
Fn

with off-diagonal entries h,; in H of degree strictly less than the monic diagonal
entry h; in the same column. The principal nonsingular submatrix H is the
unique Hermite row basis of A. In particular, AH™' is over K[z] and has
Hermite row basis equal to [,. If A is square as well as nonsingular, then
U := HA™! is the unique unimodular transforming matrix such that UA = H.

Hermite column basis is defined analogously: for A € K[z]™*" with full row
rank m, the Hermite column basis of A is the transpose of the Hermite row
basis of Transpose(A).

_ hl -
hot h
AU = [H‘] = ?1 '2 ‘ € K[z]™".
_hml hmZ Tt hm]

29

Fact 28 Full row rank matrices A and B over K[z| are right multiples of each
other if and only A and B have the same Hermite column basis.

We now recall some facts about matrix geds and fractions. (See for example
Kailath (1980) for a detailed study.) Suppose A; and A, are over K|[x], with
same column dimension, and A, is nonsingular. Then a right matrix ged of

A; and A, is any row basis for StackMatrix(A4;, A3). Now let F' € K (a)™*™
have rank m.

Definition 29 A nonsingular matric D € K[z]™*™ is an irreducible right de-
nominator of F if F'D is over K|x|, and I, is a right ged of StackMatrix(F D, D).

Irreducible right denominators of F' are right equivalent (equal up to post-
multiplication by a unimodular matrix on the right) in K[z]™*™. In particular,
we will use the following two results.

Fact 30 If D, and D, are irreducible right denominators of F', then the Her-
mite column basis of Dy equals the Hermite column basis of D,.

Fact 31 Let D be an irreducible right denominator of F', and M € K[z]™*™.
Then FM is over K[z] if and only if M is a right multiple of D.

Suppose we have a nonsingular right multiple M € K[z]™*™ of an irre-
ducible right denominator of F. Then F' admits the right fraction description
F = (FM)(M)™*. An irreducible right denominator of F can be computed
from FM and M as follows. Let G be a right gecd (e.g., the Hermite row ba-
sis) of StackMatrix(FM, M) € K[z]"*™. Then StackMatrix(FM, M)G™' =
StackMatrix(FMG™', MG™") is also over K[z], and has Hermite row basis
I,. Then F = (FMG ") (MG™")™', and MG~ is by definition an irreducible

right denominator of F. This gives the following well known recipe.
Fact 32 Let M € K[z|™™ be nonsingular and such that FM is over K|x].

Then MG™' is an irreducible right denominator of F, where G is any row

basis of StackMatrix(F M, M).

13 Trailing Hermite basis

Let m satisfy 1 < m < n, and throughout this section, let
e A€ K[x]"™" be nonsingular,

e B € Kz]"™ the the last m columns of I,
o T € K[x]™™ Dbe the trailing submatrix of the Hermite column basis of A.

30

This section presents Algorithm 8 (TrailingHermite) for computing T . The
algorithm is based on the observation that the following matrix is unimodular:
A™'H = [* | A7'BT]. It follows that A™'BT is over K[x] and that I,, is a
left multiple of A='BT'. This gives the following.

Lemma 33 T is an irreducible right denominator of A™1B.

In particular, T is the Hermite column basis of any other irreducible right
denominator of A™'B (Fact 30). Suppose we are given a nonsingular M €
K[z]™*™ such that A~'BM is over K[z]. Then Fact 32 gives a method to
compute an irreducible right denominator of A™'B from A™'BM and M.
Unfortunately, A~'BM € K[x]"*™ may have large degree (i.e.,deg A™'BM <
(n —1)deg A + deg B 4 deg M) compared to M and T, leading to a bad
complexity for the row basis computation. Our algorithm avoids this by using
high-order lifting to computing a matrix C € K[z|"*™, with deg C < deg M,
and such that (C)(M~') and (A~'BM)(M ') have the same irreducible right

denominators.

Algorithm 8 TrailingHermite[X](A, M,m)

Input: A € K[z]|"*" and a nonsingular M € K[x]™*™.

Output: The trailing m x m submatrix 7' of the Hermite column basis of A
in case M is a right multiple of T', otherwise fail.

