
MathBrush: A System for Doing Math on Pen-Based Devices

George Labahn, Edward Lank, Scott MacLean, Mirette Marzouk, David Tausky

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, Ontario, Canada

e–mail: {glabahn,lank,smaclean,msmarzouk,datausky}@cs.uwaterloo.ca

Abstract

Many on-line (interactive) mathematics recognition
systems allow the creation of typeset equations, normally
in LaTeX, but they do not support mathematical problem
solving. In this paper, we present MathBrush, a system that
allows users to draw math input using a pen-input device
on a tablet computer, recognizes the math expression, and
then supports mathematical transformation and problem
solving using back-end Computer Algebra Systems (CAS).
We describe the architecture of the MathBrush system,
which includes modules that support symbol recognition,
semantic analysis, the transfer of recognized expressions to
back-end CAS, and interface techniques for interacting with
CAS output. We also identify unique challenges associated
with recognition for math problem solving, such as the
need for deeper semantic analysis than is required by LATEX,
and the need to deal with ambiguities in user input. Our
experiences serve to inform researchers seeking to design
interactive mathematics recognition systems geared toward
mathematical problem solving.

1. Introduction

Mathematics recognition can be separated into off-line
systems, which extract equations from scanned document
images, and on-line, or interactive, systems, which accept
hand drawn input and parse math expressions. In the off-
line domain, many recognition systems have as their goal
the archiving of physical manuscripts [18]. The output
of these systems is typically a typographic representation
of the math expressions, thus allowing the original paper
document to be stored digitally and reconstructed with high
quality on a computer screen or by a printer.

Here we focus on on-line mathematics recognition,
where the goal is to allow a user to enter a math expression
into a computer. Users enter mathematics into a computer
for a number of reasons. At one extreme, one wishes

to generate typeset expressions for a manuscript. At the
other, one wishes to solve or manipulate a mathematical
expression, perhaps using a Computer Algebra System
(CAS) such as Maple or Mathematica. CAS are often
viewed as sophisticated and very powerful calculators
which support a wide range of mathematical analysis and
manipulation tasks. Unfortunately, while linear keyboards
are fine for use with numerical calculators, the same cannot
be said for CAS. The need to transcribe mathematical
expressions, an inherently two-dimensional arrangement of
symbols on a page, into a one-dimensional sequential form
presents challenges for users of these systems [11].

In our work, we explore the design of a pen-math system,
MathBrush. Features of MathBrush include:

• A pen-based interface that allows users to draw
handwritten mathematical expressions, to correct
recognition results, and to interact with a back-end
CAS.

• Recognition algorithms to support the transformation
of hand drawn math into MathML [2], a mark-
up language that represents the underlying math
expression and that can be used to transmit expressions
to backend CAS.

• Algorithms that instantiate ambiguous input, such as
the use of ellipses to represent a series.

• Trainable recognizers, which can be customized to an
individual’s handwriting.

• A component architecture to experiment with various
math recognition algorithms.

To the best of our knowledge, the MathBrush system is
the only pen-based mathematical system that combines
recognition of handwritten input and integration with
multiple CAS to do significant mathematical computation.

In this paper, we describe the system architecture of
the MathBrush system, including its component-based

approach to recognition and to interaction with CAS. We
describe the recognition algorithms used in MathBrush
to produce a working pen-math problem solving system.
We highlight unique recognition challenges that arise due
to our goal of back-end CAS integration. Finally, we
describe an evaluation study and present ideas for future
extensions of our system. Together, these contributions
inform those researchers seeking to build effective on-line
recognition systems that support interactive mathematical
problem solving.

2. Related Work

Whether on-line or off-line, mathematics recognition
systems commonly structure the recognition process in
three phases [4]. Given that an equation has been
extracted from a document image or input by a user, the
system first performs segmentation to separate individual
symbols. Next, symbol recognition seeks to identify
the specific characters that comprise the math equation.
Once symbols have been identified, the system performs
structural analysis, identifying the spatial relationships
between symbols. The final mathematical relationships are
commonly represented in a tree or graph, which can then be
parsed to produce LATEXor some other representation of the
equation being recognized.

