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The final step of some algebraic algorithms is to reconstruct the common de-
nominator d of a collection of rational functions v∗/d from their polynomial
images modulo m. Using elementwise rational reconstruction requires that
deg m > N + D, where N and D are such that deg v∗ ≤ N and deg d ≤ D.
We present an algorithm, based on minimal approximant basis computation,
that can perform the reconstruction for many problem instances even when
the modulus has considerably smaller degree, for example deg m > N + D/k
for k a small constant.
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1. Introduction

Many algorithms in computer algebra that compute with polynomials from
K[x], K a field, use a homomorphic imaging scheme to avoid intermedi-
ate expression swell, to allow for simple course-grained parallelization, or
to incorporate an output sensitive approach. Often, the last step of these
algorithms is to reconstruct the common denominator d of a collection
of rational functions (vi/d)1≤i≤n from their polynomial images (ui)1≤i≤n

modulo m. The images modulo m are typically computed by combining
multiple smaller images using either Chinese remaindering (m = p1p2 · · · pl)
or p-adic lifting (m = pl).
Typically, the overall cost of an algorithm that uses homomorphic imaging
depends on l, the number of images computed, which is directly related to
deg m. Ideally, the algorithm computes just enough images to allow recon-
struction of the common denominator d. We first recall how elementwise
rational function reconstruction can be applied, and then discuss our vec-
tor based variant that for some applications can save close to half of the
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required image computations.
The rational function reconstruction problem takes as input a nonzero mod-
ulus m ∈ K[x], a single image polynomial u ∈ K[x] with deg u < deg m, and
degree bounds 0 ≤ N < deg m and 0 ≤ D < deg m. A solution to the
problem is a pair of polynomials (d, v) such that

du ≡ v mod m, deg d ≤ D, deg u ≤ N. (1)

If (d, v) is a solution to (1) that satisifies gcd(d,m) = 1, then

u ≡ v

d
mod m, deg d ≤ D, deg u ≤ N. (2)

For convenience, in order to avoid some special cases, we have used the
weaker condition (1) to define a solution to the problem rather than (2).
The vector generalization of the problem is defined similarly except with u

replaced by [u1, . . . , un] ∈ K[x]1×n. A solution to the vector version is then
a pair (d, [v1, . . . , vn]) such that

d[u1, u2, . . . , un] ≡ [v1, v2, . . . , vn] mod m, deg d ≤ D, deg v∗ ≤ N. (3)

Similarly, if gcd(d,m) = 1 we have

[u1, u2, . . . , un] ≡ [
v1

d
,
v2

d
, . . . ,

vn

d
] mod m, deg d ≤ D, deg v∗ ≤ N. (4)

The link between solutions of (1) and certain rows of the traditional ex-
tended Euclidean algorithm has been well studied.1 In general, we require
deg m > N +D to ensure that the solution space is uniquely generated, that
is, that every solution can be expressed as a polynomial multiple of a sin-
gle generating solution (d, v). Let Ratrecon(u,m, N, D) denote a function
that takes as input an instance of the problem with deg m > N + D, and
returns as output the first component d (possibly the zero polynomial) of a
generating solution. The approach taken in various software libraries2–5 to
compute the common d of the vector version of the problem is as follows:

Choose N ≥ 0 and D ≥ 0 such that deg m > N + D;
d := 1;
for i from 1 to n do

d := d× Ratrecon(dui mod m,m, N,D)
od;
return d

The choice of N and D will depend on the particular application. Sup-
pose that the vi and d shown in (4) are the actual target solution to a
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particular problem. On the one hand, if N and D are a priori bounds sat-
isfying (4), then we know a priori that the output of the code fragment
will be the same denominator d (up to normalization). On the other hand,
if an output sensitive approach is being used, and N and D are guesses
which may or may not satisfy (4), then the output must be assayed for
correctness. If determined to be incorrect, the modulus m is augmented
and the reconstruction attempted again. Implementations of Ratrecon, us-
ing either the algorithm of this paper or an approach based on half-gcd,1

have running time bounded by O(B(deg m)) operations in K, where B is a
cost function for gcd-like operationsa. Thus, the code fragment above will
solve the vector version of the problem with O(nB(deg m)) operations in K.
Note that the running time for the reconstruction is pseudo-linear in the
size of the input; in typical applications the cost of computing the images
[u1, . . . , um] mod m will dominate, even to the extent that the time for the
reconstruction is negligible in comparison. To save on the number of im-
ages that are computed and thus speed up the overall computation we must
relax the condition deg m > N + D.
Suppose deg m > N + D/k for some k ∈ Z>0. We present an algorithm
that computes a complete basis of solutions to (3) using