Condition: X | det A and d = deg X > deg A.

(1) B := the last m columns of I,;
C := IntegralityCert|X|(A, B, M);
if C = fail then return fail fi;
(2) E := HermiteRowBasis(StackMatrix(C, M));
D := HermiteColumnBasis(M E~');
return D

We now prove correctness. By the specification of Algorithm 7 (IntegralityCert),
phase 1 will not return fail if and only if A='BM is integral. By Fact 31 and
Lemma 33, (A™'B)M is integral if and only if M is right multiple of T.

Suppose that the algorithm does not return fail. Let G be the Hermite row ba-
sis of StackMatrix(A™*BM, M). Then A™'BMG™" and MG~ are over K|[z].
Let E be as computed in phase 2. Then CE~! and M E~! are over K[z]. By
Fact 32, MG™! is an irreducible right denominator of A™'B, while M E~1 is
an irreducible right denominator of C M~'. Thus, we will be done if we show
that A™'B and M E~! are right multiples of each other (Fact 28).

For some h, Corollary 20 gives that

AT'BM = Tranc(A™' B, h)M + C X" (22)

31

On the one hand, both ME™ and CE™' are over K[z]. Post-multiplying
both sides of (22) by E~' shows that A™'BME~! must be over K|z] also.
But then ME~! is a right multiple of MG~ (Fact 31). On the other hand,
both AT'BMG™ and MG~ are over K[z]. Post-multiplying (22) by G™*
shows that CG~! must be over K[z] also. But then MG™" is a right multiple
of ME~! (Fact 31).

Theorem 34 Algorithm 8 (TrailingHermite) is correct.

We will not estimate the complexity of Algorithm 8 (TrailingHermite). A
potential problem is that the Hermite row and column basis computations
in phase 2 may have too high complexity, even if M has small degree. (The
known algorithms for reducing Hermite form computation to matrix multipli-
cation work modulo the determinant and have a complexity which depends on
deg det M rather than deg M.) Instead, the next section presents a modifica-
tion of the algorithm which computes directly the Smith form of 7', avoiding
any explicit Hermite basis computations.

14 Smith of trailing Hermite basis

Recall the definition of the Smith form: corresponding to any full column
rank matrix A € K[z]"*™ are unimodular matrices U € K[z]"*" and V €
K[z]™*™ such that UAV = Smith(A) = StackMatrix(PrincipalSmith(A), 0),
with PrincipalSmith(A) = Diagonal(sy, S2,...,8m), each s; monic, and s; di-
viding s;41 for 1 <1 <m — 1.

Let m satisfy 1 < m < n, and throughout this section, let

o A€ Kz
e Be K[z]"

be nonsingular,
X™ he the last m columns of I,,,
x|™*™ be trailing submatrix of the Hermite column basis of A, and

[]
e S € K[x]™ be the Smith form of T.

Algorithm 9 (SmithOfTrailingHermite) is a simple modification of Algo-
rithm 8 (TrailingHermite).

Algorithm 9 SmithOfTrailingHermite[X](A4, s, m)

Input: A € K[z]|"" and a nonzero s € K|z].

Output: The Smith form S of the trailing m x m submatrix T of the Hermite
column basis of A in case s, is a right multiple of T', otherwise fail.

Condition: X | det A and d = deg X > deg A.

(1) B := the last m columns of I,;
C := IntegralityCert[X|(A, B, sl,);

32

if C' = fail then return fail fi;
(2) E := PrincipalSmith(StackMatrix(C, sl));
D := Smith((sl,,)E~');

return D

We now prove correctness. Phase 1 is identical to Algorithm 8 (TrailingHermite):
fail will not be returned if and only if sl,, is a right multiple of T". Assume
phase 1 does not fail, and let

E := HermiteRowBasis(StackMatrix(C, sI,,,)).

Then S = Smith((sl,)E™!), since the Hermite column basis of (sl,,)E™"
is equal to T'. The key idea of phase 2 is to note that the Smith and inverse
computation commute. This allows us to avoid the computation of the Hermite
basis E. Let U and V' be unimodular matrices such that U EV is in Smith form.

