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BASIC ALGEBRA DEFINITIONS

The fundamental algebraic structures are
defined in terms of the following six
axioms:

Al:
A2:
A3:
Ad:
AS:
A6:

Associativity

Existence of an Identity Element
Existence of Inverses
Commutativity

Distributivity of X over +
Cancellation Law

or equivalently

A6’:

No Zero Divisors

The following table summarizes the funda-
mental algebraic structures, and shows
which axioms apply
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Definitions of algebraic structures

STRUCTURE | AXIOMS

Group [G; ¥] Al; A2; A3

Abelian Group | Al; A2; A3; A4
(G X]

Ring [R; +, x] Al; A2; A3; A4
w.r.t. +

Al; A2 w.r.t. x

A5

Comm. Ring Al; A2; A3; A4
[R; +, x] w.r.t. +

Al; A2; Ad w.r.t. x

AS




Definitions, cont.
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Int. Domain
[D; +, X]

Field [F; +, ¥}

Al; A2; A3; A4
w.r.t. +

Al; A2; Ad w.r.t. x

AS; A6

Al; A2; A3; A4
w.r.t. +
Al; A2; A3; A4
for F-{0}
w.r.t. x
AS | —

(Note: A6 follows



Examples

Integral Domains:
Z (the integers)
Z[x] (polynomials)

Fields:

Q (rational numbers)
R (real numbers)
Z, (integers modulo p)

where p is a prime integer
(this is a finite field)

Commutative Ring:
Z, (integers modulo m)

where m is a non-prime integer
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Divisibility and Factorization

Definition:

For a.,b in D, ¢ in D is a greatest common divisor
(GCD)ofaandbifclaandclbandcisa
multiple of every other element which divides
botha and b. O

Definition:
Two elements ¢.d in D are called associates if ¢ | d
anddlc. O
Definition:

An element u in D is called a unit (or invertible) if
v has a multiplicative inversein D. O

c and 4 are associates if and only if cu = d for
some unit u

If ¢ is a GCD of @ and b then so is any associate
d=cu

S



GCD, continued

It is useful to impose uniqueness:
associativity is an equivalence relation
e.g. in Z, the associate classes are
(0}, {1,-1},{2, -2}, -~
define a canonical representative for each
associate class and call it unit normal

Examples:
-in Z, the nonnegative integers
-in any field F, 0 and 1



GCD, continued

Definition:

If unit normal elements have been defined, ¢ is the
unit normal GCD of a,b in D, denoted ¢ =
GCD(a,b),ifcisa GCD of ¢ and b and ¢ is
unit normal. O

Definition:

The normal part of a in D, denoted n(a), is the unit
normal representative of the associate class
containing a.

The unit part of a in D (a #0), denoted u(a), is the
unique unit in D such that

a =u(a)n(a)
n(0) = 0 and defineu(0)=1. O

e.g. in Z,.n(a) =|al, u(a) = sign(a)
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Unique Factorization Domains

Definition:
p in D={0} is a prime (or irreducible) if p is not a
unit and whenever p = ab then either a or b is
aunit. 0O

Definition:
a,b in D are relatively prime if
GCD(ab)=1. O

Definition: |
An integral domain D is a UFD (unique

factorization domain) if for a in D-{0}, either
a is a unit or else ¢ can be expressed as a
finite product of primes (i.e. a =piPr D,
for some primes p;, 1 <i < n) such that this
factorization into primes is unique up to
associates and reordering (i.e. if
a=p\py-pyanda=gqq, g, where

p; (1 <i<n)and g, (1 £j <m) are primes
then n = m and there exists a reordering of the

b ]

q;'s such that p; is an associate of ¢, for 1
<i<n)., O

Impose uniqueness using unit normal primes
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UKD, cont.

