
High-order lifting and integrality erti�ation

Arne Storjohann

Shool of Computer Siene, University of Waterloo, Waterloo, Ontario, Canada,

N2L 3G1

Abstrat

Redutions to polynomial matrix multipliation are given for some lassial prob-

lems involving a nonsingular input matrix over the ring of univariate polynomials

with oeÆients from a �eld. High-order lifting is used to ompute the determinant,

the Smith form, and a rational system solution with about the same number of �eld

operations as required to multiply together two matries having the same dimension

and degree as the input matrix. Integrality erti�ation is used to verify orretness

of the output. The algorithms are spae eÆient.

1 Introdution

The interation between matrix multipliation and linear algebra problems on

matries over a �eld K is well understood. The best known algorithms for

omputing the determinant of a nonsingular matrix A 2 K

n�n

, or for solving

a linear system of equations involving A, have ost O(n

�

) �eld operations,

2 < � � 3 a valid exponent for matrix multipliation. This paper gives similar

results for problems on polynomial matries. We show that a wide variety

of problems involving a nonsingular matrix A 2 K[x℄

n�n

an be solved with

O(n

�

d) � (log n+ log d)

O(1)

�eld operations, d a bound on the degree of A.

Of the problems we onsider the most fundamental is linear system solving.

Let a vetor b 2 K[x℄

n�1

be given in addition to A. The nonsingular rational

system solving problem is to ompute the vetorA

�1

b 2 K(x)

n�1

. Numerators

and denominators of entries in A

�1

b will have degree bounded by nd, where d

is a bound on the degree of entries in A and b. The most eÆient algorithms

for omputing A

�1

b work by omputing a trunated X-adi series expansion

of A

�1

b using Hensel lifting, or Newton iteration, and then applying ratio-

nal funtion reonstrution. The desriptions in Moenk and Carter (1979)

Email address: astorjoh�sg.uwaterloo.a (Arne Storjohann).

Preprint submitted to Elsevier Siene 27 Marh 2003

and Dixon (1982) are for integer matries but arry over to the ase K[x℄

immediately. The method usually requires knowing a small degree X 2 K[x℄

suh that X is relatively prime to detA (Notation: X ? detA). The teh-

nique has been well studied. Mulders and Storjohann (2000) give a variation

that always allows hoosing X to be a power of x and is designed to handle

eÆiently input systems of arbitrary shape and rank. Given a system with n

rows, m olumns, rank r, and degrees of entries bounded by d, the algorithm

either omputes a rational solution or proves that the system is inonsistent

with O((n + m)r

2

d

1+�

) �eld operations from K, 0 < � � 1 depending on

the ost of polynomial multipliation. Thus, the algorithm solves the nonsin-

gular rational system solving problem deterministially with O(n

3

d

1+�

) �eld

operations. In this paper we redue the exponent of n from three down to �,

2 < � � 3 a valid exponent for matrix multipliation. Given an X 2 K[x℄ suh

that X ? detA, our algorithm omputes A

�1

b with O(n

�

(log n)d

1+�

) �eld op-

erations, d a bound for degA, deg b, and degX. We also give an extension

of the algorithm that allows entries in b to have degree substantially larger

than those in A without adversely a�eting the ost estimate. It suÆes that

d � (deg b)=n as well as d � degA;degX.

The seond problem we onsider is integrality erti�ation. Let a matrix B 2

K[x℄

n�m

be given in addition to A. The integrality erti�ation problem is

to answer the following question: an every olumn of B be expressed as a

K[x℄{linear ombination of olumns of A? This question is equivalent to the

following: is A

�1

B over K[x℄? Given an X 2 K[x℄ suh that X ? detA,

our algorithm answers this question with O(n

�

(log n)d

1+�

) �eld operations,

d a bound for degA and degX. This ost estimate holds for any B suh

that m(1 + (degB)=d) is O(n). A speial ase of the integrality erti�ation

problem ours when B is equal to the identity matrix. The question then

beomes: is A a unimodular matrix, that is, is the inverse of A over K[x℄?

Sine A is unimodular preisely when detA has degree zero, we an test for

unimodularity by omputing detA mod X for a small degree, and randomly

hosen X. This gives a nearly optimal Monte Carlo probabilisti algorithm

with running time about O(n

�

+ n

2

d) �eld operations (ignoring logarithmi

fators). Here we give a deterministi algorithm for solving this speial ase

of the integrality erti�ation problem that has ost O(n

�

(log n)d

1+�

) �eld

operations.

The third problem we onsider is determinant omputation. Mulders and Stor-

johann (2002) show how to ompute detA deterministially with O(n

3

d

2

) �eld

operations, d = degA. The Las Vegas probabilisti algorithm we give here

uses an expeted number of O(n

�

(log n)

2

d

1+�

) �eld operations. For �elds of

small ardinality the ost estimate inreases by a poly-logarithmi fator. In

the same time the Smith form of A is omputed, also Las Vegas. Reall that

Smith form of A is the unique diagonal matrix S = Diagonal(s

1

; s

2

; : : : ; s

n

)

2

suh that s

i

js

i+1

for 1 � i < n, and S = UAV for unimodular matries

U; V 2 K[x℄

n�n

.

We mention some reent related work. Giorgi et al. (2003) give algorithms

with ost O(n

�

d) � (log n + log d)

O(1)

�eld operations for omputing minimal

bases and order d matrix approximates, and for omputing a olumn redued

form of an invertible matrix. Giorgi et al. (2003) also onsider some redutions

in the opposite diretion. They show that if there is a straight-line program

of length D(n; d) for omputing the oeÆient of degree d of the determinant,

then there is a straight-line program of length no more than 8D(n; d) whih

multiplies two matries of degree d.

2 Model of omputation and ost funtions

We analyse our algorithms by bounding the number of required �eld operations

from K on an algebrai random aess mahine; the operations +, �, � and

\divide by a nonzero" are onsidered as unit step operations.

Polynomial multipliation

We use M for polynomial multipliation. Let M :Z

�0

�! R

>0

be suh that

polynomials in K[x℄ of degree bounded by d an be multiplied using at most

M(d) �eld operations. The lassial method has M(d) = 2d

2

. The algorithm of

Karatsuba and Ofman (1963) allows M(d) = O(d

1:59

). FFT-based methods al-

lowM(d) = O(d(log d)(log log d)).We refer to (Gathen and Gerhard, 1999, Se-

tion 11.1) for more details and referenes. We assume that M(ab) � M(a)M(b)

for a; b 2Z

>1

.

It will be useful to de�ne an additional funtion B for polynomial gd{related

omputations. We assume that B(d) = M(d) log d or B(d) = d

2

. Then the

extended gd problem with two polynomials in K[x℄ of degree bounded by d

an be solved with O(B(d)) �eld operations.

Matrix multipliation

We use MM for matrix multipliation. Let MM :Z

>0

�! R

>0

be suh that

two n� n matries over a ring (ommutative, with 1) an be multiplied with

MM(n) ring operations. The lassial method has MM(n) = 2n

3

� n

2

. The

3

algorithm of Strassen (1973) allows MM(n) = 42n

log

2

7

. The asymptotially

fastest known method allows MM(n) = O(n

2:376

).

We use MM with two arguments for polynomial matrix multipliation. Let

MM :Z

>0

�Z

�0

�! R

>0

be suh that two matries from K[x℄

n�n

with de-

gree bounded by d an be multiplied together with at most MM(n; d) �eld

operations. We an always hoose MM(n; d) = O(MM(n)M(d)), but better

bounds may be possible. For example, if #K > 2d then we an use an evalu-

ation/interpolation sheme to get MM(n; d) = O(MM(n)d + n

2

B(d)).

In our algorithms, every time we multiply two polynomial matries we will

need to perform some additional work also, e.g., redue all entries in the

produt modulo a given X 2 K[x℄, degX � d. For this reason, we are going

to assume that n

2

M(d) = O(MM(n; d)). This is a mild assumption, sine an

information lower bound gives n

2

(2d + 1) = O(MM(n; d)).

Some results will be greatly simpli�ed by making the expliit assumption

that B(n) = O(MM(n)=n), whih stipulates that if fast matrix multipliation

tehniques are used then fast polynomial multipliation should be used also.

For example, B(n) = O(MM(n)=n), then nB(nd) = O(MM(n)B(d)).

Redution to matrix multipliation

We use MM for some problems (see below) that an be redued reursively to

matrix multipliation. For n a power of two, de�ne

MM(n; d) :=

0

�

log

2

n

X

i=0

4

i

MM(2

�i

n; d)

1

A

+ n

2

(log n)B(d): (1)

If n is not a power of two, then de�ne MM(n; d) := MM(�n; d), where �n is the

smallest power of two greater than n. We now motivate the de�nition of MM.

Suppose X 2 K[x℄ is nonzero. Then R := K[x℄=(X) is a prinipal ideal ring.

R an be taken to be the set of all polynomials in K[x℄ with degree stritly

less than d, d = degX. Multipliation in R osts O(M(d)) �eld operations

and is aomplished by �rst multiplying over K[x℄ and then reduing modulo

X. Similarly, matries in R

n�n

an be multiplied with MM(n; d) �eld opera-

tions. The following operations an be aomplished with O(MM(n; d)) �eld

operations:

� Compute a unimodular U 2 R

n�n

suh that UA is upper triangular.

� Compute the inverse of an A 2 R

n�n

or determine that A is not invertible.

� Compute the Smith anonial form of an A 2 R

n�n

.

4

An algorithm supporting the running time O(MM(n; d)) �eld operations for

the �rst problem is given by Hafner and MCurley (1991). Now onsider

the seond problem. A will be invertible preisely if all diagonal entries of

UA are invertible. If so, the inverse of UA an be found using an additional

O(MM(n; d) + nB(d)) �eld operations: �rst multiply UA by the diagonal ma-

trix D suh that diagonal entries in DUA are equal to one, then apply a

standard reipe for triangular matrix inversion. The result for omputing the

Smith form is given in (Storjohann, 2000, Chapter 7).

If there exists an absolute onstant > 0 suh that n

2+

= O(MM(n)), then

we an hoose MM(n; d) = O(MM(n)B(d)).

3 Outline and synopsis

Let K be a �eld and A 2 K[x℄

n�n

be nonsingular. Let B 2 K[x℄

n�m

be given

in addition to A. For any X 2 K[x℄ suh that X ? detA, the matrix of

rational funtions A

�1

B 2 K(x)

n�m

admits a unique, and possibly in�nite,

X-adi series expansion:

A

�1

B = C

0

+ C

1

X + C

2

X

2

+ C

3

X

3

+ � � � ; (2)

where eah C

�

2 K[x℄

n�m

has degC

�

< degX. The �rst part of this paper

(setions 4|10) presents fast algorithms for omputing only parts of the ex-

pansion. We all this high-order lifting. There are di�erent variations of high-

order lifting. One variation alls for omputing a single ontiguous segment

[C

h

; C

h+1

; : : : ; C

h+k�1

℄ of oeÆients for a given h and k. Another variation

omputes a olletion of suh segments for a given expansion. This setion

gives intuitive desriptions of the key ideas and algorithms for the various

versions of X-adi lifting.

Nonsingular rational system solving using X-adi lifting

Setions 4 and 5 de�ne some notation and reall some basi fats about X-

adi expansions of rational funtions, inluding the reovery of suh expansions

using X-adi lifting.

Consider the problem of omputing the X-adi expansion of

A

�1

b =

0

+

1

X +

2

X

2

+

3

X

3

+ � � �

where b is a olumn vetor, and both degA and deg b are � degX. Suppose

5

our goal is to ompute the expansion up to orderX

k

, k even.We an divide the

problem into two similar subproblems. The �rst is to ompute the expansion

of A

�1

b up to order X

k=2

.

