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Abstract

We present an algorithm for the computation of a shifted Popov Normal Form of
a rectangular polynomial matrix. For specific input shifts, we obtain methods for
computing thematrix greatest common divisor of two matrix polynomials (in normal
form) or such polynomial normal form computation as the classical Popov form
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computing shifted forms into one of computing matrix rational approximants. This
has the advantage of allowing for fraction-free computations over integral domains
such as ZZ [z] or K[z1, . . . , zn][z].

In the case of rectangular matrix input, the corresponding multipliers for the
shifted forms are not unique. We use the concept of minimal matrix approximants
to introduce a notion of minimal mutipliers and show how such multipliers are
computed by our methods.
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1 Introduction

Two polynomial matrices A(z) and B(z) in K[z]m×n, K a field, are column
equivalent if there exists a unimodular matrix U(z) ∈ K[z]n×n such that
A(z) ·U(z) = B(z). The matrix U(z) corresponds to a sequence of elemen-
tary column operations. There exists a number of normal forms for such an
equivalence problem, the best known being the Hermite normal form, initially
discovered by Hermite [16] for the domain of integers [22,25]. This is an up-
per triangular matrix that has the added constraints that the diagonals have
the largest degrees in each row. While a triangular form has many obvious
advantages for such operations as solving linear equations it also has certain
disadvantages. In particular, the column degrees of a Hermite normal form can
increase. For such reasons the Popov normal form [26] of a polynomial matrix
can give a better form for many problems. This is a form that specifies certain
normalizations of matrix leading row coefficients and which has the property
that columns degrees are minimal over all column equivalent matrices.

A related problem is the computation of matrix greatest common divisors. For
two matrix polynomials A(z) and B(z), both with the same row dimension,
a left matrix Gcd is a matrix polynomial C(z) satisfying A(z) = C(z) · Â(z)
and B(z) = C(z) · B̂(z) and where Â(z) and B̂(z) have only unimodular
left divisors. The Matrix Gcd plays an important role in such areas as linear
systems theory [18], minimal partial realizations and other application areas.
Normal forms plays two important roles in the Matrix Gcd problem. In the
first place Matrix Gcd’s are only unique up to multiplication on the right by
unimodular polynomial matrices. In order to specify a single answer one asks
that the Gcd be in a specific normal form. In addition, matrix Gcd’s are usually
computed by converting the rectangular matrix polynomial [A(z),B(z)] into a
normal form [0,C(z)] where C(z) is precisely the Matrix Gcd in normal form.

Shifted normal forms. The solution of a number of normal form problems
involving matrix polynomials – particularly the forms mentioned above and
others that we will introduce as examples in the paper – may be unified by the
notion of shifted form [6]. Matrix normal forms such as Hermite or Popov have
certain degree structures in their requirements. They are typically computed
by reducing degrees in certain rows or columns in such a way that the degree
requirements will eventually be met. A shift associated to an input matrix
A(z) is a vector ~a of integers that may be seen as weights attributed to the
rows of the matrix (see Definition 2.3). These weights govern the order in which
operations are performed during the algorithm and thus allow – by alternate
ways of chosing them – one to use the same process for the computation
of different forms including for example the Popov and the Hermite forms.
One can illustrate this using the two latter forms as an example. The column
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degrees of

A(z) =







z3 − z2 z3 − 2 z2 − 1

z3 − 2 z2 + 2 z − 2 z3 − 3 z2 + 3 z − 4







may be reduced by unimodular column transformations to obtain

T(z) =







z −1

1 z − 1






,

the Popov form of A(z). With the shift ~a = [0,−1] one will give preference to
the degrees – and hence to the elimination – in the second row over those in
the first row. This leads to

H(z) =







z2 − z + 1 z

0 1







which is the Hermite normal form of A(z) (see [6, Lemma 2.4] and the defi-
nition in Section 2). Additional examples of the use of shifted normal forms
are also included later in this paper. For example, it can happen that certain
preferences of a whole set of rows of a rectangular matrix will provide a right
inverse computation for such a matrix (cf. Example 2.4).

Shifted Popov forms were introduced in [5] as a natural and convenient normal
form for describing the properties of Mahler systems. These systems are used
as basic building blocks for recursively computing solutions to module bases
for matrix rational approximation and matrix rational interpolation problems
(see also [4] in the case of matrix Padé systems and section 4.2). Shifts also ap-
pear naturally in the context of computing normal forms of matrices over ZZ .
Schrijver has shown that integer weights on the rows of a matrix A in ZZ n×n

leads to a lattice whose reduced basis gives the Hermite form of A [28, p74].
A similar approach is found in [15, §6] where the powers of a positive integer γ
give an appropriate shift. For matrix polynomials we develop a more complete
study.

Computing shifted forms. The primary aim in this paper is to give a new
algorithm for computing a shifted Popov form of an arbitrary rank polynomial
matrix. In the case where the input is square and nonsingular or rectangular
and of full column rank, an algorithm for determining a shifted Popov form
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has been given in [6]. We extend the methods from [6] to deal with the general
case of singular matrices, in particular for those not having full column rank.
The Matrix Gcd problem and coprime matrix rational functions gives two im-
portant examples which requires normal forms for arbitrary rank matrices. We
refer the reader to Examples 2.5 and 3.2 for Matrix Gcd computations and to
Example 3.6 for coprime matrix rational functions. Our new algorithm solves
two difficulties. The first one concerns the fact that – unlike in the full column
rank case – the multipliers U(z) are not unique. We will define and compute
minimal multipliers. The second difficulty is the intermediate expression swell
with respect to polynomial coefficients. This will be solved by proposing a
fraction-free method.

Our methods view the equation A(z) ·U(z) = T(z) as a kernel computation

[A(z),−I] ·






U(z)

T(z)




 = 0 (1)

and the normal form problem as one of computing a special shifted form
of a basis for the kernel of [A(z),−I]. This special form provides both the
normal form T(z) along with a unimodular multiplier U(z) having certain
minimal degree properties. The minimality of degrees overcomes the problem
that the unimodular multiplier is not unique. Starting from (1), the same idea
of computing column reduced forms using minimal polynomial basis has been
used by Beelen et al. [7]. We generalize the approach by using non-constant
shifts and by computing different forms.

For various purposes, the shift technique may also be applied to the unimodu-
lar multipliers. In addition to the input shift ~a associated toA(z) we introduce

a second shift ~b associated to U(z). Specific choices of ~b result in unimodu-
lar matrices U(z) having special properties that are useful for nullspace and
polynomial system solving problems. For example, two bases for the nullspace
of

A(z) =






z3 + 4 z2 − 2 z2 + 2 z − 1 z3 + z2 z2 − 1

z4 + z3 + 4 z2 + 2 z z3 + z2 + z 2 z3 + 2 z2 z2 + z





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are given by

U(z) =
















z + 1 0

−z2 − z −z − 1

−1 z + 1

−2− z −z2 + 1− z
















and U′(z) =
















−z3 − 2 z2 + 1 z2 − 1

z4 + 2 z3 − z2 − 4 z − 2 −z3 + 2 z + 1

2 z2 + 4 z + 1 −2 z

0 1
















.

These two bases are submatrices of multipliers for shifted Popov forms ofA(z)
(see the detailed study at Section 3). The first basis U(z), computed with no
shift, has the smallest possible degrees. The second one, U′(z), is computed

with a shift ~b = [0, 0, 0,−3] which forces a preference of elimination in its last
row. By definition, the second column U′

2
(z) of U′(z) satisfies A(z)U′

2
(z) = 0

and since the last entry has been made constant by the shift, one may solve
the Diophantine linear system given by A(z) and its last column. This is not
directly possible from U(z).

The shifted multipliers are also useful for deriving degree bounds and analyzing
the cost of the algorithm. Bounds for the minimal unimodular multiplier are
obtained in terms of the input parameters and the invariants to the problem –
the shifted minimal degrees and the shifted Kronecker indices. The invariants
are themselves bounded in terms of the input parameters. The bounds that
we obtain for the minimal unimodular multiplier are interesting in their own
right. Indeed, as it will be shown at Example 5.4, they can be used for instance
to determine bounds for the cofactor polynomials in the extended Gcd problem
for n ≥ 2 scalar polynomials, that is, degree bounds for the uk(z) in

a1(z) · u1(z) + · · ·+ an(z) · un(z) = Gcd (a1(z), . . . , an(z)).

Following (1), the computation of a shifted form for the kernel of [A(z),−I] is
done using the σ-basis (or order basis) algorithm of Beckermann and Labahn
[5]. This algorithm computes all solutions to a rational approximation prob-
lem, that of vector Hermite-Padé approximants to a certain order. The basis
for this approximation problem is in shifted Popov form and includes the de-
sired kernel for high enough orders. The algorithm has the advantage that
the computations are fraction-free for integral domains, a significant advan-
tage when the input is parameterized, for example when the input entries are
from ZZ [z] or K[a1, . . . , an][z], classical domains for computer algebra systems.
To our knowledge, a specific fraction-free method for computing Hermite or
(shifted) Popov forms for general matrix polynomials has not been previously
given.

Algorithms and complexities to compute the Popov form or column reduced
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forms over K[z] with K an abstract field have been studied in [34] (see also
the references therein) or in [24]. Many algorithms have been proposed to
compute the Hermite form over K[z], with [30] giving a good overview of
the domain. For concrete coefficient domains like ZZ , expression swell on the
coefficient level leads in general to a severe breakdown of the method’s per-
formance. The case of matrices over ZZ [z] has only been considered for the
Hermite form using Chinese remaindering in [29, Chap. 4 & 6]. Our idea to
introduce fraction-free techniques to handle the complexity of coefficients for
general matrix polynomial computations (shifted forms) is a natural solution.

Organization of the paper. Section 2 gives the basic definitions of our nor-
mal forms along with proofs of existence and uniqueness. Section 3 discusses
shifted minimal polynomial bases and shifted minimal multipliers. Section 4
gives the main algorithm for the computation of the shifted forms. We first
show in 4.1 how they may be computed as minimal polynomial bases and then
how to compute these bases as approximant order bases in 4.2. The termina-
tion of the algorithm is specified using invariants of the problems (minimal
degrees and Kronecker indices). These invariants are studied in Section 5 where
the concern is to bound the degrees of the unimodular multipliers. From these
bounds, Section 6 gives the cost of the algorithm. The last section includes a
conclusion along with a discussion of future research directions.

Notations. Except for the presentation and the cost study of the fraction-free
technique where the domain of the entries will be specified, we will work with
constant and polynomial matrices over K and K[z] for an abstract commu-
tative field K. Given a polynomial A(z), we denote its elements by A(z)i,j .
Furthermore, given lists I, J of increasing row/column indices of A(z), we de-
note by A(z)I,J the corresponding submatrix of A(z), where for A(z)I,∗ (and
A(z)∗,J) we just extract rows with index in I (and columns with index in J ,
respectively).