S = Smith((sL,)E™")
= Smith(V ' ((sL,)E""U™)
= Smith((sL,)V'ET'U™)
:Smith((sfm)(Smlth(N
= Smith((sL,)E™").

We have shown that the algorithm is correct.

The cost of phase 1 is bounded by Proposition 21. Note that deg C' < deg s
(Theorem 19). The initial Smith form in phase 2 can be computed with
O((n/m)MM(m,deg s)) field operations by working modulo s, i.e., over the
principal ideal ring R = K[x]/(s). First embed StackMatrix(C, sl,,) into R,
then compute an upper echelon form, and finally transform an m X m matrix
to Smith form over R. The resulting Smith form over R, considered as a ma-
trix over K[z], will be as desired after replacing zero diagonal entries by s.
For details and algorithm we refer to (Storjohann, 2000, Chapters 3 and 7).

Proposition 35 Algorithm 9 (SmithOfTrailingHermite) is correct. If m
and m x (degs)/d are O(n), then the cost of the algorithm is:

e O((logn)MM(n,d) + MM(n,d) + (n/m)MM(m,nd/m)) field operations, or
e O((logn)MM(n)B(d)) field operations, assuming B(n) = O(MM(n)/n) and
n?*t = O(MM(n)) for some positive .

33

Worked example

The essential idea used in the last two sections carries over to the case of
integer matrices with no modification. Specifically, let

B E ZTL)(T)’L7

A € Z™" be nonsingular,

M € Z™*™ be nonsingular.
C be an integrality certificate for A™' BM (cf. Theorem 27).

Then the right matrix fractions (A™'BM)(M™') and (C)(M™') have irre-
ducible denominators which are right multiples of each other. The key point
is that [|C||e < (m/2)||M || (Theorem 27) even though ||A™'BM ||~ may be

large.

For example, the matrix

[98 —11 —56 —39 |
-5 42 —10 37
A= has Hermite basis
22 —44 —25 44
_—32 3 38 46 |

and the trailing 2 x 2 submatrix

3
T =

3792 3969

3
] of H has Smith form S = {

H =

1
220 1231
0 2 3

379 670 3792 3969

3969]'

Let s = 3969, and let C be the integrality certificate shown in (21). Then

[1717 500
1168 —1724
542 —1112
1168 1724
3969
i 3969

has principal Smith form D =

34

1

1323]'

Note that the Smith form of (sl,)D™' is S.

15 Determinant reduction

Let A € K[z]"*" be nonsingular. Recall that the Hermite row basis of A has
the shape

hl h12 hln
H= ? ‘ 2 € K[z]™*",
L hn -

and that det A = e¢det H for a nonzero constant polynomial c.

Algorithm 10 (DetReduction) computes a matrix B, obtained from A by
replacing the last column, such that the last diagonal entry in the Hermite row
basis of B is one. The algorithm is thus named because det B = (det A)/h,,,
where h,, is the trailing diagonal entry in the Hermite row basis of A.

A key step in the algorithm is to solve an instance of the extended ged problem.
For this we use the following result.

nxl1 1Xn

Lemma 36 Given a row vector w € K[z]"', a column vector b € K|[x]
such that degb < degw, and wb = ged(w[l], w[2],...,w[n]), can be computed
with O(nB(degw)) field operations.

An algorithm supporting the running time estimate of Lemma 36 is given

in (Storjohann, 2000, Corollary 6.5).

Algorithm 10 DetReduction[X](A)

Input: A € K[z|"*".

Output: B € K[z]|"*", with B equal to A except for possibly the last column,
deg B < deg A, and last diagonal entry in the Hermite row basis of B equal
to one.

Condition: X | det A and d = deg X > deg A.

(1) (w,h) :=RationalSol[X](Transpose(A), Column(l,,n));
w := Transpose(w);
P := a permutation such that the last entry of wP has maximal degree;
b := an element of K[z]"*! such that wPb =1, degb < deg w;

35

(2) v := Column(I, — P™* A, n);
s:=h+ wPuv;
(y,9) := RationalSol[X]|(A, P(sb—v));
q = Left[sg](y.1);
qln] := 0;
return a copy of A except with last column replaced by Pb— Aq

We now explain the algorithm and prove correctness. Let w, P, and b, be as
computed in phase 1. Let us assume, without loss of generality, that P = I,.
Then {w} is a basis for the left kernel (over A[x]) of the first n — 1 columns
of A. The next fact follows.