A

�1

b �

0

+

1

X + � � � +

k=2�1

X

k=2�1

mod X

k=2

: (3)

Multiplying both sides by A and then subtrating the right hand side from

the left gives

b�A(

0

+

1

X + � � �+

k=2�1

X

k=2�1

) � 0 mod X

k=2

:

The left hand side must be divisible by X

k=2

. Set

r

k=2

= (b�A(

0

+

1

X + � � �+

k=2�1

X

k=2�1

))=X

k=2

: (4)

The degree bounds for b and A imply that deg r

k=2

< d. The key idea ofX-adi

lifting is to replae of the \mod" in (3) with the \residue" term r

k=2

. Multiply

both sides of (4) by A

�1

X

k=2

, and rearrange to obtain the following:

A

�1

b =

A

�1

b mod X

k=2

z }| {

0

+

1

X + � � �+

k=2�1

X

k=2�1

+A

�1

r

k=2

X

k=2

: (5)

Thus, the seond subproblem | ompute the expansion of A

�1

r

k=2

up to

order X

k=2

| has the same form as the �rst subproblem. The salient point

is that we need to solve the �rst subproblem before we an begin the seond

subproblem. High{order lifting will be used to ompute r

k=2

diretly, allowing

us to inorporate reursion into the omputation.

High{order omponents of matrix inverse

Setion 6 gives our �rst high-order lifting algorithm. Consider (2) when B = I

n

and degA � degX. Let Æ denote the oeÆients of the X-adi expansion of

A

�1

, ordered from left to right. Let � denote a oeÆient that has urrently

been omputed. Normally, all oeÆients of the expansion are omputed up

to order X

�(n)

| in terms of n this osts O(n

�

� n) �eld operations using

O(log n) steps of quadrati X-adi lifting, f. Figure 1. After the fourth step

of lifting (whih dominates the ost) all initial thirty-two oeÆients have

been omputed. The algorithm we give here omputes a ritial subset of

size �(log n) from the �rst �(n) oeÆients by using quadrati X-adi lifting

ombined with short produts, f. Figure 2. The result is that a �(n) fator in

the running time is replaed by �(log n). Although most of the oeÆients of

6

0 � Æ

1 Æ � Æ

2 Æ Æ � � Æ

3 Æ Æ Æ Æ � � � � Æ

4 Æ Æ Æ Æ Æ Æ Æ Æ � � � � � � � � Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

5 Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ � � � � � � � � � � � � � � � �

Fig. 1. Quadrati lifting for n = 5

0 � Æ

1 � � Æ

2 Æ Æ � � Æ

3 Æ Æ Æ Æ Æ Æ � � Æ

4 Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ � � Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

5 Æ � �

(6)

Fig. 2. High-order omponent lifting for n = 5

the inverse expansion are not reovered, the omputation of the ritial subset

of high-order omponents has many appliations. The algorithm desribed in

this setion is used in almost all subsequent setions.

Unimodularity erti�ation

Setion 7 gives an algorithm to test for unimodularity. Reall that a matrix

A 2 K[x℄

n�n

is unimodular preisely when the determinant of A is a nonzero

onstant polynomial. Another haraterization of unimodularity is that the

x-adi expansion of A

�1

exists (i.e., x ? detA), and is �nite.

Suppose that A has degA � d and x ? detA. Let X = x

d

. Let k > n and

onsider the (possibly in�nite) X-adi expansion

A

�1

=

C

z }| {

C

0

+ C

1

X + � � �+ C

k�2

X

k�2

+C

k�1

X

k�1

+ C

k

X

k

+ � � � :

If A is unimodular, then A

�1

2 K[x℄

n�n

and we have the lassial a priori

bound degA

�1

� (n � 1)d, i.e., A is unimodular preisely if all oeÆients

7

C

i

are zero for i � k � 1. Thus, if C

k�1

is not the zero matrix, then A is not

unimodular. A key point to note here is that the partiular value of k is not

important. We only require that k > n. In our ase we will hoose k to be

the smallest possible power of two. Then we an ompute C

k�1

using O(log n)

steps of high{order lifting.

Now suppose that C

k�1

is the zero matrix. It is not immediately lear that

this should imply that all of C

i

are zero for i � k � 1, but in Setion 7 we

show that this is in fat the ase.

Thus, we an test if A is unimodular by determining if a single high order

oeÆient C

k�1

of A

�1

is the zero matrix.

Series solution | small degree right hand side

Setion 8 gives an algorithm for rational system solving in the ase where

deg b � degA. The main idea is to redue the problem of solving one system up

to orderX

k

to that of solving two systems up to orderX

k=2

. We have desribed

suh a redution above, f. (5). The key di�erene here is that we ompute

the residue term r

k=2

shown in (4) without �rst solving the initial subproblem

shown in (3). In Setion 5 we observe that r

k=2

an be omputed using a

single matrix�vetor involving A and a partiular high-order omponent of

the inverse of A. We now have

A

�1

b mod X

k

=

�

A

�1

�

b r

k=2

�

mod X

k=2

�

2

6

4

1

X

k=2

3

7

5

(7)

where the right hand side

�

b r

k=2

�

has olumn dimension two, f. (5). This idea

is applied reursivelyO(log k) times, eah time doubling the olumn dimension

of the right hand side. This allows matrix multipliation to be introdued into

the rational system solving problem, e�etively reduing the overall omplexity

in terms of n from O(n

3

) to O(n

�

� log n).

Series solution

Setion 9 extends the result of the previous setion to allow deg b = O(ndegA)

without inreasing the asymptoti ost. Let d = degX, and onsider the ase

when the right hand side b has degrees bounded by nd, say b = b

0

+ b

1

X +

b

2

X

2

+ � � �+ b

n�1

X

n�1

. Suppose our goal is to produe A

�1

b up to order X

n

.

8

Solving this single linear system with large degree right hand side is equivalent

to solving n systems with small degree right hand side:

A

�1

b mod X

n

=

n�1

X

i=0

(A

�1

b

i

mod X

n

)X

i

!

mod X

n

:

The algorithm enodes the \fat" vetor b as an n�nmatrixB with ith olumn

equal to b

i�1

and then uses the small degree right hand side series solution

method. The ith olumn of B may be thought to be impliitly multiplied

by X

i�1

. For an n � n matrix C, a matrix�vetor produt Cb, deg b < nd,

an be now aomplished more eÆiently as a matrix�matrix produt CB,

degB < d.

Suppose n is even. Let B

i

denote the ith olumn of B. Using �(1) matrix

produts involving A, B, and the high-order omponents of the expansion of

A

�1

, the algorithm produes a seond matrix R suh that

A

�1

b mod X

n

=

0

B

B

B

B

B

B

�

subproblem 1

z }| {

n�1

X

i=0

(A

�1

B

i

mod X

n=2

)X

i

+

subproblem 2

z }| {

n�1

X

i=0

(A

�1

R

i

mod X

n=2

)X

i

1

C

C

C

C

C

C

A

mod X

n

=

n�1

X

i=0

(A

�1

(B

i

+R

i

) mod X

n=2

)X

i

!

mod X

n

:

Thus, a single matrix addition B+R allows us to reurse on only one instead

of two problems. Now suppose n is a power of two. Then this tehnique an

be applied for order X

n=2

;X

n=4

;X

n=8

; � � � yielding a series of O(log n) transfor-

mations using the high-order omponents of the expansion of A

�1

. The overall

ost in terms of n is O(n

�

� log n).

High-order lifting

Setion 10 gives a general algorithm for solving the high-order lifting prob-

lem: the reovery, for some h and k, of a ontiguous segment of oeÆients

H = C

h

+ C

h+1

X + C

h+2

X

2

+ � � � + C

h+k�1

X

k�1

from the X-adi expansion

of A

�1

B as shown in (2). By general we mean that the olumn dimension

as well as degrees of entries in B are not restrited. The algorithm here is a

straightforward ombination of the algorithms of previous setions. The key

point is the analysis. Let degA � d, d = degX, and m be the olumn dimen-

sion of B. A running time of O(n

�

� log n) in terms of n is ahieved for a wide

range of the input parameters m, k and degB. All that is required is that the

9

parameters m and f(degB)=d; kg be balaned: both m� (degB)=d and m�k

should be O(n).

Integrality erti�ation

Many of the tehniques we develop in this paper for polynomial matries are

appliable to the integer matrix setting. It will be onvenient to give some

examples using integers.

There is a natural analogy between X-adi expansions of polynomials and

p-adi expansions of integers, e.g.,

2691 = 1 + 9(10) + 6(10

2

) + 2(10

3

):

For brevity, we will prefer to use the standard representation on the left.

Frations also admit 10-adi expansion, e.g., if

f := a

�1

b =

b

a

=

19669081321110688996

2691

;

then

f � �1486436269044957387929646558644 mod 10

32

:

Note that the fration a

�1

b is redued, i.e., a ? b. Suppose we have a number

t (say t = 32292) whih we suspet to be a multiple of the denominator of f ,

i.e., ft may be an integer. It turns out that we an assay if ft is integral by

using only the high-order segment h := �14864362689 of f mod 10

32

, shown

underlined above. Note that

(

h

z }| {

�14864362690)(

t

z }| {

32292) �

z }| {

14520 mod10

12

:

There are now two key observations. First, provided the high-order segment is

high enough, we will have < t if and only if t is multiple of the denominator

of f . Seond, the fator by whih t is too large an be omputed as gd(t;),

whih in this ase is equal to 12: note that 32292=12 = 2691. We all an

integrality erti�ate for f and t.

Now onsider the above ideas but for polynomial matries. We are starting

with a left fration F = A

�1

B, and we have a matrix T whih is a multiple of

10

the denominator of F , i.e., FT is over K[x℄. Then F admits the two fration

desriptions: F = (A)

�1

(B) and F = (A

�1

BT)(T)

�1

. (Setion 12 realls some

fats about fration desriptions.) Notie that the seond desription is a right

fration. The �rst desription may be very ompat in the sense that both A

and B have degree bounded by d. Unfortunately, the numerator A

�1

BT in

the seond desription may be muh larger, even if T has small degree. Our

approah is to ompute an integrality erti�ate C from a high-order lift of

A

�1

B. (Setion 11 gives an algorithm for omputing integrality erti�ates

over K[x℄.) Then, up to normalization, the matrix fration CT

�1

will have

the same irreduible denominator as (A

�1

BT)(T

�1

), and degC < deg T . The

fator by whih T is too large an then be omputed via a matrix gd involving

T and C, instead of T and A

�1

BT .

Our appliation of the above idea is to ompute portions of the Hermite form

of A, see below. Similar ideas have been used already by Villard (1996), in

partiular also for omputing a olumn redued form of A. Roughly speaking,

a olumn redued form of A is a matrix P with olumns of minimal degree,

and suh that AU = P for a unimodular matrix U . A key observation made in

Villard (1996) is that P is a normalized denominator of (I)(A)

�1

. In partiular,

(I)(A)

�1

also admits the desription (U)(P)

�1

. Here again, although degP �

degA, the degree of U may be muh larger than A. In Giorgi et al. (2003)

this diÆulty is avoided by using integrality erti�ation as desribed here:

a matrix fration (C)(P)

�1

is omputed whih has the same denominator as

(U)(P)

�1

, but with degC < degP .

Smith form omputation

Setions 13{17 are about omputing the Smith form of a nonsingular A 2

K[x℄

n�n

. Reall the the Hermite olumn basis of A looks like

H =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

h

1

� h

2

� � h

3

.

.

.

.

.

.

.

.

.

.

.

.

� � � � � � h

n

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;

and that h

1

h

2

� � �h

n

is the moni assoiate of detA. The Smith form of A

looks like Diagonal(s

1

; s

2

; : : : ; s

n

), where s

i

divides s

i+1

for 1 � i � n� 1. See

Setion 12 for de�nitions of the Hermite and Smith form. Let H(s; e) denote

the submatrix ofH omprised of rows and olumns s; s+1; : : : ; e. ThenH(s; e)

11

is also a Hermite olumn basis. Our approah for omputing the determinant

of A is to ompute the Smith form S(s; e) of H(s; e) for various hoies of s

and e.