For any multi-index ~a (that is, a vector of integers) we denote by |~a| the sum of
its components, max[~a] and min[~a] its maximum and minimum components,
perm [~a] a permutation of its components and ~aI the subvector given by the
indices in I. The multi-index ~e is the vector (1, . . . , 1) of appropriate size.
Three main types of multi-indicies are involved. The shifts will be indicated
by latin letters (e.g. ~a, ~b), we will use greek letters (e.g. ~α, ~β) for the shifted

column degrees and add a “∗” to the latters (e.g. ~α∗, ~β∗) for the actual (non-
shifted) column degrees (see Definition 2.3). The multi-index given by the
column degrees of matrix A(z) is denoted by cdegA(z) and the row degree is
denoted by rdegA(z).
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2 Preliminaries

This section gives some of the basic definitions required for the remainder of
the paper. We give examples of matrix normal forms and provide motivation
for the concept of shifted normal forms for both square and rectangular matrix
polynomials. Information for normal forms of matrix polynomials in the full
column case have been handled in a previous paper [6].

The best known normal form for matrix polynomials is the Hermite normal
form. This is a triangular matrix with the additional normalization properties
than the diagonal polynomials are monic and that the degrees of the offdiag-
onal entries are less than the degrees of the diagonal entry in the same row.
For example, the matrix

A(z) =










z4 − 2 z3 + 1 z3 + z

0 z2 − 1 −z − 1

0 0 z + 2










(2)

is in Hermite normal form. From a computational point of view, the Hermite
normal form has the disadvantage that it does not minimize or even necessar-
ily reduce the column degrees. A second well known matrix normal form was
introduced by Popov [26]. Called the Popov normal form or the polynomial-
echelon form [18], this form requires normalization properties similar to those
of the Hermite form: the leading (by rows) coefficient matrix has to be nor-
malized to the identity. Specifically we have, in the case of nonsingular square
matrices:

Definition 2.1 An m ×m non-singular matrix polynomial T(z) ∈ K[z]m×m

is in Popov form (with column degree ~α∗) if there exists a multi-index ~α∗ such
that T(z) satisfies the degree constraints

T(z) · z−~α∗ = T′ +O(z−1)z→∞, T′ ∈ Km×m being upper triangular, (3)

z−~α∗ ·T(z) = Im +O(z−1)z→∞. (4)

If only condition (3) holds with T′ ∈ Km×m being simply nonsingular then the
matrix polynomial is said to be column reduced. 2

Notice that in the first part of the definition the matrix T′ in (3) is necessarily
nonsingular because of (4). Up to a (unique) permutation of columns, we
obtain the classical Popov normal form [18, §6.7.2, p. 481]. When the form is
used in a matrix fraction description or as a minimal polynomial basis then
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the degree ~α∗ is usually referred to as the vector of controllability indices or
Kronecker indices. It is known [18, p. 484] that any square nonsingular matrix
polynomial may be transformed to Popov normal form by multiplication on the
right by a unimodular matrix polynomial, and that the resulting polynomial
matrix is unique. As an example, the Popov normal form for (2) is given by

T(z) =










z3 + z − z + 1 z2 − z + 3

−z − 1 z2 + z 0

z + 2 −z − 2 z2 + z − 2










with ~α∗ = [3, 2, 2] and

T′ =










1 0 −1

0 1 0

0 0 1










.

Since this matrix is column-reduced it gives the minimal column degrees of
all matrices column equivalent to (2) (up to a permutation of the columns).
That is, if B(z) is any other matrix column equivalent to the above then its
column degrees are at least (3, 2, 2) [18, §6.5.4, p. 456] (see Section 3).

Our example matrix (2) is not in Popov normal form - indeed it is not even
in column reduced form. However, we can make a shift, that is give “weights”
to the degrees of the rows by multiplication on the left by z(−3,−1,0) to make it
a column reduced matrix. This has led in [6] to the extension of the notion of
Popov forms to the notion of ~a-Popov for full column rank matrix polynomi-
als. The matrix (2) is said to be in (3, 1, 0)-Popov form with shifted degrees
(4, 2, 1). In order to include more general applications such as normal forms
for Matrix Gcd’s and for minimal nullspace bases, we will need to consider
the more general case of rectangular matrix polynomials having an arbitrary
column rank. The normalization of leading matrices is now ensured by column
echelon matrices:

Definition 2.2 (Column echelon matrices) A scalar matrix T′ ∈ Km×n

of rank r is in upper echelon form with pivot set I = (i1, ..., ir) if 1 ≤ i1 <
i2 < ... < ir ≤ m, T′

i,j = 0 for i > ij, and T
′
ij ,j
6= 0, j = 1, ..., r. 2

Notice that we may transform any scalar matrix by column operations to
upper echelon form and that the corresponding pivot set is unique. The (row)
pivot set of any matrix is thus well defined as the pivot set of its (column)
upper echelon forms. The general definition of shifted forms is then:
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Definition 2.3 (Shifted-Popov Normal Form) A matrix polynomial
T(z) ∈ K[z]m×n is called ~a-column reduced with ~a-degree ~α (or shifted degree)
if it may be partitioned as

T(z) = [0, T(z)∗,Jc ] where J = (1, 2, ..., n− r), Jc = (n− r + 1, ..., n),

(5)

and if its right hand part is such that there exists a full column rank scalar
matrix T′ with pivot set I satisfying

z−~a ·T(z)∗,Jc · z
~aI−~α = T′ +O(z−1)z→∞. (6)

If it satisfies the additional normalization degree and leading coefficient con-
straint

z−~α ·T(z)I,Jc = Ir +O(z−1)z→∞. (7)

then T(z) is said to be in ~a–Popov normal form. We define the multi-index
~α∗ by

~α∗ = cdeg z−~a ·T(z)∗,Jc
with the convention that though both the ~a-degree ~α and the column degree ~α∗

have the same sizes, we index them in different ways – ~α is indexed by the
pivot rows I while ~α∗ is indexed by the columns Jc. 2

In the square, nonsingular case the pivot set is (1, . . . ,m) and may be dropped
from our notation. For the above forms, r equals the rank of T(z), T(z)∗,Jc
and of T′. Since I = (i1, . . . , ir) is the pivot set of T′, the r × r sub-matrices
T(z)I,Jc and T

′
I,Jc

are invertible and for any other list I ′ = (i′1, .., i
′
l, i

′
l+1, .., i

′
r)

with i′l > il for some l, T′
I′,Jc

is singular. By extension we will call the pivot set
of an ~a-column reduced matrix, the pivot set of an associated matrix T′ in (6).
Notice that Definition 2.3 may be used directly for Laurent matrix polynomials
and that A(z) is ~a-column reduced (respectively, in ~a-Popov form) if and only
if z−~a ·A(z) is column reduced (respectively, in Popov form).

Example 2.4 Consider the matrix

A(z) =
















3 z − 6 −3 z 6

−3 z + 3 3 z −3

2 z + 3 −2 −2 z − 1

z −1 −z + 1















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Its Popov form T0(z) and its (2, 2, 0, 0)-Popov form T(z) provide two different
bases for its dimension 2 column space:

T0(z) =
















0 −z −6

0 z 3

0 −23 2 z + 1

0 −13 z − 1
















, T(z) =
















0 −z2 + z − 2 2z2 + z + 4

0 z2 − z + 1 −2z2 − z − 2

0 1 0

0 0 1
















with pivot sets I0 = (2, 4) and I = (3, 4) (pointed out by the underlined
terms). The shifted degrees are ~α0 = [1, 1] and ~α = [0, 0]. A transformation
matrix U(z) for T(z) will give a right inverse for A(z)I,∗ since it satisfies
A(z)I,∗U(z)∗,(2,3) = I2. 2

Example 2.5 Consider the problem of computing the left Matrix Gcd of the
two matrix polynomials

P(z) =






−z3 + 4z2 + z + 1 z − 1

−z2 + 7z + 4 z + 2




 and Q(z) =






2z2 + 2z − 2 −z2

z2 + 6z + 6 −2z




 .

One determines a left Matrix Gcd by forming the augmented matrix A(z) =
[P(z),Q(z)] and then making this column equivalent to a matrix of the form
[0,C(z)] with C(z) a left Matrix Gcd . Popov and shifted Popov forms for A(z)
gives Matrix Gcd’s in normal form. For example, the Popov form for A(z) is
given by






0 0 z −1

0 0 2 z






and so the last two columns give a Matrix Gcd in Popov form. On the other
hand the (2, 0)-Popov form for A(z) is






0 0 z2 + 2 1
2
z

0 0 0 1






and its last two columns give a Matrix Gcd in Hermite form (see [6, Lemma
2.4]). 2
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Using Definition 2.3, we can now handle the Hermite normal form more pre-
cisely. A matrix T(z) in K[z]m×n is in Hermite normal form (see [22,25]) if it
may be partitioned following (5) as

T(z) = [0, T(z)∗,Jc ]

where T(z)∗,Jc : (i) has full column rank r; (ii) is in upper echelon form with
pivot set I = (i1, i2, . . . , ir); (iii) satisfies the normalization constraint

z−~α ·T(z)I,Jc = Ir +O(z−1)z→∞, (8)

that is, the pivot entries T(z)ij ,n−r+j are monic and have a degree ~αij strictly
larger than the entries in the same row T(z)ij ,∗. As mentioned already before,
for an appropriate shift the Hermite form may be viewed as a shifted-Popov
form:

Lemma 2.6 If T(z) is in ~a-Popov normal form with pivot set I = (i1, i2, . . . , ir)
and shifted degree ~α such that

~ai − ~al ≥ ~αi, for i ∈ I and l > i (9)

then T(z) is in Hermite normal form.

Proof: Since T(z) is in ~a-Popov normal form with shifted degree ~α, con-
ditions (i) and (iii) for the Hermite form are clearly true. In addition, from
identities (6) and (7), for l > ij we get −~al + degT(z)l,n−r+j + ~aij − ~αij < 0.
Thus if the shift satisfies (9) then T(z)l,n−r+j = 0 for l > ij and hence T(z)∗,Jc
is in upper echelon form. 2

A practical a priori shift ~a will depend on bounds for the degree ~α. This will
be considered at section 6 using Theorem 5.1 below.

The existence and uniqueness of shifted Popov forms for rectangular matrix
polynomials having full column rank can be found in [6, Theorem 3.5]. In the
general case we have the following.

Theorem 2.7 Any matrix A(z) ∈ K[z]m×n is column equivalent to a unique
matrix T(z) in ~a-Popov form.

