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1 Introduction

The dsolve command has been a major part of Maple since 1984. In most part the al-
gorithms used and methods supported at that time offer few surprises. A simple look at
any introductory text on solving ordinary differential equations would show that most of
the methods presented are entirely algebraic and hence straightforward to implement in
any symbolic manipulation language. For example, in the case of first order differential
equations Maple tries to determine a solution via one of separation of variables, homoge-
nous techniques, exactness of the equation or by using integrating factors in the case of
linear differential equations. For higher order linear differential equations having con-
stant coefficients, Maple tries to find the roots of the associated characteristic equation.
This provides a simple way to determine the complete set of solutions for the differential
equation. Linear differential equations of Euler type are converted into an associated dif-
ferential equation having only constant coefficients. Solutions of the associated equation
are then transformed back into solutions of the original equation. For linear nonhomoge-
nous equations, variation of parameters is used to compute the complete solution once
the homogenous solutions are known. Other examples of well known techniques used in
dsolve include solving equations of Ricatti or Bernoulli type. In addition, there are spe-
cial, non-algorithmic procedures which recognize and return solutions for equations such
as Bessel’s or Kummer’s equation. For example, we have

> ode := (x-1)*diff( y(x), x$2) + (3/2 - x)*diff(y(x),x) + 1/2xy(x) = 0;

ode = (z—1) (;—;y(m)) +(5-o) (%ym)) Foy(e)=0

> dsolve( ode, y(x) );
y(z) = _Cl vz — 1+ _C2hypergeom ([_71] , [1] ;T — 1)

where _C'l and _C2 denote arbitrary constants.

One method that cannot be found in classical texts on solving differential equations
is a relatively recent one due to J. Kovacic [Kov86]. Kovacic’s algorithm is a decision
procedure used for second order linear differential equations that either determines if
a certain specific type of solution exists (and returns this closed form solution) or else
provides a proof that no such solution exists. It has been a part of dsolve since its
implementation by C. Smith [Smi84] in 1984.



In this article we describe recent improvements to dsolve that were included in
MapleV, Release 3. The main focus of these improvements was to extend the power
of Maple when computing closed form solutions in the case of linear ordinary differential
equations. The main highlight of this work is the inclusion of two new decision procedures,
due S. A. Abramov [Abr89,Abr91] and M. Bronstein [Bron92a,Bron92b], that determine
if there are solutions in either the domain of coefficients or of exponential extensions of
the domain of coefficients of the equation. Additional improvements, such as having the
ability to return partial solutions of equations is also included in this work.

The remainder of this article is organized as follows. In the next section we discuss
and expand on the notion of decision procedures as used in both integration and linear
differential equations. Section 3 presents the algorithms of Abramov and Bronstein, while
section 4 discusses the problem of returning partial, rather than complete, solutions of
linear differential equations. Section 5 reports on some additional improvements in the
Release 3 version of dsolve, while the final section gives future directions of work.

2 Decision Procedures

Decision procedures have been part of computer algebra systems for the past two decades.
The best known example is the Risch decision procedure for indefinite integration. The
fundamental theorem of integral calculus implies that one can always compute a closed
form solution for an indefinite integral of a continuous function, namely the area under
the graph of the function starting from a particular point. Of course this is rarely what is
desired. Instead one is usually interested in answers that are given in terms of well-known
functions such as exponentials or logarithms, at least in the cases where the integrand
itself contains only well known functions of a similar type.

The Risch decision procedure considers the case where the integrand is an elementary
function - that is, an exponential, logarithmic or algebraic function (or composition of such
basic functions) and either proves that the integral cannot be computed as an elementary
function or, in the case that such an elementary answer exists then computes such an
answer. The basis of the procedure is Liouville’s Theorem which shows that, if the integral
is elementary then it must have a special form. The algorithm then attempts to either
construct the special form or show that such a construction is not possible. We refer
the reader to the text [GCLI2] for some of the details of the Risch algorithm along with
references to the original papers of Risch.

