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ABSTRACT

In this paper we give a new, fast algorithm for solving the
simultaneous Padé approximation problem. The algorithm
is fraction-free and is suitable for computation in domains
where growth of coefficients in intermediate computations
are a central concern. The algorithm gives significant im-
provement on previous fraction-free methods, in particular
when solved via the use of vector Hermite-Padé approxima-
tion using the FFFG order basis algorithm previously done
by the authors. The improvements are both in terms of bit
complexity and in reduced size of the intermediate quanti-
ties.

1. INTRODUCTION

Let F = (f<1),...,f(m)) (with m > 2) be an m-tuple
of formal power series and 7 = (n(l), . 7n(m)) an m-
tuple of nonnegative integers. We will always suppose that
at least one of the power series f(© starts with a non-zero
term and, after reordering, assume that f(l)(O) #0.

A Hermite-Padé approzimant for F of index 7 (also known
as a type 1 or latin approximant) is a vector of polynomials
p= (p(l)7 ...,p(m)) satisfying

d@gp(e)(z) Sﬁ(l) _17 (= 1,27,.,77’)’1,7 (11)
FOPD (2) 4 oo+ ™ ()™ (2) = 2 (2)
(1.2)

while a simultaneous Padé approximant for F of index 7
(also known as a type 2 or german approximant) is a vector
of polynomials p = (p, ..., p(™)) satisfying

degp® <|i| -7, ¢=1,2,...m, (1.3)
FP 0 (2) = FO2)p P (2) = 2O (2) (1.4)

for each ¢. Here r and t'¥ are all formal power series and
1] = n™W + ... + n(™. The case m = 2 covers the classic
case of Padé approximation. Since we have assumed that
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FO(0) # 0, it follows from (1.4) that

O~ 1O R () = 0T

for all j,¢ = 1,....,m. When f®(2) = 1 then simultaneous
Padé approximants roughly model the property

9%
“pM(z)

that is, rational approximations to the power series f 0 all
having a common denominator.

Historically these concepts date back to 1873 when Her-
mite used simultaneous rational approximations to power
series for e®,e*®,...,e™® to prove the transcendence of e
[10]. Twenty year later, Padé [15], a student of Hermite, ex-
panded on Hermite’s earlier work and formalized the notion
of best possible formal rational approximations to analytic
functions. In a seminal paper of 1932 (but only published
in 1968) K. Mahler [13] formalized the concepts to arbitrary
analytic functions and interpolation points and studied re-
lationships and recursions between the matrix of neighbours
of both types of approximants.

Both types of approximants occur frequently in computer
algebra. Hermite-Padé approximants are used in the van
Hoeij factorization algorithm for differential operators [16]
while simultaneous Padé approximants are used in solving
linear systems of equations [14]. Both approximants appear
in inversion formulae for striped and block Hankel matrices
[12] which in turn are used in fast methods for exact solving
of sparse linear systems [8].

There have been two main types of approaches for com-
puting these approximants. The first approach looks at the
associated linear system for the coefficients of the polyno-
mials defined by the order conditions (1.2) or (1.4) — |7|
unknowns for Hermite-Padé and (m — 1)|7i] unknowns for
simultaneous Padé. Methods for efficient computation take
advantage of special reductions of the structured matrix for
the linear system [6, 7]. A second approach takes a mod-
ule theoretic point of view and efficiently finds all solutions
for specific order problems [2]. In this case the simultaneous
Padé problem is represented as a vector Hermite-Padé prob-
lem and solved using the fast sigma-basis algorithm of [2].
For a vector of non-negative integers 7 the method of [6] usu-
ally (but not always) finds a simultaneous Padé approximant
of type f with arithmetic operation cost O(m?|#i|log|7|*)
while the method of [2] finds all simultaneous Padé approx-
imant of index 7 with cost O(m?|i|log? |mii|) arithmetic
operations. Assuming strong conditions on the input, Olesh
and Storjohann [14] gave an algorithm to compute simulta-
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neous Padé approximants with complexity O(m|7|log? |7i]).

In this paper we focus on efficient computation when the
coefficients of the power series’s come from an integral do-
main D (such as the integers or domains with parameters
such as Q[ay,...,ax]) rather than a field. Our intend is to
use fraction-free methods which avoid expensive ged compu-
tation in the coefficient arithmetic domain and allows us to
avoid going through the field K of fractions. It is important
in this case to be able to divide by a priori known common
factors, in order to prevent exponential growth of coefficients
during our computations. A typical example is the Bareiss
variant [1, 9] of Gaussian elimination, where instead of the
solution x of the linear system Ax = b one computes the
Cramer solution det(A)z. In this case all quantities at the
kth elimination step are divisible by the pivot of step (k—1)
without passing through fractions.