In the off-line domain, a number of researchers have
studied the various processes involved in the recognition of
mathematical expressions. As off-line recognition is not the
focus of this paper, the interested reader is referred to [4]
for a survey of research on mathematics recognition. As
well and more recently, the InftyReader research project
has described a number of innovations in mathematics
recognition from scanned documents [8, 18].

In the on-line domain, current math recognition systems
can be characterized based on two distinct primary
goals. A set of systems exist that seek to simplify the
process of creating typeset math expressions on computers.
Other systems, including our MathBrush system, seek to
recognize math expressions for the purposes of performing
mathematical operations through a pen-based interface.

Many computer programs, including LATEX, MS Word,
and Internet Explorer, support the display of typeset
mathematical expressions. To create typeset expressions,
a user typically transforms the desired two-dimensional
expression into a one-dimensional text string. Both
characters and commands are combined, either through
some interface as in Microsoft’s Equation Editor or within
the text string as in LATEX, to produce an expression that
contains the characters arranged appropriately as specified
by the commands. A set of research systems exist that
support the creation of these typeset equations using pen-
computers, including work by Chan and Yeung that uses

structural matching [3], a handwriting interface in the
InftyEditor [15], and the Freehand Formula Entry System,
FFES [14].

Beyond simply typesetting a math expression, some
recent work has explored the possibility of using pen-based
computers to support mathematical problem solving. One
such system is the MathPad2 system [6], an application
for creating mathematical sketches. MathPad2 allows the
users to create their hand-written mathematical expressions
using familiar math notation and free-form diagrams.
Users can then create associations between the equations
and diagrams. The diagrams are animated, and the
mathematical equations specify the behaviour of the
animation.

While animating diagrams allows users to see
a physical interpretation of abstract mathematical
concepts, mathematical manipulations such as evaluating,
approximating, expanding, factoring, and other common
manipulations represent another area where pen-math
systems could aid problem solving. MathJournal [20]
appears to be the first commercial system for doing
mathematics on Tablet PC. MathJournal recognizes and
interprets diagrammatic and graphical representations of
some engineering and mathematical problems, but has
limited mathematical and problem solving capabilities.
More recently, the MathReco [19] system demonstrated
support for evaluating and solving mathematical
expressions. The system included a rule-based recognizer
for mathematical expressions, and typical editing features.
It also allows an input expression to be graphed, a
single variable within an equation to be evaluated, or a
definite integral to be approximated. These operations
were accomplished using either a built-in math engine or
Mathematica. However, once the math engine has evaluated
or approximated the output, no further manipulation of the
output is supported.

3. System Architecture

The main system modules that make up MathBrush
consist of a user interface, a Character Recognizer (CR),
a Structural Analyzer (SA) that interacts with a Matrix
Analyzer (MA), a CAS interface tool, and finally a
mathematics rendering tool. These modules and their
interdependencies are depicted in Figure 1. MathBrush has
been designed both to do math and to evaluate different
recognition algorithms and semantic analysis approaches.
Each of the components has standard input and output
APIs to facilitate their replacement and evaluation. For
example, the Microsoft Tablet SDK provides a rich library
for text recognition and Microsoft provides guidelines [1]
for designing recognizers that can extend and be compatible
with theirs. Our character recognizer supports the standard

Tablet PC recognizer API which allows its replacement
with a more advanced recognizer when available. For
input, the SA accepts a set of bounding boxes with
character candidates for each box, and as output it generates
a standard MathML representation of the mathematical
expression. In the remainder of this section, we provide
a brief overview of the components of MathBrush.

Figure 1. MathBrush System Components

The MathBrush user interface module, shown in
Figure 2 receives ink from the user, collects the user’s
interactions and commands (via context-sensitive menus),
and ultimately renders the results back to the user. It also
allows the user to interact with the output expression or part
of it for further manipulation.

