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Abstract

In this paper we study the problem of transforming, via in-
vertible column operations, a matrix polynomial into a vari-
ety of shiftedforms. Examples of forms covered in our frame-
work include a column reduced form, a triangular form, a
Hermite normal form or a Popov normal form along with
their shifted counterparts.

By obtaining degree bounds for unimodular multipliers
of shifted Popov forms we are able to embed the problem of
computing a normal form into one of determining a shifted
form of a minimal polynomial basis for an associated matrix
polynomial. Shifted minimal polynomial bases can be com-
puted via sigma bases [1, 2] and in Popov form via Mahler
systems [5]. The latter method gives a fraction-free algo-
rithm for computing matrix normal forms.
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1 Introduction

Matrix polynomial arithmetic is fundamental to many ap-
plications in science and engineering. It is encountered in
linear systems theory [12], determining minimal partial real-
izations of matrix sequences [22] and solving linear diophan-
tine equations [14, 16]. Not surprisingly, the arithmetic of
matrix polynomials has substantial differences to that found
with scalar polynomials. Such fundamental operations as
determining a degree, a leading coefficient, and normal and
canonical forms [10] have numerous variations in the ma-
trix case. For example, the degree of a scalar polynomial
has equivalents such as row degree, column degree, degree,
degree of the determinant, MacMillan Degree, and others,
each with their own usefulness. Leading coefficients of a
matrix polynomial can mean leading column or leading row
matrices and are not necessarily invertible, a problem when
attempting division-like computations.

In order to use many analogous concepts from scalar
polynomial arithmetic one often transforms a given matrix
polynomial into an equivalent matrix polynomial having bet-
ter properties for fundamental operations. Formally, two
matrix polynomials A(z) and B(z) are column equivalent
if there exists a unimodular polynomial matrix U(z) such
that A(z).U(z) = B(z). The matrix U(z) corresponds to
a sequence of elementary column operations. For a given
A(z) one has a number of equivalent forms that are use-
ful for applications. These include column reduced forms,
where the leading column coefficient matrix is nonsingular
(a property useful for division algorithms), triangular forms
(useful for solving systems of linear equations) and Hermite
normal forms or Popov normal forms (useful for determining
when two matrix polynomials are not equivalent).

In this paper we study the problem of computing normal
forms for full column rank matrix polynomials. In particular
we are interested in computing Popov and shifted Popov
normal forms for such matrices. Roughly speaking, a Popov
normal form [17, 24] is a form having a “good” structure for
leading coefficient matrices on both row and column sides. It
has the important property that it always reduces column
degrees of the input matrix. This is different from other
forms such as the classical Hermite normal form which is an
upper triangular matrix with additional degree constraints
with respect to diagonals but which typically has degrees
increased during the reduction to normal form.

The notion of a shifted form is basically one of alter-
ing the degree structures of the rows of a matrix and then
computing forms of the resulting matrix. It is a simple
process but very powerful. For example, the classical Her-
mite normal form can be obtained by determining a shifted
Popov normal form for a shift determined from the degree
structure of the input matrix polynomial (cf. Example 2.5).
Shifted Popov Forms for square nonsingular matrix polyno-
mials were first introduced in [5] as a convenient normal form
for describing the properties of Mahler systems. Mahler sys-
tems were used as a basic building block for recursively com-
puting solutions to module bases for matrix rational approx-



imation and matrix rational interpolation problems (see also
[4] in the case of matrix Padé systems). The (vector) shift
was useful in this application for keeping track of a path of
computation that allowed one to avoid singular situations
in order to recursively compute along a path of closest nor-
mal points to a singularity. A (scalar) shift has also been
used by Beelen et al [7] in determining a reduced column
form of a full column rank matrix polynomial by computing
a minimal polynomial basis of a shifted stacked rectangu-
lar matrix. The use of a shift ensured that the nonsingular
leading coefficient matrix be isolated in specific (in this case
last) rows.

By obtaining degree bounds for unimodular multipliers
of shifted Popov forms we are able to embed the problem of
computing a normal form into one of determining a shifted
form of a minimal polynomial basis for an associated matrix
polynomial. Shifted minimal polynomial bases can be com-
puted via sigma bases [1, 2] and in Popov form via Mahler
systems [5]. The last named algorithm has an important
property: if the entries in the original matrix are polynomi-
als having coefficients from an integral domain (for example
a matrix with entries from Z [z] or Q[ai,...,ax][z]) then it
computes a minimal polynomial bases using only fraction-
free arithmetic.

The results in this paper are part of a larger research pro-
gram: the efficient computation of matrix normal forms for
arbitrary matrix polynomials. In particular we are inter-
ested in efficient fraction-free computation of such normal
forms for nonsingular, singular and rectangular matrices.
Our results give a first step in this direction. Additional
results are available in the manuscript [6].