Remarks:
- not every integral domain is a UFD
- GCD’s do not necessarily exist in an arbitrary
integral domain

Theorem:
If Disa UFD and if a.b in D are not both zero
then GCD(a,b) exists and is unique.
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FEuclidean Domains

Definition:
A Euclidean domain is an integral domain D with a
-~ valuation v: D={0} — N (nonnegative

integers), such that:

P1: Foralla,b in D= {0}, v(ab) = v(a);

P2: For all a.b in D with b # 0, there exist g in D
such that a = bg + r where either r = 0 or v(r)
<v(b). 0O

Example:
The integers Z form a Euclidean domain with the
valuation v(¢) =|a|]. O

Property P2 is the division property

For polynomial domains, the valuation is the
- degree

Any Euclidean domain is a UFD

therefore GCD’s exist (and are unique)

Theorem (Extended Euclidean):
In a Euclidean domain D, let a.b in D (not both
zero). If ¢ = GCD(a,b) then there exist
elements 5.t in D such that -

g =sa +tb.
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Hierarchy of Domains

Field

T

Euclidean
Domain

T

Unique
Factorization
Domain

;

Integral
Domain

T

Commutative
Ring

Notation: Upward pointing arrows
indicate that a lower domain
becomes a higher domain if
additional axioms are satisfied
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Euclidean Algorithm

Fundamental Result:
If a.b in D (Euclidean domain) with b # 0, then
GCD(a, b) = GCD(b, rem(a.b)) where "rem"
is the remainder r in Property P2.

Therefore, compute remainder sequence:
ro=b; ri=rem(a,ry);
Fi= rem(ri;z, ri_l), [ = 2, 3, 4, P

until =0 for some «.

Then GCD(a.b) = n(r,_).

# Given a,b in Euclidean domain D,
# compute g = GCD(a,b).
c :=n(a); d := n(b);

while d <> 0 do
r :=rem(c,d);
c:=d;
d:=r od;

g :=n(c)
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2. Algebra of Polynomials 35

v

Example 2.7. In the Euclidean domain Z, if « = 18 and b = 30 then the sequence of values
computed for r, ¢, and d in Algorithm 2.1 is as follows:

iteration no. r c d
- - 18 30
1 18 30 18
2 12 18 12
3 6 12 6
4 0 6 0

Thus g = 6, and GCD(18,30) =6 as noted in Example 2.2.
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Example 2.14. In the Euclidean domain Q[x], let
a(x) = 48x° — 84x% +42x — 36, b(x) = —4x> — 10x? + 44x - 30. (2.12)

The sequence of values computed for r(x), ¢(x), and d(x) in Algorithm 2.1 is as follows.
(Here a(x), b(x), r(x), c(x), and d(x) are denoted by a, b, r, ¢, and d, respectively, in Algo-
rithm 2.1. It is common practice to use the former notation, called ‘‘functional notation”,
for polynomials but clearly the latter notation i. also acceptable when the underlying domair.

1s understood.)

iteration no. r(x) c(x) d(x)
3 7 2,7 3 3,53 15
— - — X - +=x =1 1v+—
X 4x 8x , X 2x 11x 5
17 ~ 95 33 3.5 15 17 2. 95 33
—t =2 | x4 =x =l lxd—— | —— -
1 2 X 2 X 3 X 2x X ) n 14 2 X "
) 535x_ 1605 17 2,95 v 33 535X 1605
2897 578 47 87 4 2897 57%
53§ 1608
3 s ‘
0 289" 578 0
Thus g(x) =n( 33y 103 )=X— EX
8 80 T 578 T g i
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Extended Euclidean Algorithm

# Given a,b in Euclidean domain D, |
# compute g = GCD(a,b) and
# s,tsuch that g =sa + tb.
c:=n(a); d:=n(b);
cl:=1; ¢2:=0;
dl:=0; d2:=1;
while d <> 0 do
q := quo(c,d);
r:=c-qxd;
rl:=cl - qgxdl;
r2 :=c2 - qxd2;
c:=d; cl:=d1l; ¢c2:=d2;
d:=r; dl :=rl; d2 :=1r2
od;
g :=n(c);
s :=cl/(u(a) x u(c));
t :=c2/ (u(b) x u(c))
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Example 2.8. In the Euclidean domain Z if ¢ = 18 and b = 30 then the sequence of values
computed for ¢, ¢, ¢y, ¢2,d.dy, and dy in Algorithm 2.2 1s as follows.