Using the associated linear system approach one can ob-
tain a fraction-free algorithm by using fraction-free Gaussian
elimination. If £ are of size O(k) then this gives a com-
plexity of O(m®|#|°x?). This does not, however, make use of
the special structure of the matrix of the linear system. Since
one can represent simultaneous Padé approximants as vector
Hermite-Padé approximants one can use the fraction-free or-
der basis algorithm (FFFG) of [4] to compute both types of
approximants. In this case the FFFG algorithm computes
Hermite-Padé approximants in bit complexity O(m|ii|*x?)
(see [4, Theorem 6.3]) and simultaneous Padé approximants
with O(m|i|*x?) bit operations. The aim of the present
paper is to show that a multi-step variant of FFFG for
simulaneous-Padé approximants leads to two improvements:
first the term m® can be replaced by m?, and secondly the
intermediate quantities have a smaller size.

The remainder of this paper is organized as follows. The
next section includes preliminary material involving the as-
sociated linear system of a simultaneous Padé problem, its
Cramer solutions, the FFFG algorithm and the new determi-
nantal representation for simultaneous Padé approximants.
Section 3 introduces the fundamental building blocks for our
constructions, called type 2 Mahler systems. In the next sec-
tion we introduce the notion of normal indices and show that
type 2 Mahler systems at normal indices generate all solu-
tions to a simultaneous Padé problem of a given type for
any order (that is these are order bases). Section 5 gives a
fraction-free recursion with the complexity given in the fol-
lowing section. The paper ends with an example and then
a conclusion along with topics for future research.

2. PRELIMINARIES : LINEAR SYSTEMS

Type 1 and 2 approximation problems both have associ-
ated linear systems in terms of the unknown coefficents of
the polynomials. Cramer solutions to these systems then
give polynomials free of fractions. In this case the Cramer
solutions are also represented as determinantal polynomials
as in [4] (and as found in the subresultant theory of scalar
polynomials). While it is possible to look at the linear sys-
tem (and corresponding Cramer’s solution and determinen-
tal representation) associated to type 2 approximants via
its representation as a vector Hermite Padé approximant,
in this section we give a new determinantal representation
which (in the case f(V(0) # +1) has considerably smaller
bit size.

For a power series

g(z) =go+ g1z + ..,

with g; = 0 for j < 0, define the rectangular u x v Toeplitz
matrices

9j gi—1 gj—v+1
) gi+1 gi gj—v+2
Tob(e) = | . . :
Jj+u—1  Gjtu—2 9j+u—v+1
Setting T, (g9) = Té% (9), let
K(ii,0) = T, ;o (F) | oo | Ty (FU) ]

be the striped Sylvester matrices (having m column blocks)
of size o x |7i| and

(7)) = det K (7, |7i]).

In addition, following [4], define E®) (i, z) to be

®_4

EY#, z2)=0,...,0,1,...,2" ~'0,...,0]

a row vector of length |7i| with blocks of size 7, j =

(¢
1,...,m, with the ¢th block containing l,z,zz,...,z"( )71,

and the others 0.

From [4] we know that the Cramer solutions of the ho-
mogeneous systems of equations behind the approximants
of type 1 are given by the column vector

A —

[p( >(n7 Z)]zzl m’

.....

p(7, z) =
with

- K(#, |7 — 1)
(0) _ )
p (i, z) = det { 5O 2 |

It is not difficult to check (see [4, Lemma 5.1]) that
70 _
p (7, 2) = +d(it — &)2" “=1 1 lower terms

and
Z f(f (5) ,2) =

so that (1.1) and (1.2) hold. Here and in what follows €&,
denotes the ¢th canonical vector, and € = (1,1,...,1).

It is possible to represent simultaneous Padé approximants
as a vector Hermite-Padé problem

+d()z"""! + higher terms (2.1)

7@ () Mz 0

p(M(2) + PP+ + (™) (2)

F0m) (2 0 e

= o(=l7l+1)

and obtain both a linear system and determinantal represen-
tations for the type 2 problem similar to those given above.
However, in this case we prefer to give a new, alternate de-
terminantal representation of type 2 approximants.