The remainder of the paper is organized as follows. Sec-
tion 2 gives the basic definitions of shifted our reduced and
normal forms in the case of nonsingular square matrices
while the next section looks at the equivalent problem for
rectangular matrix polynomials of full column rank. Sec-
tion 4 gives degree bounds on the (unique) unimodular mul-
tiplier. Section 5 shows how to embed the problem of com-
puting a shifted Popov Normal Form and the associated uni-
modular multiplier into one of computing a minimal polyno-
mial basis in normal form. This allows shifted normal forms
to be computed using the algorithm of [5]. The last sec-
tion includes a conclusion along with a discussion of future
research directions.

2 Shifted Popov Forms of Nonsingular Matrices

In this section we give some of the basic definitions and
properties required for the remainder of the paper for the
case where the input matrix polynomial is square and non-
singular. Various shifted forms are introduced along with
the concept of shifted column reduction. We remark that
for any multi-index @ (i.e. a vector of integers) we denote
by |d| the sum of its components, max d its maximum com-
ponent and perm (&) a permutation of the components. In
addition the multi-index € denotes the vector (1,...,1).

Definition 2.1 (d-Shifted forms, square matrices)
An m X m matriz polynomial T(z) € Q™*™[z] is d—column
reduced — with d—column degree & — if there exists a multi-
index & such that

277 T(z) - 2874 — T4 O(z_l)z_,oo,

with T' € Q™™™ nonsingular.

(1)

If this condition holds with a nonsingular triangular leading
matriz, T(z) is said to be in d—quasi Popov form:

277 T(z) - P ian S \ O(z_l)z_,m,
with T' € Q™*™ upper triangular,
o o (2)
and in d—Popov normal form when it satisfies the additzonal
normalization degree and leading coefficient constraint

2 T(Z) =L+ 0z e (3)
These properties are invariant under adding a constant to
all components of @. a

Remark 2.2 Up to a (unique) permutation of columns, Def-
wnition 2.1 gwes the classical Popov normal form [12, Sub-

section 6.7.2, p.481] in the case d = 0. When the form is
used in a matriz fraction description or as a minimal poly-
nomzial basis, the degree & are referred to as the vector of
controllability or Kronecker indices.

Note that, for any two d-column reduced matrices, the
corresponding vectors & — d as in (1) coincide up to permu-
tation [12, Lemma 6.3-14, p.388]. Furthermore, we have the
invariant

|&| = deg det T(z) = degdet A(z). (4)

It is known [12, § 6.7.2, p.484] that any square nonsingu-
lar matrix polynomial may be transformed to Popov normal
form by multiplication on the right by a unimodular matrix
polynomial, and that the form is unique. A similar state-
ment is also true for an d-Popov form. Indeed we have the
following.

Lemma 2.3 For a nonsingular matriz polynomial A(z) and
a maulti-indez @, set A(z)* = 277 A(z). Furthermore let
T(z) = A(z) - U(z) be the d—Popov form of A(z) of de-
gree @ and T(2)#* = A(2)* - U(2)# be the 0-Popov form of
A(2)* of degree a®. Then % = d—d, U(2)* = U(z), and
T(2)* =279 T(2). o

Lemma 2.3 says that it is possible to consider only 0-
Popov forms. However, the introduction of an additional pa-
rameter @ is convenient for a number of reasons. It appears
naturally in the context of the approximation problems stud-
ied in [5], and was the primary purpose for introducing this
form. Our vector shift can also be used to simplify the Ma-
trix Euclidean algorithm of [8]. Indeed their six reduction
steps can be viewed as moving from one shifted Popov form
to a new shifted Popov form with a reduced shift. In the
case of column-reduction a shift (in this case a scalar shift
of certain components) was used as a tool in the algorithm
of [7] for constructing a column reduced polynomial matrix
for a matrix polynomial of full column rank.

A vector shift is also very useful in that it allows one to
also describe a number of other important matrix normal
forms. For example, triangular forms and the Hermite nor-
mal form [15, §22, p.32] are obtained with shifts as follows.

Lemma 2.4 Let A(z) be a matriz polynomial and T(z) be
one of its d-quasi Popov form with d-degree &. If @ and &
satisfy

a; —d; > aj, for 1> j, (5)
then T(z) is upper triangular. Furthermore the @-Popou
form of A(z) coincides with its Hermite normal form.



Proof:  Let us show that T(z);; = 0 for i > j. By (2),
for i > j, —d; + degT(z)i; + dj — @; < 0 thus if (5) is
true then degT(z);; < 0 and T(z) is upper triangular. Also
condition (3) implies that the degree of a diagonal entry is
strictly larger than the degree of the other entries of this
row and the d-Popov form is the Hermite normal form. O

The condition T' upper triangular in (2) plays a minor
role in the entire triangularization of A(z). Indeed the up-
per triangularization may be ensured using only a column
reduced form with a slightly different shift. If T(z) is a-
column reduced with @; — d; > dj, for 1 > j, then T(z) is
upper triangular.