P

- - 18 1 0 30 O 1
0 30 0 1 18 1 0
1% 1 0 12 -l 1
12 -1 ] 6 2 -1
6 2 -l 0 -5 3

iterationno. ¢ € ¢, ¢ d d  d

Bw 1 —
o — —

Thus g = 6,5 =2.and r =—1;i.e. GCD(18.30)=6= 2(18) — 1(30) as noted in Example 2.5.
[
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ALGEBRA OF POLYNOMIALS
AND RATIONAL FUNCTIONS

For R a commutative ring, R[x] denotes
univariate polynomials with coefficients in R

Algebraic Properties of R[x]:

(1) If R is commutative ring then R[x] is
commutative ring. The zero (additive
identity) in R[x] is the zero polynomial 0
and the (multiplicative) identity in R[x] is
the constant polynomial 1.

(ii) If D is integral domain then D[x] is
integral domain. Units (invertibles) in
D[x] are constant polynomials a, such that

a, 1s a unit in coefficient domain D.

(iii) If D is UFD then D|[x] is UFD. Primes
(irreducibles) in D[x] are polynomials
which cannot be factored with respect to
coefficient domain D.
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(iv) If D is Euclidean domain then D[x] is
UFD but not (necessarily) Euclidean
domain.

(v) If F is a field then F[x] is a Euclidean
domain with the valuation v[a(x)] =

degla(x)].

Definition:
In D[x], polynomials with unit normal leading
coefficients are defined to be unit normal. U

Example:

In Z[x], units are constant polynomials 1 and -1.
Unit normal polynomials in Z[x] are 0 and all
polynomials with positive leading coefficients.
O

Example:
In Q[x], units are all nonzero constant
polynomials. Unit normal polynomials in
Q[x] are 0 and all monic polynomials (i.e.
polynomials with leading coefficient 1). O
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Euclidean Algorithm (EEA)

(1) Inverses mod p
Given relatively prime integers a,p in 7,
apply EEAtogetsa +tp =1
Then s = a~! (mod p).

(2) Inverses mod b(x)
Given relatively prime polynomials a(z),
b(z) in F|z], apply EEA to get
s(z) a(z) + t(z) b(z) =1
Then s(z) = a(z)™! (mod b(z)).

(3) Polynomial diophantine equations

Theorem:
Let F[z] be Euclidean domain over F. Let

a(z), b(z) in F[z] be nonzero and let

g(z) = GCD(a(z),b(z)) in Flz]. Then

for any polynomial ¢(z) in F[z] such

that g(z) |c(z) there exist unique

polynomials o(z), 7(z) tn F|z]| such that
o(z) a(z) + 7(z) b(z) = ¢(z) and
deglo(z)] < deg[b(z)] — deglg(z)].
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Multivariate Polynomial Domains

Distributive View
For commutative ring R, R[x] where

X =(x},...,x,), denotes all expressions
ax)= ¥  apx*
ein N

with a, in R, where it is understood that only
a finite number of coefficients o, are nonzero.

L.e., multivariate polynomials over the ring R in the
indeterminates x.

Recursive View
Identify (for example)
Rxy, x] =R[x;]{xq]

This identification serves to define the arithmetic
operations
Similarly, identify

R{xy, x5, x3] = R[xp, x3][xy]

and so on recursively



i*/%

t:xample 2.17. The polynomial a(x,y) € Z[x.y] given in (2.25) may be viewed as a polyno-
mial in the ring Z[y]|x]

a(x,y) = (5yH x> = 4 +3yD) x? + (73242y-2) x + (4y*+5).
Considered as a polynomial in the ring Z{x]{y] we have

alx,y)= (-x2+4) y4 + (5x3—3x2+7.x) y2 + (2x) y + (=2x+5).
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Algebraic Properties of r[x]

Theorem:

(i) If R is commutative ring then R[x] is
commutative ring. The zero in R[x] is the
zero polynomial 0 and the identity in R[x] is
the constant poelynomial 1.

(ii) If D is integral domain then D[x] is integral
domain. Units in D{x] are constant
polynomials a, such that g is a unit in

coefficient domain D.

(iii) If D is UFD then D[x] is UFD.

(iv) If D is Euclidean domain then D[x] is UFD but
not Euclidean domain.