Proof: As noted in [18, p. 375-376] one can always do elementary column
operations so that the matrix polynomial A(z) is of the form [0,B(z)] where
the first n− r columns are 0 and B(z) has full column rank r. The existence
of an ~a-Popov form therefore follows from the full column rank case. To show
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uniqueness, suppose [0,T(z)] and [0,T′(z)] are two ~a-Popov forms for A(z).
Then there exists a unimodular matrix polynomial V(z) such that

[0,T(z)] = [0,T′(z)] ·V(z). (10)

If V′(z) denotes the bottom right hand r × r submatrix of V(z) then (10)
implies that

T(z) = T′(z) ·V′(z). (11)

Similarly, one can find a second r × r matrix polynomial W′(z) such that

T′(z) = T(z) ·W′(z). (12)

Therefore,

T(z) = T(z) ·W′(z) ·V′(z)

implying that W′(z) · V′(z) = Ir since T(z) is of full column rank. Thus
V′(z) and W′(z) are unimodular and T(z) and T′(z) are two full column
rank equivalent ~a-Popov forms. By [6, Theorem 3.5] they must be equal. 2

3 Minimal Multipliers

In the case of full-column rank matrices, both an ~a-Popov form T(z) and its
unimodular multiplier U(z) are unique. In the case of singular input Theorem
2.7 implies that the shifted form is also unique. However, the same cannot be
said for the associated unimodular multiplier. Indeed one simply needs to look
at the definition to see that one can take multiples of any of the first n − r
columns of the multiplier and add them to the last r columns without having
any effect on the associated shifted form. In this section we look for a multiplier
that has a type of shifted minimal property. This type of reduction (without a
shift) has already been done in the context of linear systems theory [35] (see
Remark 3.7). We will show in a later section that the addition of a shift gives
certain useful properties for our multipliers.

If A(z) · U(z) = [0 , T(z)∗,Jc ] with U(z) = [U(z)∗,J , U(z)∗,Jc ] unimodular
and T(z)∗,Jc of full column rank, then A(z) · U∗,J(z) = 0. Since U(z) is
unimodular, U(z)∗,J has full column rank and therefore forms a polynomial
basis for the kernel of A(z), that is, a basis for the kernel as a module over
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K[z]. The minimality of the columns J will thus be naturally captured using
the well-known concept of minimal polynomial basis (see [13] or [18, §6.5.4])
which we extend here to include shifted bases.

Definition 3.1 (Shifted Minimal Polynomial Bases) LetA(z) ∈ K[z]m×n

be of rank r and B(z) ∈ K[z]n×(n−r) with A(z) ·B(z) = 0. If B(z) is ~b-column

reduced then B(z) is a ~b-Minimal Polynomial Basis (~b-MPB) for the nullspace

of A(z). If B(z) is also in ~b-Popov form then B(z) is a ~b-Popov Minimal

Polynomial Basis (~b-Popov MPB). 2

If ~b = 0 then Definition 3.1 gives the classical definition of a Minimal Polyno-
mial Basis (MPB) [13]. Such bases are called minimal since if a MPB for the

nullspace of A(z) has column degree ~β (with components in increasing order),

then the degree ~β′ (with components in increasing order) of any other basis

satisfy ~β′
l ≥ ~βl, 1 ≤ l ≤ n − r [18, §6.5.4, p. 456]. Clearly, the same property

holds for shifted MPB. The shifted degrees ~βl may be called the ~b-right mini-
mal or ~b-right Kronecker indices of A(z). The existence and the uniqueness of
a shifted MPB in Popov form follows from Theorem 2.7.

Example 3.2 Consider

A(z) =







−z3 + 4 z2 + z + 1 z − 1 2 z2 + 2 z − 2 −z2

−z2 + 7 z + 4 z + 2 z2 + 6 z + 6 −2 z






,

the augmented matrix used in the Matrix Gcd problem of Example 2.5. The
Popov MPB and [0,−3, 0, 0]-Popov MBP for the nullspace of A(z) have the
same pivot set K = (2, 4):

U0(z)∗,J =
















−1 −1

z2 − 7 −2 z − 7

−z + 3 3

−1 z
















, U(z)∗,J =
















− 2
21 z +

1
7 −z2 − 2 z

1 0

2
21 z −

3
7 z2 − z

2
21 z

2 − 1
3 z −

4
21 z3 − 9 z − 7
















.

One may use the first column ofU(z)∗,J with pivot 1 to write the second column
of A(z) as a polynomial combination of the other columns. This combination
is not seen directly from U0(z)∗,J . 2
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As described above, the minimal bases provide a normalization for the columns J
of the multipliers U(z). If U(z)∗,J is a MPB with pivot set K, then the re-
maining columns Jc may be normalized by reducing their row degrees with
respect to U(z)K,J . This leads to the notion of (~a,~b)-minimal multipliers:

Theorem 3.3 Let A(z) ∈ K[z]m×n of rank r, and ~a, ~b be multi–indices of
length m and n, respectively. Let U(z) be a unimodular matrix such that A(z)·
U(z) = T(z) with T(z) the unique ~a–Popov normal form.

(i) A unimodular multiplier U(z) is unique up to multiplication on the right
by matrices of the form

W(z) =






W(z)J,J W(z)J,Jc

0 Ir




 , W(z)J,J ∈ K[z](n−r)×(n−r) unimodular.

(ii) There exists a unique multiplier U(z) verifying

[U(z)K,J ]
−1 ·U(z)K,Jc = O(z−1)z→∞, (13)

with U(z)∗,J being a ~b-Popov MPB for the nullspace of A(z).
(iii) Under all multipliers mentioned in (i), the sum of the degrees of the

~b–column degrees of the unique multiplier U(z) of (ii) is minimal.

We will refer to the unique multiplierU(z) satisfying (ii) as the (~a,~b)–minimal

multiplier or, when (~a,~b) = (0, 0), as the minimal multiplier.

Before proving Theorem 3.3 we give two lemmas, one which shows a useful
property of column reduced matrices ([18, Theorem 6.3-13, p. 387]) and a
second lemma which describes the division/remainder properties of polynomial
matrices. These results will be used for the proof of the Theorem.

Lemma 3.4 (Predictable-Degree Property) Let B(z) be a full column

rank and ~b-column reduced matrix polynomial with ~β∗ = cdeg z−
~b · B(z). If

P(z) and C(z) are two matrix polynomials such that B(z) ·P(z) = C(z) with
~δ∗ = cdeg z−

~b ·C(z) then degP(z)i,j ≤ ~δ∗j − ~β∗
i . 2

Lemma 3.5 (Matrix polynomials division) Let B(z) be a nonsingularm×

m matrix polynomial with ~β∗ = cdeg z−
~b · B(z). For any m × n matrix poly-

nomial A(z) with ~δ∗ = cdeg z−
~b ·A(z) there exist unique matrix polynomials

14



Q(z) ∈ K[z]m×n and R(z) ∈ K[z]m×n such that

A(z) = B(z)Q(z) +R(z),

B(z)−1 ·R(z) = O(z−1)z→∞.

(14)

If B(z) is ~b-column reduced then degQ(z)i,j ≤ ~δ∗j − ~β∗
i , for 1 ≤ i ≤ m and

1 ≤ j ≤ n.

Proof: The first statement is Theorem 6.3-15 in [18, p. 387]. For the second
statement, the matrix quotient Q(z) is the polynomial part of B(z)−1A(z) =
adj (B(z))A(z)/(detB(z)) where adj (B(z)) denotes the adjoint of B(z). Since
B(z)adj (B(z)) = diag(detB(z), . . . , detB(z)), by Lemma 3.4 we get that

deg adj (B(z))i,j ≤ d−~bj − ~β∗
i with d = deg detB(z). It follows that

deg (adj (B(z))A(z))i,j ≤ (d−~bl − ~β∗
i ) + (~bl + ~δ∗j ) = d+ ~δ∗j − ~β∗

i

where the index l is from the matrix product. The quotient by detB(z) then

leads to degQ(z)i,j ≤ ~δ∗j − ~β∗
i . 2

Proof of Theorem 3.3: For statement (i), if U(1)(z) and U(2)(z) are two multi-
pliers for the ~a-Popov form, thenU(1)(z)∗,J andU(2)(z)∗,J are two bases for the
nullspace ofA(z) and thus for the same K[z]-module. Consequently there exists
a unimodular multiplier W(z)J,J which makes these matrices column equiv-
alent. By the uniqueness of T(z)∗,Jc , the columns of U(2)(z)∗,Jc −U(1)(z)∗,Jc
are in the nullspace of A(z) and there exists a matrix W(z)J,Jc such that
(U(2)(z)∗,Jc −U(1)(z)∗,Jc) = U(1)(z)∗,JW(z)J,Jc or U(2)(z)∗,Jc = U(1)(z)∗,Jc +
U(1)(z)∗,JW(z)J,Jc . This gives the general form of the multipliers as announced
in (i).

For (ii), assume now thatU(z)∗,J is the unique~b-Popov MPB for the nullspace,
say with pivot set K, so that by definition U(z)K,J is invertible. Given any
multiplier U(0)(z) we may thus divide U(0)(z)K,Jc on the left by U(z)K,J :

U(0)(z)K,Jc = U(z)K,JW(z)J,Jc +U(z)K,Jc

and (13) is identity (14) of Lemma 3.5. Since in addition the matrix remainder
U(z)K,Jc is the unique matrix such that (13) is satisfied, using the generic form
of a multiplier given at (i) and taking

U(z)∗,Jc = U(0)(z)∗,Jc −U(z)∗,JW(z)J,Jc (15)
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shows that the (~a,~b)-minimal multiplier U(z) is well-defined and unique. This
proves (ii).

It remains to conclude the proof of (iii). Let U(0)(z) be a second unimodular
multiplier. From the general form of the multipliers, the sum of the degrees in
the columns J and in the column Jc can be minimized independently. Since
the degrees in the columns J are minimized by choosing a MPB, we only have
to look at what happens in the columns Jc. Thus we need to show that the

degree sum of z−
~b ·U(0)(z)∗,Jc is at least the degree sum of z−

~b ·U(z)∗,Jc . Let
~β∗, ~δ∗, ~γ∗ be the column degrees of z−

~b ·U(z)∗,J , of z
−~bK ·U(0)(z)K,Jc and of

z−
~bKc ·U(0)(z)Kc,Jc , respectively. The degree sum for the columns Jc of U

(0)(z)

is σmin = Σj max {~δ∗j , ~γ
∗
j }. By Lemma 3.5, we have a matrix quotientW(z)J,Jc

such that (15) is satisfied and where degW(z)i,j ≤ ~δ∗j − ~β∗
i . Therefore, by (15),

after the division we have, for 1 ≤ i ≤ m and j ∈ Jc:

deg (z−
~b ·U(z))i,j ≤ max {max {~δ∗j , ~γ

∗
j }, ~δ

∗
j} = max {~δ∗j , ~γ

∗
j }.