Even if for any given matrix A(z), the degrees &; are
not known in advance, one may always use Lemma 2.4 and
shifted forms to compute triangular forms. Indeed, the de-
grees are bounded by (4) thus choosing w > degdetA(z)
and as shift vector @ = [(m — 1)w,...,w,0], condition (5) is
satisfied.

Example 2.5 Let A(z) is the following 0-column reduced
matriz:
22-1 z+41 2

Az)= 0 -z z—2
z+2 0 z+1
From the sum of the column degrees one may take w = 4

as an upper bound on the degree of the determinant. If d =
[8,4,0] then an d-quasi Popouv form of A(z) is

z4—|—z2—z+4 —z3—|—4z—|—5 z4—4z3—|—4z2+15z
0 —4 -8z s
0 0 8

which in fact is [4,0,0]-reduced. With the same shifts, the
@-Popouv form of A(z) is

4 _ 2 _ 1.3 _ _ 5 1.3 2 _ 3
z 4z z+4 7% z 7 3% + 244+ 2z 5

0 1 0
0 0 1

an upper triangular matriz. When the upper triangular en-
tries have been reduced with respect to the diagonal ones, the
form is also the Hermite form of A(z). |

It is interesting to notice that this application of shifted
forms of matrix polynomial, is very similar to a well known
application of integer lattice basis reduction. Given an in-
teger matrix A, it is shown in [19, p 74] that the reduction
of a well chosen lattice deduced from A, leads to the integer
Hermite form.

Another example of this link, uses the fact that a shift
vector with only one nonzero entry may be used to “select”
a given row in a matrix. As shown in [11, Algorithm 2] this
is useful in solving the extended gcd problem.

Example 2.6 To compute the ged ¢(z) of a(z) = 2° —4 243
and b(z) = z° — 72* + 142 — 8 together with a corresponding
multiplier U(z) such that [a(z) b(2)] - U(z) = [e(z) 0], one

may compute a shifted form equivalent to
22— 4243 22 -7224+142-8
Az) = 1 0
0 1

This matrix 18 built using the identity matriz, to keep track
of the column operations that are performed and that will

give U(z). A 0-column reduced form of A(z) is
22 —4243 —z+1
1 —z+3
0 1

but does not provide the target result. One could verify here
that a [—2,0,0]-reduced form will lead to c¢(z) and to a pos-
sible U(z) via

—z+1 0
—z+3 —z2+6z—8
1 z—3

A detailed study of how to choose a suitable shift will be done
in a later section. a

3  Shifted Forms of Full Column Rank Matrices

In order to include in our framework such applications as
the one shown by Example 2.6 on the extended gcd problem
or by Example 3.3 on the determination of matrix struc-
ture [23] and on normalization of module bases (see Defini-
tion 5.1), we extend the results of previous section to full
column rank matrices. In this section we introduce shifts
in the classical treatment for column reduced forms [17, 12,
p481] and, as done in [13] in the Hermite case, we ensure
the normalization of leading matrices by considering column
echelon forms.

Given a matrix polynomial A(z), we denote its elements
by A(z)i ;. Furthermore, given lists I,J of increasing row /
column indices of A(z), we denote by A(z)ss the corre-
sponding submatrix of A(z), where for A(z)1 « (and A(z)«,s)
we just extract rows with index in I (and columns with index
in J, respectively).

Definition 3.1 (Column echelon matrices) A full col-
umn rank scalar matriz T' € Q™ ™ is in upper echelon form
with pivot set I = (i1,..,in) tf 1 < 11 < 12 < ... < 1y < M,
T:»yj =0 fori>1j, and Tijj #0,5=1,...,n. a

Any full column rank scalar matrix may be transformed
by column operations to upper echelon form and the cor-
responding pivot set is unique. The (row) pivot set of any
matrix is thus well defined as the pivot set of its (column)
upper echelon forms. Definition 2.1 is generalized for non-
square matrices.

Definition 3.2 A matriz polynomial T(z) € Q™*"[z] is
called @-column reduced with degree a if there exists a full
column rank scalar matriz T' with pivot set I satisfying

274, T(z) - Zhr—d — /4 O(z_l)z—mm (6)
T' € Q""" nonsingular.

If T' is in upper echelon form then T(z) is said to be in d-
quasi Popov form. If it satisfies the additional normalization
degree and leading coefficient constraint

27 T(2)1+ =In + O(Z_l)z_)oo. (7)



then T(z) is said to be in @-Popov normal form. |

By extension we will call a pivot set of an d@-column re-
duced matrix, the pivot set of an associated echelon matrix
in (6). Then the d-degree &; of the j-th column is the de-
gree of the j-th pivot entry. Notice that the statement of
Lemma 2.3 also holds in the rectangular case. In particu-
lar, A(z) is d@-column reduced if and only if 273 A(z) is
0-column reduced.