LEMMA 2.1. Consider the column vector

p(i,z) = [p,2)] .,



defined by

P (i, 2) = (—1)"det

L E( (7 + €, 2)

Then p(i, z) is a type 2 approzimant satisfying (1.8) and
(1.4). More precisely

p O (i1, 2) = £d(7 + &)™~ 0 4 lower terms,  (2.2)
and for £ > 2
FO PO, 2) = 1O 2)p™ (7, 2) (23)
(K (7 + €& || + 2)]
E®(7 + €,0)
= +det | BV e, 2" 4 higher terms .

| EM™) (7 4 €,0)

Note that EY (i+¢,0) has a1 in column 7™ +- - -+70~1 41
and is 0 elsewhere.

PROOF. The degree bound degp'® (7, z) < |ii| — @® im-
mediately follows from expanding the determinant in the
definition of p® (71, z) with respect to the last m — 1 rows.
Formula (2.2) for the coefficient in front of 7= g o
tained by expanding with respect to the last m — 1 rows
and the columns containing the highest powers of z, that is,
the last columns of blocks A = 1,2,...,m, A # £. Thus the
matrix K (71 + €, |7i| + 1) becomes K (7 + €, |7i| + 1), i.e., we
obtain the expression stated in (2.2).

For a proof of (2.3), we first shift the rows of the matrix
underlying p™™ (7, z) such that E“ (7 + €, z) becomes the
new (m — 1)st last row. Then

FO)p (7, 2) - 2)
r K(i+e|n
fORDNEV R+ z2)+ f

= +det

L E™(ii + €,z) |

Adding multiples of the last (m — 2) rows to the (m — 1)st
last row, this row becomes

Zfo‘) YEN (7t + €, 2)
- ( )
j 1 m
:ZZ] TJ(1)+1f() | |T](m)+1f( ))]
j=0
For j = 0,...,|7i|, the row vector in the sum on the right

occurs already in the matrix K (7i+¢€, |7|+1). Hence, by lin-
earity of the determinant, f) (2)p9 (1, 2) — O (2)p™) (i, 2)

is equal (up to a sign) to the expression

K(7i + & |ii] +2)]
ED(7 +,0)

det E“‘l)(ﬁ+€,0) Pl

| B0 (7 + €,0)

plus higher order terms, as claimed in (2.3). [

EXAMPLE 2.2. Let# = (1,2,1,2). Thenp® (@, 2) is given
by minus the determinant of the matrix

R N T R R
?1) oM e o [ B e | e e
e M e e Mo | M S
?1) o) ?2) %2) o) %3) ’(s) ?4) oy
JCO A T I S SR S I SR S [ A A

?1) ¥eN ?2) ?z) 12) ?3> ?s) ‘54) 1) %4)

f f f
fZU A (2) %2) Bo) <3> f:fn ?4) o 3('4)
2 o 0 0 o 0 0 0
0 0 1 z 22 0 0 0 0 0
L o 0 0 0 0 0 0 1 z 22

Ezpanding determinants by the least row and the determi-
nants of the submatrices along their last rows and so on
gives a polynomial of degree at most 5. The leading coeffi-
cient in this case then comes from the determinant of the
matriz removing the last three rows and columns 2, 5 and
10. This is the same as the determinant of K((1,2,2,2),7).

In our case, we will only consider indices where the si-
multaneous Padé approximants are (up to normalization)
uniquely given by the objects defined in Lemma 2.1.

LEMMA 2.3. Suppose that d(17) # 0. Then, forl =1,...,m,
type 2 approximants of index i — €; are scalar multiples of

p(ﬁ - 557'2) #0.

PROOF. Set 7 = it — &. Since f(0) # 0, we may divide
(1.4) by fO, and thus suppose without loss of generality
that f&) = In this case, p is a type 2 approximant of
index 77 if and only if its first component pM(z) = ao +
arz+ .. +anz¥, N = |7| - 7™M is such that the expansion
of f@p™ does not contain the powers z* for k = |7|— 7)) +
L7 — 79 +2,...,17 and j = 2,3,...,m, and the other
components of p are obtained by taking the lower powers
of f@Wp® This leads to the homogeneous system with N

equations and N +1 unknowns [an, an—1, ..., ao] K = 0, with
M) (2) 1) (m)
K= TN+1 5(2) (f TN+1 Z(m) (f') ].

Since we may partition into a block triangular matrix

R I

k@0 =g x|
and since K (7, || 4+ 1) is obtained by dropping one column
from the invertible matrix K (i, |7|), we find that K is of full
column rank, and therefore has a left nullspace of dimension
1. Hence type 2 approximants of index ¥/ = 7l — &, are unique
up to multiplication with a scalar, and can be generated
from p(7i — €, z), the latter being non-trivial according to
(2.2). O



Assume that our arithmetic follows the complexity model:

size(a +b) = O(max{size(a), size(b)}),
size(a-b) = Ofsize(a) + size(b)),
cost(a+b) = O(),

cost(a-b) = O(size(a) - size(b)).