O(nkω−1 B(deg m)) (5)

operations in K, where 2 ≤ ω ≤ 3 is a feasible exponent for matrix mul-
tiplication. By a basis we mean a set of solutions (d(i), v(i))1≤i≤s, each
d(i) ∈ K[x] and v(i) ∈ K[x]1×n, such that every solution admits a unique
decomposition as a K[x]-linear combination of basis elements. The algo-
rithm is similar to the approach based on Ratrecon above, except with
the loop iterating only n/k times, each iteration dealing with a block of
k images simultaneously. The approach works because we can show that
the solution basis for all subproblems will have dimension bounded by k.
Actually, for many problem instances the solution space will be uniquely
generated (s ≤ 1) whenever deg m > N + D/n. Next we give an example
of an application that generates such problem instances.
Suppose we want to compute A−1b ∈ K(x)n×1 for a nonsingular A ∈
K[x]n×n and b ∈ K[x]n×1 from the image A−1b mod m for some m. For
simplicity, assume that deg b = deg A. Let N be a bound for the degree
of the numerators of A−1b. For example, the a priori bound N = ndeg A

will be tight for a generic problem instance. From the assumption that

aWe can take B(t) = M(t) log t where M is a multiplication time for K[x], see [1, Def. 8.26].
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deg b = deg A it follows that the denominator of A−1b also has degree
bounded by N . To apply elementwise reconstruction we need the image
A−1b mod m with deg m > 2N . However, in Ref. 6 it was observed that out-
put of the vector rational reconstruction problem with input A−1b mod m

will be uniquely generated whenever deg m > N + deg A. Thus, using the
vector reconstruction algorithm it will suffice to have deg m > N +N/k for
any k ∈ Z>0 that satisfies N/k ≥ deg A. For k a small constant, say k = 5,
the reconstruction will still be relatively fast (compare with (5)) but the
required lower bound N + N/5 for the modulus degree is a factor of 0.6
smaller than the bound 2N required for the elementwise approach.
We defined the rational function and vector rational function reconstruc-
tion problem to take as input bounds N and D. We remark that algorithms
for a variant of the first problem called maximal quotient rational function
reconstruction are given in Refs. 7,8. The maximal quotient problem takes
as input u and m but not N and D, and returns as output the most likely
candidate for v/d. The maximal quotient algorithms are useful in conjunc-
tion with an output sensitive approach when the difference between deg v

and deg d may be large, but unknown. In particular, the approach is likely
to succeed when deg m is modestly larger than deg v + deg d, compared to
the required deg m > 2max(deg v, deg d) when a common bound N = D is
specified.
The rest of this paper is organised as follows. Sections 2 and 3 recall the no-
tion of a reduced basis and minimal approximant bases. Section 3 also gives
an algorithm for a special type of simultaneous matrix Padé approximation,
the basis of the vector rational function reconstruction algorithm presented
in Sec. 4. In Sec. 5 we show how the vector reconstruction algorithm may be
applied to rational system solving over K[x]. For more background on the
definitions and concepts introduced in Secs. 2 and 3 we refer to Refs. 9–12.
Fundamental notions and algorithms for polynomial matrices can be found
in Refs. 13,14.

2. Reduced bases

Let A ∈ K[x]n×m have rank r. Let L(A) denote the lattice generated
by the set of all K[x]-linear combinations of rows of A. In many appli-
cations we are interested in the subset of a lattice comprised of all rows
w ∈ K[x]1×m that satisfy a degree constraint specified by a fixed multi-
index ~n = (n1, n2, . . . , nm) ∈ Zm:

w = [
≤n1
w1 ,

≤n2
w2 , . . . ,

≤nm
wm ] ∈ K[x]1×m (6)
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Following [9, Def. 3.1], the defect of a row w = [w1, w2, . . . , wm] ∈ K[x]1×m

with respect to ~n is defined by

dct(w) = dct(w,~n) := min
i
{ni + 1− deg wi}, (7)

where the zero polynomial has degree −∞. The notion of defect measures
the gap between w and the degree constraint ~n: w satisfies (6) if and only
if dct(w) is positive. The following definition is similar to [11, Def. 5.1].