This shows that the degree sum for the columns of Jc is not increased by the
normalizing division and gives (iii). 2

Example 3.6 (Coprime Rational Matrix Functions) Suppose we are given
a left coprime proper matrix rational function R(z) = D(z)−1 ·N(z) with D(z)
square of size p × p in Popov form and N(z) of size p × q. Then it is well
known that there exists a right coprime matrix rational function – i.e. of the
form Q(z) ·P(z)−1 – for R(z). This is done as follows. Let

A(z) = [D(z),N(z)]

a matrix of size m × n with m = p and n = p + q. Let U(z) be the unique

minimal multiplier (with ~a = ~b = 0) such that

A(z) ·U(z) = [0, Im], (16)

the Popov form for A(z). In this case the pivots are given by I = (1, . . . ,m)
and, since R(z) is proper (degree constraints), by K = (n − m + 1, . . . ,m).
Indentity (16) leads to:

D(z) ·U(z)Kc,J +N(z) ·U(z)K,J = 0

D(z) ·U(z)Kc,Jc +N(z) ·U(z)K,Jc = Im,

where J = (1, ..., n−m). In this case the matrix fraction −U(z)Kc,J ·U(z)−1K,J

gives the right coprime proper rational function with U(z)K,J in Popov form.
2

16



Remark 3.7 With ~β the ~b-Kronecker indices of A(z), that is, the ~b-degree of

the MPB U(z)∗,J and ~β∗ = cdeg z−
~b ·U(z)∗,J , using the index convention of

Definition 2.3, we have the following degree bounds for a minimal multiplier:

degU(z)k,j ≤







min(~βk,~bk + ~β∗
j ), k ∈ K, j ∈ J,

~bk + ~β∗
j , k ∈ Kc, j ∈ J,

~βk − 1, k ∈ K, j ∈ Jc

. (17)

The two first bounds are from the fact that U(z)K,J is in ~b-Popov form and

from the definition of ~β∗. The last one is deduced from the reduction iden-
tity (13) and has been given in [35, Theorem 2] in the case ~a = ~b = ~0. 2

Example 3.8 Consider again the matrix A(z) of Example 3.2. In this case
the minimal multiplier for the Popov form satisfies

A(z) ·U0(z) = A(z) ·
















−1 −1 0 0

z2 − 7 −2 z − 7 −z − 2 z + 3

−z + 3 3 1 −1

−1 z 1 −1
















=







0 0 z −1

0 0 2 z






= T(z).

On the other hand the (~0,~b)-minimal multiplier for ~b = [0,−3, 0, 0] is given by

U(z) =
















− 2
21z +

1
7 −z2 − 2 z 1

7z +
2
7 − 1

21z −
3
7

1 0 0 0

2
21 z −

3
7 z2 − z −17z +

1
7

1
21z +

2
7

2
21z

2 − 1
3 −

4
21 z3 − 9 z − 7 −17z

2 + 9
7

1
21z

2 + 1
3z −

23
21
















.

The Kronecker and the ~b-Kronecker indices are (2, 1) and (0, 3) respectively,
with pivot set K = (2, 4) in both cases. They impose strict degree bounds for
the entries of U(z)K,∗, here for the non-pivot entries in the second and the
last rows. 2
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4 Computing Popov Normal Forms

As mentioned in the introduction, the shifted Popov form of A(z) together
with its minimal multiplier is going to be computed by determining a minimal
polynomial basis for the kernel of [A(z),−Im] – see identity (1) – considered as
a module over K[z]. We first show in subsection 4.1 that the entire normal form
problem may actually be stated as a special MPB computation. Subsection 4.2
will then be concerned by the algorithm itself using known techniques for
computing MPB. Most of the results here are given in terms of unknown
degree bounds for the entries of U(z). These bounds will be estimated in
terms of the input parameters by Theorem 5.1 in the next section and leads
to simplified interpretations of what follows when we will study the complexity
in Section 6.

4.1 Computing Popov Forms as Minimal Polynomial Bases

The approach used for computing Popov Forms as Minimal Polynomial Bases
has already been roughly described in [6, Section 5] for the case of full column
rank matrices A(z). In this subsection we will give more details and extend
our considerations to the case of general matrices A(z). Consider the stacked
matrix polynomial

S(z) =






U(z)

T(z)




 ∈ K(m+n)×n. (18)

Notice that the columns of S(z) are elements of the kernel of [A(z),−Im] if
and only if A(z)U(z) = T(z). In addition, they form a basis of the kernel if
and only if U(z) is unimodular. Conversely, it is not the case that any MPB
of the kernel of [A(z),−Im] will give the U(z) and T(z) that is desired [7]. By
generalizing the work of [7] with the introduction of shifts and the full rank
case in [6, Theorem 5.2], we show that we can recover the shifted normal form
by imposing a certain degree structure on the MPB that is computed. This
structure is itself one of a shifted normal form.

Theorem 4.1 (Popov forms via MPB) Let A(z) be a matrix polynomial

and ~a,~b multi-indices. We denote by T(z) the ~a–Popov form of A(z) with
pivot set I and ~a-degree ~α and by ~α∗ the column degree of z−~a · T(z)∗,Jc. Let

U(z) be the associated (~a,~b)–minimal multiplier with pivot set K and ~b-degree
~β. Assume that ~τ ∗ is some upper bound for the column degree of z−

~b ·U(z)∗,Jc.

Let N0 = max[~τ ∗ − ~α∗]. Then for any integer N ≥ N0, the matrix polynomial
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S(z) of (18) with T(z) and U(z) as above is the unique MPB of the kernel

of [A(z),−Im] in ~n(N)-Popov form where ~n(N) = (~b+N · ~e,~a). As a shifted

MPB, its pivot set is (K, I) and is ~n(N)-degree is ~µ = (~β, ~α).

Proof: We may first show that S(z) obtained in (18) using the shifted Popov
form of A(z) and its multiplier is indeed a ~n(N)-Popov MPB for any N ≥ N0,
with the pivot sets and the shifted degrees as indicated above. By construction
S(z) is a basis for the kernel, it is thus sufficient to prove the shifted Popov
form properties of Definition 2.3. Since T(z)∗,J = 0 and since T(z)∗,Jc and
U(z)∗,J are in shifted Popov form and thus both satisfy (7), we have

z−~µ · S(z)(K,I),∗ =










z−
~β ·U(z)K,J z−

~β ·U(z)K,Jc

0 z−~α ·T(z)I,Jc










,

with z−
~β ·U(z)K,J = In−r +O(z−1) and z−~α ·T(z)I,Jc = Ir +O(z−1). By the

division (13) we also have

z−
~β ·U(z)K,Jc = z−

~β ·U(z)K,J · [[U(z)K,J ]
−1 ·U(z)K,Jc ] = O(z−1).

Thus z−~µ · S(z)(K,I),∗ = In + O(z−1) as required for the row degrees of S(z).
For the column degrees we have

z−~n(N)·S(z)·z−~µ+~n(N)(K,I) =










z−
~b ·U(z)∗,J · z

−~β+~bK z−
~b ·U(z)∗,Jc · z

−~α∗−N ·~e

0 z−~a ·T(z)∗,Jc · z
−~α∗










,

with

z−
~b ·U(z)∗,Jc · z

−~α∗−N ·~e = [z−
~b ·U(z)∗,Jc · z

−~τ∗ ] · z~τ
∗−~α∗−N ·~e = O(1)

by the definition of τ ∗ and the assumption that N ≥ N0. Since, in addition,
U(z)∗,J and T (z)∗,Jc both satisfy the column degree property (6), S(z) itself
satisfies the property and is therefore in shifted Popov form as required for
the first part of the proof. Since two ~n(N)-Popov MPB – as bases of the
K[z]-module ker[A(z),−Im] – must be equivalent, the uniqueness follows from
the uniqueness of shifted Popov forms in Theorem 2.7. 2

The theorem states that if the shift is large enough (when compared to the
column degrees of U(z)), then preference is given to the last m rows of S(z).
These rows are forced to be in shifted Popov form and so lead to the unique
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T(z) in the MPB. As noticed previously, in order to exploit the statement
and in particular, in order to obtain an explicit value for N0 (which is needed
for the algorithm), we rely on an upper bound ~τ ∗ for the column degree of

z−
~b ·U(z)∗,Jc . In the case of square nonsingular A(z) (r = m = n and Kc =

Jc = (1, ..., n)) or more generally full column rank matrices A(z) (r = n,
Kc = (1, ..., n) = Jc = (1, ..., n)), such bounds have been obtained in [6,
Theorem 4.1]. The case of general matrices A(z) is considerably more involved
and will be discussed in Section 5.

4.2 Computing Minimal Polynomial Bases as Matrix Rational Approximants

Several algorithms exist for computing Minimal Polynomial Bases (in normal
form) of matrix polynomial kernels. Most of them are based on matrix pencil
normal forms – see for example [7,8] and the references therein. Another ap-
proach could be to compute a nullspace basis, for example as in [30, Chap 5],
and from there compute a minimal basis by column reduction and normaliza-
tion. Here, in order to take shifts into account and in order to do fraction-free
computation, we will follow the idea of [27, Chap. 4] as applied by [6] in the
full column rank case. We will use Hermite-Padé approximation by adapting
the methods Fphps and Sphps of [2] (which have been developed for fixed
cost arithmetic) and their fraction-free generalization Fffg [5].

A key point of the latter algorithms is the notion of order (see e.g. [3] or [5,
Lemma 2.8]): given some m×s matrix polynomial F(z) and a multi-index ~σ of
length m, we say that a vector Q(z) ∈ K[z]s has order ~σ if z−~σ ·F(z) ·Q(z) =
O(1)z→0. If we compare this to (1) and keeping the notation of (18), we see
that we can take F(z) = [A(z),−Im] and consider that the columns of S(z)
have order infinity. Based on this remark, Theorem 4.2 below will state that
the columns of S(z) can be computed as order vectors for ~σ large enough with
respect to degree bounds on U(z) and T(z). In what follows we will always
take F(z) = [A(z),−Im] though many of the properties mentioned are also
true more generally for a matrix of formal power series at zero.

From Theorem 4.2 we obtain the required order σ for an approximation prob-
lem. We then give the main algorithm for computation up to such an order
(and hence for computing our minimal multiplier and normal form). The set
of all polynomials of order ~σ forms a K[z]-submodule of the module K[z]s.
This module contains all the elements of the kernel of F(z). The basic idea of
our method is to construct successively for increasing order vectors some s×s
matrix polynomialM(z) with columns forming a basis for the module of order
~σ. From a certain order on, n of the columns of M(z) will also form a basis of
the kernel of F(z). We will check these additional properties by counting zero
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columns in the residual polynomial

R(z) = z−~σ · F(z) ·M(z). (19)

According to Theorem 4.1, we require not only a basis of the kernel of F(z)
but a ~n(N)-Popov MPB. Therefore we also need to impose degree contraints
on the matrix M(z). These constraints will actually be ensured by algorithm
Fffg where all intermediate bases areMahler systems of type ~n, that is, order
bases which are in ~n-Popov form for any input multi-index ~n [5, Theorem 7.2
and Theorem 7.3]. Before stating explicitly the algorithm, let us thus show
that order bases lead to shifted Popov forms and multipliers for sufficiently
large order ~σ:

Theorem 4.2 (MPB via FFFG) Let A(z) be an m×n matrix polynomial.