As is typical in math recognition systems, MathBrush
explicitly separates symbol recognition and structural
analysis. Segmentation and symbol recognition are
performed by the character recognizer (CR). The CR returns
a set of bounding boxes and an n-best list of symbols. The
interface module displays the recognition results to the user
and allows for correction of the results, as shown in Figure
3. As well, the CR is trainable. The user can provide
samples that can improve the recognition of symbols one
draws in a special way. Figure 4 shows the interface for
training the CR.

Corrected character recognition results are then passed
to the structural analyzer. The SA processes the input and
constructs a well formed mathematical expression. If it
determines that the input expression is a matrix, it passes
the input to the MA. The MA handles the construction of the
matrices using the provided elements. If the user did not
provide all the elements (using dots and existing elements
to represent the matrix in short form), the MA inferrs the
missing elements. Presentation MathML corresponding to
the expression is generated by the analyzers and is passed
back to the interface module.

Figure 2. MathBrush User Interface Handling
Long Output

Users can invoke operations on the recognized
expressions. The interface module sends the MathML
representation together with the specified operation to the
CAS interface module. This module interacts with the CAS
and returns the computed results in presentation MathML.
Simple heuristics are used to render the MathML output
expressions, as shown in Figure 2. Currently we support
Maple and Mathematica.

4. Design and Implementation Challenges

The purpose of the MathBrush system is both to
design an effective system for pen-based access to the
mathematical capabilities of one or more CAS and to study
recognition technology and interface designs that most
effectively support a pen-math environment. Building a
complete pen-based mathematical system generates many
challenges on different levels. For example, on the
interface level we wish to know how we can seamlessly
access commands from different CAS using the pen,
how to display large expressions which often come back
from a CAS, how to allow interaction with the results
(or parts of the results) in a natural way, and how to
use the pen to facilitate operations and manipulation of
plots. Independently there are also issues related to the
recognition of the handwriting, particularly if the input

Figure 3. Character Recognition In
MathBrush

Figure 4. Character Recognizer Training in
MathBrush

contains short forms of expressions (for example using · · ·
when constructing matrices) and how to resolve semantic
ambiguities. In this section, we describe the challenges in
building a pen-based system that interacts with the features
available in a CAS and the decisions that were made to
address these design challenges.

4.1. Input Recognition

4.1.1 Character Recognition

There are two components that perform recognition in
MathBrush. In this section, we briefly describe our
character recognizer, which shares many features with
similar systems reported in the literature. Chan and Yeung
detail the various approaches to segmentation and character
recognition [4].

The character recognition module combines several
existing methods found in the literature. The recognizer
involves three phases: stroke preprocessing, segmentation

and finally matching. The preprocessing of strokes include:

• Stroke joining - where broken strokes due to hardware
or user’s hesitation are joined using alignment and
timing data

• Re-sampling - where input points are resampled in a
way that preserves end- and cusp-points

• Trimming - where end points of a stroke are trimmed
if they exhibit high curvature

• Smoothing - to prevent jitter caused by hardware or
user hesitation

• Normalization - where we normalize input in order to
preserve aspect ratio.

Segmentation is done by first estimating the likely
number of strokes which make up the input symbol
followed by a process of feature extraction. The estimation
of stroke numbers uses proximity and vertical stacking
of strokes (groups of strokes that appear to be stacked
vertically, such as in +/-, =, or “equivalent to”). A
confusion matrix is used to eliminate the possibility of
recognizing symbols which include strokes also included in
other symbols. This helps to prevent the reporting of F,- or
L,= instead of a correct E.

Feature extraction uses information such as width,
height, angle between end points, and width to height ratio,
which are extracted from the input strokes. Every group of
strokes is weighed by comparing its features to the features
from the database. Both processes together generate a
ranking of candidates.

The recognition phase analyzes characters using basic
elastic matching [16], deformable template matching [9]
and structural chain code matching [3]. Our elastic
matching algorithm uses information about both point-to-
point and tangent vector comparisons. Following [12],
a weighted measure is also included where points which
lend a symbol its characteristic shape are weighted higher
than points which may be present in any symbol. The
deformable template matching algorithm assigns points to
a circular Gaussian distribution from which the probability
of the model matching the input can be determined. Costs
are assigned for moving model points, model points lying
on white space, and how well the model matches the input.
Finally, the structural chain code matching algorithm is also
implemented in the typical fashion, breaking an input into
intervals with an assignment of a numeric code to each
interval based on stroke direction in that interval. The
sequence of these codes is then used to determine which
model’s chain code most closely matches that of the input.
We combine these classifier results using a hand-tuned
numerical voting scheme to produce an optimal n-best list.