(v) If F is a field then F[x] is a UFD but not a
Euclidean domain if the number of
indeterminates is greater than one. O

Definition:

In multivariate polynomial domain D[x] over
integral domain D, polynomials with unit
normal leading coefficients are defined to be
unit normal. O
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Example: In UFD Z[x],
a(x) = 48x> — 84x? + 42x — 36
b(x) = —4x> — 10x* + 44x — 30
Unique unit normal factorizations in Z[x]:
a(x)=(2)(3) (2x = 3) (4x* = x +2)
b)) =(-1D)2)2x-3)(x - x+5)
where u(a(x)) = 1 has not been explicitly written,
and u(b(x)) = -1.
Thus
GCD(a(x).b(x))=2 (2x =3)=4x-6. O

Example:
In Euclidean domain Q[x], same a(x), b(x).
Unique unit normal factorizations in Q[x]:
1 1

“a(x) = (48) (x — %—) (@ = x+2)

b(x) = (—4) (x - —3—) (x—1)(x+5)

where u(a(x)) = 48 and u(b(x)) = —4.
Thus

GCD(a(x), b(x))=x — —3— O
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Primitive Polynomials

Previously, we split elements in integral
domain into unit parr and normal part

In polynomial domain D[x], further split
normal part iInto content (in D) and
primitive part (purely polynomial)

Definition:

In polynomial domain D[x] over UFD D, nonzero
polynomial a(x) is called primitive if it is a unit
normal polynomial and its coefficients are
relatively prime. O

Definition:

In polynomial domain D[x] over UFD D, the
content of nonzero polynomial a(x), denoted
cont[a(x)], is the GCD of the coefficients of
a(x).
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Primitive Polynomials, cont.

Any nonzero polynomial a(x) in D[x] has a
unique representation in the form
a(x) = u(a(x)) cont[a(x)] ppla(x)]
where pp[a(x)] is a primitive polynomial
called the primitive part of a(x).
Define cont[0] = 0 and pp[0]=0. O

Gauss’s Lemma: The product of any two
primitive polynomials is itself primitive.
We have:
GCD(a(x), b(x)) = GCD(cont[a(x)], cont[b(x)])
x GCD(ppla(x)], pp[b(x)])
We may restrict our attention to the

computation of GCD’s of primitive
polynomials in D[x].
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Example

For a(x), b(x) in Z[x] as before:

cont[a(x)] = 6; cont[b(x)] =2;
ppla(x)] = 8x3 — 14x% + 7x — 6;
pplb(x)] =2x3 + 5x% = 22x + 15.

For the same polynomials considered as
elements in the domain Q[x]:

cont[a(x)] =1; cont[b(x)]=1;

ppla(x)] =x3——7—-x2+_7..); __é..;

4 8" 4
pp[b(x)] =x3+—52-x2—-11x+—12§—. O
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Pseudo-Division

Pseudo-Division (Property P3):
Let D{x] be a domain over a UFD D.
For a(x), b(x) in D[x] with b(x) #0
and degla(x)] = deg[b(x)], there exist
q(x), r(x) in D[x] such that

P3: B’ a(x)=b(x)q(x)+ r(x)
with deg[r(x)] < deg[b(x)],
where = lcoeff[b(x)] and
| = degla(x)] - deg[b(x)] + 1. O

q(x) and r(x) appearing in Property P3 are
called, respectively, the pseudo-quorient and

pseudo=remainder .
pquo(a, b, x) and prem(a, b, x)

If a(x) and b(x) are primitive, the pseudo-
division property leads directly to a GCD
algorithm similar to the Euclidean
Algorithm, using:

GCD(a(x), b(x)) = GCD(b(x), pp[r(x)]).
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Primitive PRS Euclidean Algorithm

# Given a,b in D[x], compute
# g=GCD(a,b).

¢ := pp(a,x); d :=pp(b,x);
while d <> 0 do
r := prem(c,d,x);

C = d;
= pp(r,x) od; |
Y = CD(cont(a x), cont(b,x)); |
g:=yxcC |

Main point:
Computation remains in integral domain D, thus
avoiding fractions

Remarks:

- cost of content calculations makes this algorithm
too expensive

- improved PRS algorithms: Reduced PRS and
Subresultant PRS

- better yet: Hensel-based algorithms; Sparse
Modular algorithm; single-point
evaluation/interpolation
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Example 2.22. In the UFD Z[x], let a(x), h(x) be the polvnomials considered variously i
Examples 2.14 - 2.15 and Examples 2.19 - 2.21. Thus
a(v) = 48x° — 84x3 +42x = 36, b(x) = —4x} — 10" + 44x - 30.