As in Theorem 4.1 set N0 = max[~τ ∗ − ~α∗], ~n(N) = (~b+N · ~e,~a) with ~a,~b the

input shifts, and ~α, ~α∗, ~β, β∗, ~τ ∗ the corresponding degrees in T(z) and U(z).
We assume in addition that the multi-index ~γ∗ is an upper bound for the row

degree of A(z) · z
~b, that is, z−~γ∗ ·A(z) · z

~b = O(1).

If F(z) = [A(z),−Im] and M(z) is a Mahler system of type ~n(N) with order
vector ~σ, ~n(N)-degree ~µ and residual polynomial R(z) as in (19), then for any
integer

N ≥ max{N0,max[~a− ~γ∗]}, (20)

M(z) and R(z) satisfy:

(a) When ~σ > ~σ0 where

~σ0 = ~γ∗ +
(

1 + max{N +max[~α∗],max[~β∗]}
)

~e (21)

then there exists a list L = (1, ..., s) of n elements with R(z)∗,L = 0.
(b) If there exists a list L ⊂ (1, ..., s) of n elements with R(z)∗,L = 0, then the
last m rows of M(z)∗,L give the ~a-Popov form of A(z), the first n rows of

M(z)∗,L give the corresponding (~a,~b)-minimal multiplier, and ~µL = (~β, ~α).

Proof: Let us start by proving (b). Suppose that R(z)∗,L = 0 with #L = n.
Then, by (19), the columns of M(z)∗,L are elements of the kernel of F(z). A
basis of the kernel is given by the matrix S(z) build up with the shifted Popov
form and the minimal multiplier of A(z) as described in (18). Hence there
exists a unique n× n matrix polynomial Q(z) with

M(z)∗,L = S(z) ·Q(z).

On the other hand, the columns of S(z) are of order ~σ and thus may be
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uniquely represented as polynomial linear combinations of the columns of
M(z). Thus there exists a matrix polynomial P(z) with

S(z) =M(z) ·P(z). (22)

Combining these two identities gives M(z)∗,L = M(z) · P(z) · Q(z). Since
the columns of M(z) are linearly independent, we find that P(z)Lc,∗ = 0
and P(z)L,∗ = Q(z)−1 is unimodular. Hence S(z) and M(z)∗,L are column
equivalent matrices. They are both in ~n(N)-Popov form: S(z) as seen in the
proof of Theorem 4.1 since N ≥ N0 and M(z)∗,L as a subset of columns
of the Mahler system M(z) which is in ~n(N)-Popov form. It follows that
S(z) =M(z)∗,L by uniqueness of the normal form, showing part (b).

A proof of (a) is slightly more involved. Let ~δ∗ be defined by

~δ∗ = cdeg (z−~n(N) · S(z)) = (~β∗ −N~e, ~α∗).

Using the Predictable-Degree Property stated in Lemma 3.4 we may deduce
for the unique P(z) satisfying (22) that

degP(z)i,j ≤ ~δ∗j − [~µ− ~n(N)]i, 1 ≤ i ≤ m+ n, 1 ≤ j ≤ n. (23)

When the order ~σ is increased, the degrees in M(z) also are increased. We
show that this forces some rows of P(z) and consequently some columns of
the residual to be null. We proceed by showing that otherwise, inequality (23)
would be impossible. From the definition (19) of the residual

R(z) = z−~σ · F(z) ·M(z)

we can write:

z~σ−~γ∗ ·R(z) · z~n(N)−~µ = z−~γ∗ · F(z) ·M(z) · z~n(N)−~µ

= z−~γ∗ · [A(z),−Im] ·M(z) · z~n(N)−~µ

= [z−~γ∗ ·A(z) · z
~b+N ·~e,−z−~γ∗+~a] · [z−~n(N) ·M(z) · z~n(N)−~µ].

Since N ≥ max[~a − ~γ∗] and since ~γ∗ is defined by z−~γ∗ ·A(z) · z
~b = O(1) we

will have that [z−~γ∗ · A(z) · z
~b+N ·~e,−z−~γ∗+~a] = O(zN). Since in addition ~µ,

the shifted degree of M(z), gives [z−~n(N) ·M(z) · z~n(N)−~µ] = O(1), the residual
satisfies:

z~σ−~γ∗−N~e ·R(z) · z~n(N)−~µ = O(z0)z→∞. (24)

From [3, Lemma 2.8] it is known that, with F(0), also R(0) and thus R(z)
all have full row rank m for all order ~σ. Therefore we may find a non-
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singular square submatrix R(z)∗,Lc and more precisely some bijective map
ρ : {1, ...,m} → Lc such that

R(z)j,ρ(j) 6= 0, j = 1, 2, ...,m.

Together with (24) this leads to:

[~σ − ~γ∗ −N~e]j + [~n(N)− ~µ]ρ(j) ≤ 0, j = 1, 2, ...,m.

Replacing ~σ by its lower bound

~σ0 = ~γ∗ +
(

1 + max{N +max[~α∗],max[~β∗]}
)

~e

= ~γ∗ +
(

1 +N +max[~δ∗]
)

~e

we get
1 + max[~δ∗] + [~n(N)− ~µ]i ≤ 0, i ∈ Lc

or

~δ∗j − [~µ− ~n(N)]i ≤ −1, i ∈ Lc, 1 ≤ j ≤ n. (25)

Comparing (25) and (23), we may conclude that

P(z)Lc,∗ = 0, S(z) =M(z)∗,L ·P(z)L,∗. (26)

Multiplying this last identity on the left by [A(z),−Im] leads to

0 = z−~σ · [A(z),−Im] · S(z) = R(z)∗,L ·P(z)L,∗.

On the other hand, S(z) is a polynomial basis and thus of full column rank.
From (26) it follows that P(z)L,∗ is invertible implying that the matrix poly-
nomial R(z)∗,L is identically zero, as claimed by (a). 2

Algorithm Spf given on page 24 computes the shifted normal form and the
associated minimal multiplier. As described previously, they are obtained in
a stack matrix S(z) as a submatrix of an order basis M(z) once n columns
of the residual matrix have been zeroed (see the stopping criterion #L = n).
Concerning the invariants and the main iteration, the algorithm is essentially
the algorithm Fffg of [5, Section 7] for fraction-free order bases computation.
A slight difference is in the computation of the residual polynomials which is
made more explicit here. For a proof of correctness of Fffg the reader is
refered to [5, Theorem 7.2]. Some further properties, in particular the link to
an underlying system of linear equations has been investigated in [5, Theo-
rem 7.3]. The complexity study will be given in Section 6.
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Algorithm SPF – Shifted Popov Form via FFFG.

Input: A matrix polynomial A(z) ∈ D[z]m×n of degree d, s = m+ n,

a multi-index ~a of length m (default ~a = 0),

a multi-index ~b of length n (default ~b = −cdeg (z−~a ·A(z)).

Invariants: For (increasing) order vectors ~σ,

Mahler system M(z) of size s× s in ~n–Popov form with shifted degree ~µ,

its columns form an order basis for [A(z),−Im] and order ~σ,

g is a corresponding constant multiplier,

R(z) is the corresponding residual polynomial,

L is the set of indices of zero columns of the residual polynomial

Initialization: M(z)← Is, g ← 1, R(z)← [A(z),−Im], L← { }, ~σ ← ~0

N ← d ·min{m,n}+max[~a]−min[~b], ~n← (~b+N · ~e,~a),

~γ∗ ← rdeg (A(z) · z
~b), ~µ← ~0

Iterative step:

Find j such that ~γ∗j − ~σj = max[~γ∗ − ~σ]

Define for ` = 1, ..., s: r` ← R(0)j,`

Define set Λ = {` ∈ {1, .., s} : r` 6= 0} ( 6= { })

Define pivot π = min{` ∈ Λ : ~n` − ~µ` = maxk∈Λ{~nk − ~µk}}

Define leading coefficients p` ← coefficient(M(z)`,π, z
~µ`−1), ` 6= π

Check stopping criterion:

add all indices ` 6∈ L ∪ Λ with R∗,`(z) = 0 to L

STOP ITERATION if #L = n.

Increase order for ` = 1, ..,m, ` 6= π:

M(z)∗,` ← [M(z)∗,` · rπ −M(z)∗,π · r`]/g

R(z)∗,` ← [R(z)∗,` · rπ −R(z)∗,π · r`]/g

Increase order for ` = π and adjust degree constraints:

M(z)∗,π ← [z ·M(z)∗,π · rπ −
∑

`6=π M(z)∗,` · p`]/g

R(z)∗,π ← [z ·R(z)∗,π · rπ −
∑

`6=π R(z)∗,` · p`]/g

Adjust residual in row j:

R(z)j,∗ ← [R(z)j,∗/z]

Update constant multiplier: g ← rπ

Update order vector: ~σ ← ~σ + ~ej

Update shifted degree vector: ~µ← ~µ+ ~eπ

Final step and Output: If L is the increasing list (`1, ..., `n):

Rank r of A(z): unique index with `n−r ≤ n < `n−r+1 (with the convention `0 = 0)

g ·T(z) = M(z)(n+1,...,n+m),L being the ~a–Popov form of A(z)

g ·U(z) = M(z)(1,...,n),L being the corresponding (~a,~b)–minimal multiplier

Pivot sets: K ← (`1, ..., `n−r), I ← (`n−r+1 − n, ..., `n − n)

Shifted degrees: (~β, ~α)← ~µL.
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For D an integral domain, Algorithm Spf takes as input an m×n matrix A(z)
with entries of degrees less than d in D[z]. Since Fffg is fraction-free, all the
divisions are exact in D. The claim of Theorem 4.2 relies on two quantities: the
input shift must satisfy N ≥ max{N0,max[~a− ~γ∗]} and the order ~σ must be
greater than ~σ0. For the choice of the input shift we use Corollary 5.9 of Sec-
tion 5. The corresponding worst-case bound (see the initialization of N) works

for any A(z), ~a and ~b. Finer bounds could be derived from the forthcoming
Theorem 5.1 if additional properties are available on the matrix and the shifts.
Default shift values may be proposed (see the input data): for example, the

choices ~a = 0 and ~b = −cdeg (z−~a ·A(z)) lead to the simplification ~γ∗ = ~a = 0.
Concerning the order, an a priori bound for ~σ0 is actually not needed for the
algorithm and will be used only for the complexity estimates. The stopping
criterion ensures that the algorithm will automatically stop when a sufficient
order is reached. At this point, the columns (l1, . . . , ln) are null. In S(z), the
pivot indices corresponding to K are lower than n and those corresponding
to I are greater than n. The same is thus true in M(z) which is itself, by
construction (Algorithm Fffg), in shifted Popov form. Identity (7) implies
that the pivot entries are diagonal in M(z), and thus K and I can also be
found from the column indices. The algorithm therefore finds the rank of A(z)
(#I) and I from the li’s greater than n; it finds the set K from the li’s smaller
than n (see the final step and the output data).