4.1.2 Structural Analysis

Various techniques have been proposed for structural
analysis of mathematical expressions. For a somewhat
exhaustive list of previous techniques, the interested reader
is referred to [4]. Our approach is based on tree rewriting,
as described by Zanibbi et al. [21]. Zanibbi et al.’s
approach is a two-pass parser. During the first pass, the
algorithm constructs an initial tree representing the math
equation, called a baseline structure tree. In its second
pass, it then applies a set of transformations to rewrite the
tree into an appropriate form and outputs a LATEXstring.
Transformations include aggregating symbol such as “lim”
into limits, “sin”, “cos”, etc. into trigonometric functions,
analyzing containment for symbols such as square roots
and fractions, and performing other modifications needed
to output correct LATEX.

Our goal, however, is to support mathematical
manipulations via back-end CAS. Allowing interaction with
CAS to perform meaningful mathematical manipulations
of input expressions requires an extension of Zanibbi
et al.’s approach. To justify the need for additional
recognizer logic, consider the expression 120x2, a simple
mathematical expression which can easily be rendered in
a straightforward fashion in LATEXas $120xˆ2$. However,
to interact with a CAS, our structural analyzer must also
recognize that 120 is a term, followed by an implicit
multiplication, and then another term, x, which is squared.
In contrast, the expression 12042 must be parsed as a
single term, 1204, which is squared. Our output format is
MathML. To correctly interact with a CAS, the MathML
output must be mathematically well-formed. In other
words, the output must include term grouping, implicit
operations, balanced parentheses, integrals with matching
dx terms, etc. For example, for correct evaluation of our
previous example, 120x2, the MathML output must be:

<math xmlns=’http://www.w3.org/1998/Math/MathML’>
<mrow>
<mn>120</mn>
<mo>⁢</mo>
<msup>
<mrow><mi>x</mi></mrow>
<mrow><mn>2</mn></mrow>

</msup>
</mrow>

</math>

Note the presence of the &InvisibleTimes operator, the
aggregation of 120 into a single term, and the msup item
that groups x with its exponent. More complex expressions
including integrals or parentheses require checking for
additional terms to avoid crashing the backend CAS.

To ensure well-formed MathML, we perform four
parsing steps in our structural analyzer. The first two steps,
similar to past approaches, construct an initial baseline
structure tree using bounding box information and then
rewrite that tree based on character identities to produce

LATEXequivalent output. Our third pass then validates
the mathematical structure, ensuring that parentheses are
balanced, the integral terms have a corresponding variable
over which to integrate, that numerators have denominators,
etc. Finally, when the expression has been validated, a
final parse produces the MathML expression which can then
be passed to the CAS. The current version of our SA is
an extension of work performed by one of the co-authors
graduate students [10].

4.2. Input Short Forms

Once a system allows a user to input mathematics in a
common form then users also will want to use shortcuts
that are common to written mathematics. For example an
expression of the form

S = 1 + 2 + · · ·+ 100

is simple and convenient input for the sum of the first 100
integers. Of course one could also write this in a short
form via

∑100
i=1 i. However, in the case of matrices, the

use of shortcuts is often the only practical way to input
large matrices having specific patterns. For example, the
expression:

A =

1 x0 · · · x9

0

1 x1 · · · x9
1

...
...

...
1 x9 · · · x9

9

or

B =

1 0 · · · −8
2 1 · · · −7
...

...
...

10 9 · · · 1

 .

both represent 10 × 10 matrices which, in their long form,
require 100 entries in order to be fully specified.