LEMMA 2.4. Suppose that the coefficients of the input power

series fO are of size O(k). Then using the complexity model
above we have

size(p'? (7, 2)) = O(|7|). (2.4)

PRrROOF. The result follows by expanding the determinants
in Lemma 2.1 and by using the Hadamard inequality. [

The representation of type 2 approximants in [4] gives an
additional factor m for this size. We claim without proof
that the type 2 approximants of [4] reduce to ours after a
division by f™®(0) to the power (m — 2)(|@| +1). In partic-
ular, they are the same (up to a sign) in the particular case
m = 2 of Padé approximants.

3. TYPE 2 MAHLER SYSTEMS

In this section we describe the building blocks for our new
algorithm, which we call type 2 Mahler systems. As was
the case with the (type 1) Mahler systems from [4, Defini-
tion 5.2] these appear naturally from the associated linear
system of the Padé problem. For a given vector 77 of non-
negative integers, Mahler systems are m X m matrix polyno-
mials whose columns are approximants of order |7i|. Type 2
Mabhler systems are implicitly obtained by forming cofactors
of the (type 1) Mahler systems. This duality, first observed
in a special case and with an alternate normalization by
Mahler [13] and then later in the general case by the au-
thors [3], will be heavily exploited.

Type 1 Mahler systems are given by

M(7i,z) = {:I:p(ﬁ—i—é’j,z)]j
(M7, 2)],

1,....m

where the signs are chosen such that all M(é’Z> (77, z) have the
same leading coefficient d(77) (or —d(7)) which is assumed
to be different from 0. These Mahler systems differ from
those considered by Mahler in [13] only by normalization:
the multiplication with d(7) insures that no fractions occur.

In the same way, we define for indices 77 with d(77) # 0 the

type 2 Mahler systems
Mi,2) = [£p(7—&5.2)],_
9, 2)

Ag=1,...,m
where the signs are chosen such that all 9% (77, z) have the
same leading coefficient d(77) # 0 (or —d(7)), compare with
(2.2). It follows from [13, §25] or directly from the Sylvester
determinental identity that

cof M(7i, z) = £d(@)™ > IM(7, 2), (3.1)

where as in [3, Section 6] the cofactor of a square matrix A
is defined by cof A = (adj A)T = (A™!)"T det A. This iden-
tity is the motivation for our introduction of type 2 Mahler
systems. Indeed, from [13, 4] we know that such duality
relations are quite helpful in the recursive computation of
Hermite-Padé or matrix Padé approximations.

4. NON-PERFECT SYSTEMS AND
CLOSEST NORMAL INDICES

When the multigradient d(7?) is non-zero, the matrix of co-
efficents for the linear system for simultaneous Padé approx-
imants of index 7 has a unique solution up to normalization,
see the proof of Lemma 2.3. The situation is considerably
more involved if any of the multigradients vanish. In [4]
for the case of Hermite-Padé (i.e. type 1) approximants, we
have introduced so-called closest normal indices and show
how to describe the module of all vector polynomials of a
given order. In this section we show the same can be said
using the type 2 Mahler systems introduced in the previous
section.

THEOREM 4.1. Given a multi-index 71, define the sequence
of multi-indices Uy with |Us| = o and d(¥5) # 0 by vp = 0,
and for o >0

Vo1 = Vo + €r(a),
where m = w(o) € {1,...,m} is defined by

T = arg m?x{ﬁ(l) - 17((,Z> l=1,...m, d(U, + &) # 0}.

Then for all integers d,o > 0

Z f (5)

degp(a <a® + d}

{pGK =0(27),V¢:

= {M(D’U, z)q: q € K[z]™
Ve deg g™ < @™ — gN 4 d}.

PRrROOF. We show by recurrence on o that 7 = w(o) is
well-defined, that is, there is at least one index ¢ with d(7, +
€¢) # 0, compare with [3, Lemma 2.7]. In this case, the
claimed parametrization of the set of solutions with spec-
ified order and degree constraints have been shown in the
algorithm FFFG given in [4, Table 2] together with [4, The-
orem 7.2 and Theorem 7.3] (we notice that the sequence of
multi-indices (7ix )« defined in [4, Table 2] satisfies 7|5 4-ma =
i + dé).