The sequence of values computed for 7(x), (1), and d (V) in Algorithm 2.3 is as follows:

iteration rix) c(x) d(x)
0 | - S 3—14x2+7x -6 | 2xP+5¢°=22x + 15
1 _68x2+190x - 132 | 2x +5x2-22x+15 34x° = 95x + 66
2 4280x — 6420) 34x° - 95x + 66 2¢ -3
3 0 2x -3 0

Then y= GCD(6,2) =2 and g (x) = 2(2x —3) =4x — 6 as noted in Example 2.19.
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S8 Algorithms for Computer Algebra

Example 2.23. In the UFD Z[x,y| let a(x.y) and h(x,y) be given by
a,y)y=-=30x 1)' + ‘)())(zy2 +15¢% - H50xy + 45_\)2,
bx.y) = 100x%y = 140x2 — 250xy° + 350xy — 150y + 210y°.
Choosing x as the main variable, we view a(x.y) and h(x.y) as clements in the domain
Z|yv]lx]): “'
a(x.y) = (=30y) x> + 90y~ + 15) x> = (60y) x + (45y?),
b(x.y) = (100y - 140) x> = (250y* = 350y) x — (15053 - 210y%).

The first step in Algorithm 2.3 requires that we remove the unit part and the content from:
each polynomial: this requires a recursive application of Algorithm 2.3 to compute GCD’sin -
the domain Z[y]. We find: ;

u(a(x,y)) =-1,
cont(a(x,y)) = GCD(30y, =(90y* + 15), 60y, -455’3) =15;
pp(a(x,y)) = 2y)x* = 6y~ + Dx’ + (@dy)x - By
and |
ub(xy)) =1,
cont(b(x,y)) = GCD(100y — 140, -(250y% - 350y), ~(150y° — 210y%)
= 50y - 70.
pp(b(x,9)) = (2)x* = (5y)x — (3y?).




The sequence of values computed for r(x), r(x), and d(x) in Algorithm 2.3 is then as tol-
lows:

iteration r(x) c(x) d(x)
0 - =6y Dx+dy)x=3v2) | 2075y =3y
I 2y3+6y W—(6y*+18y*) 2¢2~(5y)x—(3y?) x—(3y)
2 0 x=(3y) 0
Thus,

vy=GCD(15,50v-70)=5
and

L) =50 = @3y) =5y = (15y);




-
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Example 2.24. In the Euclidean domain Q[x], let a(x), b(x) be the polynomials of Example
2.14. The sequence of values computed for r(x), c(x), and d(x) in Algorithm 2.3 is as fol-

lows:
iteration r(x) c(x) d(x)
0 - x3--§-x2+—;’-x—% x3+—5-x2—11x+125—
I ——{}x2+%s-x—-—’?— x3+-;— 2-11x+—12§— 2—23%x+-?—3-
3 0 x——%— 0

Theny=1land g(x)=x — -;— as computed by Algorithm 2.1 in Example 2.14.
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RATIONAL FUNCTIONS

Any integral domain D can be extended to a

field:
- the quotient field of D
- general notation: Q(D) or Fp

Quotient field of D[x] is denoted D(x), the

field of rational functions or rational forms

The quotient field contains equivalence
classes of elements: need a canonical form

for each equivalence class

- the representative a/b is canonical if
GCD(a,b) =1
b is unit normal in D
a and b are canonical in D

Note that the fields Z(x) and Q(x) are
isomorphic
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common means of defining a canonical form for elements in the quotient field Q(D) is as fol-
lows: the representative a/b of [a/b] € Q(D) is canonical if

GCD(a.b) =1, (2.44)
b is unit normal in D, (2.45)
a and b are canonical in D. (2.46)

Any representative c/d may be put in this canonical form by a straightforward computational
procedure: compute GCD(c,d) and divide it out of numerator and denominator, multiply
numerator and denominator by the inverse of the unit u(d), and put the resulting numerator
and denominator into their canonical forms as elements of D. It can be verified (see Exercise
2.20) that for each equivalence class in Q(D) there is one and only one representative satisfy-
ing (2.44), (2.45) and (2.46).