The generalization of Remark 2.2 and in particular of
identity (4) rely on classical tools from linear system the-
ory. For a matrix polynomial A(z) of full column rank
we define the Minor degree — denoted by Minor-degA(z)
— as the maximum of the degrees of the determinants of
n X n submatrices of A(z) (see [12, Eq. (34), p.454]). Set-
ting a* = cdeg(z_aA(z)), it is well-known that

ar| > Minor-deg(z_a -A(z)),

with equality iff A(z)is @—column reduced [12, § 6.3.2, p.384].

If A(z) is O-column reduced with degree & we get that
|&| = Minor-degA(z).

Also, in Definition 3.2 the pivot set I = (41,...,4n) is max-
imal such that T'L 7. is invertible, and so we obtain the ad-
ditional information

Minor-deg(z_aA(Z)) = deg det(z_aIA(Z)L*)
e ®)

> degdet (271 A(2) 11 1)

for any list of the form I' = (41, ..,%g, %41, --,2n) for some £,
where i} > 1.

Non normal shifted forms have been defined in [22] with
a slightly different definition of the d-degree. Also, our def-
inition of Minor degree — that measures the complexity of
matrix polynomials — is closely related to the classical defi-
nition of the McMillan degree [12, 6.5-9, p 466]:
¢

McMillan deg A(z) = Minor-deg [At(z), In]

as used in [22] to generalize the minimal partial realization
problem.

Example 3.3 The 6-Popov normal of

22 —z2+1 z4—z2+z

z—1 —z+2 23— 222
Az) = z 0 1
1 -1 22

z+1 —z—2 23 + 322

has pivot set I = (1,3,5) and vector degree & = [2,1,2]:

22 -1 1 z

The form reveals that A(z) has Minor degree |&| = 5. Here,
the degrees are also called the minimal indices of the module
generated by the columns of A(z) (see Definition 5.1) [9].
With @ = [0,0,0,0, 3], the shifted form

z 0 1
0 z—1 1
Tz =| 1 0 z
0 1 0

22 —z3+z+1 -1

has pivot set I = (1,2,3) and vector degree & = [1,1,1].
Now |d| = 3 is the Minor degree of the first four rows of
A(z). 0

Theorem 3.5 below shows that any polynomial matrix
can be transformed to a unique d@-Popov form by multipli-
cation on the right with some unimodular matrix. We first
state a lemma which gives a useful property of column re-
duced matrices (see [12, Theorem 6.3-13, p387]).

Lemma 3.4 (Predictable-Degree Property)

Let B(z) with cdegz_g -B(z) = ﬁ*, be a b-column reduced
matriz polynomial. If P(z) and C(z) are two matriz polyno-
mials such that B(z)P(zl = C(z) with cdeg 27t C(z)=7"
then deg P(z): ; < ¥ — B}. a

Theorem 3.5 (d-Popov form)
Any matriz A(z) € Q™ "[2] of full column rank is equivalent
to a unique matriz T(z) in d—Popov normal form.

Proof : The existence of a column reduced form B(z)
equivalent to A(z) is a classical fact, see [12, p 386] for in-
stance. The same applies directly to shifted forms. Follow-
ing (6) let B’ be the corresponding leading scalar matrix.
To simplify the notations, we denote by a* the unshifted
degree:

P A(z)-U(z)- 27 = ,a B(z)-z7¢
= B/ + O(Z_l)z—)co

and let I be the set of the largest row indices such that B’
is invertible. If T(z)7,« = B(2)1«V(z) is in d@-Popov form
(Definition 2.1 in the nonsingular case) then so is T(z) =
A(z)-U(z)-V(z). Indeed, from the nonsingular case, 2.
T(z)r,« and z~4r. B(z)1,x have the same column degree a*.
Lemma 3.4 above implies that deg[V(z)]; ; < &) —d&}. Thus
all the entries in the j-th column of z7% . T(z) have degrees
bounded by &@;. Below a pivot coefficient in this latter ma-
trix, the degrees must be strictly less than &j, since other-
wise the indices in I would not have been chosen maximal.
This establishes the existence of the form.

As seen in Remark 2.2, in the above construction the de-
gree &@" is uniquely determined up to a column permutations,
thus the set I also is uniquely determined. Therefore, from
the uniqueness of the form in the nonsingular case, if T(1) (=)
and T® (z) are two @-Popov forms, T(l)(Z)]y* =T® (2)1,
and T(l)(z) =T (2). o



We see from this proof and by (8) that the set I is ob-
tained by choosing the largest row indices such that

|@| = Minor-deg(z~%A(2)) + |@1| = degdet A(z)1 4.