For o = 0, the assertion follows from observing that d(7,+
€1) = d(€&) = fP(0) # 0. Suppose now that the multi-
index U, with |U,| = o is well-defined with d(7,) # 0, but
d(Us + €) = 0 for £ = 1,2,...,m. Then, by definition, the
type 1 Mahler system M(7,, z) has columns of order at least
o, and, in view of (2.1), these columns have order at least
o+ 1. Taking into account the above representation of poly-
nomial column vectors of order o, we may conclude that
there is no such vector of precise order o. This is however
in contradiction with the observation that z° times the first
canonical vector has precise order . [

Being able to describe the set of type 1 approximants al-
lows us to apply a duality argument in order to deduce a
parametrization of the set of type 2 aproximants.



THEOREM 4.2. With the notations of Theorem 4.1,

{peKE™ v 7O PV (2) — 12000 (2) = O,

degp < |7i| — 7" + d}
= {M(,2)a: q € K[I™,
Ve deg g™ < (7] — 7Y) — (17| - 7V) + d}.

PRrROOF. Using the notation of [3, Section 2.2], we con-
clude from Theorem 4.1 that M(7,, 2) is an (G, (27,1, ..., 1))
order basis, with the square matrix G obtained as in [3, Ex-
ample 2.3] by bordering the row F = [f), ..., f(™)] by the
block [0, Ir,—1]. It follows from [3, Corollary 6.3(a) and Ex-
ample 6.4] that cof M(#,, z) is a (cof G, (1,27, ...,27)) order
basis, or, in other words,

{p K" 5 709 90 - 000
= {Mm(o. 2)a:a €K™,

where we have used (3.1) together with the fact that d(7,) #
0.

In order to obtain the additional degree constrains stated
in Theorem 4.2, we recall from [4, Theorem 7.2] that M(i/s, 2)
is in 7i-Popov form. In particular (see [4, Definition 7.1]),
with
2" = diag (zﬁ(l) yeeny zﬁm))7

the matrix Laurent polynomial zfﬁM(ﬁmz) is column re-

duced, with column degree of the £th column given by 17((,2) —

¥, Tt follows from (3.1) (compare with [3, Lemma 6.2(c)])
that also z~I"1¥F790 (7, 2) is column reduced, with column
degree of the fth column given by —iit" + #(®) + |Us| — |7
Hence, given p = IM(¥s, z)q with degp® < |7 —i7® 4+ d, we
conclude that zf‘ﬁleﬁrﬁp has degree < d, and the predictable
degree property of [11, Theorem 6.3-13, p. 387] tells us that
degq™ < d — (=7 + 7™ 4 |7,| — |i]), as required for
one inclusion in the statement of Theorem 4.2. Conversely,
with the above degree bounds for q<)‘) (together with those
for the entries of M(V,, z)) one easily obtains the above de-
gree bounds for the entries of p = M (75, z)q, showing The-
orem 4.2. []

5. RECURSIVE COMPUTATION OF
TYPE 2 MAHLER SYSTEMS

In his seminal work [13] Mahler showed how to recursively
compute type 1 and type 2 Mahler systems under the as-
sumption that all multigradients d(7) are non-zero (or, in,
other words, 7 is normal). Starting from M(0,z) = I, (or
9M(0,z) = In), he explains in [13, §41 and §43] how to ob-
tain M(7 + €}, z) by multiplication on the right of M(7, z)
by some “simple” degree 1 matrix polynomial, and how to
obtain M(7i+ €5, z) by multiplication on the right of M (7, 2)
by some other “simple” degree 1 matrix polynomial.

In the non-normal case where some of the d(77) are zero the
methods of Mahler break down. Also in this case we want
to describe all solutions for a given order (since solutions
are no longer unique up to scalar constant). The previous
section shows that Mahler systems of type 1 and type 2 at
closest normal indices give module bases for order problems.

In addition the FFFG algorithm of [4] gives a method for
computing Mahler systems of type 1. In this section we show
how to combine the above with the cofactor relation (3.1)
and obtain an algorithm to compute type 2 Mahler systems.

Let us start by briefly recalling the idea of the FFFG al-
gorithm of [4]: given the closest normal index 7 of order
k = |Uk| and the corresponding My, := M(Uy, z), one first
computes the first term of the residuals (r®,...,r(™) de-
fined by

(Y, L mYMy = (¢, ™) 2F + higher terms

(where from (2.1) we know that ¥ = +d(, + &)). The-
orem 4.1 describes how to compute the pivot 7 € {1,...,m}
together with the normal multi-index Ug+1 = Uk + €x to give
the next Mahler system. The new Mahler system is build as
follows:

(i) Increase order of all columns: Apply (m — 1) elemen-
tary operations of subtracting 7(© times the pivot col-
umn from the pivot (™ times the fth column of M,
for £ # m. This increases the order of all nonpivot
columns via cross multiplication. The pivot column is
then multiplied by zr(™.