Fact 37 Assume B is nonsingular and equal to A except for possibly the last
column. Then the unimodular transforming matriz which transforms B to Her-
mite row basis has last row equal to a scalar multiple of w.

By construction of b in phase 1, the matrix obtained from A by replacing the
last column with b (cf. the matrix on the left of (23)) will have Hermite row
basis with trailing diagonal entry one. The problem is that degb may be as
large as degw, and degw < (n — 1)deg A. Phase 2 applies lattice reduction:
the first n — 1 columns of A are used to reduce the degree of b.

Let s,g € K[z] and v,y,q € K[z]"! be as computed in phase 2. Then (I, +
v(w/h))A is equal to A with the last column replaced by Column(Il,,,n), and
(I,4v(w/h))A)™r = A=Y, —(1/s)vw). The vector y is the unique solution to
(I, —v(w/h))Ay = sgb. Let b,9, G € K[z]""Y*! be the principal subvectors of
b, y, q, and let A € K[z]"=D*(=1) he the principal submatrix of A. Because
the last column of (I — v(w/h))A is equal to Column(l,,n), we also have
Ay = sgb. The vector ¢ is a polynomial approximation to the rational vector
y/(sg) in the following sense: y/(sg) = ¢ + r/(sg) for some r € Klx| with
degr < deg sg.

(23)

It follows that b — Ag, which is equal to A7/(sg), has degree strictly less than
deg A. Since w is a vector in the left kernel of the first n — 1 columns of A, and
g[n] = 0, we have w(b — Aq) = wbd. Since wb = 1, we have w[n] (b — Aq)[n] =
11— wli] (b— Ag)[7]. By assumption, degw[n] > degw[i] for 1 <7 < n—1.
It follows that deg(b— Aq) < max((deg A) — 1,0).

Corollary 16 bounds the cost of the two calls to Algorithm 5 (RationalSol).
The cost of converting among X-adic, z-adic and (sg)-adic representations is

bounded by O(n B(nd)) field operations.

36

Proposition 38 Algorithm 10 (DetReduction) is correct. The cost of the
algorithm is:

e O((logn)MM(n,d) + MM(n,d) + n B(nd)) field operations, or
e O((logn)MM(n)B(d)) field operations, assuming B(n) = O(MM(n)/n) and
n?*t = O(MM(n)) for some positive .

Worked example

The same determinant reduction method is applicable to the case of integer
matrices. Consider the matrix A with Hermite row basis H.

—66 —65 20 —90 30 100 10 260246748

3% 5 =7 =21 62 10 2 292062707
A=|68 66 16 —56 79|, H= 1 7 244095302
13 —41 —62 —50 28 14 342954195

| 26 —36 —34 -8 —71_ I 344319363 |

An extended gecd computation gives b = | 779244 46649 46649 0 0 | such that

Row(HA ™', n)b=1.In the integer case, we compute ¢ to be the integer vector
such that each entry of A7'b — ¢ has magnitude < 1. The matrix obtained
from A by replacing the last column with b — Agq is

—66 —65 20 —90 3 100100

35 5 =7 =21 46 1020
68 66 16 —56 79 |, with Hermite row basis 170
13 —41 —62 —50 —15 14 0
I 26 —36 —34 -8 2 | I 1_

37

16 Partial Smith form

Let A € K[z]"*" be nonsingular. Let k and m be given, 1 < m <k <n—1,
and throughout this section, let

Anr|Arz|Ars
A= Ay Ay Ay | where Ayyis k X k, and Ay is 1 x 1,

Asy|Asy | Ass
H be the Hermite column basis of [Ajq | A12],

T be the trailing m x m submatrix of H,
S be the Smith form of T', and

Hll

H21 H22

where Hy; is k X k.

the Hermite column basis of A be

This section presents an algorithm to compute S. Our eventual goal is to
compute the entire Smith form of A. The algorithm in the next section will
accomplish this by repeatedly applying the algorithm of this section to com-
pute S as defined above for various choices of k& and m. Note that S is not
necessarily a submatrix of the Smith form of A. What is sufficient for the
algorithm of the next section is that the following conditions (C1) and (C2)
are satisfied:

° (C].) H = Hll-
e (C2) Smith(A) = Smith(Diagonal(Hy1, Ha)).
e (C3) Smith(A) = Diagonal(Smith(Hi;), Smith(Hzs)).