Setion 13 presents an algorithm for omputing a trailing submatrix H(s; n)

of H. Setion 14 modi�es the algorithm to ompute S(s; n) diretly, without

�rst omputing H(s; n). It is well known that the singleton matrix H(n; n) =

S(n; n) = [h

n

℄ an be omputed by solving a single linear system involving

A. Our algorithm for S(s; n) in Setion 14 ompute S(s; n) for (n � s+ 1) �

nd=deg S(n; k) in about the same time, d the degree of A.

Setion 15 presents a key subroutine for the algorithm in Setion 16, whih

in turn extends the algorithms of the previous setions to ompute S(s; e)

for arbitrary e. Finally, Setion 17 gives an algorithm for omputing the

Smith form. If the input matrix has been suessfully preonditioned so that

Diagonal(h

1

; h

2

; : : : ; h

m

) is equal to the Smith form of A, then the algorithm

requires omputing a sequene of only O(log n) bloks: S(n; n); S(n � 2; n �

1); S(n� 6; n� 3); : : :, eah blok having double the dimension of the last but

with degree at most half. The algorithm uses integrality erti�ation to verify

that Diagonal(h

1

; h

2

; : : : ; h

m

) is indeed equal to the Smith form.

4 X-adi representation

Let X 2 K[x℄ have degree greater than zero. By X-adi expansion of a 2

K[x℄ we mean to write a = a

0

+ a

1

X + a

2

X

2

+ � � � + a

l

X

l

, l nonnegative,

deg a

�

< degX. Throughout this paper, \degree" or \deg a" will always mean

degree with respet to x. For example, if degX = d and a

l

is nonzero, then

dl � deg a < d(l + 1). The a

�

are alled oeÆients of the X-adi expansion

of a.

The ring K[x℄ has the usual arithmeti operations f+;�;�g. Here we de�ne

the three additional operations fLeft;Trun; Inverseg and give some of their

properties. These funtions will impliitly be de�ned in terms of a prosribed

X. Let a 2 K[x℄ and k be nonnegative. Suppose the X-adi expansion of a is

a = a

0

+ a

1

X + a

2

X

2

+ � � � : Then Left(a; k) = a

k

+ a

k+1

X + a

k+2

X

2

+ � � � and

Trun(a; k) = a

0

+ a

1

X + a

2

X

2

+ � � �+ a

k�1

X

k�1

.

The Trun operation trunates an X-adi expansion, e.g.,

a= a

0

+ a

1

X + a

2

X

2

+ a

3

X

3

+ a

4

X

4

+ a

5

X

5

+ a

6

X

6

+ � � �

Trun(a; 4)= a

0

+ a

1

X + a

2

X

2

+ a

3

X

3

:

The Left operation orresponds to division by a power of X; the name omes

12

from the fat that all oeÆients of the X-adi expansion are shifted left, e.g.,

a= a

0

+ a

1

X + a

2

X

2

+ a

3

X

3

+ a

4

X

4

+ a

5

X

5

+ a

6

X

6

+ � � �

Left(a; 3)= a

3

+ a

4

X + a

5

X

2

+ a

6

X

3

+ a

7

X

4

+ a

8

X

5

+ a

9

X

6

+ � � � :

If a ? X, then Inverse(a; k) denotes the unique b 2 K[x℄ suh that b =

Trun(b; k) and Trun(ab; k) = Trun(ba; k) = 1.

Let a; b 2 K[x℄ and k be nonnegative. A key property of the Left(�; k) opera-

tion is linearity: Left(a+ b; k) = Left(a; k) + Left(b; k).

Lemma 1 If deg b < deg(X

k

) then Left(a+ b; k) = Left(a; k).

The next lemma observes that Left and Trun ommute.

Lemma 2 If l � k then Left(Trun(a; k); l) = Trun(Left(a; l); k � l).

X-adi expansions of matries

Everything disussed above extends naturally to matrix polynomials: replae

a; b 2 K[x℄ with A;B 2 K[x℄

n�m

. The operation Inverse takes as input a

square matrix A, detA ? X.

The inverse of a nonsingular polynomial-matrix usually has rational funtion

entries. For example, if

A =

2

6

4

1 1

x 1

3

7

5
then A

�1

=

2

6

4

1

1�x

1

x�1

x

x�1

1

1�x

3

7

5
2 K(x)

2�2

: (8)

It is well known that denominators of redued entries in A

�1

are divisors of

the determinant of A. In the above example detA = 1 � x whih has degree

bounded by one. In general, for a nonsingular A 2 K[x℄

n�n

we have:

Fat 3 deg(detA) � ndeg(A).

For a given B 2 K[x℄

n�m

, the matrix A

�1

B usually has rational funtion

entries as opposed to polynomials. But (detA)A

�1

B is a polynomial matrix

and

Fat 4 deg((detA)A

�1

B) � deg(B) + (n� 1) deg(A).

Consider again A from (8). Sine detA ? x, we an express eah entry of A

�1

as an in�nite x-adi expansion.

13

A

�1

=

2

6

4

1 + x+ x

2

+ x

3

+ � � � �1� x� x

2

� x

3

+ � � �

�x� x

2

� x

3

+ � � � 1 + x+ x

2

+ x

3

+ � � �

3

7

5

=

2

6

4

1 �1

0 1

3

7

5
+

2

6

4

1 �1

�1 1

3

7

5
x+

2

6

4

1 �1

�1 1

3

7

5
x

2

+ � � � :

The last equation gives the in�nite x-adi expansion of A

�1

. In the rest of

the paper, we will use A

�1

similarly, e.g., A

�1

denotes a possibly in�nite X-

adi expansion. In algorithms we will use Trun(Inverse(A; k)b; k); we will also

write Trun(A

�1

; k) to mean the same.

Computation with X-adi polynomials

We are working overK[x℄ with the operations f+;�;�, Left, Trun, Inverseg.

The ost of these operations will depend essentially on our hoie of represen-

tation for elements of K[x℄. Let d = degX, and for a 2 K[x℄ let k be minimal

suh that a = Trun(a; k). Then deg a < kd, and a an be stored as a list

omprised of the �rst k oeÆients of the X-adi expansion.

The onversion between the x-adi representation of a and the X-adi rep-

resentation (either diretion) an be omputed with O(M(kd) log k) �eld op-

erations (Gathen and Gerhard, 1999, Theorem 9.15 and Exerise 9.20). In

partiular, if k � 2 then the ost of onversion is O(M(d)) �eld operations;

this ase ours often in our algorithms.

Let b 2 K[x℄ be given in addition to a, deg b � deg a < kd. Suppose a

and b are represented as X-adi polynomials. Then the X-adi expansion of

a+ b or a� b an be omputed with at most kd �eld operations. The X-adi

expansion of ab an be omputed with O(M(kd)(log k)) �eld operations by

�rst onverting a and b to x-adi representation, omputing the produt, then

onverting bak to X-adi representation; we may sometimes use the oarser

bound M(kd)(log k) = O(B(kd)). Similarly, Inverse(a; k) an be omputed

with O(B(kd)) �eld operations; the ost of the onversions between X-adi

and x-adi representation does not dominate here.

Operations Left, Trun and multipliation by a power of X are free.

In most of our algorithms, we will make the impliit assumption that the

input is given in X-adi representation. The output will also be given in X-

adi representation.

14

5 X-adi lifting

Let A 2 K[x℄

n�n

be nonsingular. Suppose we are given an X 2 K[x℄ suh

that X ? detA. In the X-adi expansion

A

�1

=

C

z }| {

�+ �X + � � �+ �X

l�1

+ �X

l

+ �X

l+1

+ � � � ;

eah � lives in K[x℄

n�n

and has degree stritly less than degX. Let B 2

K[x℄

n��

. The next de�nition and lemma give the key idea of X-adi lifting,

f. (4). Note that the division by X

k

is exat.

De�nition 5 Residue(A;B; k) := (B �ATrun(A

�1

B; k))=X

k

.

Lemma 6 A

�1

B = Trun(A

�1

B; k) +A

�1

Residue(A;B; k)X

k

.

The next result follows immediately.

Theorem 7 Let C := Trun(A

�1

; l) and R := Residue(A;B; k). Then

A

�1

B =

Trun(A

�1

B; k)

z }| {

�+ �X + � � �+ �X

k�1

+

Trun(CR; l)X

k

z }| {

�X

k

+ � � �+ �X

k+l�1

+ � � � :

There are some well known variation of Theorem 7. For i � 0, de�ne C

(i)

:=

Trun(A

�1

; 2

i

) and R

(i)

:= Residue(A; I; 2

i

). Then A

�1

= C

(i)

+ A

�1

R

(i)

X

2

i

.

Starting with C

(0)

, a Newton iteration (or quadrati X-adi lifting) applies

Theorem 7 for l = k = 2; 4; 8; 16; : : :, doubling the number of oeÆients of

the expansion of A

�1

at eah step, f. Figure 1:

Inverse(A; 2

k

) :=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

C

(0)

:= Inverse(A; 1);

for i to k do

R

(i�1)

= (I �AC

(i�1)

)=X

2

i�1

;

C

(i)

:= C

(i�1)

+ Trun(C

(i�1)

R

(i�1)

; 2

i

)X

2

i�1

od;

return C

(k)

In all of the above, no assumptions are required on the degree of A or B.

15

X-adi lifting using short produts

Let k > 1,

Trun(A

�1

; k) =

C

z }| {

�+ �X + �X

2

+ � � �+ �X

k�3

+

EX

k�2

z }| {

�X

k�2

+ �X

k�1

; (9)

and

Trun(A

�1

B; k) = �+ �X + �X

2

+ � � �+ �X

k�3

+ �X

k�2

+DX

k�1

: (10)

Suppose we want to ompute only the single high-order oeÆient D shown

in (10). In general, we need all oeÆients of Trun(A

�1

; k) to ompute D.

The next result shows that it suÆes to have only E in ase B has small

degree. Let d = degX.

Theorem 8 Assume degB � d. Then D = Trun(Left(EB; 1); 1).

PROOF. Trun(A

�1

; k) = C + EX

k�2

. This gives D = Left(Trun(CB +

EBX

k�2

; k); k � 1). Using Lemma 2 we an interhange the Left and Trun

to get D = Trun(Left(CB+EBX

k�2

; k� 1); 1). The key observation is that

degCB � degC+degB < (k�2)d+d � (k�1)d. Using Lemma 1 now gives

D = Trun(Left(EBX

k�2

; k � 1); 1). 2

Now onsider the omputation of R := Residue(A;B; k), f. Lemma 6. In

general, we need all oeÆients of Trun(A

�1

B; k) to ompute R. The next

result shows it suÆes to have only D in ase degA and degB are small

enough.

Theorem 9 Assume degA � d and degB < kd. Then R = Left(�AD; 1).

PROOF. By de�nition, R = Left(B �ATrun(A

�1

B; k); k). Lemma 1 gives

R = Left(�ATrun(A

�1

B; k); k). Now substitute Trun(A

�1

B; k�1)+DX

k�1

for Trun(A

�1

B; k), and apply Lemma1 to see that the termATrun(A

�1

B; k�

1), whih has degree stritly less than kd, vanishes. 2

Reall Lemma 6: A

�1

B = Trun(A

�1

B; k) + A

�1

RX

k

. Thus, the problem of

omputing A

�1

B up to a ertain order an be divided into two parts. The �rst

is to ompute Trun(A

�1

B; k). The seond is to ontinue by omputing the

16

expansion of A

�1

R. The following orollary of Theorem 9 states that R may

have small degree even if B has large degree.

Corollary 10 Assume degA � d and degB < kd. Then degR < d.

The next orollary is obtained by applying Theorems 8 and 9 in suession.