Definition 2.1. A matrix B = [ bT
1 | bT

2 | . . . | bT
r ]T ∈ K[x]r×m is a reduced

basis of type ~n for A ∈ K[x]n×m if the following conditions are satisfied:

(i) B has full row rank and L(B) = L(A). [basis property]
(ii) Each w ∈ L(B) admits a unique decomposition w =

∑r
i=1 cibi with

ci ∈ K[x], deg ci ≤ dct(bi)− dct(w), 1 ≤ i ≤ r. [reduced property]

The reduced bases are precisely those with maximal defect.
By positive part of a reduced basis we mean the submatrix comprised of the
rows with positive defect. All w ∈ L(A) that satisfy the degree constraint
~n are generated by the positive part of a reduced basis for A: if dct(bi) ≤ 0
and dct(w) > 0, then the ci of Def. 2.1 has deg ci ≤ dct(bi) − dct(w) < 0
and thus ci is the zero polynomial.
Suppose B is a basis for A, rows permuted so that defects are nonincreas-
ing. Then reduced bases are precisely those with (dct(b1), . . . , dct(br)) lex-
icographically maximal among all bases for A whose rows are similarly
permuted. Thus, up to row permutation, any two reduced bases of type ~n

for A will have the same tuple of defects. It follows that the number of rows
in the positive part of a reduced basis is an invariant of A.

3. Minimal approximant bases

Let G ∈ K[x]n×m, ~n ∈ Zn, and d ∈ Z≥0.

Definition 3.1. An order d minimal approximant of type ~n for G is a
reduced basis M of type ~n for the lattice {w ∈ K[x]1×n | wG ≡ 0 mod xd}.
Note that a minimal approximant M as in Def. 3.1 will necessarily have
dimension n× n, be nonsingular, and satisfy MG ≡ 0 mod xd.
The following is restatement of [15, Theorem 2.4]. We remark that Ref. 15
gives more precise cost estimates in terms of certain ad hoc cost functions.
We will use the exponent ω and cost function B.

Theorem 3.1. There exists an algorithm MinBasis that takes as in-
put (G, d, ~n) ∈ (K[x]n×m,Z≥0,Zn) and returns as output (M, δ) ∈
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(K[x]n×n,Zn), an order d minimal approximant M of type ~n for G to-
gether with a tuple δ = (δ1, . . . , δn) of the defects of rows of M . If m ≤ n,
the cost of the algorithm is O(nω B(d)) operations in K.

For brevity, we will say that (M, δ) in Theorem 3.1 solves the minimal ap-
proximant problem with input (G, d, ~n). By PosMinBasis(G, d, ~n) we mean
the output of MinBasis(G, d, ~n) restricted to the rows with positive defect;
this may be a 0× n matrix.
We now give two technical lemmas that follow from the definition of min-
imal approximant and the properties of reduced bases. The first lemma
states that zero rows in an input matrix can be ignored as far as minimal
approximant basis computation is concerned.

[
M

Ik

] H[∗]
≡ 0 mod xd

Lemma 3.1. Let H ∈ K[x]n×m have its last k rows zero and let ~n =
(n1, . . . , nn). If M ∈ K[x](n−k)×(n−k) is an order d minimal approximant
of type (n1, . . . , nn−k) for the first n− k row of H, then diag(M, Ik) is an
order d the minimal approximant of type ~n for H.

The next lemma follows as a special case of [10, Theorem 5.1], which gives
a general result regarding the recursive computation of minimal approxi-
mants. Let 1 denote the tuple (1, 1, . . . , 1) of appropriate length.

Lemma 3.2. Let H ∈ K[x]n×m and H ′ ∈ K[x]n×m′
. If (M, δ) :=

MinBasis(H, d, ~n) and (M ′, δ′) := MinBasis(MH ′, d, δ−1), then (M ′M, δ′)
solves the minimal approximant problem with input ([H|H ′], d, ~n).

The −1 in the second call to MinBasis in Lemma 3.2 is due to the +1 in
the definition of defect (see (7)). For example, in the special case where H

is the zero matrix, an order d minimal approximant of type ~n for H is given
by In, with row defects δ = ~n+1. For more details we refer to [10, Sections
3 and 4].
As noted after Def. 2.1, if w ∈ L(MinBasis(H, d, ~n)) has positive defect with
respect to ~n, then w ∈ L(PosMinBasis(H, d, ~n)). Since L(M ′M) ⊆ L(M),
any row in M ′M with positive defect with respect to ~n is comprised of a
linear combination of rows of PosMinBasis(H, d, ~n). We get the following
as a corollary.