In the case of linear, second order differential equations having coefficients from a
field of rational functions, Kovacic’s algorithm provides a parallel to Risch’s algorithm.
Formally, Kovacic’s algorithm determines if a second order equation of the form

d*y() dy(z)

o(z) dx? (=) dz
has closed form solutions in the class of Liouvillian functions. Here a(z),b(z) and c(z)
are in C(z), C the field of complex numbers. Roughly, speaking a Liouvillian function is

T e(w)y(z) = 0
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one that can be built up from the ground field via elementary functions (logs, algebraics
or exponentials) and integrals of elementary functions. Formally, we have

Definition. Let K be a differential field with derivation given by . A field F is a
Liouvillian extension of K if there is a tower of fields

K=KyCK,C---CK,=F

where each K, is a simple extension K;(6;) of K;, such that one of the following holds:

a) 0; is algebraic over K,
b) 8 € K; (that is K; has been extended by an integral),
c) % € K; (that is K; has been extended by the exponential of an integral).

A function contained in a Liouvillian extension of K is called a Liouvillian function over

K.

Clearly all the elementary functions are included - algebraics in a), logs in b) and
exponentials in ¢). The error function er f and the exponential integral Ei are examples
of non-elementary Liouvillian functions since

—z

€

dz
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erf(z) = %/G_Zde and FEi(n,z) = —/

:B’I’L

while Bessel functions are examples of functions that are not Liouvillian.

As an example of the use of Kovacic’s algorithm, the equation
> diff(y(x),x$2) -(x"6-2%x"5+3*x"4+x"347/4*x"2-5*x+1) /x"4*y(x)=0;

=0

4

(02 : )) <x6—2m5+3w4+w3—|—£w2—5w—|—1> y(z)
—y(z))| -
Ox?

T
> dsolve(",y(x));

y(z)=_CI el1/2%1) —I-_CQe(l/z%l)/e(_%l)dw
w3—2$2—2—3ln($)z—|—2ln(:c—1):1:—|—21n(z—|—1)$

r

%1 =

computes two Liouvillian solutions, built up in this case from the ground field K = Q(x)
by taking exponentials, logs and integrals, while

> de := diff(y(x),x$2) + (x74+1)*y(x)=0;
52
de = (s v(o) + (5 4 1)5(e) =0

> dsolve(de,y(x));

y(z ) = DESol ({(;—;_Y(:c)) —|-(:B4—|-1)_Y(1:)},{_Y(a:)})

provides a proof that no such Liouvillian solutions exist for the equation de. The DESol
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structure given in the above answer can be viewed as a type of RootOf for differential
equations.

Kovacic’s algorithm is usually stated for linear differential equations of the form

*y(z)
dz?

—r(z)y(z) = 0.

This does not reduce its generality since equations in the general form are easily translated
into one of the above form. The basis for Kovacic’s algorithm is the observation that,
if there are Liouvillian solutions to the above equation, then they must take one of 3
possible forms:

a) The differential equation has a solution of the form y(z) = e/ ™ where w € C(z)

b) The differential equation has a solution of the form y(z) = e v where w is algebraic
of degree 2 over C(z) and case 1 does not hold,

c) All solutions of the differential equation are algebraic over C'(z) and cases 1 and 2

do not hold. In this case, the solutions are of the form y(z) = e v with w algebraic
of degree 4, 6, or 12 over C(z).

If there are no solutions of the form a) - ¢) then there are no Liouvillian solutions. The
result is actually not that difficult to understand once one has enough mathematical back-
ground. One can consider the group of all differential automorphisms of the differential
equation leaving the ground field C(z) invariant (called the differential Galois group of the
equation - similar to the Galois group of an algebraic equation) . This differential Galois
group can be viewed as a subgroup of the special linear group SL(2,C) of nonsingular
matrices having determinant equal to 1. All such subgroups are already known. By taking
advantage of this classification one can determine that the only Liouvillian solutions take
on certain forms (since these solutions determine the structure of the group of available
automorphisms of the equation). The decision procedure itself relies on the fact that, if
a Liouvillian solution does exist, then it has a certain form (specified in a) - ¢) ) and so
proceeds to either construct one of these answers or show that no such construction can
occur. We refer the reader to [Kov86] or [Smi84] for further details (and to [SU92a,SU9I2D)|

for the order 3 case).