Corollary 11 Assume degA � d and degB � d. Then

R = Left(�ATrun(Left(EB; 1); 1); 1):

6 High-order omponents of matrix inverse

Let A 2 K[x℄

n�n

be nonsingular, detA ? X. In what follows, let C

(i)

=

Trun(A

�1

; 2

i

). In this setion we show how to reover the high order ompo-

nents of the inverse of A: E

(i)

= Left(C

(i)

; 2

i

� 2) for i = 1; 2; : : : ; k. To see

more learly what we are omputing, write the X-adi expansion of A

�1

as

A

�1

= C

0

+ C

1

X + C

2

X

2

+ � � � :

Then

C

(1)

=

E

(1)

z }| {

C

0

+ C

1

X

C

(2)

=C

0

+ C

1

X +

E

(2)

X

2

z }| {

C

2

X

2

+ C

3

X

3

C

(3)

=C

0

+ C

1

X + � � �+ C

5

X

5

+

E

(3)

X

6

z }| {

C

6

X

6

+ C

7

X

7

.

.

.

Algorithm 1 (HighOrderComp) reovers only the high order omponents E

(�)

as shown above.

Algorithm 1 HighOrderComp[X℄(A; k)

Input: A 2 K[x℄

n�n

and k � 2.

Output: (E

(1)

; E

(2)

; : : : ; E

(k)

) as shown above.

Condition: X ? detA and d = degX � degA.

(1) L := Inverse(A; 1);

H := Trun(LLeft(I �AL; 1); 1);

E

(1)

:= L +XH;

17

(2) for i from 2 to k do

L := Trun(Left(E

(i�1)

Left(�AL; 1); 1); 1);

H := Trun(Left(E

(i�1)

Left(�AH; 1); 1); 1);

E

(i)

:= L+XH

od;

return (E

(1)

; E

(2)

; : : : ; E

(k)

)

We now prove that the algorithm is orret. Let [X℄(A; k) be a valid input

tuple. Let (L

(i)

;H

(i)

) be equal to (L;H) as omputed during the loop in phase 2

with index i. Phase 1 omputes (L

(1)

;H

(1)

) = (C

0

; C

1

) and E

(1)

= C

0

+XC

1

.

Using indution on j we now prove that

L

(j)

=C

2

j

�2

(11)

H

(j)

=C

2

j

�1

(12)

E

(j)

=C

2

j

�2

+XC

2

j

�1

(13)

for j = 1; 2; : : : ; k. The base ase j = 1 has already been established. That

(13) follows from (11) and (12) is lear. Let i > j. Our goal is to show (11)

and (12) hold for j = i. It will be suÆient to show that (12) holds sine the

proof of (11) is analogous.

The algorithm omputes

H

(i)

:= Trun(Left(E

(i�1)

R

z }| {

Left(�AH

(i�1)

; 1); 1); 1):

By Theorem 9, R = Residue(A; I; 2

i�1

). Theorem 8 now gives that H

(i)

is

equal to the oeÆient of X

2

i�1

�1

in the X-adi expansion of A

�1

R. Sine

A

�1

= C

(i�1)

+ A

�1

RX

2

i�1

, this oeÆient is equal to C

2

i

�1

. This shows

that (12) holds. The proof that (11) holds for j = i is analogous. This ends

the indutive proof of orretness of the algorithm.

Inverse(A; 1) ostsMM(n; d) �eld operations. The remaining steps ostO(kMM(n; d))

�eld operations.

Proposition 12 Algorithm 1 (HighOrderComp) is orret. The ost of the

algorithm is O(kMM(n; d) +MM(n; d)) �eld operations.

7 Unimodularity erti�ation

We present an algorithm to assay if a given A 2 K[x℄

n�n

is unimodular. Our

approah is to assay if the x-adi expansion of A

�1

is �nite.

18

Algorithm 2 UnimodularityCert(A)

Input: A 2 K[x℄

n�n

.

Output: True in ase A is unimodular, otherwise false.

(1) if det(A mod x) = 0 then return false �;

d := degA;

X := x

d

;

(2) k := dlog

2

(n+ 3)e;

(�; �; : : : ; �; E) := HighOrderComp[X℄(A; k);

(3) if E is the zero matrix then

return true

else

return false

�

We now prove orretness. Let k and E be as omputed in phase 2. Then

Trun(A

�1

; 2

k

) = Trun(A

�1

; 2

k

� 2) + EX

2

k

�2

. Let R := Residue(A;B; 2

k

).

On the one hand, suppose E is the zero matrix. Then Theorem 9 gives R =

Left(�ALeft(E; 1); 1), i.e.,R is the zero matrix. SineA

�1

= Trun(A

�1

; 2

k

)+

A

�1

RX

2

k

, the expansion of A

�1

is �nite. This shows that a return value of

true is always orret.

On the other hand, the parameter k is hosen so that deg(X

2

k

�2

) is stritly

greater than degrees of numerators in A

�1

2 K(x)

n�n

. Thus, if A

�1

is over

K[x℄ then E will be the zero matrix.

Proposition 13 Algorithm 2 (UnimodularityCert) is orret. The ost of

the algorithm is O((log n)MM(n;degA) +MM(n;degA)) �eld operations.

8 Series solution | small degree right hand side

Let A 2 K[x℄

n�n

be nonsingular, detA ? X. Let b 2 K[x℄

n�1

. We present an

algorithm for omputing theX-adi expansion ofA

�1

b up to a given order. The

algorithm requires both deg b as well as degA to be bounded by d, d = degX.

Algorithm 3 SeriesSolSmall[X℄(A; b; k)

Input: A 2 K[x℄

n�n

, b 2 K[x℄

n�1

, and k � 2.

Output: Trun(A

�1

b; 2

k

).

Condition: X ? detA and d = degX � max(degA;deg b).

(1) E

(1)

; E

(2)

; : : : ; E

(k�1)

:= HighOrderComp[X℄(A; k � 1);

(2) B :=

�

b O

�

where O is the n� (2

k

� 1) zero matrix;

19

for i from k � 1 by �1 to 1 do

�

B := the �rst 2

k

� 2

i

olumns of B;

�

R := Left(�ATrun(Left(E

(i)

�

B; 1); 1); 1);

R :=

�

O

�

R

�

where O is the n� 2

i

zero matrix;

B := B +R;

od;

B := Trun(E

(1)

B; 2);

(3) # Let B =

�

d

0

0 d

2

0 � � � d

2

k

�2

0

�

.

B := d

0

+ d

2

X

2

+ � � � + d

2

k

�2

X

2

k

�2

;

return B

We now prove orretness. Let [X℄(A; b; k) be valid input tuple.

The purpose of phase 2 is to ompute all the oeÆients of Trun(A

�1

b; 2

k

).

The idea is most learly explained with an example: onsider the ase k = 4.

Let r

j

= Residue(A; b; j), j 2 f0; 2; 4; : : : ; 14g. Then r

0

= b, and repeated

appliation of Lemma 6 gives

Trun(A

�1

b; 16) =Trun(A

�1

r

0

; 16)

=Trun(A

�1

r

0

; 8) + Trun(A

�1

r

8

; 8)X

8

.

.

.

=Trun(A

�1

r

0

; 2) + � � �+ Trun(A

�1

r

14

; 2)X

14

Our initial problem is to ompute the solution to a single linear system up to

order 16. At the start of the loop we have

B =

�

r

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�

:

The j'th olumn of B may be thought to be impliitly multiplied by X

j�1

,

f. (7). After the loop ompletes with index i, the matrix B is as follows:

i = 3 r

0

r

8

i = 2 r

0

r

4

r

8

r

12

i = 1 r

0

r

2

r

4

r

6

r

8

r

10

r

12

r

14

3

7

7

7

7

7

5

:

Thus, eah pass through the loop doubles the number of systems we need to

solve, but halves the order of preision to whih we need the solutions. After

the loop ompletes we need to solve 8 systems up to order X

2

; this is done by

the last line of phase 2.

20

We now give a formal proof of orretness for phase 2. We will prove by

indution on s, s = k; k � 1; k � 2; : : : ; 1, that after the loop ompletes with

index i = s, we have

A

�1

b �

2

k

X

j=1

Trun(A

�1

Column(B; j); 2

s

)X

j�1

(mod X

2k

); (14)

and degB � d. The base ase s = k orresponds to the state of B before the

�rst iteration of the loop: (14) holds.

Now assume (14) holds with s = i + 1, some i � 1. Let

j

= Column(B; j),

where B is at the start of the loop with index i. Then (14) with s = i+1 gives

A

�1

b �

2

k

X

j=1

Trun(A

�1

j

; 2

i+1

)X

j�1

(mod X

2k

): (15)

We need to show that (14) holds with s = i after the loop ompletes with

index i. Let �

j

:= Residue(A;

j

; 2

i

). Then Lemma 6 gives

Trun(A

�1

j

; 2

i+1

) = Trun(A

�1

j

; 2

i

) + Trun(A

�1

�

j

; 2

i

)X

2

i

:

Substituting into (15) gives

A

�1

b �

2

k

X

j=1

Trun(A

�1

j

; 2

i

)X

j�1

+

2

k

X

j=1

Trun(A

�1

�

j

; 2

i

)X

2

i

+j�1

(mod X

2k

):(16)

Let

�

R and R be as omputed in the loop. By Corollary 11, Column(

�

R; j) = �

j

for 1 � j � 2

k

� 2

i

. Substitute �

j

= Column(R; 2

i

+ j � 1) for 1 � j � 2

k

� 2

i

into (16), and use the observation that Trun(A

�1

�

j

; 2

i

)X

2

i

+j�1

� 0 mod X

2k

in ase j > 2

k

� 2

i

, to get

A

�1

b �

2

k

X

j=1

Trun(A

�1

(

j

+ Column(R; j)); 2

i

)X

j�1

(mod X

2k

):

Thus, after the update B := B+R, B will satisfy (14) with s = i. Corollary 10

gives degR < d. Thus degB � max(degB;degR) � d. This ompletes the

indutive proof.

Now we estimate the ost. The ost of phase 1 is given by Proposition 12. In

phase 2, the number of nonzero olumns inB is doubling eah time through the

loop. The last iteration of the loop dominates. The ost is O((2

k

=n)MM(n; d))

21

�eld operations if 2

k

> kn. If 2

k

� kn the ost is dominated by that of phase 1.

Finally, phase 3 multiplies eah olumn of B by the appropriate power of X

and adds all the olumns together. Under our ost model this is free.

Proposition 14 Algorithm 3 (SeriesSolSmall) is orret. The ost of the

algorithm is O((k + 2

k

=n)MM(n; d) +MM(n; d)) �eld operations.

9 Series solution

Let A 2 K[x℄

n�n

be nonsingular, detA ? X. Let b 2 K[x℄

n�m

. We present an

algorithm for omputing the X-adi expansion of A

�1

b up to a given order.

The algorithm here extends the algorithm given in the previous setion: no

assumption is required on the degree of b, and b may have olumn dimension

m, m > 1.

Algorithm 4 SeriesSol[X℄(A; b; k)

Input: A 2 K[x℄

n�n

, b 2 K[x℄

n�m

, and k � 2.

Output: Trun(A

�1

b; 2

k

).

Condition: X ? detA and d = degX � degA.

(1) E

(1)

; E

(2)

; : : : ; E

(k�1)

:= HighOrderComp[X℄(A; k � 1);

(2) # Let X-adi expansion of b be b

0

+ b

1

X + b

2

X

2

+ � � �.

B :=

�

b

0

b

1

� � � b

2

k

�1

�

;

for i from k � 1 by �1 to 1 do

�

B := the �rst m2

k

�m2

i

olumns of B;

�

R := Left(�ATrun(Left(E

(i)

�

B); 1); 1); 1);

R :=

�

O

�

R

�

where O is the n�m2

i

zero matrix;

B := B +R;

od;

B := Trun(E

(1)

B; 2);

(3) # Let B =

�

d

0

d

1

� � � d

2

k

�1

�

.