Corollary 3.1. Lemma 3.2 still holds if MinBasis is replaced by
PosMinBasis and “minimal approximant” is replaced by “positive part min-
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imal approximant.”

3.1. An algorithm for simultaneous Padé approximation

We describe an algorithm to compute an order d minimal approximant of
type ~n for an input matrix G that can be decomposed as

G =




G1 G2 · · · Gn

E

E
. . .

E



∈ K[x](m+tn)×nk, (8)

each Gi ∈ K[x]m×k and E ∈ K[x]t×k. We will assume that ~n = (~n1, ~n2, n. . .

, ~n2) with ~n1 ∈ Zm
≥0 and ~n2 ∈ Zt

≥0, but remark that the algorithm we present
can be adapted to work for an arbitrary degree constraint ~n ∈ Zm+tn.
Actually, our goal is to compute only the first m columns of the positive part
of an order d minimal approximant of type ~n. Lemma 3.1 and Corollary 3.1
suggest an iterative approach that works in stages for i = 1, 2, . . . , n. The
approach can be understood by considering stage 2. Suppose we have the
first m columns M̄ ∈ K[x]s×m of the positive part [ M̄ | ∗ ] ∈ K[x]s×(m+t) of
an order d minimal approximant of type (~n1, ~n2) for

[
G1

E

]
∈ K[x](m+t)×k,

together with a corresponding tuple δ ∈ Zs
>0 of defects. By Lemma 3.1,

diag([ M̄ | ∗], It), with defect tuple (δ, ~n2 + 1), is the the positive part of an
order d minimal approximant of type (~n1, ~n2, ~n2) for the first k columns H

of

[
H H ′ ] =




G1 G2

E

E


 ∈ K[x](m+2t)×2k. (9)

By Corollary 3.1, if

(M ′, δ′) := PosMinBasis(diag([ M̄ | ∗ ], It)H ′, d, (δ, ~n2 + 1)− 1),

then M ′diag([ M̄ | ∗ ], It) will be the positive part of an order d minimal
approximant of type (~n1, ~n2, ~n2) for [ H |H ′ ]. The key observation is that
the first argument of PosMinBasis is given by

[
M̄ ∗

It

] 


G2

E


 =

[
M̄G2

E

]
,
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so we don’t need to know the unknown block ∗ of [ M̄ | ∗ ]. Once M ′ is com-
puted, the first m columns of the positive part of a minimal approximant
for [ H |H ′ ] can be computed as M ′M̄ . Stages i = 3, 4, . . . , n are similar.
This gives the following algorithm.

Algorithm: SimPade([G1, . . . , Gn], E, d, ~n1, ~n2)
Input: G∗ ∈ K[x]m×k, E ∈ K[x]t×k, d ∈ Z≥0, ~n1 ∈ Zm

≥0, ~n2 ∈ Zt
≥0.

Output: (M̄, δ), M̄ the first m columns of an M such that (M, δ) is a
valid output of PosMinBasis(G, d, (~n1, ~n2, n. . ., ~n2)), with G as in (8).

(M̄, δ) := (Im, ~n1 + 1);
for i from 1 to n do

δ := (δ, ~n2 + 1);

(M ′, µ) := PosMinBasis

([
M̄Gi

E

]
, d, δ − 1

)
;

M̄ := M ′M̄
od;
return (M̄, δ)

The cost of algorithm SimPade will depend on the row dimensions of the
first argument to the n calls to PosMinBasis. In the next section we will
see that for some inputs to the algorithm we can be sure that M̄ will never
have more than k rows.

Theorem 3.2. Algorithm SimPade is correct. If t = O(k) and the dimen-
sion of M̄ remains bounded by k throughout, the cost of the algorithm is
O((nk + m)kω−1 B(d)) operations in K.

4. Vector rational function reconstruction

Fix the following quantities throughout this section:

• a nonzero modulus m ∈ K[x],
• an input vector u ∈ K[x]1×n with deg u < deg m, and
• degree bounds N and D with 0 ≤ N < deg m and 0 ≤ D < deg m.