An under-specified matrix, such as those above cannot
be input into a CAS, which only accepts fully specified
matrices. The closest one can come to a short input
form in a CAS is to give a functional form for the
individual entries (for example, A = [ai,j] where ai,j =
xj−1

i−1 , which represents the Vandermonde matrix presented
above). Furthermore the problem of recognizing matrices,
even when fully specified, involves understanding the
implicit structure of the matrix, such as the number of rows
and columns, and the nature of the terms. Our system has
a separate matrix analyzer (MA) module which recognizes
matrices and expands any shortcuts which may be present.

The above examples show that matrices present two
separate recognition challenges. The first is to recognize
under-specified matrices and convert these into fully
specified input. The second problem is to recognize the

structure of the matrix itself from the separation of the input
entries.

Matrix analysis itself involves four phases: Pre-
element processing, element processing, ellipsis processing
and matrix expansion. Pre-element processing involves
separating ellipsis from the other terms, and generating
statistical information regarding characters within the
matrix. Element processing involves clustering the
individual characters into elements of the matrix, and
determining its initial structure. Ellipsis processing groups
the ellipsis into straight lines, and associates the ellipsis
with elements of the matrix. Finally, matrix expansion uses
a variation of an algorithm by Sexton and Sorge [13] to
transform the under-specified matrix into a fully specified
matrix. The complete details of the matrix recognition
module are described in [17].

4.3. Expression Manipulation

Users doing mathematics with pen-math systems not
only expect to use natural notations but also expect expect
to do actions similar to those now used when doing
mathematics with pen and paper. In particular this includes
editing the input and manipulating the output. Thus, for
input we allow users to handwrite equations and support
natural editing gestures such as scratch-out and the back of
the pen for erasing ink input. A user is also allowed to select
input ink and move it around, again an expected feature of
any pen system.

Solving mathematical problems typically involves
multiple steps working from one output expression to the
next. It is also very common, even for a high-school
student, to do actions such as: to isolate and replace
specific instances of a subexpression with a new variable;
to simplify only a subset of the terms in an expression; or to
combine a specific set of terms together in an expression.
CAS have many different commands which allow a user
to do the above actions. However, the commands to
manipulate or even isolate subexpressions are often clumsy
at best. If the original expression is complex or long, then
these operations are also tedious and error-prone [11].

For example in the simple expression:

sin(x)2 +

q
sin(x)2 + (x− 1)20 + cos(x)2

if one wants to simplify only the

sin(x)2 + cos(x)2

under the square root using Maple, then one could not
do this by the simplify command, as it expands the
polynomial. Instead (assuming that a user did not realize
in advance that the sum of squares of sine and cosine was
1) to perform this task the following commands are needed:

1. assign the expression to a variable, i.e. use:

V := sin(x)2 +

q
sin(x)2 + (x− 1)20 + cos(x)2

2. get the sin(x)2 term using op(1, op(1, op(2, V)));
which denotes the first operand inside the square
root operator of the second operand of the original
expression.

3. similarly get the cos(x)2 term using
op(3, op(1, op(2, V)));

4. simplify those terms and reconstruct V (again from its
operand structure).

Doing the above with Mathematica would require a
different set of commands. However, in either case the
natural operation would be to highlight the subexpression,
select the simplify operation, and then replace the
highlighted terms by the result of the simplification (which
in this case is 1).

In MathBrush, these editing operations are done by using
a circle gesture or a highlighter to interact with typed
content. The selection is then analyzed with respect to
subexpressions on the canvas. This allows the user to
interact with only a subset of the entire expression. Figure
5 illustrates how one can do the above substitution task in
MathBrush.

Figure 5. Expression Manipulation In
MathBrush. The darker part of the typeset
expression sin(x)2 and +cos(x)2 is the
subexpression selected by the user using
the highlighter from the tool box.

4.4. Other Features

MathBrush contains several other features of value
during mathematical problem solving. These include
plotting, logging features, and the ability to swap CAS.

Plotting is an important part of any math system.
MathBrush allows the user to generate 2D or 3D plots for

its expressions. Users can draw on the plot to alter limits,
as shown in Figure 6.