Lemma 39 (C3) implies (C2).

Lemma 39 follows from the definition and uniqueness of the Smith form. Nor-
mally, these conditions may not hold. However, preconditioning techniques
exist for transforming a nonsingular input matrix in K[z]"*" to new matrix
A which has the same Smith form, and which satisfies these conditions with
high probability for all 1 <m < k < n — 1, see §18. For a given m and k, the
algorithm here will fail if conditions (C1) and (C2) do not hold, and will not
fail if (C1) and (C3) (and some additional conditions) do hold.

38

Define B, C', and D with the following conformal block decomposition:

A Ap|Ags
B‘C _ Az Aga|Ass c I&,;[x](n-l—l)Xn? (24)
D|* Ay Ayz|Ass

| Az Asz|Ass |

so that B is (k4 1) x (k4 1), and the last row of C is zero. Note that the
matrix in (24) is obtained from A by repeating row k + 1.

Algorithm 11 PartialSmith[X](A,s,k,m)

Input: A € K[z]"*", nonzero s € K[z], 1 <m <k <n.

Note: Let T', S, Hy1, Hy1, B, C, and D be as defined above.

Output: S or fail. Fail will be returned if (C1) and (C2) do not hold. Fail will
not be returned if (C2) and (C3) hold, X L det B, and sI,, is a right multiple
of T.

Condition: d = deg X > deg A.

(1) if X [det B then return fail fi;
R := Transpose(DetReduction[X](Transpose(B));
(2) if IntegralityCert[X|(R,C,I) = fail then return fail fi;
(3) if IntegralityCert[X](Transpose(R), Transpose(D),) = fail then
return fail
fi;
(4) S :=SmithOfTrailingHermite[X](R,s,m + 1);
if S = fail then return fail fi;
S := the trailing m x m submatrix of S;

return S

We now prove correctness. Assume phase 1 does not fail. Then R is identical
to B except for possibly the last row (row k + 1).

Phase 2 assays if R™'C is integral. Let V € K[2]+)X(+1) he the unimodular
matrix such that RV is the Hermite column basis of R. Then

All
Rll

A12
R12

Vi H|

Vai

Viz
Vas

I

R™'C is integral & V'R™'C is integral & H~'A;3 is integral & H = Hy;.
This shows that Phase 2 does not return fail if and only if H = Hy;.

39

So far, we have established that

A |Agz|Ass) Hyy
Vit [Va2 Iy —H{ Ays
Rj1|Ri2|Ass I Qi3
Va1 Vig L =) (25)
A |Ag2|Ags ; I Q11|Q12|Q13
A31 Az, A33 _Q21 Q22 Q23_

where the).. are new labels. Removing row k + 1 gives

A | Az |Ass Vit [Va2 Iy —H A3 Hyy
Az | Az Ags Va1 Vig L = | Qu1|Q12|CQ13 | - (26)
Az | Asz|Ass I I Q21 |Q22| Q23

Considering (26) shows that Hy; is equal to the Hermite column basis of
(Q12|Q13
(Q22|Q23

Phase 3 does not return fail if and only if DR™! is integral. Note that DR™!
is integral if and only if (DV)(RV)™! is integral. Considering (25) now shows
that DR™! is integral if and only if StackMatrix(Q11, Q21)Hy' is integral, in
which case Smith(A) = Smith(Diagonal(Hiy, H12)). At this point the argu-
ment splits. On the one hand, we have just shown shows that if phase 3 does
not return fail, then Smith(A) = Smith(Diagonal(Hi, Hi3)). On the other
hand, suppose Smith(A) = Diagonal(Smith(Hi,), Smith(Hiz)). Then the defi-
nition and uniqueness of the Smith form imply that StackMatrix(Q1, Q1) Hyy'
is integral, in which case phase 3 does not return fail.