B := d

0

+ d

1

X + d

2

X

2

+ � � �+ d

2

k

�2

X

2

k

�2

+ Trun(d

2

k

�1

; 1)X

2

k

�1

;

return B

We now prove orretness. Let [X℄(A; b; k) be a valid input tuple.

Suppose m = 1. Then Algorithm 4 (SeriesSol) is idential to Algorithm 3

(SeriesSolSmall), exept that b

i

is not neessarily zero for i > 0. The formal

proof of orretness for phase 2 arries over diretly. There are some minor

di�erenes in phase 3. Here, d

i

may not neessarily be zero for odd i, and in

partiular we need to trunate the expansion of d

2

k

�1

.

22

Now we estimate the ost. The analysis for phase 2 is slightly di�erent than for

Algorithm 3 (SeriesSolSmall). Here, the number of nonzero olumns in B is

bounded by O(m2

k

) in eah iteration of the loop. This gives the ost estimate

of O(kdm2

k

=neMM(n; d)) �eld operations for phase 2. Phase 3 multiplies eah

olumn of B by the appropriate power of X and adds all the olumns together.

Unlike the orresponding phase in Algorithm 3 (SeriesSolSmall), we may

have to perform some additions here, but the ost of this phase is dominated

by that of phase 2.

Proposition 15 Algorithm 4 (SeriesSol) is orret. The ost of the algo-

rithm is O(kdm2

k

=neMM(n; d) +MM(n; d)) �eld operations.

Let (A; b; �) be a valid input tuple to Algorithm 4 (SeriesSol), b a olumn

vetor. Based on Fats 3 and 4, Algorithm 5 (RationalSol) omputes the

minimal degree moni fator g of detA suh that gA

�1

b is over K[x℄.

Algorithm 5 RationalSol[X℄(A; b)

Input: A 2 K[x℄

n�n

and b 2 K[x℄

n�1

.

Output: (gA

�1

b; g) 2 (K[x℄

n�1

;K[x℄) with g moni of minimal degree.

Condition: X ? detA and d = degX � degA.

(1) N := (n � 1) degA;

k := the smallest integer � 2 suh that 2

k

> N + ndegA;

v := SeriesSol[X℄(A; b; k);

(2) g := 1;

for i to n do

h := minimal deg moni polynomial with deg Trun(h(gv[i℄); 2

k

) � N ;

g := hg

od;

return (gv; g)

Eah omputation of h in phase 2 osts O(B(2

k

d)) �eld operations using ra-

tional funtion reonstrution, see (Gathen and Gerhard, 1999, Setions 5.7

and 11.1). This bounds the ost of onverting between X-adi and x-adi

representations.

Corollary 16 Algorithm 5 (RationalSol) is orret. If (deg b)=d = O(n),

then the ost of the algorithm is:

� O((log n)MM(n; d) +MM(n; d) + nB(nd)) �eld operations, or

� O((log n)MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive .

23

10 High-order lifting

Let A 2 K[x℄

n�n

be nonsingular, detA ? X. Let B 2 K[x℄

n�m

. We present

an algorithm to ompute a segment H = Left(Trun(A

�1

B;h+ k); h) of oef-

�ients from the X-adi expansion of A

�1

B. Note that

A

�1

B = �+ �X + � � �+

HX

h

z }| {

�X

h

+ � � �+ �X

h+k�1

+ �X

h+k

+ � � � (17)

If h = 0 we an use Algorithm 4 (SeriesSol) to ompute H. In high-order

lifting, what is important is that h be larger than some spei�ed bound, say

h > l for a given l. The partiular value of h is not important, only that h > l.

Given l, the algorithm here hooses h := 2

�

l

+ 2

�

k

, where

�

k is hosen to be

the smallest integer that satis�es 2

�

k

d > degB, and

�

l is then hosen to be the

smallest integer that satis�es 2

�

l

+ 2

�

k

> l.

The point of the algorithm here is that the ost depends linearly on log l, not

on l. This is important beause in typial appliations l� k.

Algorithm 6 HighOrderLift[X℄(A;B; l; k)

Input: A 2 K[x℄

n�n

, B 2 K[x℄

n�m

, l � 2, and k a power of two.

Output: Left(Trun(A

�1

B;h+ k); h) for some h > l.

Condition: X ? detA and d = degX � degA.

(1)

�

k := the smallest integer � 2 suh that 2

�

k

d > degB;

D := Left(SeriesSol[X℄(A;B;

�

k); 2

�

k

� 1);

�

R := Left(�AD; 1);

(2)

�

l := the smallest integer � 2 suh that 2

�

l

+ 2

�

k

> l;

(�; �; : : : ; �; E

(

�

l)

) := HighOrderComp[X℄(A;

�

l);

R := Left(�ATrun(Left(E

(

�

l)

�

R; 1); 1); 1);

(3) H := SeriesSol[X℄(A;R; log

2

k);

return H

The purpose of phase 1 is to redue a possible large degree right hand side

B to a small degree residue

�

R. After phase 1 �nishes,

�

R = Residue(A;B; 2

�

k

)

(Theorem 9), deg

�

R < d (Corollary 10), and Lemma 6 gives

A

�1

B = Trun(A

�1

B; 2

�

k

) +A

�1

�

RX

2

�

k

:

After phase 2 �nishes, R = Residue(A;

�

R; 2

�

l

) (Corollary 11), and

A

�1

B = Trun(A

�1

B;h) +A

�1

RX

h

;

24

where h = 2

�

l

+ 2

�

k

.

Phase 1 osts O((log degB)dm(degB)=(nd)eMM(n; d) + MM(n; d)) �eld op-

erations (Proposition 15), phase 2 osts O((log l)MM(n; d) + MM(n; d)) �eld

operations (Proposition 12), and phase 3 osts O((log k)dmk=neMM(n; d) +

MM(n; d)).

Proposition 17 Algorithm 6 (HighOrderLift) is orret. If log l = O(log n)

and both m � k and m � (degB)=d are O(n), then the ost of the algorithm

is O((log n)MM(n; d) +MM(n; d)) �eld operations.

11 Integrality erti�ation

Let A 2 K[x℄

n�n

be nonsingular, detA ? X. Let B 2 K[x℄

n�m

and T 2

K[x℄

m�m

. This setion presents an algorithm to assay if A

�1

BT is integral,

i.e., if A

�1

BT is over K[x℄. Let

S = Trun(A

�1

BT; h+ k):

We will speify h and k below. For now, note that AS � BT mod X

h+k

. Thus,

if degAS and degBT are < (h+ k)d, then AS = BT , i.e., S = A

�1

BT .

Lemma 18 If degAS;degBT < (h+ k)d, then A

�1

BT is integral.

Let H = Left(Trun(A

�1

B;h+k); h), f. (17). Assume that k satis�es deg T <

kd. Then

S

z }| {

Trun(A

�1

BT; h+ k) =

degree < hd + deg T

z }| {

Trun(A

�1

B;h)T +

C

z }| {

Trun(HT; k)X

h

: (18)

Theorem 19 Assume h satis�es (n � 1) degA+ degB + deg T < hd and k

satis�es deg T + degA < kd. Then A

�1

BT is integral if and only if degC <

deg T .

PROOF. (If:) Assume degC < deg T . Then deg S < hd + deg T (f. (18)).

Now apply Lemma 18, noting that degAS � degA+degS. (Only if:)Assume

A

�1

BT is integral. Then Fat 4 gives degA

�1

BT � (n � 1) degA + degB +

deg T , whih is < hd. Considering (18), we must have Left(S; h) equal to the

zero matrix, whih implies C = �Left(Trun(A

�1

B;h)T); h). 2

25

The next orollary will be useful later on. The orollary observes that C will

be invariant of the hoie of k. Of ourse, h and k are still required to satisfy

the assumptions of Theorem 19.

Corollary 20 If A

�1

BT is integral, then A

�1

BT = Trun(A

�1

B;h)T + C.

In ase of integrality, the algorithm returns C, the integrality erti�ate.

Algorithm 7 IntegralityCert[X℄(A;B; T)

Input: A 2 K[x℄

n�n

, B 2 K[x℄

n�m

, and T 2 K[x℄

m�m

.

Output: An integrality erti�ate if A

�1

BT is over K[x℄, otherwise fail.

Condition: X ? detA and d = degX � degA.

(1) h := the smallest integer suh that hd > (n� 1)d + degB + deg T ;

k := the smallest power of two suh that kd > deg T + d;

H := HighOrderLift[X℄(A;B; h; k);

(2) C := Trun(HT; k);

if degC < deg T then

return C

else

return fail

�

The ost estimate for phase 1 is given by Proposition 17. For the multipliation

ofHT in phase 2 we need to take are to inlude the ost of onversion between

X-adi and x-adi representation.

Proposition 21 Algorithm 7 (IntegralityCert) is orret. If all of m, m�

(degB)=d and m� (deg T)=d are O(n), then the ost of the algorithm is:

� O((log n)MM(n; d)+MM(n; d)+ (n=m)MM(m;nd=m)+nmB(nd=m)) �eld

operations, or

� O((log n)MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive .

Extension to integer matries

We show how the idea of integrality erti�ation desribed above for poly-

nomial matries an be adapted to integer matries. For onveniene, we are

going to work modulo powers of 10 in the symmetri range. For a 2 Zand k

nonnegative, let Trun(a; k) and Left(a; k) be the unique integers that satisfy

the following:

a = Left(a; k)10

k

+ Trun(a; k); �

10

k

2

< Trun(a; k) �

10

k

2

: (19)

26

In Maple(TM) we ould de�ne these operators as follows:

Trun(a,k) := pro(a,k) mods(a,10^k) end:

Left(a,k) := pro(a,k) (a-Trun(a,k))/10^k end:

The omputation with integer is onsiderably ompliated beause of the pres-

ene of arries. We will need the following lemmata, whih follow from the

de�nition of Left and Trun.

Lemma 22 jLeft(a; k)j � (jaj+ jTrun(a; k)j)=10

k

� jaj=10

k

+ 1=2.

Lemma 23 If jaj < 10

k

=2, then Trun(a; k) = a.

We now develop the analogue of Theorem 19 for the integer setting. Suppose

detA ? 10. Let

S=Trun(A

�1

BT; h+ k);

H =Left(Trun(A

�1

B;h+ k); h); and

C =Trun(HT; k):

Note that Trun(AS; h+k) = Trun(BT; h+k). Thus, if kASk

1

< 10

k

=2 and

kBTk

1

< 10

k

=2, then AS = BT (Lemma 23).

Lemma 24 If kASk

1

; kBTk

1

< 10

k

=2, then A

�1

BT is integral.

Before stating the main result, we give two more lemmas. The fat that the

absolute value norm over Zis Arhimedian aounts for the �rst lemma. The

seond lemma follows from the �rst, Cramer's rule, and Hadamard's inequality.

Lemma 25 If P 2Z

��m

, and T 2Z

m��

, then kPTk

1

� mkPk

1

kTk

1

.

Lemma 26 kdet(A)A

�1

BTk

1

� mn

n=2

(kAk

1

)

n�1

kBk

1

kTk

1

.

The analogue of (18) is

S = Trun(

j � j � (m=2)kTk

1

10

h

z }| {

Trun(A

�1

B;h)T +C10

h

); h+ k): (20)

The magnitude bound in (20) follows from (19) and Lemma 25. The outermost

Trun operation on the right hand side of (20) is required beause the Trun

operation overZis not linear, e.g., Trun(5+1; 1) 6= Trun(5; 1)+Trun(1; 1).

Theorem 27 Assume h satis�es mn

n=2

(kAk

1

)

n�1

kBk

1

kTk

1

< 10

h

=2 and

k satis�es nmkAk

1

kTk

1

< 10

k

=2. Then A

�1

BT is integral if and only if

kCk

1

� (m=2)kTk

1

.

27

PROOF. (If:) Assume kCk � (m=2)kTk

1

. Then S � mkTk

1

10

h

(f. (20)).

Now apply Lemma 24, noting that kASk � nmkAk

1

kTk

1

10

h

(Lemma 25).