(ii) Degree correction for correct normalization: The over-
shoot in the degree of its £th component for £ = 1, ..., m,
¢ # 7, is corrected by subtracting a suitable multiple
of the ¢th new column from the pivot column. The
resulting matrix polynomial contains the common fac-
tor d(7k)(the pivot in step (k — 1)). After division we
obtain our new Mahler system.

Let the matrix A represent the elementary column opera-
tions which increase the orders and the matrix B represent
the elementary column operations which correct the degrees.
Then in matrix form the above algorithm is given as

d(7x) Miy1 = MyAB.

This form is particularly useful when one takes into consid-
eration the duality of type 1 and type 2 approximants via
the cofactor operation as given in (3.1). The result is the
matrix equation

d(Uk) Mpy1 = Mycof Acof B.

As an example, when the pivot 7 = 1 then the matrices
A and B have the form

1 =* *
0 =*
A= .
_0 *_
and
_ 0 07
1
B=
_* 1_

which results in cofactors having the form

*
* 1
cof A =



and

cof B =

z

Translating cof A and cof B into elementary column op-
erations implies that our new recurrence for type 2 Mahler
systems is of the form:

(i) Compute the new wth pivot column by a suitable linear
combination of all m columns, and then for all ¢ # 7
compute the new ¢th column by multiplying the old
fth column by a scalar times z.

(ii) We now have an overshoot of degree for the mth com-
ponent. This is corrected by subtracting a suitable
multiple of the new pivot column.

In order to be more precise and to specify the scalars which
appear in the recursion above, there are two obstacles which
we overcome via the following two Theorems. First it is not
obvious how to obtain the multigradients d(7; + &) from
the type 2 Mahler systems 9, = M (P, 2) (for the choice of
the pivot index 7). A second problem is that we require a
formula for the above scalars which are not given in terms
of the type 1 Mahler system My, but rather given in terms
of the type 2 Mahler system 9.

THEOREM 5.1. Let

—f@ @ g .. 0
5= ,f(B) 0 f(l)
: . 0
_f(WL) 0 - 0 f(l)
and
L (,0) l=1,....m
¢ = [C ! ]j:2 ,,,,, m

the (m — 1) x m matriz satisfying
T M = CF + higher terms .

Then the matriz C' has full rank m — 1. Furthermore its
right nullspace is spanned by the vector y = (ye)e=1,2,...,m,
with Yo = id(ljk + é'g)

ProOOF. We first have to fix the signs in the determinental
formulas for the entries of My, following the lines of the
proof of Theorem 2.1. Denote by ESZ) () the unit vector
row of length |7i| having in it’s £th block of size 7'“ the
entries 0, ...,0,1 (and zeros otherwise). We then may border
the matrix underlying i)ﬁfj"z) = +p(Jx — €1, 2) by a new last
column in the £th column block and the new row E((]Z> (T +e),

leading with some € € {£1} to the formula
KUy + €, k)
EM (5, + &, z)
EU=D(7, + &, z)

(3,6 _ det
A= B0+ 9)

E(j-‘rl)(ljk +&2)

L E(m)(ﬁk + gf Z) A
In order to check that the sign is correct in the preceding
formula, notice that in order to get the leading coefficient of
Dﬁff’l) (which should be independent of £), one has to expand

following the highest degree terms, that is, one expands with
respect to the last m rows the determinant of the matrix
obtained by replacing the rows E® (7, +¢, z) by E(()A) (Uk+e).
Hence
cuh lim Lk (—f‘”sm;j’“ + f<1)§m§€j,e>>

= (1) llil’%) 277U(z)

where
K(Dy + € k)
f(l)E(l)(ljk +€z2)+ f(j)E(j)(,jk + € z)
[EX (5, + €, 2)] N
B (B + @)

A(z) = det

In order to evaluate the limit, we add J‘(A)EO‘)(D}C + €, z) to
the second row block for A # 1, j, and expand the resulting
expression in powers of z. Permuting the first column of each
block to the end, expanding with respect to the second last
row block containing unit vectors, and taking into account
the block Toeplitz structure leads for some € € {£1} to

FK (7 42k +1)T
E® (7, 4 €,0)

. ; EYU=Y (5, 4 €,0)

6,0 _ _q\ym—j ) k >

C = 6( 1) det E<]+1)(17k + é,’ O)

E™ (i + €,0)
B (5 + @)

0
b K@ +é,k+1
— Tdet |:K(l/k,k):| (1 +¢€j,k+1)
ES (%) 0

I

that is, a joint block of (k + 1) rows and columns with de-
terminant being equal to :I:f(l)d(ﬁk), bordered by a last row
depending on £ € {1,2,...,m}, and a last column depending
onj€{2,3,...,m}.