Finally, consider phase 4. By construction, the trailing (m +1) x (m + 1) sub-
matrix of the Hermite column basis of R is equal to Diagonal(T, I1). Now note
that Smith(Diagonal(7, I)) = Diagonal(l;, Smith(T")). By the specification of
Algorithm 9 (SmithOfTrailingHermite), phase 4 does not return fail if and
only if sl,, is a multiple of T.

Proposition 40 Algorithm 11 (PartialSmith) is correct. If m and m X
(deg s)/d are O(n), then the cost of the algorithm is:

e O((logn)MM(n,d) + MM(n,d) + (n/m)MM(m,nd/m) 4+ n B(nd)) field op-

erations, or

40

e O((logn)MM(n)B(d)) field operations, assuming B(n) = O(MM(n)/n) and
n?*t = O(MM(n)) for some positive .

17 Smith form computation

Let A € K[x]™" be nonsingular. We present an algorithm to compute the
Smith form of A. Write the Hermite column basis H of A using a block de-
composition as

H;_y

H= ,
« - H
* PR * HO

where H; is 2/ x 27 for j = 0,1,...,7—2, and the dimension of H;_; is < 2!

Algorithm 12 Smith[X](A)

Input: A € K[z|"*".

Output: The Smith form of A or fail. Fail will not be returned if and only if
Smith(A) = Diagonal(Smith(H;_1),. .., Smith(Hy)), and

e the Hermite column basis of the principal & x (k + 1) submatrix of A is
equal to the the Hermite column basis of the first k£ rows of A, and
e the principal &k x k& minor of A is 1 X,

forke{n—1n—(1+2),n—(14+24+4),....,n—(1+2+---+272)}L
Condition: X | det A and d = deg X > deg A.

(1) (*,h):=RationalSol[X](A, Column(/,,n));

So := [h];

(2) ©:=0;
k:=n-—1,
m := min(2, k);

for ¢ while £ > 0 do
S; := PartialSmith[X](A, S;_1[1,1], k, m);
if S; = fail then return fail fi;
k:=k—m;
m := min(2m, k)
od;
return Diagonal(S;i_1, Si—2,...,50)

41

We now prove that if the algorithm does not fail, the result will be cor-
rect. Phase 1 computes Sy = Smith(Hp). Suppose phase 2 does not fail.
Then S; = Smith(H,) for 0 < 57 < ¢ — 1. Since condition (C2) was sat-
isfied for each call to Algorithm 11 (PartialSmith), we may conclude that
Smith(Diagonal(S;_1, Si—2, ..., S0)) is the Smith form of A. Finally, since S;_1[1, 1]/
is a right multiple of Sj for 1 < j <¢—1, we have that Diagonal(S;_1, Si—a, ..., S0)

is already in Smith form.

Proposition 41 Algorithm 12 (Smith) is correct. Assuming n is a power of
two, the cost of the algorithm is:

e O((logn)*MM(n,d) + Zi"fg” 2 MM(27'n, 2'd)) field operations, or
e O((logn)*MM(n)B(d)) field operations, assuming B(n) = O(MM(n)/n) and
)

(d
n2tr — O(MM(n)) for some positive ~.

18 Conclusions

Most of our algorithms require as input a small degree X such that X | det A.
If #K is large enough, then X can be chosen to be (z — a)?, for a randomly
chosen a € K, d = deg A. Otherwise, X can be chosen to be the power of
a small degree irreducible, see for example Shoup (1994). See (Mulders and
Storjohann, 1999, Proof of Theorem 29) for more complete details of a method
for choosing X randomly.

Algorithm 12 (Smith) requires that A satisfy some conditions. These are easy
to achieve using the preconditioning technique as shown in Kaltofen et al.
(1990). Choose nonsingular matrices U and V uniformly and randomly from
Snxn G a subset of K with #S5 > 4dn*. Then UAV will satisfy all required
conditions with probability at least 1/2 (see (Kaltofen et al., 1990, Algorithm
3.2) and (Storjohann and Labahn, 1995, Algorithm REDUCE)). If #K is too
small, we can work over an algebraic extension field, but this will cause cost
estimates to increase by a polylogarithmic factor.