(Only if:)AssumeA

�1

BT is integral. Then kA

�1

BTk

1

< 10

h

=2 (Lemma 26).

Lemma 23 applied to both sides of (20) gives A

�1

BT = Trun(A

�1

B;h)T +

C10

h

. Now note that Trun(Trun(A

�1

B;h)T; h) = A

�1

BT to dedue that

C = Left(Trun(A

�1

B;h)T; h). The magnitude bound in (20), together with

Lemma 22, gives kCk

1

� (m=2)kTk

1

+ kA

�1

BTk

1

=10

h

< (m=2)kTk

1

+

1=2. Finally, note that kCk

1

2 Z, yielding the required bound: kCk

1

�

d(m=2)kTk

1

+ 1=2 � 1e. 2

Worked example

We will assay if A

�1

BT is integral, where

A :=

2

6

6

6

6

6

6

6

6

4

�28 �11 �56 �39

�5 42 �10 37

22 �44 �25 44

�32 3 38 46

3

7

7

7

7

7

7

7

7

5

, B :=

2

6

6

6

6

6

6

6

6

4

0 0

0 0

1 0

0 1

3

7

7

7

7

7

7

7

7

5

, T :=

2

6

4

3969 0

0 3969

3

7

5

:

Let h = 90 and k = 8. Then the assumptions of Theorem 27 are satis�ed. Let

H := Left(Trun(A

�1

B; 98); 90) and C := Trun(HT; 8):

H =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

�12194507 �23935500

�24086672 42529604

�5946082 33232552

24086672 �42529604

3

7

7

7

7

7

7

7

7

7

7

7

7

5

and C =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1717 500

�1168 �1724

542 �1112

1168 1724

3

7

7

7

7

7

7

7

7

7

7

7

7

5

: (21)

Sine kCk

1

= 1724 < (m=2)kTk

1

= 3969, we onlude that A

�1

BT is

integral. Note that we have not desribed how to eÆiently ompute the high-

order lift H. This requires some new tehniques and will be the subjet of a

future paper.

28

12 The Hermite basis and fration desriptions

This setion introdues some notation and realls some de�nitions and fats

that we will need in subsequent setions. The notation StakMatrix(A

1

; A

2

)

is de�ned by

StakMatrix(A

1

; A

2

) =

2

6

4

A

1

A

2

3

7

5

:

A matrix A is a left multiple of B if A = �B for a matrix � over K[x℄.

Analogously, A is a right multiple of B if A = B�. A matrix G 2 K[x℄

m�m

is

a row basis for a full olumn rank A 2 K[x℄

n�m

if A and G are left multiples

of eah other. Column basis is de�ned analogously.

Corresponding to every full olumn rank A 2 K[x℄

n�m

is a unimodular matrix

U 2 K[x℄

n�n

suh that

UA = StakMatrix(H; 0) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

h

1

h

12

� � � h

1m

h

2

� � � h

2m

.

.

.

.

.

.

h

m

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2 K[x℄

n�m

;

with o�-diagonal entries h

�j

inH of degree stritly less than the moni diagonal

entry h

j

in the same olumn. The prinipal nonsingular submatrix H is the

unique Hermite row basis of A. In partiular, AH

�1

is over K[x℄ and has

Hermite row basis equal to I

m

. If A is square as well as nonsingular, then

U := HA

�1

is the unique unimodular transforming matrix suh that UA = H.

Hermite olumn basis is de�ned analogously: for A 2 K[x℄

m�n

with full row

rank m, the Hermite olumn basis of A is the transpose of the Hermite row

basis of Transpose(A).

AU =

�

H

�

=

2

6

6

6

6

6

6

6

6

4

h

1

h

21

h

2

.

.

.

.

.

.

.

.

.

h

m1

h

m2

� � � h

m

3

7

7

7

7

7

7

7

7

5

2 K[x℄

m�n

:

29

Fat 28 Full row rank matries A and B over K[x℄ are right multiples of eah

other if and only A and B have the same Hermite olumn basis.

We now reall some fats about matrix gds and frations. (See for example

Kailath (1980) for a detailed study.) Suppose A

1

and A

2

are over K[x℄, with

same olumn dimension, and A

2

is nonsingular. Then a right matrix gd of

A

1

and A

2

is any row basis for StakMatrix(A

1

; A

2

). Now let F 2 K(x)

n�m

have rank m.

De�nition 29 A nonsingular matrix D 2 K[x℄

m�m

is an irreduible right de-

nominator of F if FD is over K[x℄, and I

m

is a right gd of StakMatrix(FD;D).

Irreduible right denominators of F are right equivalent (equal up to post-

multipliation by a unimodular matrix on the right) inK[x℄

m�m

. In partiular,

we will use the following two results.

Fat 30 If D

1

and D

2

are irreduible right denominators of F , then the Her-

mite olumn basis of D

1

equals the Hermite olumn basis of D

2

.

Fat 31 Let D be an irreduible right denominator of F , and M 2 K[x℄

m�m

.

Then FM is over K[x℄ if and only if M is a right multiple of D.

Suppose we have a nonsingular right multiple M 2 K[x℄

m�m

of an irre-

duible right denominator of F . Then F admits the right fration desription

F = (FM)(M)

�1

. An irreduible right denominator of F an be omputed

from FM and M as follows. Let G be a right gd (e.g., the Hermite row ba-

sis) of StakMatrix(FM;M) 2 K[x℄

n�m

. Then StakMatrix(FM;M)G

�1

=

StakMatrix(FMG

�1

;MG

�1

) is also over K[x℄, and has Hermite row basis

I

m

. Then F = (FMG

�1

)(MG

�1

)

�1

, and MG

�1

is by de�nition an irreduible

right denominator of F . This gives the following well known reipe.

Fat 32 Let M 2 K[x℄

m�m

be nonsingular and suh that FM is over K[x℄.

Then MG

�1

is an irreduible right denominator of F , where G is any row

basis of StakMatrix(FM;M).

13 Trailing Hermite basis

Let m satisfy 1 � m � n, and throughout this setion, let

� A 2 K[x℄

n�n

be nonsingular,

� B 2 K[x℄

n�m

the the last m olumns of I

n

,

� T 2 K[x℄

m�m

be the trailing submatrix of the Hermite olumn basis of A.

30

This setion presents Algorithm 8 (TrailingHermite) for omputing T . The

algorithm is based on the observation that the following matrix is unimodular:

A

�1

H = [� j A

�1

BT ℄. It follows that A

�1

BT is over K[x℄ and that I

m

is a

left multiple of A

�1

BT . This gives the following.

Lemma 33 T is an irreduible right denominator of A

�1

B.

In partiular, T is the Hermite olumn basis of any other irreduible right

denominator of A

�1

B (Fat 30). Suppose we are given a nonsingular M 2

K[x℄

m�m

suh that A

�1

BM is over K[x℄. Then Fat 32 gives a method to

ompute an irreduible right denominator of A

�1

B from A

�1

BM and M .

Unfortunately,A

�1

BM 2 K[x℄

n�m

may have large degree (i.e., degA

�1

BM �

(n � 1) degA + degB + degM) ompared to M and T , leading to a bad

omplexity for the row basis omputation. Our algorithm avoids this by using

high-order lifting to omputing a matrix C 2 K[x℄

n�m

, with degC < degM ,

and suh that (C)(M

�1

) and (A

�1

BM)(M

�1

) have the same irreduible right

denominators.

Algorithm 8 TrailingHermite[X℄(A;M;m)

Input: A 2 K[x℄

n�n

and a nonsingular M 2 K[x℄

m�m

.

Output: The trailing m�m submatrix T of the Hermite olumn basis of A

in ase M is a right multiple of T , otherwise fail.

Condition: X ? detA and d = degX � degA.

(1) B := the last m olumns of I

n

;

C := IntegralityCert[X℄(A;B;M);

if C = fail then return fail �;

(2) E := HermiteRowBasis(StakMatrix(C;M));

D := HermiteColumnBasis(ME

�1

);

return D

We now prove orretness. By the spei�ation of Algorithm 7 (IntegralityCert),

phase 1 will not return fail if and only if A

�1

BM is integral. By Fat 31 and

Lemma 33, (A

�1

B)M is integral if and only if M is right multiple of T .

Suppose that the algorithm does not return fail. Let G be the Hermite row ba-

sis of StakMatrix(A

�1

BM;M). Then A

�1

BMG

�1

and MG

�1

are over K[x℄.

Let E be as omputed in phase 2. Then CE

�1

and ME

�1

are over K[x℄. By

Fat 32, MG

�1

is an irreduible right denominator of A

�1

B, while ME

�1

is

an irreduible right denominator of CM

�1

. Thus, we will be done if we show

that A

�1

B and ME

�1

are right multiples of eah other (Fat 28).

For some h, Corollary 20 gives that

A

�1

BM = Trun(A

�1

B;h)M + CX

h

: (22)

31

On the one hand, both ME

�1

and CE

�1

are over K[x℄. Post-multiplying

both sides of (22) by E

�1

shows that A

�1

BME

�1

must be over K[x℄ also.

But then ME

�1

is a right multiple of MG

�1

(Fat 31). On the other hand,

both A

�1

BMG

�1

and MG

�1

are over K[x℄. Post-multiplying (22) by G

�1

shows that CG

�1

must be over K[x℄ also. But then MG

�1

is a right multiple

of ME

�1

(Fat 31).

Theorem 34 Algorithm 8 (TrailingHermite) is orret.

We will not estimate the omplexity of Algorithm 8 (TrailingHermite). A

potential problem is that the Hermite row and olumn basis omputations

in phase 2 may have too high omplexity, even if M has small degree. (The

known algorithms for reduing Hermite form omputation to matrix multipli-

ation work modulo the determinant and have a omplexity whih depends on

deg detM rather than degM .) Instead, the next setion presents a modi�a-

tion of the algorithm whih omputes diretly the Smith form of T , avoiding

any expliit Hermite basis omputations.

14 Smith of trailing Hermite basis

Reall the de�nition of the Smith form: orresponding to any full olumn

rank matrix A 2 K[x℄

n�m

are unimodular matries U 2 K[x℄

n�n

and V 2

K[x℄

m�m

suh that UAV = Smith(A) = StakMatrix(PrinipalSmith(A); 0),

with PrinipalSmith(A) = Diagonal(s

1

; s

2

; : : : ; s

m

), eah s

i

moni, and s

i

di-

viding s

i+1

for 1 � i � m� 1.

Let m satisfy 1 � m � n, and throughout this setion, let

� A 2 K[x℄

n�n

be nonsingular,

� B 2 K[x℄

n�m

be the last m olumns of I

n

,

� T 2 K[x℄

m�m

be trailing submatrix of the Hermite olumn basis of A, and

� S 2 K[x℄

m�m

be the Smith form of T .

Algorithm 9 (SmithOfTrailingHermite) is a simple modi�ation of Algo-

rithm 8 (TrailingHermite).

Algorithm 9 SmithOfTrailingHermite[X℄(A; s;m)

Input: A 2 K[x℄

n�n

and a nonzero s 2 K[x℄.

Output: The Smith form S of the trailing m�m submatrix T of the Hermite

olumn basis of A in ase sI

m

is a right multiple of T , otherwise fail.

Condition: X ? detA and d = degX � degA.

(1) B := the last m olumns of I

n

;

C := IntegralityCert[X℄(A;B; sI

m

);

32

if C = fail then return fail �;

(2)

�

E := PrinipalSmith(StakMatrix(C; sI

m

));

�

D := Smith((sI

m

)

�

E

�1

);

return D

We now prove orretness. Phase 1 is idential to Algorithm 8 (TrailingHermite):

fail will not be returned if and only if sI

m

is a right multiple of T . Assume

phase 1 does not fail, and let

E := HermiteRowBasis(StakMatrix(C; sI

m

)):

Then S = Smith((sI

m

)E

�1

), sine the Hermite olumn basis of (sI

m

)E

�1

is equal to T . The key idea of phase 2 is to note that the Smith and inverse

omputation ommute.This allows us to avoid the omputation of the Hermite

basis E. Let U and V be unimodular matries suh that UEV is in Smith form.