Notice that as is typical for fraction-free methods, the algorithm only outputs g
times the “correct” answers T(z) and U(z) for a scalar multiplier g ∈ D. Here,
correct means with T(z) having a normalized leading matrix following (7). In-
deed, generically the coefficients of the normal form are not elements of the
initial integral domain but only of its quotient field and g is a multiple of
the denominators. In [5, Definition 4.1], the authors give a characterization of
the scalar multiplier as a multigradient, that is, as a determinant of a striped
Krylov matrix (here, a striped Sylvester matrix). This indicates that in gen-
eral the factor g cannot made be smaller (although of course for particular
examples a better choice of g might be suitable).

Example 4.3 If we keep the matrix A(z) ∈ ZZ [z]m×n of Examples 3.2 and 3.8,
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Algorithm Spf with shifts ~a = [0, 0] and ~b = [0,−3, 0, 0] constructs

S(z) = g·






U(z)

T(z)




 =

























−2 z + 3 −21z2 − 42 z 3 z + 6 −z − 9

21 0 0 0

2 z − 9 21 z2 − 21 z −3 z + 3 z + 6

2z2 − 7z − 4 21 z3 − 189z − 147 −3 z2 + 27 z2 + 7 z − 23

0 0 21 z −21

0 0 42 21 z

























.

Notice that S(z) is not in (~b,~a)-Popov form since the leading degrees in the two
last columns are not in the last two rows – i.e. the part corresponding to T(z).

Here it would have been sufficient to consider N ≥ 1: with ~n(1) = (~b + ~e,~a),
S(z) is in ~n(1)-Popov form with pivot indices L = (l1, l2, l3, l4) = (2, 4, 5, 6).
From there it is seen that K = (2, 4) and I = (5 − n, 6 − n) = (1, 2). If
we compare with Example 3.8, we see that Spf has computed the multiple
g · T(z) = 21T(z) of the normal form. However, since this factor appears
naturally in the denominators of U(z) in the normalized case, we may consider
that no spurious factor has been introduced. 2

The fraction–free computation of shifted normal forms via Fffg has been
implemented using the computer algebra system Maple and can be obtained
from the authors.

5 Degree Bounds for Minimal Multipliers

The algorithm described in the previous section requires that we know in ad-
vance degree bounds for the (~a,~b)–minimal unimodular multiplierU(z) needed
for transforming a given matrix polynomialA(z) into ~a–Popov form T(z). The
aim of this section is to give such degree bounds, generalizing those already
determined in [6] for the case of full-column rank matrices. Theorem 5.1 gives
estimates in terms of the degrees in A(z), of the shifts and of the invariants ~α

and ~β of the problem. These invariants are generally unknown and the esti-
mates are simply worst-case bounds. Nevertheless Example 5.6 will show that
there are cases where the bounds are tight.

We do our degree bounds in two steps. In part (a) of Theorem 5.1, we first

formulate our bounds in terms of the input parameters A(z),~a,~b, and of the
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invariants to our problem, these being T(z)∗,Jc , ~α, ~β (~α∗, ~β∗) along with the
pivot sets I,K. Note that the degree bounds for the MPB part U(z)∗,J and
for U(z)K,Jc follow immediately from (17) in Remark 3.7 with only degree
bounds for U(z)Kc,Jc remaining unknown at this stage. The aim of the second
step, in parts (c), (d) and (e), is to estimate the invariants in terms of the
input parameters only.

Part (b) is a precise characterization of the pivot sets I and K. It generalizes
the following well known relations for full column rank matrices. In the case of
square matrix polynomials, if A(z) is column reduced and if T(z) is its Popov
normal form with column degree vector ~α∗ then we have the invariant

|~α∗| = deg detT(z) = deg detA(z). (27)

It is also not difficult to see how one obtains degree bounds for the multiplier
in this case. Indeed, one writes

A(z) = T(z) ·V(z)

where V(z) = U(z)−1 and uses the Predictable Degree Property to obtain
bounds for V(z) in terms of the column degrees of A(z) and T(z). Bounds
for U(z) are then determined by making use of Cramer’s rule for the adjoint
of V(z).

In the rectangular case a relation corresponding to (27) and degree bounds
for the multiplier requires some classical tools from linear system theory. For
a matrix polynomial A(z) of rank r, we define the Minor degree – denoted
by Minor-degA(z) – as the maximum of the degrees of the determinants of
r×r submatrices of A(z) (see [18, Eq. (34), p. 454]). For a matrix polynomial,
this degree is the polar content at infinity and is thus equal to the sum of the
polar contents at all poles which is the MacMillan degree [19] – denoted by
MM-degA(z).

If A(z) has full column rank then it is well-known that

Minor-deg (z−~a ·A(z)) ≤ |cdeg (z−~a ·A(z))|,

with equality if and only if A(z) is ~a–column reduced [18, § 6.3.2, p. 384].
In the latter case, denoting by I = (i1, ..., ir) the pivot set of the leading
coefficient matrix, and ~α∗ = cdeg (z−~aA(z)), we also have that

Minor-deg (z−~aA(z))=deg det (z−~aIA(z)I,∗)

= |~α∗| > deg det (z−~aI′A(z)I′,∗) (28)
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for any list of the form I ′ = (i′1, .., i
′
`, i

′
`+1, .., i

′
r) for some `, where i′` > i` and

i′k ≥ ik.

Theorem 5.1 (Degree bounds for Multiplier) Let A(z) · U(z) = T(z)
with T(z)∗,J = 0 and T(z)∗,Jc ~a–column reduced with pivot set I and ~a-degree

~α. Assume that U(z) is unimodular with U(z)∗,J ~b–column reduced with pivot

set K, ~b-degree ~β, and satisfying [U(z)K,J ]
−1·U(z)K,Jc = O(z−1)z→∞. Set ~γ

∗ =

rdeg (A(z)·z
~b), ~α∗ = cdeg (z−~aT(z)∗,Jc) = ~α−~aI , ~β∗ = cdeg (z−

~bU(z)∗,J) =
~β−~bK and define ∆

~a,~b = |~γ∗
I |− |~bKc

|− |~α|− |~β|. Then the following are true.

(a) (Degree bounds for multiplier) For j ∈ Jc, k ∈ Kc we have the de-
gree bounds

deg z−
~bk ·U(z)k,j ≤ max(~α∗

j +max[~aI − ~γ∗
I ] + ∆~a,~b, max[~β∗]− 1).(29)

(b) (Pivot sets and minor degree) The set Kc consists of the smallest
column indices such that

Minor-deg (z−~γ∗ ·A(z) · z
~b) = Minor-deg (z−~γ∗ ·A(z)∗,Kc

· z
~bKc ).

The set I consists of the largest row indices such that

Minor-deg (z−~a ·A(z) · z
~b) = deg det (z−~aI ·A(z)I,Kc

· z
~bKc ),

with deg det (A(z)I,Kc
) = |~α|+ |~β|.

(c) (Bounds for ∆~a,~b) We have

0 ≤ −Minor-deg (z−~γ∗ ·A(z)∗,Kc
· z

~bKc ) ≤ ∆~a,~b ≤ |~γ∗
I | − |~bKc

|,

and ∆~a,~b = 0 if and only if A(z)∗,Kc
is ~γ∗–column reduced, with pivot set I

and ~bKc
= cdeg (z−~γ∗ ·A(z)∗,Kc

).
(d) (Bounds for ~α) T(z)I,Jc is a left maximal factor of A(z)I,∗, and thus
|~α| equals the degree of the determinant of a left maximal factor of A(z)I,∗.
Furthermore we also have,
~α∗ ≤ max[~γ∗

I − ~aI ] · ~e− perm [~bKc
] and by definition, ~α ≥ ~0.

(e) (Bounds for the ~b-Kronecker indices ~β) We have |~β| ≤ |~γ∗
I |−|~bKc

|−

|~α| and by definition, ~β ≥ ~0.

We remark that the statement of the theorem simplifies for matrices having
full row rank (where I = (1, ...,m)), and also for matrices having full column
rank. In the latter case, Kc = Jc = (1, ..., n), J = K = ∅ and all terms

involving ~β have to be dropped (c.f. [6]). The quantity ∆~a,~b can be thought of
as a measure of the distance that our input matrix is from being ~γ∗–column
reduced (see the discussion in [6, Section 4]).
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We now give several examples to illustrate the theorem. Its proof will be given
subsequently.

Example 5.2 Let us use Theorem 5.1 to study the Kronecker indices of

A(z) =







z5 − 2 z2 − 3 z2 + 2 z − 5 z3 − z − 2 z2 + z − 4

z6 + z3 − z2 + z − 1 2 z2 + z − 1 z4 − z2 + z − 1 z2 + z − 1






.

With the shift ~a = [0,−3] one computes the Hermite form of A(z) with a deter-
minantal degree satisfying |~α| = 4. The degrees of the entries of the associated

minimal multipliers with respective shifts ~b = [0, 0, 0, 0] and ~b′ = [−5, 0,−3, 0]
are:

degU(z) =
















0 −∞ −∞ −∞

0 2 2 1

2 0 0 −∞

0 2 1 1
















, degU′(z) =
















0 −∞ −∞ −∞

4 2 2 1

−∞ 0 −∞ −∞

4 2 2 1
















.

For ~b = [0, 0, 0, 0], the pivot set K is (3, 4) with ~β = [2, 2]. One can see that

the choice ~b′ = [−5, 0,−3, 0] forces another pivot set K = (1, 3) and leads to
~β = [0, 0]. In both cases one can check statement (b) of Theorem 5.1:







~b = [0, 0, 0, 0], Kc = (1, 2), deg detA(z)∗,(1,2) = 4 + 4 = 8,

~b′ = [−5, 0,−3, 0], Kc = (2, 4), deg detA(z)∗,(2,4) = 4 + 0 = 4.