Figure 6. Plotting In MathBrush. The user is
adjusting the limits of the x-axis from [-5,5] to
[-3,3], by writing the new limits on the plot.

We also provide a logging mechanism that keeps track
of all the user’s actions in the session. The user can view
the log any time during the session to help track sources
of inconsistency. We have also found the log valuable in
generating test data for our recognition engines.

Using multiple CAS is common during mathematical
problem solving. While most CAS generate identical
results for the same input, in some cases an operation may
fail in one CAS but succeed in another, or the two CAS
may produce answers that appear different (are semiotically
distinct) yet are mathematically equivalent. This behaviour
is a result of the mathematical algorithms used. Presently,
using the CAS interface, to deal with failure cases for a
given CAS, a user must transcribe the equation manually
into a second CAS. The syntax of each CAS is unique, so
transcription also involves translation of the input string,
rather than simple copy and paste operations. To aid users
with this occasional task, MathBrush supports interactive
CAS selection which can be done anytime during the
session.

5. System Evaluation

Evaluation of software systems is typically done for
two reasons: to study performance and/or to determine
usability. One challenge associated with performance

studies for complete systems is finding some effective error
metric. Should a system not recognize a given expression,
a mechanism for quantifying the error is necessary to allow
comparison to other systems. One alternative is to use some
measure of the number of edits needed to correct results,
but this value is dependent on either the expertise of the
user or sophistication of automatic edit distance analysis
(depending on whether the a human observer classifies edit
distance or it is automatically extracted). Another option is
to use whitebox testing of each recognizer component on a
publicly available corpus. However, we found no standard
corpus of pen-math data.

We did perform a study to verify the usability of
MathBrush and to validate the decisions which had
been made during the design and implementation phases.
The study also helped in finalizing our ideas for future
extensions and plans for a more usable interactive pen-math
system. Complete details of the study can be found in [5].

The evaluation was done using a think-aloud and a semi-
structured interview. Participants were undergraduate
students from computer science, engineering and
mathematics in our institution. As is typical in think-
aloud style descriptive evaluation, we focussed on a
relatively small sample subject population, and explored
users’ attitudes in depth [7].

During our evaluation, the participants commented that
they can use a system like MathBrush to do their problem
solving. They liked the ability to manipulate hand drawn
and typeset math expressions, and several commented on
the benefits of having it available during first year math
courses. With respect to the system itself, the students
all disliked two-step recognition (first correcting character
recognition then verifying structural analysis), preferring
a single recognition process. In addition, cases where
character recognition was correct but the generation to a
mathematical expression failed due to parsing problems
were a source of confusion.

6. Future Plans

In this section we summarize our future plans with
emphasis on improving the recognition phase and extending
the editing facilities on both input and output expressions.

6.1. Input Recognition

At present our input recognition first recognizes symbols
with bounding boxes and then organizes these into a
mathematical expression. We are in the process of
constructing a single new module that merges the CR and
SA modules in our design. Our new approach will use a
formal grammar to capture the semantics of the handwriting
in conjunction with a symbol recognizer.

We anticipate a number of benefits. Semantic analysis
will be integrated with symbol recognition so that only
symbols that make sense with respect to grammar semantics
will be included in the results. As well, multiple parses
can be considered so that users can correct subexpressions
in the context of an expression tree that has the correct
general form. Finally, our intent is to store the grammar in
a simple format, making it easily extensible. This opens up
the possibility of domain-specific semantic interpretations
by swapping grammar rules in and out.

6.2. Expression Manipulation

Expression manipulation is a difficult and tedious task
when done by hand and not much simpler when done in a
CAS environment. This is particularly true when it comes to
working on parts of large expressions. Currently we support
selection of subexpressions and allow a user to manipulate
the selected expression.

We are currently investigating a number of extensions
for working with expressions in MathBrush. Simple
manipulation using pen actions on equations seems the
obvious starting point here. For example, crossing out
common terms on both sides of an equation, or dividing
out factors on both sides; raising both sides of an equation
to a power or more generally applying a function to both
sides (so still keeping the equality). The difficulty will be
to have a small number of natural actions, consistent over
a wide range of mathematics, rather than a large number of
specialized actions each clever for specific interactions.