S=Smith((sI

m

)E

�1

)

=Smith(V

�1

((sI

m

)E

�1

)U

�1

)

=Smith((sI

m

)V

�1

E

�1

U

�1

)

=Smith((sI

m

)(Smith(E))

�1

)

=Smith((sI

m

)

�

E

�1

):

We have shown that the algorithm is orret.

The ost of phase 1 is bounded by Proposition 21. Note that degC < deg s

(Theorem 19). The initial Smith form in phase 2 an be omputed with

O((n=m)MM(m;deg s)) �eld operations by working modulo s, i.e., over the

prinipal ideal ring R = K[x℄=(s). First embed StakMatrix(C; sI

m

) into R,

then ompute an upper ehelon form, and �nally transform an m�m matrix

to Smith form over R. The resulting Smith form over R, onsidered as a ma-

trix over K[x℄, will be as desired after replaing zero diagonal entries by s.

For details and algorithm we refer to (Storjohann, 2000, Chapters 3 and 7).

Proposition 35 Algorithm 9 (SmithOfTrailingHermite) is orret. If m

and m� (deg s)=d are O(n), then the ost of the algorithm is:

� O((log n)MM(n; d) +MM(n; d) + (n=m)MM(m;nd=m)) �eld operations, or

� O((log n)MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive .

33

Worked example

The essential idea used in the last two setions arries over to the ase of

integer matries with no modi�ation. Spei�ally, let

� A 2Z

n�n

be nonsingular,

� B 2Z

n�m

,

� M 2Z

m�m

be nonsingular.

� C be an integrality erti�ate for A

�1

BM (f. Theorem 27).

Then the right matrix frations (A

�1

BM)(M

�1

) and (C)(M

�1

) have irre-

duible denominators whih are right multiples of eah other. The key point

is that kCk

1

� (m=2)kMk

1

(Theorem 27) even though kA

�1

BMk

1

may be

large.

For example, the matrix

A =

2

6

6

6

6

6

6

6

6

4

�28 �11 �56 �39

�5 42 �10 37

22 �44 �25 44

�32 3 38 46

3

7

7

7

7

7

7

7

7

5

has Hermite basis H =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1

220 1231

0 2 3

379 670 3792 3969

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;

and the trailing 2� 2 submatrix

T =

2

6

4

3

3792 3969

3

7

5

of H has Smith form S =

2

6

4

3

3969

3

7

5

:

Let s = 3969, and let C be the integrality erti�ate shown in (21). Then

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1717 500

�1168 �1724

542 �1112

1168 1724

3969

3969

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

has prinipal Smith form

�

D =

2

6

4

1

1323

3

7

5

:

34

Note that the Smith form of (sI

2

)

�

D

�1

is S.

15 Determinant redution

Let A 2 K[x℄

n�n

be nonsingular. Reall that the Hermite row basis of A has

the shape

H =

2

6

6

6

6

6

6

6

6

4

h

1

h

12

� � � h

1n

h

2

� � � h

2n

.

.

.

.

.

.

h

n

3

7

7

7

7

7

7

7

7

5

2 K[x℄

n�n

;

and that detA = detH for a nonzero onstant polynomial .

Algorithm 10 (DetRedution) omputes a matrix B, obtained from A by

replaing the last olumn, suh that the last diagonal entry in the Hermite row

basis of B is one. The algorithm is thus named beause detB = (detA)=h

n

,

where h

n

is the trailing diagonal entry in the Hermite row basis of A.

A key step in the algorithm is to solve an instane of the extended gd problem.

For this we use the following result.

Lemma 36 Given a row vetor w 2 K[x℄

n�1

, a olumn vetor b 2 K[x℄

1�n

suh that deg b � degw, and wb = gd(w[1℄; w[2℄; : : : ; w[n℄), an be omputed

with O(nB(degw)) �eld operations.

An algorithm supporting the running time estimate of Lemma 36 is given

in (Storjohann, 2000, Corollary 6.5).

Algorithm 10 DetRedution[X℄(A)

Input: A 2 K[x℄

n�n

.

Output: B 2 K[x℄

n�n

, with B equal to A exept for possibly the last olumn,

degB � degA, and last diagonal entry in the Hermite row basis of B equal

to one.

Condition: X ? detA and d = degX � degA.

(1) (�w; h) := RationalSol[X℄(Transpose(A);Column(I

n

; n));

w := Transpose(�w);

P := a permutation suh that the last entry of wP has maximal degree;

b := an element of K[x℄

n�1

suh that wPb = 1, deg b � degw;

35

(2) v := Column(I

n

� P

�1

A;n);

s := h+ wPv;

(y; g) := RationalSol[X℄(A;P (sb� v));

q := Left[sg℄(y; 1);

q[n℄ := 0;

return a opy of A exept with last olumn replaed by Pb�Aq

We now explain the algorithm and prove orretness. Let w, P , and b, be as

omputed in phase 1. Let us assume, without loss of generality, that P = I

n

.

Then fwg is a basis for the left kernel (over K[x℄) of the �rst n � 1 olumns

of A. The next fat follows.

Fat 37 Assume B is nonsingular and equal to A exept for possibly the last

olumn. Then the unimodular transforming matrix whih transforms B to Her-

mite row basis has last row equal to a salar multiple of w.

By onstrution of b in phase 1, the matrix obtained from A by replaing the

last olumn with b (f. the matrix on the left of (23)) will have Hermite row

basis with trailing diagonal entry one. The problem is that deg b may be as

large as degw, and degw � (n � 1) degA. Phase 2 applies lattie redution:

the �rst n� 1 olumns of A are used to redue the degree of b.

Let s; g 2 K[x℄ and v; y; q 2 K[x℄

n�1

be as omputed in phase 2. Then (I

n

+

v(w=h))A is equal to A with the last olumn replaed by Column(I

n

; n), and

((I

n

+v(w=h))A)

�1

= A

�1

(I

n

�(1=s)vw). The vetor y is the unique solution to

(I

n

�v(w=h))Ay = sgb. Let

�

b; �y; �q 2 K[x℄

(n�1)�1

be the prinipal subvetors of

b, y, q, and let

�

A 2 K[x℄

(n�1)�(n�1)

be the prinipal submatrix of A. Beause

the last olumn of (I � v(w=h))A is equal to Column(I

n

; n), we also have

�

A�y = sg

�

b. The vetor q is a polynomial approximation to the rational vetor

y=(sg) in the following sense: y=(sg) = q + r=(sg) for some r 2 K[x℄ with

deg r < deg sg.

2

6

4

�

A

�

b

�a b

n

3

7

5

2

6

4

I

n�1

��q

1

3

7

5
=

2

6

4

�

A

�

b�A�q

�a b

n

� �a�q

3

7

5
(23)

It follows that

�

b�

�

A�q, whih is equal to

�

A�r=(sg), has degree stritly less than

deg

�

A. Sine w is a vetor in the left kernel of the �rst n�1 olumns of A, and

q[n℄ = 0, we have w(b �Aq) = wb. Sine wb = 1, we have w[n℄ (b� Aq)[n℄ =

1�

P

n�1

i=1

w[i℄ (b�Aq)[i℄. By assumption, degw[n℄ � degw[i℄ for 1 � i � n�1.

It follows that deg(b�Aq) � max((degA)� 1; 0).

Corollary 16 bounds the ost of the two alls to Algorithm 5 (RationalSol).

The ost of onverting among X-adi, x-adi and (sg)-adi representations is

bounded by O(nB(nd)) �eld operations.

36

Proposition 38 Algorithm 10 (DetRedution) is orret. The ost of the

algorithm is:

� O((log n)MM(n; d) +MM(n; d) + nB(nd)) �eld operations, or

� O((log n)MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive .

Worked example

The same determinant redution method is appliable to the ase of integer

matries. Consider the matrix A with Hermite row basis H.

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

�66 �65 20 �90 30

55 5 �7 �21 62

68 66 16 �56 �79

13 �41 �62 �50 28

26 �36 �34 �8 �71

3

7

7

7

7

7

7

7

7

7

7

7

7

5

, H =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 10 260246748

1 0 2 292062707

1 7 244095302

14 342954195

344319363

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

An extended gd omputation gives b =

�

779244 46649 46649 0 0

�

suh that

Row(HA

�1

; n)b = 1. In the integer ase, we ompute q to be the integer vetor

suh that eah entry of

�

A

�1

�

b � �q has magnitude < 1. The matrix obtained

from A by replaing the last olumn with b�Aq is

2

6

6

6

6

6

6

6

6

6

6

6

6

4

�66 �65 20 �90 3

55 5 �7 �21 46

68 66 16 �56 79

13 �41 �62 �50 �15

26 �36 �34 �8 2

3

7

7

7

7

7

7

7

7

7

7

7

7

5

, with Hermite row basis

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 10 0

1 0 2 0

1 7 0

14 0

1

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

37

16 Partial Smith form

Let A 2 K[x℄

n�n

be nonsingular. Let k and m be given, 1 � m � k � n � 1,

and throughout this setion, let

� A =

2

6

6

6

6

6

4

A

11

A

12

A

13

A

21

A

22

A

23

A

31

A

32

A

33

3

7

7

7

7

7

5

where A

11

is k � k, and A

22

is 1 � 1,

� H be the Hermite olumn basis of [A

11

jA

12

℄,

� T be the trailing m�m submatrix of H,

� S be the Smith form of T , and

� the Hermite olumn basis of A be

2

6

4

H

11

H

21

H

22

3

7

5
where H

11

is k � k.

This setion presents an algorithm to ompute S. Our eventual goal is to

ompute the entire Smith form of A. The algorithm in the next setion will

aomplish this by repeatedly applying the algorithm of this setion to om-

pute S as de�ned above for various hoies of k and m. Note that S is not

neessarily a submatrix of the Smith form of A. What is suÆient for the

algorithm of the next setion is that the following onditions (C1) and (C2)

are satis�ed:

� (C1) H = H

11

.

� (C2) Smith(A) = Smith(Diagonal(H

11

;H

22

)).

� (C3) Smith(A) = Diagonal(Smith(H

11

);Smith(H

22

)).

Lemma 39 (C3) implies (C2).

Lemma 39 follows from the de�nition and uniqueness of the Smith form. Nor-

mally, these onditions may not hold. However, preonditioning tehniques

exist for transforming a nonsingular input matrix in K[x℄

n�n

to new matrix

A whih has the same Smith form, and whih satis�es these onditions with

high probability for all 1 � m � k � n� 1, see x18. For a given m and k, the

algorithm here will fail if onditions (C1) and (C2) do not hold, and will not

fail if (C1) and (C3) (and some additional onditions) do hold.

38

De�ne B, C, and D with the following onformal blok deomposition:

2

6

4

B C

D �

3

7

5
=

2

6

6

6

6

6

6

6

6

4

A

11

A

12

A

13

A

21

A

22

A

23

A

21

A

22

A

23

A

31

A

32

A

33

3

7

7

7

7

7

7

7

7

5

2 K[x℄

(n+1)�n

; (24)

so that B is (k + 1) � (k + 1), and the last row of C is zero. Note that the

matrix in (24) is obtained from A by repeating row k + 1.

Algorithm 11 PartialSmith[X℄(A;s; k;m)

Input: A 2 K[x℄

n�n

, nonzero s 2 K[x℄, 1 � m � k < n.

Note: Let T , S, H

11

, H

21

, B, C, and D be as de�ned above.

Output: S or fail. Fail will be returned if (C1) and (C2) do not hold. Fail will

not be returned if (C2) and (C3) hold, X ? detB, and sI

m

is a right multiple

of T .

Condition: d = degX � degA.