Sylvester’s determinental identity shows that
A=1,...,m, AL

j=2,....m

= (et (fWae) "

(=1)™ " det [CUN]



where the determinant on the right after expansion with
respect to the last (m—1) rows equals e,d(V, +€¢) = £d(P+
€¢). By Cramer’s rule this quantity is the £th component of
an element of the nullspace of C', which has a non-trivial
m(k)th component by Theorem 4.1. Again from Cramer’s
rule we deduce that C has full row rank. Hence the vector y
with components y, = (—1)%e,d(x + &) spans the nullspace
of C, as claimed in Theorem 5.1. []

Nullspaces can be computed without fractions via fraction-
free Gaussian elimination. However the determinental rep-
resentation of C¥"9 given in Theorem 5.1 implies that we
can start with a divisor that is not 1.

COROLLARY 5.2. Let y be the vector from Theorem 5.1.
Then y can be obtained by fraction-free Gaussian elimina-
tion with column pivoting applied to the homogeneous system
Cy =0 and choosing a first pivot CH0) = +d(vk) f(l)(O).

With C' rows numbered from 2 to m the algorithm is :

Forj=1,2,..m—1
Exchange columns § and X > j of [CT | y |7
in order to ensure CUTH9) #0
ForA=35+2,...m
For{=354+1,...m
C()\’Z) - o) oG+1.5) _o(G+1,8) o(X.35)

( 1 c(,3—1)

Ym — CT

For{=m—1,m—2...,1
Yo — _C(l-&-l,m)ym
For X=10+1,...,m —1: y, — yo — CEF1N g,
Yo — yz/c(£+l,l)

THEOREM 5.3. Lety = (y1,...

- o (™) _
with y= # 0. Let aﬁ@a = coeﬁ’(i)ﬁ;€ 0 k1=, Y. Then for
j=1,...,m we have:

,Ym) be as in Theorem 5.1,

m

aT = Yoy, ift=m
=1
0 0 i) (e .
dksm§j+1> = zi)ﬁi] )y7r — 9)?,(@J+1)a,(c >, fl#T
dry1 = Yn-

Here do = 1 and the sign in di, = +d(Ux) s chosen such that

= _ =0
Sm;“) = di2PF 177 1 Jower terms.

ProoF. Consider the column vector polynomial

m
7= ng’“ye,
=1

Since My, is a type 2 Mahler system for the index v}, with
|Uk| = k, the construction of y implies that ¢ has order
k+1 = |Ug41|. In addition

ifj=m

~(7)

[ =k =0 = || - B
deg q(J) _,lfj> |_‘ +1| k+1
<k-vy :|Vk+1‘*1*’/k+1

otherwise,

with the leading coefficient of the m—th row of ¢ being equal
to di - Yr = di - di+1. By the uniqueness of Lemma 2.3, this
implies that ¢ = dkfmifl)

For the remaining columns note that if ¢ # 7 then
=k+1-0" = |G| -7, ifj=¢
k=0 = |G| - 1-87), ifjAln

()

<ol = B

deg zsmg*“
if j = .

Thus all rows j # 7 have correct degree bounds to be a type
2 approximant of degree bound k41 — € except for row
where the degree is too large by 1. The degrees of this row

are corrected by the second equation of the theorem since
— —(m)
the coefficient of term z/”*+1/=7s+1 then becomes

ak * Yr — di+1 - ax = 0.

Finally, the leading coefficient of row ¢ in this case is given
by dryr = di - dp+1. Again by uniqueness the right hand
side of the second equation above is the same as dksm;ﬁ

proving our result. [

In the normal case with a different, much simpler scaling,
our formula for Dﬁgﬂ) stated in Theorem 5.3 reduces to that
found in Mahler [13, §24, third equation].

6. COMPLEXITY

In this section we show that our method provides a gain
of m?® over the fraction-free method found in [4].

THEOREM 6.1. The bit complezity for computing a type 2
Mahler system My for K = |fi| > m and hence a basis for
the set of simultaneous Padé approrimants of index i — €
for input data of size O(r) is O(m*K*k?).