This makes explicit the relation between the Kronecker indices and the selection
of a particular submatrix of A(z). When ~b = [0, 0, 0, 0], the bound (e) on the

Kronecker indices is |~β| ≤ (5 + 6) − (0 + 0) − 4 = 7 which is pessimistic

compared to the actual value |~β| = 4. The value ∆~a,~b = 7 − 4 = 3 shows that

the prediction is limited by the structure of A(z)∗,(1,2). When ~b = [−5, 0,−3, 0]

the estimation |~β| ≤ (2 + 2) − (0 + 0)− 4 = 0 gives exactly |~β| = 0: the good
predictions takes advantage of the fact that A(z)∗,(2,4) is column reduced. 2

Example 5.3 As in Example 3.6 assume that we have a left coprime proper
matrix rational function R(z) = D(z)−1 ·N(z) with D(z) square of size p×p in
Popov form and N(z) of size p× q. Let U(z) be the unique minimal multiplier
giving the Popov form:

[D(z),N(z)] ·U(z) = [0, Im],
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Then Theorem 5.1 gives the pivot sets and degree bounds on U(z) with ~a =
~b = ~0. In this case ~γ∗ is the row degree of D(z) (R(z) is proper), ∆~a,~b = ~0
since D(z) is ~γ∗–column reduced (D(z) is in Popov form) and ~α = ~0. The
degree bound in part (a) then gives

degU(z)k,j ≤ max[~β]− 1 for k ∈ Kc, j ∈ Jc.

This in turn is bounded by |~β| − 1 ≤ |~γ∗| − 1 by part (e). 2

In the following example, we illustrate the use of Theorem 5.1 to give bounds
for the size of cofactors for the Gcd of n ≥ 2 scalar polynomials. To our
knowledge, such a bound has not been given before.

Example 5.4 (Gcd of several scalar polynomials) LetA(z) be a row vec-

tor of n polynomials [a1(z), a2(z), . . . an(z)] ∈ K[z]n with degrees ~d = [d1, d2, . . . dn],
where without loss of generality we assume that d1 = minj dj and dn = maxj dj.
We are interested in degree bounds for “small” multipliers uk(z) in the dio-
phantine equation

a1(z) · u1(z) + a2(z) · u2(z) + . . .+ an(z) · un(z) = Gcd (a1(z), . . . , an(z)).

We will derive these degree bounds from the last column of a shifted minimal
multiplier according to Theorem 5.1(a),(b),(c). In fact we show that there exist
multipliers verifying

deg u1(z) ≤ dn − δ − 1,
n∑

k=2
uk 6=0

(1 + deguk(z)) ≤ d1 − δ, (30)

where δ = degGcd (a1(z), . . . , an(z)). Notice that our bound includes the clas-
sical one for n = 2 (cf. [14]). Also, a straightforward generalization of the
integer bound of [15] to the polynomial case would lead to the weaker estimate
deguk(z) ≤ dn − 1 for all k.

In order to show (30), we choose ~a = ~0 and ~b = −~d and we take as the uk(z)

the entries of the last column of a (~0,~b)–minimal multiplier. Degree bounds for
the uk(z) are then determined by using Theorem 5.1 along with Remark 3.7.

The row degree of A(z)z
~b is ~γ∗ = ~0 and in this case I = (1), J = (1, ..., n−1),

and ~α = [δ]. Furthermore from our choice of ~b we determine that Kc = (1)

from part (b) while since A(z) · z
~b is column reduced we know from part (c)

that ∆~a,~b = 0 and |~β| = d1 − δ. The degree bounds from part (a) then implies
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that

deg u1(z) = max(−d1 + δ,−d1 +max[~β + ~dK ]− 1)

= −d1 +max[~β + ~dK ]− 1

≤ −d1 + |~β|+ dn − 1

= dn − δ − 1.

Bounds for the degrees of the remaining uk(z), for 2 ≤ k ≤ n are given in
Remark 3.7. This allows us to bound the sum of these degrees by

n∑

k=2
uk 6=0

(1 + deg uk(z)) ≤
n∑

k=2

~βk ≤ |~β| = d1 − δ

giving us our desired degree bounds. 2

In terms of the total degree of our input matrix polynomial Theorem 5.1 gives
the following upper bounds.

Corollary 5.5 Let d = degA(z) where A(z) is of size m× n, of rank r and

~a = ~b = ~0. Then in the singular case, we have the bounds

degU(z) ≤ r · d, degT(z) ≤ d,

while in the nonsingular case we have

degU(z) ≤ (n− 1) · d, degT(z) ≤ d.

Proof: The degree bounds follow directly from part (a) of Theorem 5.1 and
Remark 3.7. Indeed, for j ∈ Jc, k ∈ Kc we have from Theorem 5.1 the degree
bounds

degU(z)k,j ≤ max((r − 1) · d− |~β|,max[~β]− 1)

with 0 ≤ |~β| ≤ r · d. The remaining entries are bounded using Remark 3.7.
2

The following example shows that the bounds from Corollary 5.5 can indeed
be tight.

Example 5.6 Let q1, . . . , qn be polynomials of degree d and set QL =
∏n

j=1,j 6∈L qj.
Assume the qi are chosen so that Q(1), . . . , Q(n) are coprime (for example the
qj could have distinct sets of zeros). Let ui, i = 1, . . . , n, be polynomials such
that

∑n
i=1 uj ·Q(j) = 1 and satisfying degui < d ( this is possible since other-

wise we can replace each ui by its remainder after division by qi). Then the
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matrix polynomial

A(z) =




















u1 u2 . . . . . . un

q1 −q2 0 0

q1 0 −q3 0
...

. . .
...

0

q1 0 . . . 0 −qn




















is unimodular of degree d. Indeed if U(z) is the matrix given by

U(z)k,j =







Q(k), if k = 1, . . . , n, j = 1
uj ·Q(j)−1

qj
, if k = j 6= 1

uj ·Q(k,j), otherwise

then it is a simple exercise to show that U(z) is the inverse of A(z). In this
case U(z) is the unimodular multiplier giving the Popov form In for A(z) and
has degree (n−1) ·d. If we remove the first row of A(z) then it is easy to check

thatU(z) becomes the minimal multiplier with max[~β] = |~β| = r·d = degU(z).
Notice that the high degree is not just in the kernel part but occurs also in the
rest of U(z). 2

For a proof of Theorem 5.1, we will need the following

Lemma 5.7 LetU(z) be unimodular with inverse V(z), and K ′, J some index
lists, with |K ′| = |J |, and complements K ′

c, Jc. Then V(z)Jc,K′
c
is invertible if

and only if U(z)K′,J is invertible and in this case

U(z)K′
c,Jc

= V(z)−1Jc,K′
c
+U(z)K′

c,J
[U(z)K′,J ]

−1U(z)K′,Jc , (31)

and

deg detU(z)K′,J = deg detV(z)Jc,K′
c
. (32)

Proof: Since U(z) is invertible, the first statement follows from well-known
Schur complement techniques. It remains to show (32) in the case of invertible
U(z)K′,J . From V(z) ·U(z) = I we have

U(z)K′
c,J
· [U(z)K′,J ]

−1 = −[V(z)Jc,K′
c
]−1 ·V(z)Jc,K′ . (33)
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Both matrix fraction descriptions in (33) are coprime since they result from
columns of unimodular matrices [18, Subsection 6.3.1, p. 380]. This implies
that we have two partial minimal realizations [18, Theorem 6.5-1, p. 439] of
the same rational function and so the denominators must satisfy (32). 2

Proof of Theorem 5.1: We start by proving part (b). Let V(z) = U(z)−1.
Taking into account the full rank decomposition

A(z) = T(z) ·V(z) = T(z)∗,Jc ·V(z)Jc,∗,

we have

Minor-deg (z−~γ∗ ·A(z)·z
~b) = Minor-deg (z−~γ∗ ·T(z)∗,Jc)+Minor-deg (V(z)Jc,∗·z

~b).

The right hand term can be computed using Lemma 5.7 and (28)

Minor-deg (V(z)Jc,∗ · z
~b) = max|K′

c|=|Jc| deg det (V(z)Jc,K′
c
· z

~bK′
c )

= |~b|+max|K′|=|J | deg det (z
−~bK′ ·U(z)K′,J)

= |~b|+ deg det (z−
~bK ·U(z)K,J)

= deg det (V(z)Jc,Kc
· z

~bKc ) = |~bKc
|+ |~β|

from which the first part of (b) is readily determined. A similar argument
shows that

Minor-deg (z−~a ·T(z)∗,Jc) = deg det (z−~aI ·T(z)I,Jc) = |~α| − |~aI |

which along with A(z)I,Kc
= T(z)I,Jc ·V(z)Jc,Kc

gives the second part of (b).

In order to show (c), recall first that z−~γ∗ ·A(z)∗,Kc
· z

~bKc is a polynomial in
1/z by definition of ~γ. Consequently,

0 ≥ Minor-deg (z−~γ∗ ·A(z)∗,Kc
· z

~bKc ) ≥ Minor-deg (z−~γ∗
I ·A(z)I,Kc

· z
~bKc ).

The latter quantity is equal to −∆~a,~b by its definition along with making use
of the fact that deg det (A(z)I,Kc

) = |~α| + |~β|. It remains to discuss the case

∆~a,~b = 0. By (28) and the above inequalities, ∆~a,~b = 0 is equivalent to the

facts that ~bKc
is the column degree both of z−~γ∗

I ·A(z)I,Kc
and z−~γ∗ ·A(z)∗,Kc

,
and that both matrices are column reduced, as claimed in part (c).
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We now turn our attention to a proof of parts (d) and (e). SinceA(z)I,∗·U(z) =
[0 , T(z)I,Jc ] with square T(z)I,Jc and unimodular U(z), the first sentence

follows, for example from [18, Lemma 6.3-3, p. 377]. The upper bound for |~β|
is implied by part (c). In order to show the upper bound for ~α∗ = ~α − ~aI

(with index set Jc), recall that A(z)I,Kc
= T(z)I,JcV(z)Jc,Kc

is nonsingular.
Consequently, if we set ~ν∗ = cdeg z−~aI ·A(z)I,Kc

then the Predictable Degree
Property, Lemma 3.4, gives degV(z)j,k ≤ ~ν∗

k − ~α∗
j , j ∈ Jc, k ∈ Kc. Since

z−~γ∗
I ·A(z)I,∗ ·z

~b = O(1)z→∞, by bounding ~ν∗, we also have that degV(z)j,k ≤

max[~γ∗
I − ~aI ] − ~bk − ~α∗

j for all j ∈ Jc, k ∈ Kc. Our bounds now follows by
taking into account that V(z)Jc,Kc

is nonsingular, since then for each j in Jc

there must exist at least one k in Kc such that degV(z)j,k ≥ 0.

Finally we prove part (a). From Lemma 5.7 we need only to consider degree
constraints for both terms on the right in equation (31). From Remark 3.7 we

know that ~b+max[~β∗]~e bounds the row degree of U(z)∗,J . Since [U(z)K,J ]
−1 ·

U(z)K,Jc = O(z−1)z→∞ the second term is then bounded by observing that

z−
~bKc−max[

~β∗]~eU(z)Kc,J [U(z)K,J ]
−1U(z)K,Jc = O(z−1)z→∞.