Thus, in general I will depend on @. However, for a Hermite
shift as defined by Lemma 2.4, I will consist of the largest
row indices such that A(z)r . is nonsingular.

4 Degree bounds for multipliers

In this section give degree bounds for the unimodular multi-
plier U(z) used to transform a given (Laurent) matrix poly-
nomial A(z) into and-Popov form (or some similar form)
T(z). The bounds will be used in the next section to embed
the shifted Popov problem into one of computing a certain
basis of an associated matrix polynomial, a computation
that can be efficiently done in computer algebra systems.

Our degree estimates will be given in terms of a free pa-
rameter ¢ which may be chosen in order to reflect particular
properties of the input A(z) (e.g., in the case where A(z) is
é—column reduced). In the first part of the next theorem our
estimates are formulated in terms of the inputs A(z),d,c,
and of the invariants T(z),d, I. The aim of the second part
is to estimate the invariants in terms of the input.

We remark in this context that for matrices A(z) not
having full column rank the corresponding multiplier is no
longer unique, and obtaining degree bounds for some “min-
imal” multiplier is considerably more involved [6].

Theorem 4.1 (Degree bounds for Multiplier)

Let A(z) - U(z) = T(z) with U(z) unimodular and T(z)
being d—column reduced with pivot set I and degree &. Fur-
thermore, for some arbitrary multi-indez &, let

ET4 * &

7' = cdeg (277 - A(2)), 7 =cdeg(z""-T(z)), (9)

and define A% := |7*¢| + |&1| — |d|. Then
degU(2)i; <FF =M+ A% jk=1,..,n.  (10)
Also

0 < —Minor-deg (z_g-A(z)'Z_:/*E) < A° < |_’*c|+|EI|7 (11)

and A% =0 iff A(z) is E-column reduced with pivot set I.
In addition,

> a—ér, (12)
¢ < @—dr +€-max[d@ — &, (13)
Iy < perm (’7*6) (14)

Before giving a proof of Theorem 4.1 we give some ex-
amples which illustrate the sharpness of (10) for different
choices of ¢. In the examples A(z) will always be nonsin-
gular so m = n and I = (1, .,m). Also, we will just com-
pare the choices é=d > 0 and &= 0. If § 30 — = cdegA(z)

—xd

and 7% = cdeg(z _“A(z)) are of the same magnitude, then

! As seen in the proof below, estimates (10), (12) and (14) remain
valid if instead of (9) we only assume that 5*¢ > cdeg(z 7T - A(2)1,.)
and 7*¢ > cdeg(z_cf - T(2)1,4)-

A%~ AT |d| < A% — max[d], and from (10) and (13) we
see that the choice & = 0 leads to tighter bounds (compare
with AC (z) below). If the shift is relevant for the degree

bounds, typically when A% < A9 (see matrix A® (2)), then
the choice ¢ = @ will be more appropriate.

Example 4.2 Given the shift d = [9,6,9] we have 3** =
¥*8 4 & =[8,3,1] (and thus A? = A®) for the matriz
228 0 0
AN (z) = z 224z 0
z+1 241 2z

which is d-column reduced. The transformation matriz for
the d-Popov form is constant, and the two estimates for € €

{6, d} give the ezact degree 0 for most of its coefficients.
For the shift @ = [7,2,0] on the matriz,

2210 4 2 28 -1 211 41
A(Q)(z): 2241 225 -1 2441
—22 2 2z
one gets ¥*3 = @ + [10,3,4] and '7*6 = [10,8,11]. The @-
Popov form of Al )(z) has row degrees & = [10,3,3]. With
A% =1 and A" =13 > A%, the bound for & = @ is precise
and gives the exact mazimum degree 3 for the entries of the

transformation, when the other one s pessimistic and gives

a mazimum degree 15.
The [10,3,0]-Popov form of

2241 2254204228422 22242
2423422241 2241
z+1 22422404222 42

AP Gy =| 2241
222 4 2

18 in upper triangular Hermite form with & = [8,0,0]. In this
case A% =21 > A% = 0. The entries of the transformation
U(z) have degree at most 7 and all the degrees are ezactly

predicted by the choice & = 0. On the other hand the bound
for € = @ gives a mazimum degree 12. a

Proof of Theorem 4.1: For the remainder of the proof

we fix ¢ and use the shorter notation ¥ = ¥*°, ¥ = ¥*¢. For
a proof of (10), we recall that degdetA(z)L* = |@|. From
(9) and Cramer’s rule we get

27 (adjA(2)14) - 2T = O]y,
and z7 . U(z) - P

reduces to

27 adjA(z)rx - 2
det A(z)1«

P adjT(z)r« - 277 4 O(ZAE),

giving equation (10).
In order to show (11), recall first that z %, A(z)- 2z Tis

a polynomial in 1/z by the definition of ¥. Consequently,
0 > Minor-deg(z=%- A(z) -
>  Minor-deg(z~°" - A( )



the latter quantity being equal to —AP?. It remains to discuss
the case A= 0. By (8) and the above inequalities, A¥=0
is equivalent to the facts that 4 is the column degree both
of 2771 . A(z)r« and 2 ¢ A(z), and that both matrices are
column reduced, as claimed in (11).