Proor. Following the above approach, we have to com-
pute recursively 9y together with the first K — k terms of
the residuals z_k(f(j)img’é) —fmi)ﬁg’z)) fork=1,2,.... K.
For the ¢th column of M, this gives

STk —7)) = (m -1k

A

scalar unknowns, plus an additional (m — 1)(K — k) scalar
unknowns for the corresponding residuals, each of them of
size O(kk) according to (2.4). We can use the same up-
dating formula for the residuals as for the Mahler systems,
and hence the value at zero of these residuals gives us the
corresponding matrix C' of Theorem 5.1.

We then first need to solve a (m — 1) x m homogeneous
system of linear equations by fraction-free Gaussian elimi-
nation but with an initial pivot. Thus at elimination step
j=1,...,m — 1 the entries are of size O(x(k + 7)) and this
leads to a bit complexity of

O(K*(k +m)? Z(m — )% = O(K*K*m?).

j=1

Coefficients of elements not in the pivot column are updated
using O(1) multiplications/additions of two elements of size
O(kk), whereas for coefficients of elements in the pivot col-
umn we update using O(m) multiplications/additions of two
elements of size O(kk). Thus the cost of updating all co-
efficients in step k is given by mKO(k?x?) for the O(m)
non pivot columns, and m?>K O (k?x?) for the pivot column.
Summing k£ =1, ..., K gives the claimed complexity
O((m*K® + m?*K*)x?). O

7. EXAMPLE

Consider the vector of power series whose first 8 terms are
given by

fD(2) = 3432462241823 +722*4+3602° +0(=z1)
fP(z) = 14+82°+642°+5122° 4 0(z)
fOGR) = 1—z24+22-22+24 -2 +0(:")



with @7 = (3,4, 3). In this case the algorithm determines the
closest normal indices as by
0,1,0],[1,1,0],[1,2,0], [1,2,1], [2,2, 1],
2,3,1],[2,3,2],[3,3, 2], [3,4, 2], [3, 4, 3]

After step 4 the closest normal index is ¥4 = (1,2,1) with
the type 2 Mahler system given by

4823 + 3322 +302+3 —922 1262 —27 —5422 36z — 18
My = 9z +1 4822 - 332 -9 —6z—6
—822 482+1 7222 242 -9 4823 — 6

Each column has order 4 in this case and are simultaneus

Padé approximants of index (0,2,1), (1,1,1) and (1,2,0),
respectively. To construct 95 the C' matrix for the next
step is given by

—6 54  —252
210 —738 =252 |°

Here the kernel is y = (1386, 378,48)7 and the pivot column
is m = 1. After replacing column 1 of 94 by

mi-yl)yl +mi<,2)y2+miw3)y3

we get a new column 1 which has order 5. Multiplying
columns 2 and 3 by z then implies that all the columns
now have order 5. In this case the degrees of the resulting
matrix polynomial are

w N W
w w w
=N W

and the leading coefficient of the diagonal terms is 48 x 1386.
Eliminating the highest terms in row 1 of columns 2 and 3
using cross multiplication with the new first row of column
1 gives degrees of the form

W N W
W w N
=N N

These are the correct degree bounds for the type 2 Mahler
system for the closest normal point @5 = (2,2,1). Dividing
out by 48 then gives the leading coefficient of all the diagonal
elements as 1386. The result is 9M15.

The iterative algorithm is particularly simple to imple-
ment. An implementation in the Maple computer algebra
system along with a set of examples is available at the web-
site www/cs.uwaterloo.ca/~glabahn/pade-code.

8. CONCLUSION

In this paper we have given a new algorithm for the com-
putation of simultaneous Padé approximants. The algo-
rithm is meant for exact domains where coefficient growth
is an issue. The algorithm is fraction-free with elimination
done in the domain of computation but without any need for
ged calculations. The complexity improvement is by a factor
of m? over previous fraction-free algorithms. The quantities
computed are also an order of magnitude smaller over those
of previous methods.

There are a number of topics for future research in this
area. We expect that our methods can be easily generalized
to the case of power series defiend by linear functionals hav-
ing special elements as done in [4]. In particular this would

give a fraction-free algorithm for power series determined
by interpolation data. We are also interested in extend-
ing our work to more general matrix rational interpolation
problems and more general paths of computation as done
in [3]. We are interested in seeing how our method can be
used for problems defined over noncommutative domains, in
particular wheh the input f ) are differential (or more gen-
erally Ore) operators. Finally, we will investigate how our
approach can be used for efficient fraction-free computation
of matix normal forms as done in [5].
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