A vector [ d | v ] ∈ K[x]1×(n+1) (d ∈ K[x], v ∈ K[x]1×n) solves the vector
rational function reconstruction problem if du ≡ v mod m, with deg d ≤ D

and deg v ≤ N . The complete set of solutions is thus

S = {[ d | v ] ∈ K[x]1×(n+1) | du ≡ v mod m, deg d ≤ D, deg v ≤ N}.
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Consider the lattice generated by the nonsingular matrix

A =
[

1 u

mIn

]
∈ K[x](n+1)×(n+1). (10)

Any vector in L(A) with degree strictly less than deg m has the form
[ d | du mod m ] for d ∈ K[x] with deg d < deg m: the rows of A con-
taining mIn serve to reduce modulo m the last n entries in d

[
1 u

]
. If

we set degree constraints (D,N, . . . , N), then [ d | v ] ∈ S if and only if
[ d | v ] ∈ L(A) with dct([ d | v ]) > 0. Thus, S is generated by the posi-
tive part B = [ bT

1 | bT
2 | . . . | bT

s ]T ∈ K[x]s×(n+1) of a reduced basis of type
(D,N, . . . , N) for A.

Theorem 4.1. S = {∑s
i=1 cibi | ci ∈ K[x], deg ci < dct(bi), 1 ≤ i ≤ s}.

Corollary 4.1. If e ∈ K[x]s×1 is the first column of the positive part of a
reduced basis of type (D, N, . . . , N) for A, then [ e | eu mod m ] ∈ K[x]s×n is
the positive part of a reduced basis of type (D, N, . . . , N) for A.

The next theorem gives an a priori upper bound on s, the number of rows
in the positive part of a reduced basis of type (D,N, . . . , N) for A. Since
the bound does not depend on n, it also applies for the number of rows in
the positive part of a reduced basis of type (D,N, . . . , N) for the leading
j × j submatrix of A, for any j with 2 ≤ j ≤ n + 1.

Theorem 4.2. s ≤ k for k ∈ Z>0 minimal such that deg m > N + D/k.

Proof. Assume for now that N ≥ D. Then R is a reduced basis of type
(D,N, . . . , N) for A if and only if R′ := R diag(xN−D, In) is a reduced
basis of type (N, N, . . . , N) for A′ := A diag(xN−D, In). Thus, s is equal
to the number of rows in R′ with degree at most N . A reduced basis of
type (N, N, . . . , N) for A′ will have degree at most deg A′, so deg R′ ≤
deg A′ = deg m. Using the fact that the determinant of a polynomial matrix
is bounded by the sum of the row degrees now gives

deg det R′ ≤ sN + (n + 1− s) deg m. (11)

Using the fact that det R′ is a scalar multiple of det A′ gives

deg det R′ = deg det A′ = N −D + n deg m. (12)

Combining (11) and (12) and solving for deg m gives

deg m ≤ N +
D

s− 1
.
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It follows that s− 1 < k. The case D > N is similar.

Let

G =




u

−In

mIn


 ∈ K[x](2n+1)×n.

Dependant on the assumption that deg u < deg m, each [ d | v ] ∈ S can be
extended with r := −(du − v)/m ∈ K[x]1×n such that deg r ≤ D − 1 and
[ d | v | r ]G = 0. Conversely, if [ d | v | r ] ∈ K[x]1×(2n+1) satisfies [ d | v | r ]G ≡
0 mod xD+deg m and (deg d, deg v, deg r) ≤ (D,N,D−1), then du−v+mr ≡
0 mod xD+deg m with deg(du−v+mr) < D+deg m, implying du−v+mr =
0 and thus [ d | v ] ∈ S. Thus, the first n + 1 columns of the positive part of
an order D + deg m minimal approximant of type

(D, N, n. . ., N, D − 1, n. . ., D − 1) (13)

for G is a reduced basis of type (D,N, . . . , N) for A. By Corollary 4.1, it will
suffice to compute only the first column of such a minimal approximant.
To apply algorithm SimPade we need to adjust the matrix G slightly. Let
k be either n or as in Theorem 4.2, whichever is minimal. Assume for now
that k divides n and write u = [ u1 |u2 | . . . |un/k ], each u∗ ∈ K[x]1×k.
Permute the last 2n rows of G so that

G =




u1 u2 · · · un/k

−Ik

mIk

−Ik

mIk

. . .
−Ik

mIk




∈ K[x](2n+1)×n.