Bounds (12) and (13) follow immediately from the def-
inition of ¥ and both together for ¢ = @ imply the first
part of (14). In order to show the final estimate for ¢ =
d, we introduce the unimodular matrix V(z) = U(z)™'.
Since z_aA(z) = z_aT(z) -V(z) and z_aT(z) is 0-column
reduced, it follows from the Predictable-Degree Property
(Lemma 3.4) and (9) that z" - V(z) - 277 = O(2°). Since
V(z) is nonsingular, we find some permutation p such that
V(2)j ) # 0, leading to (14). a

Remark 4.3 Recall that &; is the (a priori unknown) de-
gree of a pivot element of the normal form, in particular it
18 nonnegative. Thus, in terms of the input data, combin-
ing (10) with (13) gives the weaker degree bound

deg U(z)r,; < |81| — di; + |’7*E| - ’VZE-I- max[d — é].

In particular, in terms of d = deg A(z), we obtain in the
unshifted Popov case (@ =¢E= 6)

degU(z) < (n—1)-d, degT(z)<d.

In contrast, in the square Hermite case (m = n, é = 6_,
d; = E;n:j &, j=1,..,m as in (5), and thus _'f < |&| by
(13)) we have

degU(z) < (n—1)-d, degT(z)

< maxy dp
< detA(z)<m-d"

0

5 Computing Popov Forms via Minimal Polynomial
Bases

In this section we show that shifted Popov forms T(z) of

A(z) together with their multiplier U(z) can be obtained by

a particular polynomial basis for the kernel of [A(z), —I,].

It makes intuitive sense to look at the kernel since the columns
of the (m + n) x n matrix polynomial

S(z) = [ ITJEZ ] . T(z)=A(2)-U(z).  (15)

lie in the kernel of [A(z), —In]. These columns form a basis
iff U(z) is unimodular. Finally, as observed for example
in [18], we may use the algorithms FPHPS and SPHPS of
[2] to compute column reduced polynomial bases of matrix
polynomials, otherwise known as minimal polynomial bases
(MPB). In our case we wish to use a shifted versions of a
basis of the kernel to compute shifted Popov forms.

Definition 5.1 (Shifted Minimal Polynomial Bases)

Let A(z) € Q™*"[2] be of rank r and B(z) € Q"*("~")[z]
with A(z)-B(z) = 0. If B(z) is b-column reduced then B(z)
is called a b-Minimal Polynomial Basis (E-MPB) for the ker-
nel of A(z). If B(z) is also in b-quasi or b-Popov form then

B(z) is a g—quasi or g—Popov Minimal Polynomial Basis (l_;-
Popov MPB). |

If 5 = 0 then Definition 5.1 gives the classical definition
of a Minimal Polynomial Basis (MPB) [9]. Such bases are
called minimal since if a MPB for the kernel of A(z) is in
quasi-Popov form with degree E, then any other basis has
degree B with 8, > B¢, 1 < £ < n —r [12, §6.5.4, p456].

Two polynomial basis for the kernel of A(z) are basis
for the kernel as a module over Q[z], thus there exists a
unimodular multiplier which makes the matrices equivalent.
The existence and the uniqueness of a shifted Popov MPB
follows from Theorem 3.5.

Theorem 5.2 (Popov forms via MPB)
Let A(z) be an m X n matriz polynomial of full colurmn rank,
and @, & multi-indices. Furthermore, let 3* > cdeg (z_EA(z)),
and write i(N) = (N - € — J*2, @) for any integer N.

The matriz polynomial S(z) is of the form (15) with T(z)
the d—Popov form of A(z) and U(z) its corresponding mul-
tiplier of and only if, for some

N > N; := A+ max[d — &),
S(z) is a MPS of the kernel of [A(z), —1] in f(N)-Popouv

form.

In this case, the latter property is true for all N > Ni.
Furthermore, S(z) and T(z) have the same pivots, and the
same shifted column degree.