3 Higher Order Decision Procedures

There are algorithms, due to M. Singer [Sin81,Sin91], which give decision procedures for
determining Liouvillian solutions of n-th order linear differential equations

d"y(z) dy(z)
dz™ dz
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with a;(z),b(z) € C(z) and n greater than 2. However, these algorithms have not been
found practical for implementation and indeed have never been completely implemented.
What is practical and useful is an implementation of the main subalgorithm of these al-
gorithms, namely a decision procedure for determining rational and exponential solutions
over the field of coeflicients of the equation.

The RATional Linear Ordinary Differential Equation decision procedure (RAT-
LODE), for solving linear differential equations having rational function coeflicients has
been included in Maple for release 3. This procedure, due to Abramov and Bronstein,
determines if any closed form solutions exist in the domain of coefficients of the equation.
If this is the case then the closed form solution(s) are returned. Otherwise, the algorithm
provides a proof that no such solution exists. This is accomplished by returning a DESol
structure. Thus in the example

> ode := diff(y(x),x$3) + x*xdiff(y(x),x) + y(x)=0;

ode = (;—;y(m)> . (%ﬂ@) +y(z) =0

> dsolve( ode , y(x) );

y(z) = DESol ({(;—;_Y(w)) +z (%_Y(w)) +_Y(w)},{-Y(fv)})

the RATLODE procedure has determined that there are no solutions of the above equation
from the field of rational functions Q(x).

The EXPonential Linear Ordinary Differential Equation decision procedure (EX-
PLODE) of M. Bronstein [Bron92b] for linear differential equations having rational func-
tion coefficients has also been implemented for release 3. This procedure determines if any
closed form solutions exist that are exponentials of integrals of functions from the domain
of coefficients of the equation. As with the RATLODE procedure, either the closed form
solution(s) are returned or the algorithm provides a proof that no such solution exists
(again, by returning a DESol structure). For example,

> ode := (-6+8%x72)*y(x)+(11+4%x-12%x"2)*diff (y(x) ,x)+(-6-6*x+4*x"2)*
> diff(y(x),x$2)+(1+42*x)*diff (y(x) ,x$3)=0;

ode :=(—6+8z*)y(z)+ (11 +4z —122%) ((%y(x))
H6- 62+ 407) (ov(a)) + (14 20) (pate)) =0

> dsolve(ode,y(x));
y(z)=_Cle*+ _C2 el22) 1 (9 e“erf(z)

finds two independent solutions in the domain Q(z, €*, €**), while using reduction of order
to determine the last independent solution.

Similarly, in the equation below, EXPLODE finds a single solution in Q(z,e*) while
reduction of order determines the two remaining independent solutions. Notice that one



of the solutions is given in an “incomplete” closed form because there is no satisfactory
closed form solution to the integral.

> (3+6%x+20%x"2-40%x"3+16%x"4-32*x"5) *y(x)+
> (=3-15*x+44*x"3+48*x"5) *diff (y(x) ,x)+(9%x-26%x"2-24%x"4-16%x"5) *
> diff(y(x),x$2)+(6%x72-4*x"3+8*x"4)*diff (y(x),x$3)=0;

0
(3 +6z+ 202> — 402> +162* — 322" )y(z) + (-3 — 15z + 442 + 482°) (a—y(zv))
T

2

3
+(9z — 262* —24z* — 162°) (%y(:ﬂ)) + (62% — 423+ 8z*) (%ﬂ@)

> dsolve(",y(x));
y(z)=_Cle" 4+ _C2e"Ei(l,—z) +_03em/e(m2)\/5dw

As with the previously mentioned decision procedures, the algorithms rely on the fact that
if a particular rational or exponential solution does exist then it must have a certain form.
The algorithms then either construct such a form or prove that the form of answer cannot
exist. In the case of exponential solutions, the problem is converted into determining
rational function solutions of an associated Ricatti equation. For example, determining
an exponential solution el v of the equation

TYE) _ sayy(e) =0

is equivalent to finding a rational solution w of the Ricatti equation

dy(=)
dz

+y(z)” =r(z).