Example 2.25. If D is the domain Z of integers then the quotient field Q(Z) is the field of
rational numbers, denoted by Q. A rational number (representative) a/b is canonical if
a and b have no common factors and b is positive. The following rational numbers all
belong to the same equivalence class:

~2/4, 2/-4, 100/-200, —600/1200;

their canonical representative is —1/2.
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Two polynomial domains of interest in symbolic computation are the domains Z[x] and
Q[x]. Let us consider for a moment the corresponding fields of rational functions Z(x) and
Q(x). In the univariate case, a typical example of a rational function (representative) in Q(x)

IS

a(x)/b(x) = (-l%x2 - -1-%2-,\7 + -;-)/(gﬁ + %). (2.47)

But note that the equivalence class [a(x)/b(x)] also contains representatives with integer
coefficients. The simplest such representative is obtained by multiplying numerator and

denominator in (2.47) by the least common multiple (LCM) of all coefficient denominators;

in this case:?

LCM (100, 112,2,9, 5) = 25200.
Thus another representative for the rational function (2.47) in Q(x) is
a(x)/b(x) = (4284x* — 675x + 12600) / (14000x% + 20160) (2.48)

which is also a rational function (representative) in the domain Z(x). The argument just
posed leads to a very general result which we will not prove more formally here; namely, if
D is any integral domain and if F denotes the quotient field of D, then the fields of rational

functions D(x) and Fp(x) are isomorphic. More specifically, there is a natural one-to-one

correspondence between the equivalence classes in D(x) and the equivalence classes in
Fp(x). The only difference between the two fields is that each equivalence class has many

more representatives in Fp(x) than in D(x).
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Series Domasns

?ONCV

Example 2.27. In the polynomial domain Z[x] the only units are 1 and —1. In the power
series domain Z[[x]], any power series with constant term 1 or —1 is a unit in Z|[x]). For
example, the power series 1 — x is a unit in Z[[x]] with

2 3

A-x)y'=14+x+x2+x3+ -

Example 2.28. In any power series domain F[[x]] over a field F, every power series of order
1 1s a unit in F[[x]]. Forif a(x) € F[[x]] is of order O then its constant term ap# 0 is a unit in

the coefficient field F.
o
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Example 2.29. In the power series domain Z[[x]], the following power series all belong to

the same associate class:
a(x)=2+2x+2.x2+3x3+4x4+ ce

b(x)=2+4x+6x2+9x3+13x4+ ce
C(x)=2+x3+x4+x5+x°+

This can be seen by noting that
b(x)=a) (1+x xexi4xt+ o)

and

cx)=ax) (- x).
It is not clear how to single out on¢ of a(x), b(x), c(x), or some other associate of these, as

the unit normal element.
o



Example 2.30. In the domain Q((x)) of power series rational functions over the field Q, let

a(x)/b(x)= (1 +x +-;—x2+-;—x3+71~x4+ CY (1 =x).
The power series rational function a(x)/b(x) has no representation with integer coefficients
because the denominators of the coefficients in the numerator power series grow without
bound. Thus the equivalence class [a(x)/b(x)] € Q((x)) has no corresponding equivalence
class in the field Z((x)). Note that the reduced form of a(x)/b(x) in the field Q((x)) is a
power series since (1-x) is a unit in Q((x)); specifically, the reduced form is
2, 17 .3, 37 4

N\ = 52, 173 37
a(x)/b(x)-—l+2x+2x+ 6x+l2x + .
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Example 2.31. In the field Q<x> let
2. 1.3 1 4. 1 5 1 6
= + — + — + — + —— + . ..
alx)=x 2x 4x 8x l6x

The inverse of a(x) can be determined by noting that

2 1 I 2. 1.3 I 4
X)=x“(14+—x+—x4+—x"4+—x%4+ ---
a(x)=x*( 2x 4x 2 16x )

and
l l2 .1_3 ..l__4 . __l..
(1+2x+4x +8x+l6x+ ) =1 X

Thus,

a0 =x2(1 - %x) =x2_ %x'