Proof:  For the first implication it is sufficient to show
that the stacked matrix S(z) constructed with help of the
Popov form T(z) and the multiplier U(z) is 7(N)-column
reduced for all N > N;, with the properties as specified in
the last part of Theorem 5.2. Indeed, denoting by & the
d-column degree of T(z) and by I the corresponding pivot
set, we get

and it only remains to show that
27 U(z) - T tAr=NE _ O(ZO)Z_wo

for all N > N;.
from (10) and (13).
In order to show the other implication, let S(z) (and
S(z)) be as described in the first part of the assertion (and
of the second part, respectively). Then the columns of both

matrices form bases of the kernel of [A(z), —I], and there-

This latter statement follows however

fore there exists some unimodular W(z) such that S(z) =
S(z) - W(z). On the other hand, both S(z) and S(z) are
of full column rank and in 7(N)-Popov form for the speci-

fied value of N, and thus S(z) = S(z) by the uniqueness of
7i(N)-Popov forms. |

Theorem 5.2 implies that one can compute shifted forms
by computing shifted forms of bases matrices for an asso-
ciated kernel. That this is useful is shown by Theorem 5.3
below which implies that one can use the Mahler basis al-
gorithm FFFG of [5] in order to compute polynomial bases
S(z) in shifted Popov form. In addition, FFFG only uses
fraction-free arithmetic, an advantage if the entries in the
original matrix are polynomials having coefficients from an
integral domain (for example a matrix with entries from Z [z]

or Qai,...,ax][z])



Theorem 5.3 Let A(z),d,c, 2, 7i(N) be as in Theorem 5.2,
and define it :== (N - € — A @), where N > Nj.

Apply algorithm FFFG to the matriz [A(z), —Ix] along
the offdiagonal path induced by 77 and increasing order vec-
tors & > 0 in order to obtain fraction-free polynomial bases
M(z) of fi—column degree ¥ along with polynomial residuals

R(z) =277 - [A(z), —Ln] - M(2),

and stop the algorithm if a m X n submatriz R(z). 1 of R(z)
s zero.

Then there exists some scalar ¢ such that the last m rows
of M(z)«,1 give ¢ times the G—Popov form of A(z) with d—
column degree & = U, and pivot set (1 —n, ...,£, —n), where
L= (41,...,4,), and the first n rows of M(z)« 1 give c times
the corresponding unimodular multiplier.

The algorithm will terminate at the latest by the order
vector .

&> =+ (N +1+max[77)é.

Proof: Notice that, for any order vector &, R(0) is of
full rank m [3, Lemma 2.8], and M(z) is a nonsingular ma-
trix in ©i-Popov form [5, Theorem 7.2], with its degree vector
denoted by 7. Let S(z) be as in the first part of Lemma 5.2.
Then the columns of S(z) have order &, and from [5, Theo-
rem 7.3(a)] we know that there exists a unique matrix poly-
nomial P(z) such that

and Z°77". P(z) L O(1):500-

(16)
If the index set L is as above, then the columns of M(z). 1,
are elements of the kernel of [A(z), —I,»]. From the basis
property of S(z) we may conclude that there exists a unique
matrix polynomial Q(z) such that M(z).,r = S(2)Q(z). In
combination with (16) we obtain M(z)., 1 = M(z)sz)Q(z)
Consequently, P(z)r,« = 0, and P(z)r« = Q(2z)” is uni-
modular. Uniqueness of shifted Popov forms gives us the
desired result S(z) = M(z). L.

In order to prove the last part, notice that

S(z) = M(z)P(z),

227 R(2) 2" =277 [A(2),~Im] - M(2) - 277
=[z% A(z)- 27", —-1,]
) [ 21, 0

0 za—a

Since N — max[d@ — & > A% > 0 by assumption on N and
relation (11) of Theorem 4.1, it follows that 2% R(z) -
ZA—P-NE _ O(ZO)Z_,OO. We now may choose an index list
L with L. := (1,...,m + n) \ L such that the square matrix
R(z)« 1, is invertible. Consequently, there exists a bijective
map p : {1,...,m} = L. with R(2); ,;y # 0,7 = 1,..,m,
and thus
perm(d —c— Né) < (F — i),

where we recall that perm denotes a permutation of the
components. If now & > o/ = &+ N’ - &, then min[(7 —
f)r,] > N' = N > max[¥*%] + 1 > max[@ — @r] + 1 by
assumption on N’ and (14). It follows that P(z)r_ .« = 0in
(16). Omn the other hand, with S(z), P(z) must also have
full column rank, and thus P(z)r « is invertible. Multiplying
the left-hand equation in (16) on the left with [A(z), — L],
we obtain R(z)«,z - P(2)r,» = 0 and hence R(z).,1 = 0, as
required for the final part of Theorem 5.3. a

The fraction free computation of shifted Popov forms
via FFFG has been implemented in the Computer algebra
system MAPLE and can be obtained from the authors web
sites or via email.

Example 5.4 Let A(z) be as in Ezample 2.5. Then apply-

ing the FFFG algorithm along the off-diagonal path 6,10, 6,8, 4, 0]

results in a Mahler system that produces an integer multiple
of a [8,4,0]-Popov normal form A(z) along with a unimodu-
lar multiplier in 18 iterations. The result is 4 tames the true
answer because it works with fraction-free arithmetic. The
unimodular multiplier in this case is given by

422 4 4z z4+1 —2z+42
—422 416 —z 2z — 4
42> 8z —2-2 2z

again 4 times the true answer.