For the first term on the right of equation (31) we use [V(z)Jc,Kc
]−1 = [A(z)I,Kc

]−1·

T(z)I,Jc and so z−
~bKc [V(z)Jc,Kc

]−1z−~α∗ reduces to

1

detA(z)I,Kc
︸ ︷︷ ︸

O(z−|~α|−|~β|)z→∞

z−
~bKcadj (A(z)I,Kc

)z~aI z−~aIT(z)I,Jcz
−~α∗

︸ ︷︷ ︸

O(1)z→∞

. (34)

Since we know that z−~γ∗
IA(z)I,Kc

z
~bKc = O(1)z→∞ we can obtain degree bounds

for the adjoint in the above equation by making use of Cramer’s formula. This
gives

deg adj (A(z)I,Kc
)i,k ≤ |~γ

∗
I | − |~bKc

|+~bi − ~γ∗
k

≤ |~γ∗
I | − |~bKc

|+~bi − ~ak +max[~aI − ~γ∗
I ]

for all i in I and k in Kc. Therefore the middle term of equation (34) has order

O(z|~γ
∗
I
|−|~bKc |+max[~aI−~γ∗

I
])z→∞ and so we have the desired bounds for part (a).

2

Remark 5.8 Note that there are other possibilities for degree bounds for the
first part of equation (31) and hence (from the above proof of Theorem 5.1 (a))
for degree bounds for U(z)Kc,Jc. For example, ~γ

∗ may not be the actual row

degrees of A(z) ·z
~b but only an upper bound, the proof for part (a) also hold in

this latter case. In addition, if d = degA(z) is the total degree of A(z) then
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the middle term of equation (34) is of order O(z(r−1)d+max[~a]−min[
~b])z→∞ where

r is the rank of A(z). In this case the bounds in Theorem 5.1 (a) could be
replaced by:

deg z
~bk ·U(z)k,j ≤ max(~α∗

j + (r − 1)d+max[~a]−min[~b]− |~α| − |~β|, max[~β∗]− 1)(35)

for all j ∈ Jc and k ∈ Kc. 2

Using Theorem 5.1 and Remark 5.8 allows us to deduce a simplified esti-
mation of a degree bound on U(z)∗,Jc and of the shift threshold defined in
Theorem 4.2. These estimations have already been used for the presentation
of Algorithm Spf at the end of Section 4.

Corollary 5.9 Let A(z) ∈ K[z]m×n with d = degA(z). Then, for any ~a and
~b, in Theorem 4.2 we may choose

N = min{m,n}d+max[~a]−min[~b].

For the corresponding worst case order vector ~σ0 we obtain

|~σ0| ≤ m ·
(

2(min{m,n}+ 1)d+max[~a]−min[~a] + max[~b]−min[~b]
)

.

Proof: For the first part of the statement we need to find anN ≥ max{max[~τ ∗−
~α∗],max[~a − ~γ∗]} where we recall that ~τ ∗ is an upper bound for the column

degree of z−
~b · U(z)∗,Jc . Let r be the rank of A(z). Clearly max[~a − ~γ∗] ≤

d + max[~a] − min[~b]. In addition, the second term in equation (35) of Re-
mark 5.8 can be estimated using Theorem 5.1(b). In this case

max[~β∗] ≤ |~β| −min[~b] ≤ deg det (A(z)I,Kc
)−min[~b] ≤ rd−min[~b]

which implies that

degU(z)k,j ≤ max(~bk+~α∗
j+(r−1)d+max[~a]−min[~b]−|~α|−|~β|, ~bk+rd−min[~b]−1)

for all j ∈ Jc and k ∈ Kc. Consequently, we obtain rd + max[~a] − min[~b] as
an estimate for max[~τ ∗ − ~α∗]. Replacing the rank r by the larger quantity
min{m,n} completes the proof of the first statement.

We now turn to the proof of the second statement. With N as before, we have
to estimate the order vector

~σ0 = ~γ∗ +
(

1 + max{N +max[~α∗],max[~β∗]}
)

~e
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given in Theorem 4.2. From the above reasoning we have

N +max[~α∗] ≥ max[~τ ∗] ≥ max[~β∗]− 1

and hence

max{N +max[~α∗],max[~β∗]} ≤ N + 1 +max[~α∗] ≤ N + 1 +max[~α]−min[~a].

Substituting the explicit value for N and using the rough bounds |~γ∗| ≤

(max[~b] + d)m and max[~α] ≤ |~α| ≤ deg detA(z)I,Kc
≤ r · d leads to the

claimed upper bound for |~σ0|. 2

6 Cost of the Algorithm

A worst case bound for the cost of Algorithm Spfwill depend on the size of
the input matrix (dimensions, bit sizes and degrees) and on the input shifts.
We consider an input matrix A(z) ∈ D[z]m×n with D an integral domain. We
assume that D is such that for any two elements a and b in D, the elementary
operations (addition, product, exact division) are using O(size(a) · size(b)) bit
operations – with a standard arithmetic – or O˜(size(a)+size(b)) bit operations
– with fast arithmetic (based on FFT for instance). Here, O˜(p(n)) denotes
p(n)1+o(1). The function size is such that the result of an operation has a size
of O(size(a) + size(b)) bits.

To reach a Mahler system with order ~σ, we know from [5, Theorem 6.2] that
Spf has cost O((m+ n)|~σ|2) operations in D, on elements of size bounded by
O(|~σ| log ||A||). By log ||A|| we denote the length of the entries in A. In terms
of bit operations the cost is thus O((m + n)|~σ|4 log2 ||A||) using a standard
arithmetic or O˜((m + n)|~σ|3 log ||A||) using fast arithmetic. With the order
threshold ~σ0 defined by (21), the bound of Corollary 5.9 on ~σ0 and taking

~a = ~b = 0 we get:

Corollary 6.1 Let A ∈ D[z]m×n be of degree d. The Popov normal form of
A and a corresponding minimal multipliers can be computed by the fraction-
free algorithm Spf using O˜((m + n)(mdmin{m,n})3 log ||A||) bit operations
(using fast arithmetic). 2

The worst-case value N proposed in Corollary 5.9 is very easy to compute and
applies for any set of data. However, it could be improved for certain classes
of matrices and hence lead to smaller complexities in special cases. We should
also mention that the cost of the algorithm Spfmay very well depend on the
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choice of the shift parameter N , even for values over the threshold (20), as
becomes clear from the following example.

Example 6.2 Let A(z) be a square matrix in K[z]n×n with d = degA(z),

A(0) being invertible and ~a = ~b = ~0 i.e. we compute the (unshifted) Popov
form of A(z). For any choice of N ≥ 0 we thus consider Mahler systems
of type ~n = (N~e,~0). It is not difficult to show that, after k · n steps of the
algorithm Spf , 0 ≤ k ≤ N , we obtain

~σ = k · ~e, ~µ = (k · ~e,~0), M(z) = ±[detA(0)]k ·






zkIn B(z)(k)

0 In




 (36)

where B(z)(k), of total degree k − 1, is the partial sum of the inverse power
series A(z)−1. In particular, one may check that by construction, for any
0 ≤ k ≤ N , M(z) in (36) is a Mahler system of type ~n with order vector
k · ~e. We thus see that to compute the Popov form of A(z), Spf implicitely
proceeds by first computing an approximation of order N of A(z)−1. This may
be compared to the method of [34, Lemma 2]. 2

If A(z) is of degree d, from Theorem 5.1 (b), we know that 0 ≤ ~αi ≤ |~α| ≤
deg detA(z)I,Kc

≤ dmin{m,n}. Hence, the shift ~a = (idmin{m,n})i=(m−1),...,0

satisfies the sufficient condition (9) for computing the Hermite form. With the
corresponding bound for |~σ0| in Corollary 5.9 we obtain:

Corollary 6.3 Let A ∈ D[z]m×n be of degree d. The Hermite normal form of
A and a corresponding minimal multipliers can be computed by the fraction-
free algorithm Spf using O˜((m+n)(m2dmin{m,n})3 log ||A||) bit operations
(using fast arithmetic). 2

Concerning the computation of small multipliers for the gcd of n polynomials,
one can use the notations and the results of Example 5.4. The input polyno-
mials have minimum degree d1 and maximum degree dn. Their gcd has degree
δ. In Theorem 4.2 this gives N0 = d1 + dn − 2δ − 1 and the order threshold
σ0 = d1 + dn − δ + 1, hence:

Corollary 6.4 Multipliers that verify the degree bounds (30) for the gcd of n
polynomials can be computed by the fraction-free algorithm Spf using O˜(n(d1+
dn − δ)3 log ||A||) bit operations (with a fast arithmetic). 2
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7 Conclusion

In this paper we have presented an algorithm for the computation of a shifted
Popov Normal Form of an arbitrary rank rectangular polynomial matrix. For
specific input shifts, our approach gives methods for computing matrix normal
forms (such as Hermite and Popov) and the matrix greatest common divisor
of two matrix polynomials (in normal form). The method used is to embed
the problem of computing shifted forms into one of computing matrix rational
approximants.

In the case of matrix normal forms, our methods compute both the form and
a unimodular matrix that describes the elementary operations used to obtain
the form. In the case of rectangular matrix input, the corresponding multipliers
for the shifted forms are not unique. We use the concept of minimal matrix
approximants to introduce a notion of minimal mutipliers and show how such
multipliers are computed by our methods.

The proposed method has the advantage that in the case of exact arithmetic
domains all computations can be done using fraction-free arithmetic. This
ensures that the problem of intermediate expression swell is minimized for
such computations. To our knowledge we know of no fraction-free methods
that handle all the normal forms and matrix greatest common divisor problems
covered in this paper.

There are other methods that can also be used to reduce intermediate expres-
sion swell in exact arithmetic computations. In particular, modular methods
can be used for such cases. These methods reduce a single computation to a
number of similar computations in simpler domains and then reconstruct the
result using a Chinese remaindering technique. Since modular methods are
typically an order of magnitude faster than fraction-free methods we plan on
investigating such methods in the future. We remark that our present paper
already contributes to such a method since modular methods require that we
reconstruct an object in the original domain and know when to stop. Since
our computations are all done in the original domain, as opposed to moving
to a quotient domain, our results are of interest for such problems.

Our method embeds our problem into a rational approximation problem and
then relies on a variation of the method of [5] for computing a solution to the
problem. The concern with this method is that it is not a reduction process
and, as such, does not recognize early the case where we quickly convert to
a normal form. We plan on investigating reduction methods for computing
shifted normal forms. Since we are interested in exact arithmetic domains
along with fixed cost domains we will look for methods which are fraction-
free. We also hope to address similar problems with respect to algorithms
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for the computation of matrices of linear difference and differential operators.
Popov forms for such noncommutative domains are interesting for their use in
finding series and closed form solutions of systems of difference and differential
equations.
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