(1) if X 6? detB then return fail �;

R := Transpose(DetRedution[X℄(Transpose(B));

(2) if IntegralityCert[X℄(R;C; I) = fail then return fail �;

(3) if IntegralityCert[X℄(Transpose(R);Transpose(D); I) = fail then

return fail

�;

(4)

�

S := SmithOfTrailingHermite[X℄(R; s;m+ 1);

if

�

S = fail then return fail �;

S := the trailing m�m submatrix of

�

S;

return S

We now prove orretness. Assume phase 1 does not fail. Then R is idential

to B exept for possibly the last row (row k + 1).

Phase 2 assays if R

�1

C is integral. Let V 2 K[x℄

(k+1)�(k+1)

be the unimodular

matrix suh that RV is the Hermite olumn basis of R. Then

R

2

6

4

A

11

A

12

R

11

R

12

3

7

5

V

2

6

4

V

11

V

12

V

21

V

22

3

7

5

=

2

6

4

H

I

1

3

7

5

:

R

�1

C is integral , V

�1

R

�1

C is integral , H

�1

A

13

is integral , H = H

11

.

This shows that Phase 2 does not return fail if and only if H = H

11

.

39

So far, we have established that

2

6

6

6

6

6

6

6

6

4

A

11

A

12

A

13

R

21

R

12

A

23

A

21

A

12

A

23

A

31

A

32

A

33

3

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

4

V

11

V

12

V

21

V

12

I

3

7

7

7

7

7

5

2

6

6

6

6

6

4

I

k

�H

�1

11

A

13

I

1

I

3

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

H

11

I

1

Q

13

Q

11

Q

12

Q

13

Q

21

Q

22

Q

23

3

7

7

7

7

7

7

7

7

5

; (25)

where the Q

��

are new labels. Removing row k + 1 gives

2

6

6

6

6

6

4

A

11

A

12

A

13

A

21

A

12

A

23

A

31

A

32

A

33

3

7

7

7

7

7

5

2

6

6

6

6

6

4

V

11

V

12

V

21

V

12

I

3

7

7

7

7

7

5

2

6

6

6

6

6

4

I

k

�H

�1

A

13

I

1

I

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

H

11

Q

11

Q

12

Q

13

Q

21

Q

22

Q

23

3

7

7

7

7

7

5

: (26)

Considering (26) shows that H

21

is equal to the Hermite olumn basis of

2

6

4

Q

12

Q

13

Q

22

Q

23

3

7

5

:

Phase 3 does not return fail if and only if DR

�1

is integral. Note that DR

�1

is integral if and only if (DV)(RV)

�1

is integral. Considering (25) now shows

that DR

�1

is integral if and only if StakMatrix(Q

11

; Q

21

)H

�1

11

is integral, in

whih ase Smith(A) = Smith(Diagonal(H

11

;H

12

)). At this point the argu-

ment splits. On the one hand, we have just shown shows that if phase 3 does

not return fail, then Smith(A) = Smith(Diagonal(H

11

;H

12

)). On the other

hand, suppose Smith(A) = Diagonal(Smith(H

11

);Smith(H

12

)). Then the de�-

nition and uniqueness of the Smith form imply that StakMatrix(Q

11

; Q

21

)H

�1

11

is integral, in whih ase phase 3 does not return fail.

Finally, onsider phase 4. By onstrution, the trailing (m+1)� (m+1) sub-

matrix of the Hermite olumn basis of R is equal to Diagonal(T; I

1

). Now note

that Smith(Diagonal(T; I

1

)) = Diagonal(I

1

;Smith(T)). By the spei�ation of

Algorithm 9 (SmithOfTrailingHermite), phase 4 does not return fail if and

only if sI

m

is a multiple of T .

Proposition 40 Algorithm 11 (PartialSmith) is orret. If m and m �

(deg s)=d are O(n), then the ost of the algorithm is:

� O((log n)MM(n; d) +MM(n; d) + (n=m)MM(m;nd=m) + nB(nd)) �eld op-

erations, or

40

� O((log n)MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive .

17 Smith form omputation

Let A 2 K[x℄

n�n

be nonsingular. We present an algorithm to ompute the

Smith form of A. Write the Hermite olumn basis H of A using a blok de-

omposition as

H =

2

6

6

6

6

6

6

6

6

4

H

i�1

.

.

.

.

.

.

� � � � H

1

� � � � � H

0

3

7

7

7

7

7

7

7

7

5

;

where H

j

is 2

j

�2

j

for j = 0; 1; : : : ; i�2, and the dimension of H

i�1

is � 2

i�1

.

Algorithm 12 Smith[X℄(A)

Input: A 2 K[x℄

n�n

.

Output: The Smith form of A or fail. Fail will not be returned if and only if

Smith(A) = Diagonal(Smith(H

i�1

); : : : ;Smith(H

0

)), and

� the Hermite olumn basis of the prinipal k � (k + 1) submatrix of A is

equal to the the Hermite olumn basis of the �rst k rows of A, and

� the prinipal k � k minor of A is ? X,

for k 2 fn � 1; n � (1 + 2); n� (1 + 2 + 4); : : : ; n� (1 + 2 + � � �+ 2

i�2

))g.

Condition: X ? detA and d = degX � degA.

(1) (�; h) := RationalSol[X℄(A;Column(I

n

; n));

S

0

:= [h℄;

(2) i := 0;

k := n� 1;

m := min(2; k);

for i while k > 0 do

S

i

:= PartialSmith[X℄(A;S

i�1

[1; 1℄; k;m);

if S

i

= fail then return fail �;

k := k �m;

m := min(2m;k)

od;

return Diagonal(S

i�1

;S

i�2

; : : : ;S

0

)

41

We now prove that if the algorithm does not fail, the result will be or-

ret. Phase 1 omputes S

0

= Smith(H

0

). Suppose phase 2 does not fail.

Then S

j

= Smith(H

j

) for 0 � j � i � 1. Sine ondition (C2) was sat-

is�ed for eah all to Algorithm 11 (PartialSmith), we may onlude that

Smith(Diagonal(S

i�1

; S

i�2

; : : : ; S

0

)) is the Smith form of A. Finally, sine S

j�1

[1; 1℄I

is a right multiple of S

j

for 1 � j � i�1, we have that Diagonal(S

i�1

; S

i�2

; : : : ; S

0

)

is already in Smith form.

Proposition 41 Algorithm 12 (Smith) is orret. Assuming n is a power of

two, the ost of the algorithm is:

� O((log n)

2

MM(n; d) +

P

log

2

n

i=0

2

i

MM(2

�i

n; 2

i

d)) �eld operations, or

� O((log n)

2

MM(n)B(d)) �eld operations, assuming B(n) = O(MM(n)=n) and

n

2+

= O(MM(n)) for some positive .

18 Conlusions

Most of our algorithms require as input a small degreeX suh that X ? detA.

If #K is large enough, then X an be hosen to be (x� a)

d

, for a randomly

hosen a 2 K, d = degA. Otherwise, X an be hosen to be the power of

a small degree irreduible, see for example Shoup (1994). See (Mulders and

Storjohann, 1999, Proof of Theorem 29) for more omplete details of a method

for hoosing X randomly.

Algorithm 12 (Smith) requires that A satisfy some onditions. These are easy

to ahieve using the preonditioning tehnique as shown in Kaltofen et al.

(1990). Choose nonsingular matries U and V uniformly and randomly from

S

n�n

, S a subset of K with #S � 4dn

4

. Then UAV will satisfy all required

onditions with probability at least 1=2 (see (Kaltofen et al., 1990, Algorithm

3.2) and (Storjohann and Labahn, 1995, Algorithm Redue)). If #K is too

small, we an work over an algebrai extension �eld, but this will ause ost

estimates to inrease by a polylogarithmi fator.

A key idea in this paper is the use of high order lifting to eÆiently ertify

integrality. Without this tehnique, many of the algorithms we propose would

be Monte Carlo instead of Las Vegas.

The main task remaining is to extend the results here to the ase of integer

matries. The key ideas of Setions 11|17 arry over easily. The main diÆul-

ties to be solved are to ahieve a suitable preonditioning for the input matrix

of the Smith form omputation, and to get analogous versions of the lifting

algorithms in Setions 6, 9 and 10. To solve the �rst diÆulty the results in

Eberly et al. (2000) and Mulders and Storjohann (2003) should prove useful.

42

The rux of the seond diÆulty is that the absolute value norm over Z,

unlike the degree norm over K[x℄, is Arhimedean; beause integer addition

has arries, the analogue of Lemma 1 does not hold. One solution to this is to

do omputation in a shifted number system. We will present this in a future

paper.

Referenes

Dixon, J. D., 1982. Exat solution of linear equations using p-adi expansions.

Numer. Math. 40, 137{141.

Eberly, W., Giesbreht, M., Villard, G., 2000. Computing the Smith form of

a dense integer matrix. In: Pro. 31st Ann. IEEE Symp. Foundations of

Computer Siene. pp. 675{685.

Gathen, J. v. z., Gerhard, J., 1999. Modern Computer Algebra. Cambridge

University Press.

Giorgi, P., Jeannerod, C.-P., Villard, G., 2003. On the omplexity of polyno-

mial matrix omputations. Researh Report 2003-2. Laboratoire LIP, ENS

Lyon, Frane.

Hafner, J. L., MCurley, K. S., De. 1991. Asymptotially fast triangulariza-

tion of matries over rings. SIAM Journal of Computing 20 (6), 1068{1083.

Kailath, T., 1980. Linear Systems. Prentie Hall, Englewood Cli�s, N.J.

Kaltofen, E., Krishnamoorthy, M. S., Saunders, B. D., 1990. Parallel algo-

rithms for matrix normal forms. Linear Algebra and its Appliations 136,

189{208.

Karatsuba, A., Ofman, Y., 1963. Multipliation of multidigit numbers on au-

tomata. Soviet Physis-Doklady 7, 595{596.

Moenk, R. T., Carter, J. H., 1979. Approximate algorithms to derive exat

solutions to systems of linear equations. In: Pro.

_

EUROSAM '79, volume

72 of Leture Notes in Compute Siene. Springer-Verlag, Berlin-Heidelberg-

New York, pp. 65{72.

Mulders, T., Storjohann, A., 1999. Diophantine linear system solving. In: Doo-

ley, S. (Ed.), Pro. Int'l. Symp. on Symboli and Algebrai Computation:

ISSAC '99. ACM Press, New York, pp. 281{288.

Mulders, T., Storjohann, A., 2000. Rational solutions of singular linear sys-

tems. In: Traverso, C. (Ed.), Pro. Int'l. Symp. on Symboli and Algebrai

Computation: ISSAC '00. ACM Press, New York, pp. 242{249.

Mulders, T., Storjohann, A., 2002. On lattie redution for polynomial matri-

es. Journal of Symboli Computation 35 (4), 377{401.

Mulders, T., Storjohann, A., 2003. Certi�ed diophantine dense linear system

solving. Journal of Symboli Computation To appear.

Shoup, V., 1994. Fast onstrution of irreduible polynomials over �nite �elds.

Journal of Symboli Computation 17, 371{391.

Storjohann, A., 2000. Algorithms for matrix anonial forms. Ph.D. thesis,

43

Swiss Federal Institute of Tehnology, ETH{Zurih.

Storjohann, A., Labahn, G., 1995. Preonditioning of retangular polynomial

matries for eÆient Hermite normal form omputation. In: Levelt, A. H. M.

(Ed.), Pro. Int'l. Symp. on Symboli and Algebrai Computation: ISSAC

'95. ACM Press, New York, pp. 119{125.

Strassen, V., 1973. Vermeidung von Divisionen. J. reine angew. Math. 264,

182|202.

Villard, G., 1996. Computing Popov and Hermite forms of polynomial matri-

es. In: Lakshman, Y. N. (Ed.), Pro. Int'l. Symp. on Symboli and Alge-

brai Computation: ISSAC '96. ACM Press, New York, pp. 251{258.

44