7 Conclusion

In this paper we have described the MathBrush
system for doing mathematical problem solving using
pen-based devices. The system is intended to be both
useful for doing mathematics and providing a platform
for research in recognition technolgies for inputting
handwritten mathematical text. We have given the
component architecture and illustrated a number of the
challenges faced when building such a system.

References

[1] Microsoft recognizer guidelines.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tpcsdk10/lonestar/appendix/tbconcustomrecognizer.asp.

[2] D. Carlisle, P. Ion, N. Poppelier, and R. M. (editors).
Mathematical markup language (mathml) version 2.0. 2001.
W3C Recommendation, http://www.w3.org/TR/2001/REC-
MATHML2-20010221.

[3] K. Chan and D. Yeung. Recognizing on-line handwritten
alphanumeric characters through flexible structural
matching. Pattern Recognition, 32:1099–1114, 1999.

[4] K. Chan and D. Yeung. Mathematical expression
recognition: a survey. International Journal of Document
Analysis and Recognition, 3(1):3 – 15, 2000.

[5] G. Labahn, E. Lank, M. Marzouk, A. Bunt, S. MacLean,
and D. Tausky. Mathbrush: A case study for interactive pen-
based mathematics. 2008. Submitted to SBIM.

[6] J. LaViola and R. Zeleznik. Mathpad2: a system for
the creation and exploration of mathematical sketches. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, page 33,
New York, NY, USA, 2006. ACM Press.

[7] C. Lewis. Using the thinking-aloud method in cognitive
interface design. Technical report, IBM T. J. Watson
Research Center, 1982.

[8] C. Mallon, S. Uchida, and M. Suzuki. A support vector
machines for mathematical symbol recognition. Technical
Report PRMU-2005-192, IEICE, 2006. pp. 49 - 54.

[9] M. Revow, C. K. I. Williams, and G. E. Hinton. Using
generative models for handwritten digit recognition. IEEE
Trans. Pattern Anal. Mach. Intell., 18(6):592–606, 1996.

[10] I. Rutherford. Structural analysis for pen-based math input
systems. Master’s thesis, David R. Cheriton School of
Computer Science, University of Waterloo, 2005.

[11] K. Ruthven. Instrumenting mathematical activity.
International Journal of Computers for Mathematical
Learning, 7:275–291, 2002.

[12] P. Scattolin. Recognition of handwritten numerals using
elastic matching. Master’s thesis, Computer Science
Department, Concordia University Montreal, 1993.

[13] A. Sexton and V. Sorge. : Abstract matrices in symbolic
computation. In Proc. of Intl. Symposium on Symbolic and
Algebraic Computation, pages 318–325, 2006.

[14] S. Smithies. Freehand formula entry system. Master’s thesis,
University of Otago, Dunedin, New Zealand, 1999.

[15] M. Suzuki, F. Tamariand, R. Fukuda, S. Uchida, and
T. Kanahori. Infty- an integrated ocr system for
mathematical documents. In ACM Symposium on Document
Engineering, pages 95–104, 2003.

[16] C. C. Tappert. Cursive script recognition by elastic
matching. IBM Journal of Research and Development,
26(6):765–771, 1982.

[17] D. Tausky, G. Labahn, E. Lank, S. MacLean, and
M. Marzouk. Ambiguity in matrix recognition. In Proc.
of SBIM, 2007.

[18] S. Toyota, S. Uchida, and M. Suzuki. A structural analysis of
mathematical formulae with verification based on formula
description grammar. Document Analysis Systems VII,
Lecture Notes in Computer Sciences, 3872:153 – 163, 2006.

[19] A. van Dam. Demo. of math recognition at the 2007
workshop on pen-centric computing research, March 2007.

[20] XThink. Mathjournal. www.xthink.com.
[21] R. Zanibbi, D. Blostein, and J. Cordy. Recognizing

mathematical expressions using tree transformation.
IEEE Trans. Pattern Analysis and Machine Intelligence,
24(11):1455–1467, 2002.