We can give a worst case complexity for this approach
in terms of d = degA(z). As in the discussion at the end
of section 3 we will restrict ourselves to the choices ¢ = 0
and @ > 0, max[d] < |&|, which includes the classical Popov
and Hermite normal forms. Then 7*% < 3° < d- &, and
A° + max[d@ — & < |5*°] < n-d. Consequently, a practical
choice for N would be N = n - d, leading to |#/| = m - n -

d+m-(d+1).
From [3, Lemma 2.8] and [5, Section 4] we know that the
module K := || of the degree vector of the final basis in

FFFG coincides with the module of the final order vector
|&#] < |#7|. Tt is shown in [2, 5] that the complexity of FFFG
to reach this order vector is bounded by O((m +n) - KQ) in
floating point arithmetic, and by O((m+n)-x*- K*) in exact
arithmetic, where  is an upper bound for the size (in bits)
of the coefficients of A(z) (remember that the correspond-
ing complexities for solving the underlying systems of linear
equations by Gaussian elimination are obtained by replac-
ing m + n above by K). Under the above assumptions, we
obtain in terms of the degree d = deg A(z) rough worst case
bounds, namely (O(m3 -0’ -d2) floating point operations, and
O(x? -m® - n* . d*) bit operations.

6 Conclusions

In this paper we have studied reduced and normal forms of
matrix polynomials by looking at so called shifted forms of
matrix polynomials. These forms include column-reduced,
triangular, Hermite normal and Popov normal forms along
with their shifted counterparts. We have determined de-
gree bounds for a unimodular matrix which transforms the
input matrix polynomial into an equivalent matrix in the de-
sired form. The degree bounds allow one to embed a shifted
Popov normal problem into a problem of determining a mini-
mal polynomial basis in shifted Popov form for an associated
stacked matrix polynomial. These shifted minimal polyno-
mial bases can in turn be computed in a fraction-free way
via the Mahler system algorithm of [5].

As mentioned in the introduction the results in this pa-
per can be viewed as a first step in a program to obtain effi-
cient symbolic methods for computing matrix normal forms
of arbitrary matrix polynomials. The full row rank rect-
angular case is important for computing matrix polynomial
GCDs in normal form. The singular case gives information



on minimal polynomial bases for the kernel of the matrix
polynomial. The case of singular or rectangular matrices
is considerably more complex because one no longer has
a unique unimodular multiplier. In such cases one needs
to determine a unimodular multiplier with minimal degree
properties. Degree bounds for this case are also more diffi-
cult. At the same time degree bounds for such multipliers
in this case also lead to interesting degree bounds for im-
portant classes of problems of interest in computer algebra.
For example, from [6] we have:

Theorem 6.1 (GCD of several scalar polynomials)
Let A(z) = [a1(2),a2(2),...an(2)] € Q' *"[2] with degrees
¥ = [m1,72,---Vn] and d(z) = GCD(a1(z),...,an(z)) with
degree §. Assume (without loss of generality) that vi =
min; v; and v, = max;vy;j. Then there are “small” mul-
tipliers ug(z) for the diophantine equation

a1(z) - u1(z) + a2(z) - u2(z) + ... + an(z) - un(z) = d(z),

which satisfy

n

3 (1+degur(z)) <m -4 (17)

degui(z) < vn—90-—1,

Notice that these bounds include the classical one for n =
2 (cf. [10]). Also, a straight forward generalization of the
integer bound of [11] to the polynomial case would lead to
the weaker estimate deg ur(z) < yn — 1 for all k.

There are a number of interesting problems that still
remain to be solved. We have shown that it is possible
to solve the shifted Popov form problem via some fraction
free algorithm by noting that it is embedded inside an order
basis computation (or an MPB computation). The major
problem with using such an approach to compute our form
is that this method is not really a reduction procedure. In
particular it does not recognize when a matrix polynomial
A(z) is in shifted Popov form until the final step of the
computation. We are interested in obtaining a fraction-free
algorithm which computes minimal polynomial bases (and
hence our normal form) in a reduction procedure. We expect
that this may be done by determining an associated linear
system along with determinental representations as in [5]
and then making use of modified Schur complements as done
in [4].

It is of interest to determine reduced and normal forms
for matrices of differential operators or, more generally, Ore
operators, again in a fraction-free way. Such methods could
then be applied to determining closed form and/or series so-
lutions of systems of linear differential or linear recurrence
equations having coefficients over a polynomial or rational
function domain. A first step in such a process is to de-
termine what is meant by the notion of a Popov or shifted
Popov form of a matrix of Ore operators.
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