4 Partial Solutions

It is a common occurrence that various algorithms (including those given above) succeed
in finding some independent solutions of a linear differential equation, but not enough to
provide a complete description of all such solutions. In this case, Maple now has the ability
to return answers in terms of solutions of “reduced” equations of lower orders in addition
to any closed forms. In previous versions, Maple either found a complete set of solutions
or returned null, denoting that the complete set could not be found. For example, in the
equation below, RATLODE finds a particular solution while the complete solution requires
solutions of the corresponding homogeneous equation (which Maple cannot determine a
closed form for). This gives

> ode := diff(y(x),x$3) + x*diff(y(x),x) + y(x) = (-5+2*xx+x"2)/(x+1)"4;

ode 1= (;—;y(:ﬂ)) +z (%y(w)) +y(z)= _5(%2;:32



> dsolve(ode,y(x));

y(a) = :c-lu + DESol ({(aa—;ym)) o (%_Y(w)) —|—_Y(:z:)},{_Y(m)})

As a second example, for the homogeneous equation below EXPLODE finds a single
solution with the rest of the answer determined via reduction of order. In this case, there
are no closed form solutions known to Maple and so an expression involving solutions to
lower order equations is returned.

> diff(y(x),x$3) +x*diff(y(x),x$2) +(x"243)*diff(y(x),x) +(x"3 + x)*y(x)=0;
? o? 0
(5253(2)) 2 (5uv(2)) + (22 +3) (300 + (2 42)5(0) =0
> dsolve( " , y(x) );

y(z)=_C1el 127"y
e(—1/2w2)/DESol ({(aa—;_Y(z)) — 2w (%_Y(w)) +2w2_Y(w)},{_Y($)}) I

In the examples above the DESol structure i1s used as a placeholder for the part of the
solutions that remains incomplete. In some cases, one can use some of Maple’s other
computational tools to further investigate the space of solutions. For example, in the
above result, one can obtain a series expansion of the remaining solutions via

> rest := op(2,rhs(")):

> series(rest,x,4);

Y(0)2+ S D(-Y)(0) — 3 Y(0)a® +O(x*)

5 Additional Improvements

The implementation of two new decision procedures and allowing for partial solutions in
the output of dsolve were the two major improvements from the work that went into the
dsolve command of MapleV, Release 3. However, there were additional improvements
that were also added for this release. Some of these occurred simply by taking better
advantage of existing tools that had been incorporated into Maple during the last 10
years. It is not surprising that such improvements were possible, given that the dsolve
code itself had not undergone any major changes since 1984.

By using Maple’s RootOf construct, it is possible to work with the roots of polynomials
even if the roots themselves are not explicitly known. By taking advantage of this tool, we
can let Maple return solutions for constant coefficient linear differential equations, even
when the associated characteristic equation cannot be factored. For example, we have

> ode := diff(y(x),x$5 ) + 2*diff(y(x),x) + 2*xy(x) = 0;



° (?115 aill
> dsolve(ode,y(x));

y(z)= Z _C1_pel-F=)

_R=RootOf(24+2 _Z+4_35)

This also works in the case of repeated roots, and can also show up as answers to partial
components of solutions

> diff(y(x),x$5)+4*diff (y(x),x$3)+4*diff (y(x),x$2)+4xdiff (y(x),x)+8xy(x)=0;
0° o? 0? 7,
@Y(w) +4 @Y(Tf) +4 @Y(ﬁ) +4 a—$Y($) +8y(z) =0

> dsolve(",y(x));

y(z) = _CI cos (\/5:3) + _C2sin (\/51:) + Z _C3_pel-Ee)

_R=RootOf( _Z342_Z+4)

Since equations of Euler type are transformed into differential equations with constant
coefficients, these improvements also allow for a greater set of solutions for these equations.
For example,

> ode := x"6*diff(y(x),x$6)+15*xx"5*xdiff (y(x),x$5)+69*xx"~4xdiff (y(x),x$4)+
> 118*x~3*diff (y(x) ,x$3)+75%x"2xdiff (y(x) ,x$2) +21*x*diff (y(x) ,x)+4*y(x)=0;

5 4 3

x° (;—;y(:ﬂ)) + 15 2° (%y(m)) + 69 z* (%y(:v)) + 118 z* (%y(.ﬁ))

2

0 0
2 —_— pu—
+752° o y(2) + 21w (@$y(w))+4Y($) 0
> dsolve(ode,y(x) );

y(z) = Z Cl gzt 4+ E _C2 gzt In(z)

_R=RootOf( _Z3+2 _Z+2 ) _R=RootOf( _Z3+2 _Z+2)