A key idea in this paper is the use of high order lifting to efficiently certify
integrality. Without this technique, many of the algorithms we propose would
be Monte Carlo instead of Las Vegas.

The main task remaining is to extend the results here to the case of integer
matrices. The key ideas of Sections 11—17 carry over easily. The main difficul-
ties to be solved are to achieve a suitable preconditioning for the input matrix
of the Smith form computation, and to get analogous versions of the lifting
algorithms in Sections 6, 9 and 10. To solve the first difficulty the results in
Eberly et al. (2000) and Mulders and Storjohann (2003) should prove useful.

42

The crux of the second difficulty is that the absolute value norm over Z,
unlike the degree norm over K[z], is Archimedean; because integer addition
has carries, the analogue of Lemma 1 does not hold. One solution to this is to
do computation in a shifted number system. We will present this in a future

paper.

References

Dixon, J. D., 1982. Exact solution of linear equations using p-adic expansions.
Numer. Math. 40, 137-141.

Eberly, W., Giesbrecht, M., Villard, G., 2000. Computing the Smith form of
a dense integer matrix. In: Proc. 31st Ann. IEEE Symp. Foundations of
Computer Science. pp. 675-685.

Gathen, J. v. z., Gerhard, J., 1999. Modern Computer Algebra. Cambridge
University Press.

Giorgi, P., Jeannerod, C.-P., Villard, G., 2003. On the complexity of polyno-
mial matrix computations. Research Report 2003-2. Laboratoire LIP, ENS
Lyon, France.

Hafner, J. L., McCurley, K. S., Dec. 1991. Asymptotically fast triangulariza-
tion of matrices over rings. STAM Journal of Computing 20 (6), 1068-1083.

Kailath, T., 1980. Linear Systems. Prentice Hall, Englewood Cliffs, N.J.

Kaltofen, E., Krishnamoorthy, M. S., Saunders, B. D., 1990. Parallel algo-
rithms for matrix normal forms. Linear Algebra and its Applications 136,
189-208.

Karatsuba, A., Ofman, Y., 1963. Multiplication of multidigit numbers on au-
tomata. Soviet Physics-Doklady 7, 595-596.

Moenck, R. T., Carter, J. H., 1979. Approximate algorithms to derive exact
solutions to systems of linear equations. In: Proc. EUROSAM 79, volume
72 of Lecture Notes in Compute Science. Springer-Verlag, Berlin-Heidelberg-
New York, pp. 65-72.

Mulders, T., Storjohann, A., 1999. Diophantine linear system solving. In: Doo-
ley, S. (Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC 799. ACM Press, New York, pp. 281-288.

Mulders, T., Storjohann, A., 2000. Rational solutions of singular linear sys-
tems. In: Traverso, C. (Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC ’00. ACM Press, New York, pp. 242-249.

Mulders, T., Storjohann, A., 2002. On lattice reduction for polynomial matri-
ces. Journal of Symbolic Computation 35 (4), 377-401.

Mulders, T., Storjohann, A., 2003. Certified diophantine dense linear system
solving. Journal of Symbolic Computation To appear.

Shoup, V., 1994. Fast construction of irreducible polynomials over finite fields.
Journal of Symbolic Computation 17, 371-391.

Storjohann, A., 2000. Algorithms for matrix canonical forms. Ph.D. thesis,

43

Swiss Federal Institute of Technology, ETH-Zurich.

Storjohann, A., Labahn, G., 1995. Preconditioning of rectangular polynomial
matrices for efficient Hermite normal form computation. In: Levelt, A. H. M.
(Ed.), Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC
'95. ACM Press, New York, pp. 119-125.

Strassen, V., 1973. Vermeidung von Divisionen. J. reine angew. Math. 264,
182—202.

Villard, G., 1996. Computing Popov and Hermite forms of polynomial matri-
ces. In: Lakshman, Y. N. (Ed.), Proc. Int’l. Symp. on Symbolic and Alge-
braic Computation: ISSAC "96. ACM Press, New York, pp. 251-258.

44