In the special case when m is a power of x, the vector rational reconstruction
problem is a simultaneous Padé approximation problem: the positive part
of a reduced basis for A shown in (10) is the positive part of an order deg m

minimal approximant of type (D, N, . . . , N) for

G =




u1 u2 · · · un/k

−Ik

−Ik

. . .
−Ik



∈ K[x](n+1)×n.
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This shows correctness of the following algorithm.

Algorithm: VectorRecon(u,m, N, D)
Input: u ∈ K[x]1×n, nonzero m ∈ K[x], N ∈ Z≥0, D ∈ Z≥0.
Output: An e ∈ K[x]s×1 as in Corollary 4.1.
Condition: N < deg m, D < deg m, deg u < deg m.

k := min{n,min{t ∈ Z>0 | deg m > N + D/t}};
Augment u with at most k − 1 zeros so that k | n;
if m = xdeg m then

E := −Ik;
~n2 := (N, k. . ., N);
d := deg m

else

E :=
[−Ik

mIk

]
;

~n2 := (N, k. . ., N, D − 1, k. . ., D − 1);
d := D + deg m

fi;
~n1 := (D);
Write u = [u1 |u2 | . . . |un/k ], each ui ∈ K[x]1×k;
(e, ∗) := SimPade([u1, u2, . . . , un]), E, d, ~n1, ~n2);
Normalize each entry in e to be monic;
return e

Theorem 4.3. Algorithm VectorRecon is correct. The cost of the algo-
rithm is O(nkω−1 B(deg m)) operations in K, where k ∈ Z>0 is minimal
such that deg m > N + D/k.

5. Application to linear solving

Let a nonsingular A ∈ K[x]n×n and b ∈ K[x]n×1 be given. Let d ∈ K[x]
be the denominator of A−1b, that is, the minimal degree monic polynomial
such that v := dA−1b is over K[x]. One of the most effective methods to
compute d is to iteratively compute

u := A−1b mod pl = c0 + c1p + c2p
2 + · · ·+ cl−1p

l−1, (14)

each ci ∈ K[x]n×1 with deg ci < deg p, for larger and larger l using p-
adic lifting16,17 for some p with gcd(p, detA) = 1, and then apply rational
reconstruction. If desired, v can be computed as du mod m once d is found.
In the following theorem m plays the role of pl.
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Theorem 5.1. If deg m > max(N+deg A,D+deg b) and u = A−1b mod m

then the output of VectorRecon(uT ,m, N, D) is either:

(i) e = [ d ] ∈ K[x]1×1, if N ≥ deg v and D ≥ deg d, or
(ii) e ∈ K[x]0×1, if at least one of N < deg v or D < deg d.

Proof. Suppose e = [e1, e2, . . . , es]T ∈ K[x]s×1 is the output of
VectorRecon, and for 1 ≤ i ≤ s let vi := eiA

−1b mod m. The s vectors [ ei |
vT

i ] ∈ K[x]1×(n+1) are linearly independent and satisfy Avi ≡ eib mod m.
Since max(deg Avi, deg eib) ≤ max(N + deg A,D + deg b) < deg m, we ac-
tually have Avi = eib. Parts (i) and (ii) now follow by noting that the
dimension of the solution space for these cases are 1 and 0, respectively.

Suppose N and D are a priori bounds: N ≥ deg v and D ≥ deg d. Standard
rational function reconstruction1 can be used to recover d in O(n B(deg m))
field operations but requires deg m > N + D. By Theorem 5.1, Algo-
rithm VectorRecon can recover d in O(nkω−1 B(deg m)) field operations
where deg m > max(N + deg A,D + deg b,N + D/k).
Algorithm VectorRecon can also be used in conjuction with an output
sensitive approach. Let m = pl and suppose we have u as in (14). Set N̄

to be the maximal integer such that deg m > N̄ + max(deg A, deg b, N̄/k).
According to Theorem 5.1, the call VectorRecon(uT ,m, N̄ , N̄) will either
recover the denominator d or determine that max(deg d, deg v) > N̄ .

6. Conclusion

The approach we have described here for reconstructing a vector of ratio-
nal functions with common denominator can be adapted to the problem
of reconstructing a vector of rational numbers with a common denomina-
tor. This requires the use of integer lattice basis reduction18 and will be
described in a future paper.
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