A more significant improvement is that dsolve now takes advantage of a vastly im-
proved use of reduction of order. For example, combining EXPLODE with reduction of
order and Bessel’s equation gives:

> ode := (-2*%x"2+x+n"2) *y(x)+(4*x"2-2*%x-n"2) *diff (y(x),x)+
> (-3*x"2+x) *diff (y(x) ,x$2) +x"2*diff (y(x) ,x$3) = 0;

ode ::(—2:02—|—:B—|—n2)y(:n)—|—(4$2—2w—n2) (%y(z))

+(—32> +z) (;—;y(fv)) + 2 (;—;ﬂﬂ) =0



> dsolve( ode,y(x) );
y(z)=_Cle® + _C2¢" /BesselJ( n,z)de + _C3e® /BesseIY( n,¢)dr

This in turn can be further solved in some special cases of n - for example when n = 1 we
have:
> dsolve( subs( n = 1, ode) ,y(x) );

y(z) = _Cle®+ _C2e"Bessell] (0,2 ) + _C3 e” BesselY( 0,z )

In the example below we use the RATLODE algorithm for finding a particular so-
lution of the linear differential equation and special function solvers to determine the
homogenous solution.

> ode := diff(y(x),x$2) + 3/xxdiff(y(x),x) + (x~2-143)/x"2*y(x) = x -140/x;

2 2 _
ode = (%y(w))+%iy w)+(:c 143)y(=) _ 140l

Oz ( 2 z

> dsolve( ode,y(x) );

_C1 BesselJ(12,z) N _C2BesselY(12,z)

y(z)=z+ " "

Improvements in the solving of linear differential equations also leads to improvements
in determining solutions of other types of equations whose algorithms have a component
that involves solving some associated linear differential equation. For example, we can
now return a solution to the nonlinear differential equation

> ode := diff(y(x),x)+x*y(x)"2 = 1;

ode = (%y(m)) +zy(z) =1

> dsolve( ode, y(x) );

-1 2 -1
_C'1 BesselK <?, 3 :1:3/2> — Bessell [ —, :B3/2>

2
y(e)=- 2 2 32 ?é
NZ <_CI BesselK <§, 3 :B3/2> + Bessell (5, 3 :[;3/2))

6 Future Directions

The recent work on dsolve has not provided any improvements for solving systems of
linear differential equations. At present there are three ways that such systems can be
solved - the default method using differential operators, laplace transform method or by
converting to first order and solving via the matrix exponential method. However, in
all these cases the system of linear equations can only be solved if the coefficients are
constant with respect to the variable of differentiation. We plan on extending Maple’s



capabilities in this area to include determining solutions in the case where the coefficients
are rational functions. This will be done via converting these linear systems into a matrix
first order system of differential equations and then computing a companion block diagonal
form of such a differential operator as done in for example [Bar93,Ziir94]. This reduces the
problem to determining solutions for a number of independent linear differential equations,
each having rational functions for coefficients.

The decision procedures discussed in Section 3 work only in the case of linear dif-
ferential equations having coefficients that are rational functions. Recent work by M.
Mohrenschildt [Moh94] shows how such a decision procedure can also extend to the case
where the coeflicients include discontinuous or piecewise functions (for example differen-
tial equations having abs or Heaviside functions as part of their coeflicient set). We plan
on implementing and extending this work in future versions.

At present the dsolve command has the problem that it appears to most users as a
black box. It takes in differential equations as input and returns closed form solutions,
if possible, as output. There is little control over how such closed form solutions are
determined. In many cases, however, a user would prefer to solve these equations using
alternate methods. In these cases the user would simply like some tools (such as say a
user level reduction of order or variation of parameters command) to determine some or
all of the other solutions of a particular equation. One of the major projects that are
planned for future versions of Maple is a comprehensive set of tools for solving differential
equations. Examples of such tools include such simple operations such as reduction of
order or computing the indicial equation, to more sophisticated tools that allow for alge-
braic manipulation of differential operators. The latter set of tools takes advantage of the
fact that the algebra of such operators has already been formalized by Ore [Ore33]. The
algebraic operations include algorithms to find right or left greatest common divisors and
even right or left factors of linear differential operators.
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